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Some notations

L ———— Laplace transform,
§??

L−1 ——— inverse Laplace
transform, §1.58

B ———— Borel transform, §??
LB ———– Borel/BE summa-

tion operator, §??
and §??

p ————- usually, Borel plane
variable

f̃ ———— formal expansion
H(p) ——– Borel transform of

h(x)
∼ ———— asymptotic to, §1.1a
. less than, up to

an unimportant con-
stant, §1.1a

Dr ———— The disk of radius r
centered at 0

∂A ———— The boundary of the
set A

N,Z,Q,R,C

N+,R+——- the nonnegative in-
tegers, integers, ra-
tionals, real num-
bers, complex num-
bers, positive inte-
gers, and positive
real numbers, re-
spectively

H ————- open right half
complex-plane.

Hθ ————- half complex-plane
centered on eiθ.

S ————- closure of the set S.

Ca ————- absolutely continu-
ous functions, [55]

f ∗ g ———– convolution of f and
g, §??

L1
ν , ‖ · ‖ν ,
AK,ν , etc. —- various spaces and

norms defined in §??
and §??
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Chapter 1

Introduction

1.1 Expansions and approximations

Classical asymptotic analysis is a set of mathematical results and methods
to find the limiting behavior of functions, near a point, most often a singular
point. It is particularly efficient in the context of differential or difference
equations when the function has no simple representation that immediately
conveys the desired limiting behavior.

Asymptotic analysis may involve several variables; however, in this book,
we will be mostly concerned with limiting behavior in one scalar variable; in
the context of differential or difference equations, this can be the independent
variable or a parameter.

1.1a Notation

Let the special point of analysis be t0 ∈ C.

Some common notations are: f = O(1) if f is bounded near t0 and f = o(1)
if f → 0 as t → t0. More generally f = O(g) if f/g = O(1) and similarly
f = o(g) if f/g = o(1). We also write f � g if f = o(g). It is understood
that g cannot vanish close to t0. The notation |f | . |g| is used to represent
|f | ≤ C|g| in the domain of interest, where C is a constant whose value is
immaterial. Clearly |f | . |g| in a small neighborhood of t0 is the same as
f = O(g). We write f = Os(g); when both f = O(g) and g = O(f) near t0.

The point t0 may be approached only from one direction, along a curve
in C or even along a given sequence of points tending to t0 and when such
further restrictions are needed, they will be specified. For instance if t0 = 0,
then t = o(1) as t→ 0 and e−1/t = o(tm) for any m as t ↓ 0 (t ∈ R+ decreases
towards 0), but the opposite holds, tm = o(e−1/t), as t ↑ 0.

1
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1.1b Asymptotic expansions

A sequence of functions {fk}k∈N such that fm � fn if m > n is called
an asymptotic scale at t = t0. In terms of it we can write the leading order
behavior of a function, f = f0 + o(f0) and also successively higher order
corrections: f = f0+f1+o(f1) etc. In a compact form, we write an asymptotic
expansion as a formal sum,

∞∑
k=0

fk(t) =: f̃ , (1.1)

where no convergence condition is imposed, and define asymptoticity by the
following.

Definition 1.2 A function f is asymptotic to the formal series f̃ as t → t0
(once more, the approach of t0 may have to be restricted to a curve) if

f(t)−
N∑
k=0

f̃k(t) = o(f̃N (t)) (∀N ∈ N) (1.3)

Condition (1.3) can be written in a number of equivalent ways, useful in
applications, as the following result shows.

Proposition 1.4 If f̃ =
∑∞
k=0 f̃k(t) is an asymptotic series as t→ t0 and f

is a function asymptotic to it, then the following characterizations are equiv-
alent to each other and to (1.3).

(i)

f(t)−
N∑
k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N) (1.5)

(ii)

f(t)−
N∑
k=0

f̃k(t) = f̃N+1(t)(1 + o(1)) (∀N ∈ N) (1.6)

(iii) There is function ν : N 7→ N, such that ν(N) ≥ N and

f(t)−
ν(N)∑
k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N) (1.7)

Condition (iii) seems strictly weaker, but it is not. It allows us to use less
accurate estimates of remainders, provided we can do so to all orders.
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PROOF We only show (iii), the others being immediate from the defini-
tion. We may assume ν(N) > N , as otherwise there is nothing to prove. Let
N ∈ N. We have

f(t) −
N∑
k=0

f̃k(t) = f(t) −
ν(N)∑
k=0

f̃k(t) +

ν(N)∑
j=N+1

f̃j(t) = O
(
f̃N+1(t)

)
(1.8)

since in the last sum in (1.8) the number of terms is fixed, and thus the sum

remains O
(
f̃N+1

)
as t→ t0.

Whenever possible, the scale is chosen to consist of simple functions, such as
powers, logs and exponentials, the behavior of which is manifest. Taylor series
are perhaps the simplest nontrivial asymptotic expansions. The following is
a way of restating Taylor’s theorem with remainder.

Proposition 1.9 Assume f is C∞ in an interval containing t0. Then

f(t) ∼
∞∑
k=0

f (k)(t0)

k!
(t− t0)k as t→ t0 (1.10)

Clearly, the asymptotic series of a function f converges to f iff f is analytic
at t0. Otherwise, the series is not convergent, or it converges to a function
other than f (see Example 1.16).

Note 1.11 In Definition 1.2 none of the fk is allowed to vanish. For instance,
although all right derivatives of f1 = e−1/t vanish at zero, we cannot write
e−1/t ∼ 0. This is a natural restriction since all the right derivatives vanish
at zero for many other functions, for instance f2 = sin(1/t)e−1/

√
t, with quite

different behavior t ↓ 0. We will however speak of asymptotic power series, a
weaker notion in which sense f1 and f2 above will be represented by the same
series.

Example 1.12 (A divergent asymptotic series) A simple example of a
divergent asymptotic expansion is obtained by calculating the Taylor series of
the function

f(z) =
1

z
e−1/zE1

(
1

z

)
=

∫ ∞
0

e−t

1 + zt
dt; z > 0 (1.13)

where E1(z) =
∫∞
z

e−t

t dt is the exponential integral. The exponential decay of
the integrand allows for differentiating (1.151) any number of times for z > 0,

f (k)(z) = k!

∫ ∞
0

(−t)ke−t

(1 + zt)k+1
dt (1.14)

Furthermore, f (k)(z) are continuous as z → 0+ (right limit at zero) for all
k ≥ 0. Elementary analysis tells us that f is C∞ at zero from the right. The
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integral representation of the factorial gives f (k)(0) = (−1)k(k!)2 We have,
using Taylor’s theorem with one-sided derivatives [54]

f(z) ∼
∞∑
k=0

(−1)kk!zk, z ↓ 0 (1.15)

a series with zero radius of convergence, or in short a divergent series.

Example 1.16 (A convergent asymptotic series) Since all derivatives of
e−1/z vanish as z ↓ 0 we have

1

1− z
+ e−1/z ∼

∞∑
k=0

zk =
1

1− z
, z → 0+ (1.17)

Convergence of an asymptotic series does not thus imply that the function
equals the sum of the series. Note also that here, as it is often done in practice,
we have used the same notation

∑∞
k=0 z

k to mean two different things: an
asymptotic series simply displaying the asymptotic scale involved, which is a
formal object, and its sum, an actual function. We will discuss this ambiguity
later.

Example 1.18 (A convergent but antiasymptotic series) The following
Laurent series converges in C \ {0}:

∞∑
j=0

(−1)j

j!zj
= e−1/z (1.19)

Eq. (1.19) is not an asymptotic expansion as z → 0. In (1.19) fk � fk+1, the
opposite of what is required from an asymptotic series. We have |e−1/z −∑M
j=0

(−1)j
j!zj | & |z

−M−1| as z ↓ 0 which means the approximations deteriorate
the more terms we keep, if z ↓ 0.

In general, for understanding the behavior of a function near a point, an
antiasymptotic series, even if convergent, is not very useful. We can see that
if we try to determine whether

f(z) =

∞∑
j=0

(−1)j

(j! + 10−j sin(j))zj
(1.20)

(the Laurent coefficients are close to those in (1.19)) tends zero or not, as
z → 0.

By contrast, although (1.15) is divergent, by the definition of an asymptotic
series, in (1.151) we see that f(z)→ 1 as z ↓ 0, and that f(z)−1 = −z(1+o(1))
and so on.
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Stirling’s formula for Γ(x) =
∫∞
0
tx−1e−tdt, which will be derived later,

in §??, is an example of a divergent asymptotic expansion, where the scales
involve powers of 1/x and logs:

ln(Γ(x)) ∼ (x− 1/2) lnx− x+
1

2
ln(2π) +

∞∑
j=1

cjx
−2j+1, x→ +∞ (1.21)

where 2j(2j − 1)cj = B2j and {B2j}j≥1 = {1/6,−1/30, 1/42...} are Bernoulli
numbers, [1], eq. 6.140. This expansion is asymptotic as x → ∞: successive
terms get smaller and smaller. For x = 6, truncating (1.21) at j = 3 we get
Γ(6) ≈ 120.0000002 (while Γ(6) = 5! = 120). Stirling’s expansion converges
for no x, since ln(Γ(x)) is singular at all x ∈ −N (why is this an obstruction
to convergence?).

Remark 1.22 Asymptotic expansions cannot be added, in general. Indeed,
we note that 1/(1− z) has the same expansion (1.17) as −e−1/z + 1/(1− z),
as z ↓ 0. Adding these would give e−1/z ∼ 0, which is not a valid asymptotic
expansion, see Note 1.11. This is one reason for considering, for restricted
expansions, a weaker asymptoticity condition; see §1.1c.

Remark 1.23 Sometimes we encounter oscillatory expansions such as
sinx(1 + a1x

−1 + a2x
−2 + · · · ) (∗) for large x, which, while very useful, have

to be understood differently. They are not asymptotic expansions, as we saw
in Note 1.11. Furthermore, usually the approximation itself is expected to
fail near zeros of sin. However, if small neighborhoods of the zeros of sin are
excluded, the expansion remains valid in the sense defined. Also, usually there
are ways to present the asymptotics in a way that avoids these exclusions,(see
§??).

1.1c Asymptotic power series

A special role is played by series in powers of a small variable, such as

S̃ =

∞∑
k=0

ckz
k, z → 0+ (1.24)

With the transformation z = t − t0 (or z = x−1, when x is large) the series
can be centered at z = 0 (or x = +∞, respectively).

Definition 1.25 (Asymptotic power series) A function is asymptotic to
a series as z → 0, in the sense of power series if

f(z)−
N∑
k=0

ckz
k = O(zN+1) (∀N ∈ N) as z → 0, (1.26)

where, as for general asymptotic expansions, it may be necessary to restrict
the approach z → 0 to a particular set of curves.
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Remark 1.27 If f has an asymptotic expansion ( in the sense of Definition
1.2) that happens to be a power series, it is asymptotic to it in the sense of
power series as well.

However, the converse is not true, unless all ck are nonzero, i.e. it is possible
that f ∼ f̃ ≡

∑∞
k=0 ckz

k in the power series sense, without f̃ being the
asymptotic expansion in the sense of Definition 1.2.

For now, whenever confusions are possible, we will use a different symbol,
∼p , for asymptoticity in the sense of power series.

Remark 1.28 Noninteger asymptotic power series, e.g., series of the form

zα
∞∑
k=0

ckz
kβ , Re (β) > 0 (1.29)

as well as asymptoticity of a function to (1.29) can be defined by easily adapt-
ing Definition 1.25, and replacing O(zN ) by O(zNβ+α) which is the same as
O(zReα+NRe (β)). More generally, in (1.29), instead of zα, we could have other
simple functions such as exponentials or logs.

The asymptotic power series at zero in R of e−1/z
2

is the zero series, which
is not its asymptotic expansion in the sense of Definition 1.2, see again Note
1.11. The advantage of asymptotic power series however is the fact that they
form an algebra.

1.1d Operations with asymptotic power series

Addition and multiplication of asymptotic power series are defined as in the
convergent case:

A

∞∑
k=0

ckz
k +B

∞∑
k=0

dkz
k =

∞∑
k=0

(Ack +Bdk)zk

( ∞∑
k=0

ckz
k

)( ∞∑
k=0

dkz
k

)
=

∞∑
k=0

 k∑
j=0

cjdk−j

 zk

Remark 1.30 If the series f̃ is convergent and f is its sum, f =
∑∞
k=0 ckz

k,

(note the ambiguity of the sum notation), then f ∼p f̃ .

The proof follows directly from the definition of convergence
The proof of the following lemma is immediate:

Lemma 1.31 (Algebraic properties of asymptoticity to a power series)
If f ∼p f̃ =

∑∞
k=0 ckz

k and g ∼p g̃ =
∑∞
k=0 dkz

k, then

(i) Af +Bg ∼p Af̃ +Bg̃

(ii) fg ∼p f̃ g̃
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Corollary 1.32 (Uniqueness of the asymptotic series to a function)
If f(z) ∼p

∑∞
k=0 ckz

k as z → 0, then the ck are unique.

PROOF Indeed, if f ∼p
∑∞
k=0 ckz

k and f ∼p
∑∞
k=0 dkz

k, then, by
Lemma 1.31 we have 0 ∼p

∑∞
k=0(ck − dk)zk which implies, inductively, that

ck = dk for all k.

However, division of asymptotic power series is not always possible. For
instance, e−1/z

2 ∼p 0 for small z in R while 1/ exp(−1/z2) has no asymptotic
power series at zero. Also, classical asymptotics cannot distinguish between
functions differing by a quantity which is o(zm) for all m > 0 as z → 0.
Indeed, we have the following result (see also Example 1.16)

Proposition 1.33 Assume f and g have nonzero asymptotic power series as
z → 0 and f − g = h where h = o(zm) for all m > 0 as z → 0. Then the
asymptotic series of f and g coincide.

PROOF This follows straightforwardly from Definition 1.26 and the
assumption on h.

1.1d.1 Integration and differentiation of asymptotic power series

Asymptotic relations can be integrated termwise as Proposition 1.34 below
shows.

Proposition 1.34 Assume f is integrable near z = 0 and that

f(z) ∼
p
f̃(z) =

∞∑
k=0

ckz
k

Then

∫ z

0

f(s)ds ∼
p

∫ z

0

f̃(s)ds :=

∞∑
k=0

ckz
k+1

k + 1

PROOF This follows from the fact that
∫ z
0
o(sn)ds = o(zn+1) as it can

be seen by straightforward inequalities.

Differentiation is a different issue. Many simple examples show that asymp-
totic series cannot be unrestrictedly differentiated. For instance
e−1/z

2

sin e1/z
4 ∼p 0 as z → 0 on R, but the derivative is unbounded and

thus it is not asymptotic to zero.
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1.1d.2 Asymptotics in regions in C

Asymptotic power series of analytic functions can be differentiated if they
hold in a region which is not too rapidly shrinking as z → 0. This is so, since
the derivative is expressible as an integral by Cauchy’s formula. Such a region
is often a sector or strip in C, but can be allowed to be thinner:

Proposition 1.35 Let M ≥ 0 and denote

Sa = {x : |x| ≥ R, |x|M |Im (x)| ≤ a}

Assume f is continuous in Sa and analytic in its interior, and

f(x) ∼
p

∞∑
k=0

ckx
−k as x→∞ in Sa

Then, for all a′ ∈ (0, a) we have

f ′(x) ∼
p

∞∑
k=0

(−kck)x−k−1 as x→∞ in Sa′

PROOF Here, Proposition 1.4 (iii) will come in handy. Let ν(N) = N+M .
By the asymptoticity assumptions, for any N there is some constant C(N)

such that |f(x)−
∑ν(N)
k=0 ckx

−k| ≤ C(N)|x|−ν(N)−1 (*) in Sa.
Let a′ < a, take x large enough, and let ρ = 1

2 (a − a′)|x|−M ; then check
that Dρ = {x′ : |x− x′| ≤ ρ} ⊂ Sa. We have, by Cauchy’s formula and (*),∣∣∣∣∣∣f ′(x)−

ν(N)∑
k=0

(−kck)x−k−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

2πi

∮
∂Dρ

f(s)−
ν(N)∑
k=0

cks
−k

 ds

(s− x)2

∣∣∣∣∣∣
≤ C(N)

(|x| − 1)ν(N)+1

1

2π

∮
∂Dρ

d|s|
|s− x|2

≤ 2C(N)

|x|ν(N)+1ρ
≤ 4C(N)

a− a′
|x|−N−1 (1.36)

and the result follows.

Note 1.37 Usually, we can determine from the context whether ∼ or ∼p
should be used. Often in the literature, it is left to the reader to decide which
notion is in use. After we have explained the distinction, we will do the same,
so as not to complicate notation.

1.2 Asymptotics of integrals

Often when differential equations have closed form solutions, these can
be expressed in terms of elementary functions or special functions admit-
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ting integral representations. These integral expressions allow for finding the
asymptotic behavior of solutions in different regions of the complex domain.
Important examples include the equation

x2y′′ + xy′ + σ(x2 − σν2)y = 0; σ = ±1 (1.38)

For σ = 1, (1.38) is the Bessel equation [1]; the solution which is regular at the
origin is Jν(x) – the Bessel function of the first kind and a linearly independent
one is Yν(x) – the Bessel function of the second kind. For σ = −1 (1.38) is the
modified Bessel equation; the solution which is regular at the origin is Iν(x) –
the modified Bessel function of the first kind and a linearly independent one is
Kν(x) – the modified Bessel function of the second kind. The Airy equation

y′′ − xy = 0 (1.39)

has solutions Ai(x) and Bi(x), the Airy functions. The hypergeometric equa-
tion

x(x− 1)y′′ + [(a+ b+ 1)x− c]y′ + aby = 0 (1.40)

has linearly independent solutions 2F1(a, b; c;x) and x1−c 2F1(a−c+1, b−c+
1; 2 − c;x) where 2F1 is a hypergeometric function. All these functions have
integral representations, in fact a good number of representations suitable
for different asymptotic regimes. For instance, see [21] 10.9.17, [6] (Equation
6.6.30, page 298),

Jν(z) =
1

2πi

∫ ∞+πi

∞−πi
exp(z sinh t− νt)dt; Re z > 0 (1.41)

and [21] 9.5.4, and [6] (p. 313, Problem 6.75, with the change of integration
variable t→ −t).

Ai(z) =
1

2πi

∫ ∞eπi/3
∞e−πi/3

exp
(
t3/3− zt

)
dt, (1.42)

Finally, for |z| < 1 [21] 15.1.2 and 15.6.1,

2F1(a, b; c; z) =
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1−t)c−b−1(1−zt)−a dt Re(c) > Re(b) > 0

(1.43)

1.2a *The Laplace transform and its properties.

The Laplace transform Lf of a function F is defined by

f(x) =

∫ ∞
0

e−xpF (p)dp, Re (x) > ν ≥ 0 (1.44)
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Here it is assumed that F is locally integrable in [0,∞) and does not grow
faster than exponentially, for instance

‖F‖∞,ν = sup
p≥0
|F (p)|e−νp <∞ or ‖F‖L1

ν
=

∫ ∞
0

|F (p)|e−νpdp <∞ (1.45)

(see §1.8a) for some ν ∈ R. Both ensure the existence of Lf if Rex > ν.
As will be seen in the sequel, solutions of linear or nonlinear differential

equations, including (1.42) and (1.41) above, can often be written as Laplace
transforms of simpler functions. It is then important to understand the asymp-
totic behavior of Laplace transforms. A general asymptotic result is the fol-
lowing:

Lemma 1.46 Under the assumption in (1.45), we have∫ ∞
0

e−xpF (p)dp→ 0 as Re (x)→∞ (1.47)

PROOF This follows from the dominated convergence theorem, see §1.8a.
Indeed,

∫∞
0
|e−xpF (p)|dp ≤

∫∞
0
|e−x0pF (p)|dp < ∞ for Re (x) ≥ x0 > ν, and

e−xpF (p)→ 0 as Re (x)→∞ for all p ∈ (0,∞).

Furthermore, convergence is exponentially fast iff F is identically zero on
some interval [0, ε), where ε > 0 is independent of x as shown in the following
proposition. For the notation, see §1.8a.

Proposition 1.48 Assume that F is exponentially bounded in the sense of
(1.45); let x1 = Re (x). Then∫ ∞
0

e−xpF (p)dp = o(e−x1ε) as x1 →∞ iff F = 0 a.e.1 on [0, ε] as x1 →∞

(1.49)
Also,

∫∞
0
e−xpF (p)dp = O(e−x1ε) ⇔

∫∞
0
e−xpF (p)dp = o(e−x1ε), implying

F = 0 a.e. on [0, ε].

PROOF (i) Assume that F = 0 a.e. on [0, ε). This implies that∫ ∞
0

e−xpF (p)dp =

∫ ∞
ε

e−xpF (p)dp = e−xε
∫ ∞
0

e−xpF (p+ ε)dp = e−xεo(1)

(1.50)
as x1 →∞ by Lemma 1.46.

(ii) For the converse, assume that
∫∞
0
e−xpF (p)dp = O(e−x1ε). We write∫ ∞

0

e−xpF (p)dp =

∫ ε

0

e−xpF (p)dp+

∫ ∞
ε

e−xpF (p)dp. (1.51)
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The rightmost integral in (1.51) is shown to be o(e−x1ε) by using the change
variable p→ p+ ε and using Lemma 1.46. Thus

g(x) := exε
∫ ε

0

e−xpF (p)dp = O(1) as x1 = Re x→ +∞ (1.52)

It is easy to see that g is entire. Furthermore, it is bounded for x ∈ R+

by (1.52) and also manifestly bounded for x ∈ iR, and x ∈ R−. Since g is
of exponential order 1, using the Phragmén-Lindelöff theorem in all of the
four quadrants (see [17] pp. 19 and 23 for more details) shows g is bounded.
From Liouville’s theorem, g is a constant. The Riemann-Lebesgue lemma
implies that g goes to zero as x → ∞ along the imaginary line. Thus g = 0,
implying

∫ ε
0
F (p)e−pxdp = 0, ∀x ∈ C implying that the Fourier transform∫∞

−∞ e−itpχ[0,ε](p)F (p)dp = 0 ∀t ∈ R and thus, by inverse Fourier transform,

F (p) = 0 a.e. on (0, ε). Now, (i) implies that
∫∞
0
F (p)e−pxdp = o (e−εx1).

Corollary 1.53 Under the condition (1.45), if LF = 0 for all x > 0, then
F = 0 a.e. on R+.

PROOF Since, in particular, LF = O(e−xa) for any a > 0, from Propo-
sition 1.48, F = 0 a.e. on R+.

First inversion formula

Let H denote the space of analytic functions in the right half complex plane.

Proposition 1.54 (i) L : L1(R+) 7→ H and ‖LF‖∞ ≤ ‖F‖1.
(ii) L : L1(R+) 7→ L(L1(R+)) ⊂ H is invertible, and the inverse is given by

F (x) = F̂−1{LF (it)}(x) (1.55)

for x ∈ R+ where F̂ is the Fourier transform (in distributions if LF /∈
L1(iR)).

Second inversion formula

Proposition 1.56 (i) Assume f is analytic in an open sector Hδ := {x :
| arg(x)| < π/2 + δ}, δ ≥ 0 and is continuous on ∂Hδ, and that for some
K > 0 and any x ∈ Hδ we have

|f(x)| ≤ K(|x|2 + 1)−1 (1.57)

Then L−1f is well defined by

F = L−1f =
1

2πi

∫ +i∞

−i∞
dt eptf(t) (1.58)
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and ∫ ∞
0

dp e−pxF (p) = LL−1f = f(x) (1.59)

We have ‖L−1{f}‖∞ ≤ K/2 and L−1{f} → 0 as p→∞.
(ii) If δ > 0, then F = L−1f is analytic in the sector Sδ = {p 6= 0 :

| arg(p)| < δ}. In addition, supSδ |F | ≤ K/2 and F (p) → 0 as p → ∞ along
rays in Sδ.

PROOF Clearly, F in (1.58) is well-defined since f(is) ∈ L1(R). (i) We
have

2πiL
[
L−1f

]
(x) =

∫ ∞
0

dp e−px
∫ ∞
−∞

ids eipsf(is) (1.60)

=

∫ ∞
−∞

ids f(is)

∫ ∞
0

dp e−pxeips =

∫ i∞

−i∞
f(z)(x− z)−1dz = 2πif(x) (1.61)

where we applied Fubini’s theorem2 and then pushed the contour of integra-
tion past x to infinity. The norm of L−1 is obtained by majorizing |f(x)epx| by
K(|x2|+ 1)−1. The behavior

[
L−1f

]
(p)→ 0 as p→ +∞ follows by applying

Riemann-Lebesgue Lemma to (1.58).
(ii) For any δ′ < δ we have, by (1.57),

∫ i∞

−i∞
ds epsf(s) =

(∫ 0

−i∞
+

∫ i∞

0

)
ds epsf(s)

=

(∫ 0

−i∞e−iδ′
+

∫ i∞eiδ
′

0

)
ds epsf(s) (1.62)

Take any p ∈ Sδ. Choose δ′ < δ so that p ∈ S′δ. Analyticity of (1.62) in p ∈ S′δ
is manifest, given the analyticity and exponential decay of the integrand. For
the estimates on F (p), we note that (i) applies to f(xeiφ) if |φ| < δ.

Many cases can be reduced to (1.57) after transformations. For instance

if f1 =
∑N
j=1 aj(1 + x)−kj + f(x), **where kj > 0 and f satisfies the as-

sumptions above, then (1.58) and (1.59) apply to f1, since they do apply, by
straightforward verification, to the finite sum.

Proposition 1.63 Let F be analytic in the open sector Sp = {eiφR+ : φ ∈
(−δ, δ)} and such that |F (|p|eiφ)| ≤ g(|p|) ∈ L1[0,∞). Then f = LF is
analytic in the sector Sx = {x : | arg(x)| < π/2 + δ} and f(x) → 0 as
|x| → ∞, arg(x) = θ ∈ (−π/2− δ, π/2 + δ).

2This theorem addresses the permutation of the order of integration; see [55]. Essentially,
if f ∈ L1(A×B), then

∫
A×B f =

∫
A

∫
B f =

∫
B

∫
A f .
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PROOF Because of the analyticity of F and the decay conditions for large
p, the path of Laplace integration can be rotated by any angle φ in (−δ, δ)
without changing3 (LF )(x). The fact thatg ∈ L1 also implies that The decay
of (LF )(x) in x follows from Lemma 1.46 with x replaced by xe−iφ and φ
chosen arg

(
xe−iφ

)
∈
(
−π2 ,

π
2

)
Note F need not be analytic at p = 0 for Proposition 1.63 to apply.

1.2b Watson’s Lemma

As will be seen, many integrals after appropriate changes of variable can
be cast in a form where Watson’s Lemma can be applied. In the following
example, we determine the asymptotics of the incomplete Gamma function
which we will need later.

Example 1.64 Assume that Reβ > 0 and a > 0. Then as x→∞ along an
arbitrary ray in the open right half plane, H

{x : arg x = α} ; where α ∈
(
−π

2
,
π

2

)
(1.65)

Then, ∫ a

0

pβ−1e−pxdp ∼ Γ(β)

xβ
(1.66)

Indeed, changing variable to t = px we get∫ ∞
0

pβ−1e−pxdp =
1

xβ

∫ ∞ei arg(x)
0

e−ttβ−1dt =
1

xβ

∫ ∞
0

e−ttβ−1dt =
Γ(β)

xβ

(1.67)
by a homotopic change of contour and the definition of the Gamma function.

Lemma 1.68 If xα
∫∞
0
e−xpF (p)dp has an asymptotic power series in z =

x−β for some β with Reβ > 0 as Rex → ∞, then for any fixed ε > 0,
xα
∫ ε
0
e−xpF (p)dp has an asymptotic power series as well, and the two power

series agree.

PROOF This is an immediate consequence of Propositions 1.48 and 1.33.

Watson’s lemma allows us to integrate power series term by term as stated
below.

3The fact that g ∈ L1 implies that lim infR→∞Rg(R) = 0; thus there is a subsequence Rn
s.t. Rng(Rn) → 0. By straightforward estimates, or by Jordan’s lemma, we see that the
integral of Fe−px along an arc of a circle of radius Rn goes to zero with n.
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Lemma 1.69 (Watson’s lemma) Assume that ‖F‖L1
ν
< ∞ (cf. (1.45))

and

F (p) = pα−1
m∑
k=0

ckp
kβ + o(pα−1+mβ) as p→ 0+ for all m ≤ m0 ∈ N ∪∞

(1.70)
for some α and β, with Reα,Reβ > 0. Then as x → ∞ along an arbitrary
ray in H, see (1.65), we have 4

(LF )(x) =

∫ ∞
0

e−xpF (p)dp =

m∑
k=0

ckΓ(kβ+α)x−α−kβ+o
(
x−α−mβ

)
. (1.71)

for any m ≤ m0. The asymptotic expansion (1.71) holds if (LF )(x) is replaced
by
∫ a
0
F (p)e−pxdp (a independent of x) F ∈ L1(0, a), and F has the same

asymptotic series as above as p→ 0+.

PROOF By Lemma 1.68, the conclusion follows if it holds for the integral∫ ε
0
e−xpF (p)dp for some fixed ε > 0. On the other hand, by assumption and

the definition of asymptotic power series we have, for any δ > 0, F (p) =∑m
k=0 ckp

kβ+α−1 + g(p) where |g(p)| ≤ δ|pα−1+mβ | for p ∈ (0, ε) if ε = ε(δ,m)
is small enough. Following the calculations in Example 1.64 we get∣∣∣∣∫ ε

0

e−xpg(p)dp

∣∣∣∣ ≤ δ ∫ ε

0

e−x1ppReα+mRe β−1dp ≤ Cδ|x−α−mβ |,

noting that that |x|x1
is finite along a ray Now, following Example 1.64,

∫ ε

0

e−px
m∑
k=0

ckp
α+kβ−1dp ∼

m∑
k=0

ckΓ (α+ kβ)x−α−kβ ,

finishing the proof for (LF )(x). For the last part, note that
∫ a
0
F (p)e−xpdp =∫∞

0
F (p)χ[0,a](p)e

−xpdp and F (p)χ[0,a](p) satisfies the assumptions in the first

part of the lemma.

Note 1.72 Intuitively, we see that, for a fixed F , the larger Rex is, the more
damped is the contribution of any region that is not very close to zero. The
behavior of a Laplace transform is gotten from the immediate neighborhood
of zero. This will be seen in the next example and is formalized in Watson’s
lemma following it.

4By writing
∫ a
0 F (p)e−pxdp =

∫∞
0 F (p)e−pxχ[0,a](p)dp where χ[0,a] is the characteris-

tic function of [0, a], we see that the same result holds for a finite Laplace transform∫ a
0 F (p)e−pxdp.
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Note 1.73 Watson’s lemma holds for
∫ aeiθ
0

F (p)e−pxdp as |x| → ∞ if the

asymptotic behavior (1.70) is valid along a ray arg p = θ, where F ∈ L1(0, aeiθ)
arg(x) satisfies θ + arg x ∈

(
−π2 ,

π
2

)
. The proof is manifest by changing vari-

ables p→ peiθ, x→ xe−iθ and applying Lemma 1.69.

Exercise 1.74 (A generalization of Watson’s Lemma) Assume that for
some ε > 0, we have sup|z|<ε ‖F (·; z)‖L1

ν
= C <∞ and that

F (p; z) = pα−1
∑

06k6m
06l6n

ck,l p
kβ1zlβ2 + o(pα−1+mβ1znβ2)

as (p, z)→ (0+, 0) for all (m,n) 6 (m0, n0) ∈ (N ∪∞)2 (1.75)

where Reα,Reβ1 and Reβ2 are positive. Then, show that 5

∫ ∞
0

e−xpF

(
p,

1

x

)
dp =

∑
06k6m
06l6n

cklΓ(kβ1 + α)

xα+kβ1+lβ2
+ o

(
x−α−mβ1−nβ2

)
. (1.76)

Corollary 1.77 (Laplace asymptotics, maximum at an endpoint)
Assume that F is continuously differentiable on [0, a) (as usual when we close
the interval we mean right derivative) and F ′ > 0 and g is continuous. Then∫ a

0

e−νF (x)g(x)dx ∼ e−νF (0) g(0)

νF ′(0)
as ν →∞ (1.78)

PROOF By choosing F̃ = F (x) − F (0) we reduce to the case F (0) = 0.
Since F ′ > 0, F is invertible near zero and, with h(x) = F−1(x), we have∫ a

0

e−νF (x)g(x)dx =

∫ F (a)

0

e−νpg(h(p))h′(p)dp (1.79)

By continuity g(h(p))h′(p) = g(0)h′(0) + o(1) as p→ 0+. Noting that h′(0) =
1/F ′(0), the rest follows from Watson’s lemma.

Corollary 1.80 (Laplace asymptotics, maximum at an inner point)
Assume that a > 0, F is twice continuously differentiable on (−a, a) F ′(0) = 0
and F ′′(x) > 0 on (−a, a), and that g is continuous. Then,

∫ a

−a
e−νF (x)g(x)dx ∼ e−νF (0)g(0)

√
2π

νF ′′(0)
(1.81)

5It is tacitly assumed m and n are chosen so that no term in the sum is o
(
x−α−mβ1−nβ2

)
.
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PROOF As in Corollary 1.77 without loss of generality we may assume
F (0) = 0. Define h(x) = signum(x)

√
F (x) and denote 1

2F
′′(0) = λ2. Clearly

h is continuously differentiable away from zero. For x close to zero, we have
F (x) = λ2x2 + o(x2) and thus h(x) = λx + o(x) for small x. It is then
easy to show that h is continuously differentiable on (−a, a) and h′ > 0.
We calculate only the integral from 0 to a: the one from −a to 0 can be
computed similarly and has an equal contribution to the final estimate. We
make the change of variables h(x) =

√
u and and note that by continuity

g(
√
u)/h′

(
h−1(

√
u)
)
∼ g(0)/h′(0) to obtain∫ a

0

e−νh
2(x)g(x)dx =

∫ F (a)

0

e−νu
g(
√
u)

h′(h−1(
√
u))

1

2
√
u
du ∼ g(0)

√
2π

2
√
νF ′′(0)

(1.82)

by Watson’s lemma and the fact that Γ(1/2) =
√
π.

Note: Only the leading order asymptotic calculations are given in Corollar-
ies 1.77 and 1.80. Watson’s Lemma can be used to determine higher order
corrections in the asymptotic expansion if F and g are smooth enough near
0.

Exercise 1.83 Formulate and prove a generalization of Lemma 1.80 for the
case when F ′(0) = · · · = F 2m−1(0) = 0 and F 2m(0) > 0.

Example: Asymptotics of the Γ function The Gamma function is defined
by

Γ(x+ 1) ≡ x! =

∫ ∞
0

e−ττxdτ,=

∫ ∞
0

ex log τe−τdτ (1.84)

for x > −1. 6 x log τ − τ is maximal when τ = x. This suggests rescaling
τ = xs. This leads to

Γ(x+ 1) = xx+1

∫ ∞
0

e−x(s−log s)ds = xx+1e−x
∫ ∞
−1

exp [−x (t− log(1 + t))] dt

(1.85)
To put it in a form where one of the preceding Lemmas may be used, we
introduce

q = t

[
2t− 2 log(1 + t)

t2

]1/2
(1.86)

Through Taylor series at t = 0, it is readily checked that t→ q is an analytic
change of variable near t = 0, with q′(0) = 1. Further, t → q is monononic
and maps the the real axis interval (−1,∞) to q ∈ (−∞,∞). We define the
unique inverse function to be t = T (q). It follows from (1.85) that

Γ(x+ 1) = xx+1e−x
∫ ∞
−∞

e−xq
2/2 T ′(q)dq (1.87)

6This representation is valid for complex x as well in the domain Rex > −1.
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We decompose the integral in (1.87) as
∫ 0

−∞+
∫∞
0

. We introduce change of

variable q = −
√

2p in the first integral and q =
√

2p in the second to obtain

Γ(x+ 1) = xx+1e−x
∫ ∞
0

e−px√
2p

(
T ′(−

√
2p) + T ′(

√
2p
)
dp (1.88)

Using Taylor series T (q) =
∑∞
j=1 bjq

j ,

1√
2p

(
T ′(−

√
2p) + T ′(

√
2p
)

=
∞∑

j=1,j=odd

2jbj (2p)j/2−1. (1.89)

It follows from Watson’s Lemma that

Γ(x+ 1) ∼ xx+1e−x
∞∑

j=1,j=odd

2j/2Γ(j/2)jbjx
−j/2 (1.90)

The first few bj is easily computed by substituting a truncation of t = b1q +
b2q

2 + b3q
3 + .. into (1.86) and equating like powers of q and solving result-

ing equations. This gives b1 = 1, b3 = 1
36 , b5 = 1

4320 , the even bj ’s being
inconsequential in (1.90). Using Γ(1/2) =

√
π, the first few nonzero terms are

Γ(x+ 1) =
√

2πxx+1/2e−x
(

1 +
1

12x
+

1

288x2
+O(x−3)

)
(1.91)

The three term evaluation at x = 6 gives 720.0088692 versus the exact value
of 720. If the general term in the asymptotic expansion (1.90) is desired, we
can use Lagrange formula for inversion of a series:

bj =
1

2πi

∮
T (q)

qj+1
dq =

1

2πi

∮
t2(1 + t)−1 [2t− 2 log(1 + t)]

−j/2−1
dt

=
2−j/2−1

2πi

∮
(eu − 1)2

(eu − 1− u)j/2+1
du, (1.92)

where the closed loop contour integrals are assumed to circle the origin in the
respective variables in the positive sense.

1.3 Oscillatory integrals and the stationary phase method

In this setting, an integral of a function against a rapidly oscillating expo-
nential becomes small as the frequency of oscillation increases. Again we first
look at the case where there is minimal regularity; the following is a version
of the Riemann-Lebesgue lemma.
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Proposition 1.93 Assume f ∈ L1[a, b]. Then
∫ b
a
eixtf(t)dt → 0 as x →

±∞. The same is true for
∫∞
−∞ eixtf(t)dt for f ∈ L1(R).

It is enough to show the result on a set which is dense7 in L1. Since trigono-
metric polynomials are dense in the continuous functions on a compact set8,
say in C[a, b] in the sup norm, and thus in L1[a, b], while continuous functions
with compact support are dense in L1(R), it suffices to look at trigonometric
polynomials, thus (by linearity), at eikx for fixed k; for the latter we just
calculate explicitly the integral; we have∫ b

a

eixseiksds = O(x−1) for large x.

No rate of decay of the integral in Proposition 1.93 follows without further
knowledge about the regularity of f . With some regularity we have the fol-
lowing characterization.

Proposition 1.94 For η ∈ (0, 1] let the Cη[a, b] be the Hölder continuous
functions of order η on [a, b], i.e., the functions with the property that there
is some constant c > 0 such that for all x, x′ ∈ [a, b] we have |f(x)− f(x′)| ≤
c|x− x′|η.

(i) We have

f ∈ Cη[a, b]⇒

∣∣∣∣∣
∫ b

a

f(s)eixsds

∣∣∣∣∣ ≤ (b− a)

2
cπηx−η +O(x−1) as x→∞

(1.95)

(ii) If f ∈ L1(R) and |x|ηf(x) ∈ L1(R) with η ∈ (0, 1], then its Fourier

transform f̂ =
∫∞
−∞ f(s)e−ixsds is in Cη(R).

(iii) Let f ∈ L1(R). If xnf ∈ L1(R) with n − 1 ∈ N then f̂ is n times

differentiable. If for A > 0, eA|x|f ∈ L1(R) then f̂ extends analytically in a
strip of width A centered on R.

PROOF (i) By rescaling, we can choose [a, b] = [0, 1]. We have as x→∞
(b ·c denotes the integer part)

7A set of functions fn which, collectively, are arbitrarily close to any function in L1. Using
such a set we can write∫ b

a
eixtf(t)dt =

∫ b

a
eixt(f(t)− fn(t))dt+

∫ b

a
eixtfn(t)dt

and the last two integrals can be made arbitrarily small.
8One can associate the density of trigonometric polynomials with approximation of func-
tions by Fourier series.
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∣∣∣∣∫ 1

0

f(s)eixsds

∣∣∣∣ =∣∣∣∣∣∣
b x2π−1c∑
j=0

(∫ (2j+1)πx−1

2jπx−1

f(s)eixsds+

∫ (2j+2)πx−1

(2j+1)πx−1

f(s)eixsds

)∣∣∣∣∣∣+O(x−1)

=

∣∣∣∣∣∣
b x2π−1c∑
j=0

∫ (2j+1)πx−1

2jπx−1

(
f(s)− f(s+ π/x)

)
eixsds

∣∣∣∣∣∣+O(x−1)

≤
b x2π−1c∑
j=0

c
(π
x

)η π
x
≤ 1

2
cπηx−η +O(x−1) (1.96)

(ii) We see that

∣∣∣∣∣ f̂(s)− f̂(s′)

(s− s′)η

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

e−ixs − e−ixs′

xη(s− s′)η
xηf(x)dx

∣∣∣∣∣ ≤
∫ ∞
−∞

∣∣∣∣∣e−ixs − e−ixs
′

(xs− xs′)η

∣∣∣∣∣∣∣∣xηf(x)
∣∣∣dx

(1.97)
is bounded. Indeed, by elementary geometry we see that for |φ1 − φ2| < 1 we
have

| exp(iφ1)− exp(iφ2)| ≤ |φ1 − φ2| ≤ |φ1 − φ2|η (1.98)

while for |φ1 − φ2| ≥ 1 we see that

| exp(iφ1)− exp(iφ2)| ≤ 2 ≤ 2|φ1 − φ2|η

(iii) Take any x ∈ SA := {x ∈ C : |Imx| < A}. Choose A′ < A so that

x ∈ SA′ . Choose h ∈ C so that |h| ≤ A−A′
2 . Then,

[Dhf̂ ](x) :=
f̂(x+ h)− f̂(x)

h
=

∫
R
f(s)e−ixs

(
e−ihs − 1

h

)
ds

and it is readily checked that |e−ixs
(
e−ihs−1

h

)
| ≤ CeA|s| and by the dom-

inating convergence theorem f̂ ′(x) = limh→0[Dhf ](x) =
∫
R−isf(s)e−ixsds

implying f̂ is analytic in a strip of width A.

Note 1.99 In Laplace type integrals Watson’s lemma implies that it suffices
for a function to be continuous to ensure an O(x−1) decay of the integral,
whereas in Fourier-like integrals, the considerably weaker decay (1.95) is op-
timal as seen in the exercise below.

Exercise 1.100 (*) (a) Consider the function f given by the lacunary trigono-
metric series f(z) =

∑
k=2n,n∈N k

−ηeikz, η ∈ (0, 1). Show that f ∈ Cη[0, 2π].
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We want to estimate f(φ1) − f(φ2) in terms of |φ1 − φ2|η, when φ1 − φ2 is
small. We can take φ1 − φ2 = 2−pb with |b| < 1. use the first inequality in
(1.98) to estimate the terms in with n < p and the simple bound 2/kη for

n ≥ p. Then it is seen that
∫ 2π

0
e−ijsf(s)ds = 2πj−η (if j = 2m and zero

otherwise) and the decay of the Fourier transform is exactly given by (1.95).
(b) Use Proposition 1.94 and the result in Exercise 1.100 to show that

the function f(t) =
∑
k=2n,n∈N k

−ηtk, analytic in the open unit disk, has no
analytic continuation across the unit circle, that is, the unit circle is a barrier
of singularities for f .

Note 1.101 If we are dealing with an analytic function except for isolated
singularities (or branch points), then decay is typically better than the one
obtained in Proposition 1.94.

Note. In part (i) of Proposition 1.94, compactness of the interval is crucial.
In fact, the Fourier transform of an L2(R) entire function may not necessarily

decrease pointwise. For example, consider f = F−1f̂ , where f̂(x) = 1 for

x ∈ [n, n + e−n
2

] for n ∈ N and zero otherwise. Since f̂ ∈ L1(R) ∩ L2(R)

and for any A > 0, eA|x|f̂(x) ∈ L1(R), it follows that f = F−1f̂ is entire.

Yet [Ff ](x), which equals f̂(x) a.e., evidently does not decrease pointwise as
x→∞.

Proposition 1.102 Assume f ∈ Cn[a, b]. Then we have

∫ b

a

eixtf(t)dt = eixa
n∑
k=1

ckx
−k + eixb

n∑
k=1

dkx
−k + o(x−n)

= eixt
(
f(t)

ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1

f (n−1)(t)

(ix)n

)∣∣∣∣b
a

+ o(x−n), (1.103)

where ck = −f (k−1)(a)/ik and dk = f (k−1)(b)/ik.

PROOF This follows by integration by parts and the Riemann-Lebesgue
lemma since

∫ b

a

eixtf(t)dt = eixt
(
f(t)

ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1

f (n−1)(t)

(ix)n

)∣∣∣∣b
a

+
(−1)n

(ix)n

∫ b

a

f (n)(t)eixtdt (1.104)
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Corollary 1.105 (1) Assume f ∈ C∞[0, 2π] is periodic with period 2π. Then∫ 2π

0
f(t)eintdt = o(n−m) for any m > 0 as n→ +∞, n ∈ Z.

(2) Assume f ∈ C∞0 [a, b] vanishes at the endpoints together with all deriva-

tives; then f̂(x) =
∫ b
a
f(t)eixt = o(x−m) for any m > 0 as x→ ±∞.

Exercise 1.106 Show that if f is analytic in a neighborhood of [a, b] but not
entire, then both series in (1.103) have zero radius of convergence.

Exercise 1.107 In Corollary 1.105 (2) show that lim supx→∞ eε|x||f̂(x)| =∞
for any ε > 0 unless f = 0.

Exercise 1.108 For smooth f , the interior of the interval does not contribute
because of cancellations: rework the argument in the proof of Proposition 1.94
under smoothness assumptions. If we write f(s+ π/x) = f(s) + f ′(s)(π/x) +
1
2f
′′(c)(π/x)2 cancellation is manifest.

Exercise 1.109 Show that if f is piecewise differentiable and the derivative
is in L1, then the Fourier transform is O(x−1).

1.4 Steepest descent method

We seek to determine the asymptotic behavior of I(ν) as ν → +∞, where

I(ν) =

∫
C
g(z)e−νf(z)dz (1.110)

for f and g that are analytic in some some region of the complex plane9, and
C is some simple curve that may be finite or infinite. Further, we may assume
f is not a constant, as otherwise the asymptotics is trivial. The problem is to
determine the asymptotics of I as ν → +∞. More generally, if ν →∞ along
some complex ray arg ν = φ, we can replace ν by |ν| and f by eiφf in the
ensuing discussion to obtain asymptotics along complex rays.

The idea of the steepest descent method is to use the analyticity of the
integrand in (1.110) in z to deform C homotopically into one or more paths,
each of which is characterized by Im f = c, a constant. If C is homotopically
equivalent to just one steepest descent path Cs = {z : z = γ(t), a ≤ t ≤ b},
where γ′ exists (and assumed nonzero, without loss of generality) then we
may rewrite (1.110)

I(ν) = e−iνc
∫ b

a

g(γ(t)) exp [−ν (f(γ(t))− ic)] γ′(t)dt (1.111)

9The region of analyticity will be dictated by the need to deform C into one or more steepest
descent paths and will depend on the specifics of the problem.
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Since f(γ(t))− ic is by assumption real valued for t ∈ (a, b) and g(γ(t))γ′(t)
can decomposed into real and imaginary parts. After breaking up the integral
into subintervals where f − ic is monotonic, Watson’s lemma can be applied
to determine the complete asymptotic expansion of I(ν). Indeed, for analytic
f , the real valued funciton f(γ(t)) − ic, which is the same as Re f , is mono-
tonically increasing or decreasing in any interval in t that does not contain a
singular point of f or a saddle point where f ′ = 0 (The term saddle refers to
the behavior of the harmonic function Re f(x + iy) for (x, y) near a critical
point, where f ′ = 0).

Generally, multiple steepest descent paths, each with a different value of
c, are involved in homotopic deformation of

∫
C ; these paths join up at sinks

where Re f → +∞. Multiple descent paths will definitely be needed when
Im f is different at the end points of C, as in the example in §1.4a In such
cases, the calculation of I(ν) generally requires adding up the contributions
on each steepest descent path

∫
Cs in the manner outlined in the last para-

graph. Therefore, the only new element in the steepest descent method is to
determine steepest curves which are homotopically equivalent to the original
path C. For a point on each such curve, Re f varies most rapidly relative to all
other directions, as may be concluded easily from applying Cauchy-Riemann
conditions. This explains the terminology steepest descent10 It should be fur-
ther noted that without homotopic deformation into descent paths, (1.110)
will generally be an oscillatory integral; asymptotics obtained through the
stationary phase method leads to substantially weaker results, see note 1.99.
The stationary phase method, however, does not require analyticity of f and
g.

1.4a Simple illustrative example

Consider

I(ν) =

∫ 1

0

eiνz
2

z + 1
dz (1.112)

In the notation of (1.110), f(z) = −iz2, g(z) = 1
z+1 . Steepest descent paths

emanating at z = 0 are determined by

Im f = Im f(0) implying Re z2 = 0, i .e. z = re±iπ/4 for r ∈ (−∞,∞)
(1.113)

However, since Ref → +∞, when z = reiπ/4 as r →∞, it follows that∞eiπ/4
is a sink that is connected to z = 0 along the steepest descent path z = reiπ/4.
Steepest descent paths from the other end point z = 1 in the integral (1.112)

10This terminology is confusing, since descent or ascent depends on the direction a path is
traversed. Calling it steepest variation path is more appropriate; nonetheless, we will stick
to the standard terminology.
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is found by setting

Im f = Im f(1) = −1 implying Re z2 = 1, i .e.hyperbolic path x2 − y2 = 1
(1.114)

Since only one branch of this hyperbola passes through (1, 0) and asymptotes

to y = x, i.e. approaches the sink∞eiπ/4, a homotopic deformation of the
∫ 1

0

may be made to coincide with descent paths z = reiπ/4, 0 ≤ r < ∞ followed
by integration along steepest descent path C that connects ∞eiπ/4 to 1 along
the hyperbola11 x2 − y2 = 1. Therefore,

I(ν) =

∫ ∞eiπ/4
0

eiνz
2

1 + z
dz +

∫
C

eiνz
2

1 + z
dz ≡ I1(ν) + I2(ν) (1.115)

For I1(ν), using z = reiπ/4 for 0 < r <∞, we obtain after change of variable
and application of Watson’s Lemma

I1(ν) = eiπ/4
∫ ∞
0

e−νr
2

1 + reiπ/4
dr = eiπ/4

∫ ∞
0

e−νpdp

2p1/2[1 + p1/2eiπ/4]

∼ 1

2
eiπ/4

∞∑
j=0

(−1)jΓ

(
j + 1

2

)
eijπ/4ν−(j+1)/2 (1.116)

As far as I2(ν), we know p = f(z) − f(1) = −iz2 + i is real valued and
monotonically increasing on the parabolic path C from z = 1 to z =∞eiπ/4,
since f ′ 6= 0 on this path. Therefore, solving for z, inversion leads to

z = Z(P ) = (1 + ip)1/2, (1.117)

where we can readily check that for this branch of square-root, as p → +∞,
z →∞eiπ/4 as required. Therefore,

I2(ν) = −eiν
∫ ∞
0

e−pν

1 + Z(p)
Z ′(p)dp. (1.118)

We note that Taylor expansion:

Z ′(p)

1 + Z(p)
=
i

2
(1 + ip)−1/2

[
1 + (1 + ip)1/2

]−1
=

∞∑
j=0

ajp
j , (1.119)

where the first few coefficents are: a0 = i
4 , a1 = 3

16 , a2 = − 5i
32 , a3 = − 35

256 .
Applying Watson’s Lemma to (1.118), it follows

I2(ν) ∼ −eiν
∞∑
j=0

ajν
−j−1Γ(j + 1), (1.120)

11We do not have the option of going along re−iπ/4 , 0 < r <∞ since Re f → −∞ and so
contribution at ∞e−iπ/4 cannot be ignored as it can be for a sink.
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The full asymptotic expansion of I(ν) = I1(ν) + I2(ν) is then obvious from
(1.116) and (1.120).

Remark 1.121 A change of variable ζ = z2 at the outset in (1.112) converts

the problem into I(ν) =
∫ 1

0
eiνζdζ

2(ζ1/2+ζ)
, corresponding to which the steepest

descent lines connecting each end points are given by ζ = ir and ζ = 1 + ir
respectively. However, after the change of variables the integrand is generically
not explicit. In such cases, finding the steepest descent lines cannot be done
explicitly either. Fortunately, descent lines are connected to ODEs amenable
to phase plane analysis and we will exploit this connection in the following
section.

Note 1.122 If we replace the integrand eiνz
2

z+1 in (1.112), by eiνz
2

z−z0 , where

z0 is in the upper-half plane region between eiπ/4R+ and steepest descent
contour C connecting ∞eiπ/4 to 1, for e.g. z0 = 1+i

2 , then the singulariy at
z = z0 interferes with the homotopic deformation into steepest descent paths.
Nonetheless, since this singularity is a pole, after collecting residue at z = z0,
we can use the same descent paths as in Example 1.4a. Since Im z20 > 0, the
residue contribution will be exponentially small in ν relative to (1.120) and
(1.116). If this z0 were a branch point instead, in addition to the steepest
descent paths, the homotopically deformed path will include a contour that
wraps around z0. Nonetheless, as in the case of the pole, the contribution of
the branch point is exponentially small in ν.

1.4b Finding the steepest variation lines

Prior discussion shows that the main challenge in evaluation of asymptotic
behavior of ∫

C
g(z) exp(−νf(z))dz (1.123)

is the determination of steepest descent path(s) that are homotopically equiv-
alent to C. We now discuss how steepest descent paths may be found when
f(z) is not as simple as shown in Example 1.4a.

To simplify the discussion, we will assume that both f and g are entire, and
if parts of C′ extend to infinity, the integral along those parts converges. If the
functions are not entire, then the contours can be deformed inside the domain
of analyticity, and beyond that only in special cases, for instance when the
singularities of g are poles. If an integral extends to infinity and the integral
would not converge, then we truncate the contour at some large enough z0
(see Note 1.132) at the price of introducing exponentially small relative errors
in the estimates.

When v is very simple, as in 1.4a, one can just plot the curves v(z) = C. If
not, we can use tools from elementary ODE analysis to find these lines.
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If along a curve z(t) = (x(t), y(t)) we have v(z) = C, then

∂v

∂x

dx

dt
+
∂v

∂x

dy

dt
= 0 (1.124)

which happens along the solution curves of the system

dx

dt
=
∂v

∂y
=
∂u

∂x
= Re (f ′(z)) (1.125)

dy

dt
= −∂v

∂x
=
∂u

∂y
= −Im (f ′(z)

where we used v = Im f to write the system in terms of f ′.

Note 1.126 The system (1.125) is autonomous, and the task is to draw the
phase portrait. The direction field is parallel with∇u, that is, it points toward
steepest ascent directions of u or steepest descent of e−νu. To draw the phase
portrait more easily we note that:

1. Eq. (1.125) is at the same time a Hamiltonian system as well as a
gradient one.

2. There are no closed trajectories since f , thus v, are not identically
constant. Indeed, v = Im f is harmonic, and a harmonic function in
a domain attains its maximum and minimum value on the boundary;
since we are dealing with a level set of v, call it γ, if γ is closed then
max v = min v in the int(γ) implying that v is constant in an open set,
thus constant everywhere.

3. All critical points of the field (ẋ = ẏ = 0) are saddle points, the points
of interest for our analysis. Indeed, v cannot have, by the maximum
modulus principle already used in 2, any interior maxima or minima.
(If f is not entire, then of course singularities of f are also singularities
of the field.)

4. At a critical point z0 we have

f ′(z0) = 0 (1.127)

by (1.125) and (1.127), the local behavior of u near z0 is

u(z)− u(z0) =
1

k!
Re
(
f (k)(z0)(z − z0)k

)
(1 + o(1)) (1.128)

where k, generically k = 2, is the smallest such that f (k)(z0) 6= 0. This
is a simple way to plot the directions of steepest ascent of u at z0. These
are the directions

f (k)(z0)(z − z0)k ∈ R+ (1.129)
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5. Trajectories can only intersect at critical points of the field.

6. The properties above, together with the behavior of f at infinity com-
pletely determine the topology of the direction field.

7. To find the steepest descent line decomposition of a contour C we let ev-
ery point z0 = x0+iy0 ∈ C flow with the field: (x0, y0) 7→ x(t;x0), (y(t; y0));
we denote the set of such points by C(t). The connected components of
the limiting set:

{z : lim
t→∞

d(z, C(t)) = 0}

represent the sought-for decomposition.

8. By construction, on each Ci, u is strictly monotonic and v is constant,
thus f is one-to-one, and the change of variables f(z) = f(zi) + ζ where
zi is an endpoint of Ci, brings the integrals to a Watson’s lemma form,
see Note 1.134.

9. The asymptotic expansions are collected from the endpoints of the steep-
est descent lines from which u increases, since e−νu decreases rapidly
starting from such a point.

We illustrate this on a simple example: we start with the integral∫ ∞e5πi/4
∞eiπ/4

e−ν(z−z
4/4)dz (1.130)

where ν → +∞, and the integral is taken along any curve C is staring at +i∞
and ending at −∞. Because of the rapid decay in z, the integral converges.
We want to find a curve homotopic to C that consists of paths of steepest
descent of e−u. In this example, (1.125) becomes

dx

dt
= 1− x3 + 3xy2 (1.131)

dy

dt
= 3x2y − y3

The equilibria of (1.131) are, by (1.127) the solutions of 1− z3 = 0 : zk =
e2kπi/3, k = 0, ..., 2 and near a critical point the directions of descent of e−u

are obtained from (1.128), −3z2k(z − zk)2 ∈ R+.
For large t = |t|eiφ, we have f = −|t|4e4iφ(1+o(1)), and thus asymptotically

there are, up to homotopies, four curves of steepest descent of e−u, cos(4φ) =
−1 and four of steepest ascent, cos(4φ) = 1. All needed qualitative features of
the phase portrait, sketched in Fig. 1.1, follow from this information and the
fact that trajectories do not intersect except at critical points. In the phase
portrait, the arrows point towards steepest descent. We illustrate the detailed
arguments that leads one to Fig. 1.1 by showing how we can argue where each
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FIGURE 1.1: Phase portrait of (1.131). The white arrows point towards
steepest ascent directions of u (steepest descent of e−νu). The orientations
of the paths L1 and L2 are shown with dark arrows; zk = exp(2kπi/3) ,
k = 0, 1, 2 are the saddle points.

of the two steepest descent and ascent lines for e−u emanating at the saddle
z2 = ei4π/3 must end up. First, note that each of the descent paths must
end up at sinks ∞e−iπ/4 or ∞e−3iπ/4 since the paths cannot cross the real
axis, which is an invariant set of the dynamical system (1.131). Each of the
two ascent paths at z2 must end up at −∞ or −i∞, since they cannot cross
the real axis or approach +∞ without crossing the lower-half plane descent
path emanating at the sadde z0 = 1. Further, noting that the two ascent or
the two descent paths cannot approach the same sink or source at ∞ without
crossing each other, we are qualitatively led to Fig. 1.1.

Note 1.132 Note that if a path of integration starts at ∞ in some direction
and ends at ∞ in some other direction, then for large t on the curve the
arrows should point towards infinity to ensure convergence of the integral.
This is indeed the case for (1.130). The steepest descent line decomposition
for (1.130) consists of the curve L1 joining∞eiπ/4 to∞e−iπ/4 passing through
the saddle z0 = 1 together with the curve L2 connecting ∞e−iπ/4 to ∞ei5π/4
passing through the saddle z2 = e4iπ/3, as shown in Fig 1.1.

Note 1.133 If the example above were modified to
∫∞e5πi/4
∞eiπ/4 g(z)e−ν(z−z

4/4)dz,

where g(z) grows too fast along∞e−iπ/4 to allow meaningful homotopic defor-
mation as shown in Fig 1.1, for e.g. g(z) = exp

[
e−iπ/6z6

]
, then we truncate
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the paths L1 and L2 at some large enough zL1
, zL2

independent of ν. With
such a choice, it is easily seen that the straight line path connecting the two
points is exponentially small relative to the saddle point contributions.

Note 1.134 (Connection with Watson’s Lemma) For a general entire
f , the set of saddle points through which the steepest variation curve passes
cannot have accumulation points, because of the assumed analyticity of f .
Then along any steepest descent line, the equation u(x(t), y(t)) = T has a
unique solution, and T (u) is smooth except at the saddle points where it has
algebraic singularities. Furthermore, by construction, exp(iv(x(t), y(t)) =
const along such a curve. The change of variables f(z) = f(z0) + t brings the
problem to the Laplace form to which Watson’s lemma applies.

Exercise 1.135 Use the analysis in this section to find the asymptotic be-

havior of (i) (1.130), and (ii) of
∫ 3+i

i
e−ν(t−t

4/4)dt.

1.4b.1 A singular example

Consider the problem of finding the asymptotic behavior of the Taylor co-
efficients ck in the expansion

e
1

1−z =

∞∑
k=0

ckz
k, |z| < 1 (1.136)

We have

ck−1 =
1

2πi

∮
|s|=r<1

e
1

1−s

sk
ds =

1

2πi

∮
|s|=r<1

e
1

1−s−k ln sds (1.137)

The rightmost integral is of the general form (1.123). What distinguishes this

case from the case we considered throughout this section is that g(z) = e
1

1−z

has an essential singularity at z = 1.
The steepest descent lines of f are simply rays towards∞, but it is not pos-

sible to deform the |s| = r path along these lines of steepest descent, since the
singularity at z = 1 is not integrable The function g contributes nontrivially
to the geometry of the curves of interest. We instead plot the steepest descent
lines of h(s; k) = 1

1−s − k ln s for fixed k and let k → ∞; we see that h(s; k)

has two saddle points, at s = 1±k−1/2(1 +o(1)) We expect that the behavior
of ck relates to the behavior of h on a scale of order k−1/2 near s = 1. This
becomes obvious if we change variable to s = 1 + k−1/2u. In anticipation, we
deform the contour-clockwise contour |s| = r into the contour shown in Fig
1.2. We note the the cancelation of contributions from coinciding straightline
positve real axis segments traversed in opposite directions. Furthermore, the
integrand s−ke1/(1−s) vanishes rapidly enough so that the counter-clockwise
circular arc of radius R as R → ∞ contributes nothing. We are simply left
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Original contour

Final contour

s=1

FIGURE 1.2: Deformation of contour for (1.138). The circle around s = 1
has radius of k−1/2. The large contour can be pushed to infinity and the
integrals along the sides of R+ cancel each-other by single-valuedness.

with a clockwise closed contour C around s = 1. We write s = 1 + u/ν, with
ν = k1/2 and we have

ck−1 = ν−1
1

2πi

∮
|u|=1

exp
[
−ν(u+ u−1)− ν2[ln(1 + u/ν)− u/ν]

]
du (1.138)

We note that the function

z−2[ln(1 + zu)− zu] = − 1
2u

2 + 1
3zu

3 + · · · (1.139)

is analytic at z = 0 and we can expand convergently in z = 1/k, as k →∞

exp
[
−ν2[ln(1 + u/ν)− u/ν]

]
= eu

2/2

[
1 +

u3

3ν
− u4

4ν2
+

u6

18ν2
+ · · ·

]
(1.140)

Noting that the saddle point of e−νf(u), with f(u) = u+ 1/u is at u = ±1, it
is clear that the counter-clockwise C may be chosen to coincide with |u| = 1,
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which is a steepest descent path since Im f = 0 on u = eiθ. We get

ck−1 =
1

2πiν

∮
|u|=1

e−ν(u+1/u)+u2/2(1 + 1
νF1(u, 1ν ))

=
1

2πiν

∮
|u|=1

e−ν(u+1/u)+u2/2

(
1 +

1

ν
F1(u, 1/ν)

)
du (1.141)

where F1(u, z) is analytic in (z, u) ∈ D 1
2
× T where T is a neighborhood of

the circle ∂D1. Now the substitution u+ 1/u = −2 + v brings the integral to
a sum of two integrals, for each of which Exercise 1.74 applies. This gives, to
leading order,

ck−1 =
e2
√
k

2
√
πek3/4

(1 + o(1)) (1.142)

Alternately, we may use u = eiθ and use Laplace’s method to each of the
following integrals to obtain the same result

1

2πν

(∫ π/2

−π/2
+

∫ 3π/2

π/2

)
dθe−2ν cos θ exp

[
1

2
e2iθ + iθ

]
(1.143)

It is to be noted that the contribution from the saddle u = +1 is exponentially
small in k relative to the contribution from u = −1.

Higher order corrections are obtained more simply as follows. We note that
f(z) = exp(1/(1− z)) satisfies the ODE

(1− z)2f ′(z)− f(z) = 0 (1.144)

The general analytic theory of ODEs implies that there is a on-parameter
family of solutions analytic at zero of the form f(z) = C

∑∞
k=0 ckz

k. On
inserting this power series into (1.144) and collecting like coefficients of powers
of z, we obtain recurrence relation for ck. With normalization c0 = 1, we
obtain C = 1 in order that f(0) = e. Recurrence relation shows c1 = 1

2c0 = 1
2 ,

while for k ≥ 2,
ck = (2− 1/k)ck−1 − (1− 2/k)ck−2 (1.145)

from which we can get, as we will see in the sequel, the asymptotic behavior
of ck by seeking formal asymptotic solutions of (1.145).

1.5 Formal and actual solutions

Consider the differential equation

df

dz
= f + f2 + zf3; f(0) = 1 (1.146)
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which we analyze in a neighborhood of z = 0. The general analytic theory
of ODEs ensures existence and uniqueness and analyticity of the solution in
a neighborhood of z = 0. We can calculate the power series solution in a
number of ways, for instance by substituting f(z) =

∑∞
k=0 ckz

k into (1.146)
and identifying the coefficients ck. We get

f(z) = 1 + 2z +
5

2
z2 +

11

6
z3 − z4 · · · (1.147)

If we write the equation in integral form

f(z) = 1 +

∫ z

0

[
f(s) + f2(s) + sf3(s)

]
ds

and iterate,

fn+1(z) = 1 +

∫ z

0

(fn(s) + f2n(s) + sf3n(s))ds; f0(z) ≡ 1 (1.148)

we can check that, for small z the sequence {fk}k is uniformly Cauchy, and
thus convergent. This can be seen using the fact that if a function h is bounded
and integrable, then ∣∣∣∣∫ z

0

h(s)ds

∣∣∣∣ ≤ |z| max
|s|<|z|

|h(s)| (1.149)

The recurrence (1.148) can be used to generate the power series at zero, by
inductively replacing fn by its Maclaurin series truncated to O(zn) and in-
tegrating the resulting series term by term. We will not go over the details
here, as we will develop more general tools shortly.

Consider instead the equation

dg

dz
= z−2g(z)− z−1 (1.150)

The point z = 0 is a singular point of (1.150), in fact an irregular singular
point; there are no analytic solutions near zero. An initial value at z = 0 is not
well defined. Nonetheless, we can find a formal power series formal solutions∑∞
k=1 ckz

k. In this simple example it is easy to insert the power series into
(1.150) and identify the coefficients. We get ck = Γ(k), and formally

g(z) “ = ”

∞∑
k=1

Γ(k)zk, (1.151)

where the power series in (1.151) has zero radius of convergence. To generate
the power series inductively, we now note that, if we formally differentiate
g(z) = Os(z

n), then g′(z) = O(zn−1) � z−2g(z). It then follows that the
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natural direction of iteration, one in which we place the lower order terms on
the right side of the equation is

gn+1(z) = z2g′n(z) + z; g0(z) = z (1.152)

The iteration (1.152) is well defined, and it is solved by the polynomial gn(z) =∑n+1
k=1 Γ(k)zk. The sequence of polynomials has no limit. Whenever the size

of the term containing the highest derivative is formally small with respect
to terms involving lower order derivatives, the natural direction of iteration
would place the highest derivative on the right side of the equation. However,
in general, we cannot bound g′ in terms of g, so an iteration of the type
(1.152) is not expected to converge. Does the expansion (1.151) relate in any
way to the solutions of (1.150)? In this example, we can write down the exact
solution of the equation as

g(z) = Ce−1/z − e−1/z
∫ z

1

s−1e1/sds (1.153)

The change of variables s = 1/t, z = 1/x brings (1.153) to the form

g(1/x) = Ce−x+e−x
∫ x

1

t−1etdt = Ce−x−e−x
∫ 1

−∞
t−1et+e−x

∫ x

−∞
t−1etdt

=: C2e
−x + e−x

∫ x

−∞
t−1etdt =

∫ ∞
0

e−xu

1− u
du+ C2e

−x (1.154)

where the contour of integration avoids t = 0 and u = 1. Watson’s lemma
shows that g(z) ∼

∑∞
k=1 Γ(k)zk. What we see is that the formal power series

solution is, in this case as well as in (1.146), the Maclaurin series as z → 0+

of some solution (here, in fact, all solutions have the same Maclaurin series).
Only now the Maclaurin series diverges. The fact that formal solutions are
asymptotic to actual ones is true in much wider generality, as we will see in
the sequel.

1.5a An irregular singular point of a nonlinear equation

Consider Abel’s equation
y′ = y3 + x (1.155)

in the limit x → +∞. We first find the asymptotic behavior of solutions
formally, and then justify the argument. We use the method of dominant
balance that we will discuss in detail later. As x becomes large, y, y′, or both
need to become large if the equation (1.155) is to hold. Assume first that the
balance is between y′ and x and that y � x. If y′ ∼ x then we have y ∼ x2/2
and y3 ∼ x6/8, and this is inconsistent since it would imply x8/8 = O(x).
Now, if we assume x � y3 then the balance would be y′ ≈ y3, implying
y ∼ − 1

2 (x−x0)−2; but this is small for x−x0 � 1, which conflicts with what
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we assumed, x� y3. We have one possibility left: y = αx1/3(1+o(1)), where
α3 = 1, which assuming differentiability implies y′ = O(x−2/3) which is now
consistent. We substitute

y = αx1/3(1 + v(x)) (1.156)

in (1.155); for definiteness, we choose α = eiπ/3, though any cube root of −1
would suffice. We get

αx1/3v′ + 3xv + 3xv2 + xv3 +
α

3
x−2/3 +

α

3
x−2/3v = 0 (1.157)

Now a consistent balance is between 3xv and −α3 x
−2/3 meaning that v =

O(x−5/3). This makes the nonlinear terms small and, for the purpose of
justifying the analysis, we don’t need to further expand v. We now aim at
writing (1.157) in a suitable integral form. We first place the formally largest
term(s) containing v and v′ on the left side and the smaller terms as well as
the terms not depending on v on the right side:

αx1/3v′ + 3xv = h(x, v(x)); −h(x, v(x)) := 3xv2 + xv3 +
α

3
x−2/3 +

α

3
x−2/3v

(1.158)
We treat (1.158) as a linear inhomogeneous equation, and solve it thinking
for the moment that h is given.

This leads to

v = N (v);

N (v) := Ce−
9
5αx

5/3

+
1

α
e−

9
5αx

5/3

∫ x

x0

e
9
5α s

5/3

s−1/3h(s, v(s))ds (1.159)

We chose the limits of integration in such a way that the integrand is maximal

when s = x: if x→ +∞, then x−1/3e
9
5αx

5/3 →∞, and our choice corresponds
indeed to this prescription.

The largest of the terms not containing v on the right side of (1.159) comes
from the term α

3 x
−2/3 in h, and is of the order 1

3x
−5/3(1 + o(1)). Indeed, for

Re b > 0 by Watson’s Lemma or simply by L’Hospital we get∫ x
a
ebs

m

/snds

ebxm/xn
∼ b−1m−1x1−m; x→ +∞ (1.160)

Again by dominant balance, we expect v = O(x−5/3). Thus, it is natural to
choose x0 large enough and introduce the Banach space

{f : ‖f‖ := sup
x>x0

|x5/3f(x)| <∞} (1.161)

or the region |x| > x0 in a sector S in the complex domain where Re
(
1
αx

5/3
)
>

0 : arg x ∈ (− π
10 ,

π
2 ):

B = {f : ‖f‖ := sup
x∈S
|x5/3f(x)| <∞} (1.162)
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and within this space a ball of size large enough – 2
3– to accommodate for the

largest term on the right side, α
3 x
−2/3:

B1 := {f ∈ B : ‖f‖ 6 2

3
} (1.163)

Lemma 1.164 For given C, if x0 is large enough, then the operator N is
contractive in B1 and thus (1.159) (as well as (1.158)) has a unique solution
there.

PROOF We first check that N (B1) ⊂ B1, by estimating each term in
N . By (1.160) we have for large enough x0, |Nx−m| = 1

3 |x|
−m−1(1 + o(1)).

In particular, |N α
3 x
−2/3| 6 α

9 |x|
−5/3(1 + o(1)). The contribution of the

other terms are much smaller. For instance, |xv2| < Cx1−5/2‖v‖ we have
|N (xv2)| = C|x|−5/2(1 + o(1)).

To show contractivity, we note that, for k > 1,

|N (vk2 − vk1 )| 6 k‖v2 − v1‖|N
[
x−5/32(2/3)k−1x−5(k−1)/3

]

1.5b The wave equation with potential

The free wave equation is utt− c2uxx = 0; c can be scaled out, by changing
variables to x̃ = x/c; without loss of generality we can then assume c = 1.
One common setting is to have the initial position and velocity specified, that
is

utt − uxx = 0; u(x, 0) = f(x), ut(x, 0) = g(x) (1.165)

When f ∈ C2(R) and g ∈ C1(R), the change of variable ξ = x− t, η = x+ t
leads to the well-known D’Alembert solution

u(x, t) = 1
2f(x+ t) + 1

2f(x− t) + 1
2

∫ x+t

x−t
g(s)ds (1.166)

Without smoothness of f and g (1.166) is interpreted as a weak solution. In
the same way we can solve the wave equation with a source,

utt − uxx = S(x, t); u(x, 0) = f(x), ut(x, 0) = g(x) (1.167)

to obtain

u(x, t) = 1
2f(x+ t) + 1

2f(x− t)

+ 1
2

∫ x+t

x−t
g(s)ds+

1

2

∫ t

0

∫ x+t−t1

x−t+t1
S(x1, t1)dx1dt1 (1.168)
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The wave equation with potential arises naturally in a number of physical
problems, ranging from electrodynamics to the wave evolution in the presence
of a black hole. It reads

utt − uxx + V (x)u(x, t) = 0; u(x, u) = f(x), ut(x, 0) = g(x) (1.169)

Clearly, at least for general V we cannot expect to solve (1.169) in closed
form.

Here we assume that V ∈ L∞(R) and f, g are in L1(R) and show that
(1.169) has a global solution u(·, t) ∈ L1(R) and ‖u(·, t)‖L1 grows at most
exponentially in t. That exponential growth is possible for some potentials
can be seen in the following way. Looking for solutions in the form u(x, t) =
eλtU(x) we obtain

−U ′′ + V (x)U = −λ2U (1.170)

Eq. (1.170) is the time-independent Schrödinger equation; in that setting it
is natural to assume that V decays as x→∞. An L2 solution of (1.170) for

λ 6= 0 is called a bound state of the quantum Hamiltonian − d2

dx2 + V (x), and
for many potentials of interest these do exist.

We can use (1.171) to rewrite (1.169) in integral form,

u(x, t) = 1
2f(x+ t) + 1

2f(x− t)

+ 1
2

∫ x+t

x−t
g(s)ds− 1

2

∫ t

0

∫ x+t−t1

x−t+t1
V (x1)u(x1, t1)dx1dt1 =: A[u](x, t)

(1.171)

Proposition 1.172 Assume the initial conditions f(x) = u(t, 0) and g(x) =

ut(x, 0) are in L1(R) and V ∈ L∞(R). Then, if ν >
√

2‖V ‖
1
2∞ we have

supt>0 e
−νt‖u(t, ·)‖L1

<∞.

PROOF We write the Duhamel formula as

u = Au; Au :=
f(x− t) + f(x+ t)

2

+ 1
2

∫ ∞
−∞

χt(y − x)g(y)dy +
1

2

∫ t

0

∫ ∞
−∞

u(y, s)V (y)χt−s(y − x))dyds (1.173)

where χa is the characteristic function of the interval [−a, a]. Consider the
Banach space

B = {u : |‖u‖ν := sup
t∈R+

e−νt‖u(t, ·)‖1 <∞}; (ν >
√

2‖V ‖
1
2∞) (1.174)
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Applying Fubini to integrate first in x, we see that ‖
∫∞
−∞ χt(y−x)g(y)dy‖1 ≤

2t‖g‖1 and (since by definition ‖u(·, s)‖1 ≤ ‖u‖νeνs)

sup
t>0

e−νt
∥∥∥∥∫ t

0

∫ ∞
−∞

u(y, s)V (y)χt−s(y − x)dydt

∥∥∥∥
1

≤ ‖V ‖∞‖u‖ν sup
t>0

e−νt
∫ t

0

2(t− s)eνsds ≤ 2‖V ‖∞ν−2‖u‖ν (1.175)

Using (1.175) we see that A : B → B is contractive. Also, assuming f, g and
V are smooth, the solution is seen to be smooth too: since u ∈ L1, Duhamel’s
formula shows that it is continuous; then, as usual, using continuity we derive
differentiability, and inductively, we see that u is smooth.

Exercise 1.176 Complete the details by showing that this result implies
global existence of a solution of (1.169).

Exercise 1.177 (i) Assume V ∈ L2(R). Prove a similar result with ‖u‖ given

by supt≥0 e
−νt

(∫∞
−∞ |u(x, t)|2dx

)1/2
. Use this result to estimate the largest

possible eigenvalue of V .

1.5c Regular versus singular perturbations

Consider first two elementary problems: finding the roots of the polynomials
P1(x; ε) = x5 − x− ε and P2(x; ε) = εx5 − x− ε for small ε.

We see that P1(x; 0) has five roots, ρ = 0,±1,±i. We choose one of them,
say ρ = 1 and look for roots of P1(x; ε) in the form ρ(ε) = 1 +

∑
k>1 ckε

k.

Substituting in the equation P1 = 0 we get (4c1−1)ε+(4c2 +10c21)ε2 +(4c3 +
20c1c2 + 10c31))ε3 = 0, and solving for the coefficients c1, . . . , c3, . . . we get

c1 =
1

4
, c2 = − 5

32
, c3 =

5

32
, . . . (1.178)

The series of ρ(ε) is actually convergent. It would not be very convenient to
prove this directly from the recurrence relation, though this is possible. A
better way is to substitute ρ = 1 + δ into the equation, placing the largest
term containing δ on the left side, and showing that the equation for δ is
contractive for small δ, in a space of functions analytic in ε at ε = 0. We leave
the details as an exercise.This is a typical behavior in regularly perturbed
problems: the roots of the leading order equation P1(x; 0) give the leading
behavior of the actual roots of P1(x, ε) as ε→ 0.

By contrast, P2(x; 0) has only one root, x = 0. Four solutions of the quintic
polynomial P2(x, ε) are lost by setting ε = 0 in the equation; this is an example
of singular perturtbation since P2(x; 0) does not capture all the behavior of of
the five roots of P2(x, ε) as ε→ 0. We can find the missing roots by applying a
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formal dominant balance argument: clearly εx5 has to be part of the balance.
Balancing εx5 with ε leads to an inconsistency, since −x would turn out to
be much larger. We must then have εx5 ∼ x or εx4 ∼ 1. To obtain the higher
order corrections, we substitute x = ε−1/4y and we get

y5 = y + η; (η = ε5/4) (1.179)

Now the limiting (η → 0) equation, y5 = y, has five roots as expected of a
quintic polynomial. In fact, the equation (1.179) is P1(y; η) = 0 and, if we
take y = 1 + δ we get a convergent expansion δ = 1

4η −
5
32η

2 + 5
32η

3 + . . ..
Substituting to get δ, we see that δ(ε) is not analytic; nonetheless it has a
convergent expansion in powers of ε5/4. By contrast, we will find that in
singular perturbation of differential equations, where a small parameter typi-
cally multiples the highest derivative, the asymptotic expansions are generally
divergent.

An equation can be regularly perturbed in some regimes and singularly
perturbed in some others.

An interesting example is the pendulum of slowly variable length. A model
equation is

q̈ +
g

l0 + εt
q = 0 (1.180)

where q is the generalized position, g is the gravitational acceleration and l0 is
the initial length. A proper treatment of this problem will have to wait until
we study adiabatic invariants.

By changing units and ε we can assume without loss of generality l0 = g = 1.
The limiting equation q̈ + q = 0 has a two dimensional family of solutions,
y = A sin t + B cos t. Assuming that y(0) = 0 and ẏ(0) = 1 we choose
q0(t) = sin t. We look for solutions y in the form of power series in powers of
ε,

y(t) = sin t+

∞∑
k=1

εkyk(t) (1.181)

Solving order by order in ε and using the initial condition y(0) = 0 and
ẏ(0) = 1, translating to yk(0) = 0, y′k(0) = 0 for k ≥ 1, we get

q(t) = sin t+

(
1

4
t sin t− 1

4
t2 cos t

)
ε

+

[(
3

32
− 3

32
t2 − 1

32
t4
)

sin t−
(

3

32
t− 1

16
t3
)

cos t

]
ε2 + · · · (1.182)

We see that the validity of the expansion is limited by the condition t2ε <
const., where const. needs to be relatively small, since otherwise we end up
with a series of successively growing terms, and the expansion would be use-
less: we would have to look at the complete expansion, to all orders in ε, to
hope to understand anything about q.
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In a region where t < δε−1/2 with δ small enough, we can set up a con-
tractive mapping argument to justify the expansion, which will turn out to
be convergent. We leave this as an exercise as well.

Note also that in the time interval 0 < t�
√
ε we have l = l0 +O(

√
ε, that

is, the length does not change much; this region is not very interesting. A
proper treatment of this problem will have to wait until we study adiabatic
invariants.

Now, when t ∼ ε−1/2 it is natural to take t
√
ε = τ as a new variable,

q(t) = Q(τ) that will not be necessarily small. The equation for Q reads.

εQ̈+
Q

1 +
√
ετ

= 0 (1.183)

Now the limit ε→ 0 is singular: in this limit equation (1.183) would become
Q

1+
√
ετ

= 0; here, as in the case of P2(x; ε) we lose most solutions. Further-

more, the surviving solution Q = 0 is not very interesting, and it does not
satisfy the initial condition. We need to do something else, in this case WKB,
which we introduce in §1.5c.1 below.

1.5c.1 Singularly perturbed differential equations

Consider first the very simple equation

ε2y′′ + y = 0; ε� 1 (1.184)

which can be of course solved in closed form, which we will do after we explore
some qualitative features. The limit ε→ 0 is singular: taking ε = 0 in (1.184)
leaves us with y = 0. Most solutions of (1.184) are lost in this limit. This
is one of the indications that an equation is singularly perturbed. The other
one, that we will return to, is non-analytic behavior in ε.

Similarly, the equation
d2y

dx2
− a2y = 0 (1.185)

is singularly perturbed as x→∞, since the change of variable x = 1/z brings
it to

z4
d2y

dz2
+ 2z3

dy

dz
− a2y(z) = 0 (1.186)

and we see that for small z the coefficients of the derivatives on the left side
of the equation vanish at z = 0, and if we ignored these terms we would be
once more left with a scalar equation, y = 0.

The eigenvalue problem for the one-dimensional Schrödinger equation

−~2ψ′′ + V (x)ψ = Eψ (1.187)

is singularly perturbed in the when the Planck constant is taken to the
limit ~ → 0 (its physical value is ≈ 6.626068 × 10−34m2kg/s). Here ψ
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is the wave function and it has the physical interpretation that |ψ(x)|2 is
probability density function for a particle and the total probability is one:
‖ψ‖2 =

∫∞
−∞ |ψ(x)|2dx = 1. For a typical potential V going to zero as x→∞,

Eq. (1.187) is also singularly perturbed when x → ∞. Indeed, scaling out ~
now and taking z = 1/x we get

−z4 d
2ψ

dz2
− 2z3

dψ

dz
+ V (1/z)ψ = Eψ (1.188)

and for z = 0 we are left with the scalar equation Eψ = 0. The solution ψ = 0
is not physically acceptable, as it violates ‖ψ‖2 = 1.

We can analyze (1.188) using dominant balance. It is clear that V (1/z)ψ
cannot be part of the dominant balance, since it is necessarily much smaller
than Eψ. We are left with three possible balances, only one of them consistent.

If we assume z4 d
2ψ
dz2 ∼ −2z3 dψdz , i.e. V (1/z)ψ,Eψ << z4 d

2ψ
dz2 , we get ψ ∼

const/z, but then this violates the assumption Eψ << z4 d
2ψ
dz2 , unless E = 0.

If instead we balance 2z3 dψdz = Eψ we get ψ ∼ e− 1
4Ez

−2

, assuming other terms

in (1.188) to be smaller, then z4 d
2ψ
dz2 � Eψ contrary to the assumption. We

are left with z4 d
2ψ
dz2 ∼ Eψ.

To analyze the balance z4 d
2ψ
dz2 ∼ Eψ it is useful to note that the same

balance is the only consistent one in (1.186) which can be solved exactly, as it
is equivalent to (1.185): the solution is y(x) = exp(±ax) = exp(±a/z). The
solutions do not have asymptotic power series for small z, but their logs do.
An exponential substitution, y = ew(z) is suggested, and this WKB ansatz is
very helpful in singularly perturbed equations.

We will proceed formally first, and then prove a result for (1.187). So,
consider again (1.187) and substitute ψ(x) = ew(x). After dividing by ew(x)

we get

−~2(w′′ + w′
2
) = E − V (x) (1.189)

or, with w′ = f , we get the first order nonlinear ODE

−~2(f ′ + f2) = E − V (x) (1.190)

We analyze (1.189) by dominant balance. We first assume for simplicity that
E > V (x) for all x; a similar argument works if E < V (x) for all x, with√
V (x)− E replacing i

√
E − V (x). The situations in which E = V (x) has

nontrivial solutions, called turning points are important, and we will study
them separately.

Note 1.191 In a WKB ansatz, we have w′′ � w′
2
. Indeed, the balance

−~2w′′ ∼ E−V (x) would give w = Os(~−2) and then w′
2

= Os(~−4) showing

that this choice is inconsistent. The balance w′′ ∼ −w′2 does not work either
since then w,w′, w′′ = O(1) whereas, under our assumptions we have ~−2(E−
V (x)) = Os(~−2). We are left with the balance w′

2 ∼ −~−2(E − V (x)) with

w′′ � w′
2

(we have already seen that w′′ 6∼ w′2 ).



40 Course notes

According to Note 1.191 we place w′′ on the right side of the equation, treated
as being relatively small. With f = w′, (1.190) implies

f = ± i
~
√
E − V (x) + ~2f ′ (1.192)

where we choose one sign at a time, say plus for now, and we expand (1.192),
by the usual Picard-like asymptotic iterations,

f [n+1] =
i

~

√
E − V (x) + ~2f [n]′ (1.193)

The fact that the highest order derivative is on the right side of the iteration
strongly indicates that the expansion thus obtained is divergent.

Expanding in ~ to three orders we get

f [n+1] = i
~

√
E − V (x) +

i~f [n]′

2
√
E − V (x)

− i(f [n]
′
)2~3

8(E − V (x))3/2
+ · · · (1.194)

In this way we get

f [0] = i
~

√
E − V (x) (1.195)

f [1] = i
~

√
E − V (x) +

1

4

V ′

E − V
(1.196)

f [2] = i
~

√
E − V (x) +

1

4

V ′

E − V
+ ~

5i
32V

′2 + i
8V
′′(E − V ))

(E − V (x))5/2
(1.197)

To two orders, this gives

w[0] = i
~

∫ x

x0

√
E − V (s)ds+ C (1.198)

w[1] = i
~

∫ x

x0

√
E − V (s)ds− 1

4
ln(E − V (x)) + C (1.199)

or

ψ = C1(E − V (x))−1/4e
i
~
∫ x
x0

√
E−V (s)ds

(1 + o(1)) (1.200)

1.5c.2 Proof of existence of a solution of (1.187) in the form (1.200)

One way of proving the expansion is to return to (1.190) where we substitute
for f(x) = f [j](x) + δ(x), j > 1 12. Here we choose j = 1; assuming that the
regularity of V allows for calculating higher order terms which involve higher

12The minimum j needed depends on the problem; in some settings, j = 0 suffices. As a
rule, the more terms we pull out, the more contractive the operator becomes, at the expense
of getting a more involved algebra.
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derivatives of V as seen in (1.195) taking j = j1 > 1 would allow for proving
asymptoticity of the expansion with j1 + 1 terms.

f(x) = i
~

√
E − V (x) +

1

4

V ′

E − V
+ δ(x) (1.201)

The equation for δ(x) is

~δ′ + 2i
√
E − V (x)δ +

~V ′

2(E − V (x)
δ = −~g − ~δ2

where g(x) :=
5

16

(
V ′

E − V (x)

)2

+
V ′′

4[E − V (x)]
(1.202)

We note that we need to keep the highest derivative term, here ~δ′ on the
left side of (1.202) even though it is multiplied by small ~. In fact, in general,
in a singularly perturbed problem, the singularly perturbed term cannot be
discarded.

We then write the equation in integral form. Let J = 2i
~
∫ x
x0

√
E − V (s)ds

and µ(x) = (E − V (x))
−1/2

. Using the integrating factor for the left side of
1.202, we get

δ(x) = −e
−J(x)

µ(x)

∫ x

∞
µ(s)eJ(s)g(s)ds− e−J(x)

µ(x)

∫ x

∞
eJ(s)µ(s)δ2(s)ds

:= δ0 +N δ (1.203)

To prove a rigorous result we need some assumptions.

Assumption 1.204 For simplicity. we let V : R → C, V ∈ C2(R), and V
is O(1/x1+ε) for large x and it “acts like a symbol” essentially meaning that
we can differentiate the asymptotics: V ′ = O(1/x2+ε) and V ′′ = O(1/x3+ε).
We work on an interval, say [x0,∞), where E − V (x) > a > 0. We note that
under these assumptions we have g(x) = O(x−3−ε) for large x.

We introduce the Banach space

B = {δ : [x0,∞)→ C | ‖δ‖ := sup
x>x0

|x1+εδ(x)| <∞} (1.205)

We first prove that the term

δ0 :=
e−J(x)

µ(x)

∫ ∞
x

µ(s)eJ(s)g(s)ds (1.206)

in (1.203) decays as ~→ 0 or as x0 → +∞.

Lemma 1.207 Under Assumption 1.204, we have lim~→0 ‖δ0‖ = 0. Further-
more, for any ~ 6= 0, limx0→∞ ‖δ0‖ → 0.
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PROOF Let t = t(x) =
∫ x
x0

√
E − V (t)dt. Note that t : [x0,∞] → [0,∞]

is increasing since t′(x) =
√
E − V (x) = 1/µ(x) is bounded away from zero.

Let

f(x) := x1+ε
∫ ∞
x

µ(s)eJ(s)g(s)ds =

∫ ∞
t

e2it
′/~g(x(t′)) [x(t)]

1+ε
µ2(x(t′))dt′

(1.208)
Since |x1+εeJ(s)g(s)µ(s)| ≤ s1+εµ(s)|g(s)| is in L1, the first equality in (1.208)
implies

lim
x→∞

f(x) = 0 (1.209)

Using the fact that 1
µ(x)e

−J(x) is bounded, (1.205), (1.203) and (1.209) imply

limx0→∞ ‖δ0‖ = 0 for any ~ 6= 0. Now, consider the case of ~→ 0 with x0 > 0
fixed.

We claim that for any ε > 0, there exists ~0 such that |f(x)| ≤ ε for any x
if |~| ≤ ~0.

First, from (1.209), it follows that for large enough M and x > M we have
|f(x)| ≤ ε. Then, the Riemann-Lebesgue lemma implies that for x ∈ [x0,M ]
we have lim~→0 f(x) = 0. Since f is uniformly continuous on compact sets,
convergence is uniform in x, i.e. there exists ~0 so that |~| ≤ ~0 implies
|f(x)| ≤ ε for any x. Therefore, lim~→0 ‖δ0‖ = 0 since e−J(x)/µ(x) is bounded.

Theorem 1.210 Under Assumption 1.204, if x0 is large enough or ~ is small
enough, then two linearly independent solutions of (1.187) for x ∈ (x0,∞),
ψ = ψ1 and ψ = ψ2, satisfy

ψ1(x) = [E − V (x)]
−1/4

exp

[
i

~

∫ x

x0

[E − V (t)]
1/2

dt

]
{1 + o(1)} (1.211)

ψ2(x) = [E − V (x)]
−1/4

exp

[
− i
~

∫ x

x0

[E − V (t)]
1/2

dt

]
{1 + o(1)} (1.212)

PROOF We only prove the result for ψ1 since the proof for ψ2 is the same
after changing the sign of i. Since ψ1 = eW , W ′ = f [1] + δ, it is enough to
show that (1.203) has a solution in a ball where ‖δ‖ is small:

Bε = {δ ∈ B|‖δ‖ 6 ε} (1.213)

Using Lemma 1.207, we see that for any ε > 0, if we x0 is large enough or ~
is small enough, then ‖δ0‖ ≤ 1

2ε. Now, for any δ ∈ Bε, we have

|x1+εN [δ]| ≤ ‖δ‖2x1+ε
∫ ∞
x

µ(s)

µ(x)
s−2−2εds ≤ C‖δ‖2 ≤ Cε2,
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where C is independent of ε. Choosing ε < 1
2C , this implies that ‖δ0+N [δ]‖ <

ε and ‖N [δ1]−N [δ2]‖ ≤ 2Cε‖δ1−δ2‖ < ‖δ1−δ2‖. Therefore, the contraction
mapping theorem implies that there exists a unique solution in Bε.

If, as mentioned at the beginning of the section we took j = j1 > 1 instead,
then the remainder g in the map (1.224) will be of higher order in ~. With
this change, contractivity is proved in the same way, to obtain an asymptotic
expansion with j1 + 1 terms.

Remark 1.214 Replacing i by −i in in (1.200) gives the behavior of a second
independent independent solution of (1.187) in (x0,∞).

Remark 1.215 (i) No decay assumption on V is necessary for Theorem
1.210 to apply for x in a fixed (~−independent interval [a, b]. (ii) The as-
sumption x0 > 0 in Theorem 1.210 is not needed. To allow for x0 < 0 the
proof is largely the same. Assuming V (x) = O(|x|−1−ε) as x → −∞, we
would instead use the norm ‖δ‖ = supx∈(x0,∞) |1 + |x|)1+ε|δ(x)|.

1.5d The case V (x)− E ≥ a > 0

In this case, if V ∈ C2, the arguments given in §1.5c.1 that lead to WKB
solution of (1.187) may be applied in this case again to give the result

ψ = C1 [V (x)− E]
−1/4

exp

[
±1

~

∫ x

x0

√
V (t)− Edt

]
[1 + o(1)] for x ∈ (x0,∞)

(1.216)
either for x0 → +∞ or ~→ 0. The precise result is given below:

Theorem 1.217 For V ∈ C2(x0,∞), and V (x) − E ≥ a > 0, as x0 → +∞
or ~ → 0+, Two independent solutions of (1.187) are given by ψ = ψ1 and
ψ = ψ2, where

ψ1(x) = [V (x)− E]
−1/4

exp

{
1

~

∫ x

x0

[V (t)− E]
1/2

dt

}
{1 + o(1)} (1.218)

ψ2(x) = [V (x)− E]
−1/4

exp

{
−1

~

∫ x

x0

[V (t)− E]
1/2

dt

}
{1 + o(1)} (1.219)

The proof of this theorem is similar to the proof of Theorem 1.210. The
only difference is that in the proof for ψ ∼ ψ1, in the equation for δ defined
by W ′ =

√
V (x)− E − V ′

4[V (x)−E] + δ, where ψ = eW , it is necessary to put

the integral equation for δ in the following form

δ = −e
−J(x)

µ(x)

∫ x

x0

g(s)µ(s)eJ(s)ds− e−J(x)

µ(x)

∫ x

x0

eJ(s)µ(s)δ2(s)ds =: δ0 +N δ

(1.220)
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where J(x) = 2
~
√
V (x)− E and µ = (V (x)− E)−1/2, On the other hand, to

prove ψ ∼ ψ2, On the other hand, when W ′ = −
√
V (x)− E − V ′

4[V (x)−E] + δ,

where ψ = eW , it is necessary we replace the integration limit x0 in (1.220) by
∞, or the right end of whatever x interval one is concerned with, since in this
case, J(x) = − 2

~
√
V (x)− E– these choices of limits ensure that eJ(x)−J(s) ≤

1.

Exercise 1.221 Prove Theorem 1.217. You may want to use the fact that for
locally integrable q, lim~→0+

∫ x
x0
eJ(x)−J(s)q(s)ds→ 0 when J = 2

~
√
V (x)− E.

1.5d.1 Turning points

In the previous subsection we assumed that E − V is bounded below. This
assumption is in fact necessary, otherwise the asymptotic behavior of the
solutions is different. If we examine the procedure used to derive (1.194)

from (1.193), we see that the expansion is only valid if ~2f [n]′ � E − V (x),
that is, to have f ≈ f [0] we need ~(E − V (x))−1/2 � E − V (x), that is,
E − V (x) � ~2/3. Something else must be done when the latter condition
fails.

In our assumption V is smooth. Generically, near a zero of V (x)−E, also
referred to as a turning point, V (x) = α(x − xt) + O(x − xt)2, where α 6= 0.
Without loss of generality we can take xt = 0 and α = −1 through translation
and scaling. The region where our WKB does not hold is given by |x| . ~2/3.
It is natural to change variables to t = x/~2/3 in (1.187); we get, after dividing
by ~2/3,

−ψ′′(t)− tψ(t) = ~2/3t2ϕ1(x(t))ψ(t) (1.222)

where ϕ1(x) = x−2[E − V (x) − x]. To leading order in small ~, ψ satisfies
−ψ′′0 (t)− tψ0(t) = 0 with the general solution

ψ0(t) = C1Ai(−t) + C2Bi(−t) (1.223)

Since the right hand side of (1.223) is a regular perturbation in ~2/3 for t in
any finite interval, we can obtain higher order corrections in ~ as usual.

1.6 Borderline region: x� ~2/3

Assume a turning point at x = 0, i.e. , E = V (0) and that E − V (x) > 0
for x > 0. Then, for x > x0 > 0, independent of ~, Theorem 1.210 applies.
We now write a mapping for an interval (a, x0) where a is allowed to depend
on ~:

δ(x) = −e
−J(x)

µ(x)

∫ x

a

eJ(s)µ(s)g(s)ds− e−J(x)

µ(x)

∫ x

a

eJ(s)µ(s)δ(s)2ds := δ0 +N δ

(1.224)
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The reasoning is similar to that in §1.5c.2. We choose a as small as possible,
while still allowing the right side of (1.224) to be contractive. For this to be
the case, we need |g| . |x|−2 and we choose a so that δ2 � g; when this is
possible, as shown at the end of the argument, the results of Theorem 1.210
extend to the interval (a, x0). To determine what this condition entails, we
use dominant balance in (1.202): δ � ~|gx−1/2| � ~|x|−5/2, and thus δ2 � g
implies ~2|x|−5 � ~|x|−2, that is |x| � ~2/3. For contractivity we need, as in
§1.5c.2, |δ1 + δ1| � 1 which for δ1, δ2 = O

(
~x−5/2

)
holds if x � ~2/5. This

condition is stringent than |x| � ~2/3 . We then choose a = ν~2/3 with ν
sufficiently large, and with this, the map is contractive on (a, x0). We leave
the details as an exercise.

1.6a Inner region: Rigorous analysis

−ψ′′ − tψ = −~2/3t2ϕ1(~2/3t)ψ := f(t) (1.225)

which can be transformed into an integral equation in the usual way,

ψ(t) = πAi(−t)
∫ t

f(s)Bi(−s)ψ(s)ds− πBi(−t)
∫ t

f(s)Ai(−s)ψ(s)ds

+ C1Ai(−t) + C2Bi(−t) (1.226)

where Ai, Bi are the Airy functions, with the integral representations:

Ai(z) =
1

2πi

∫ ∞eπi/3
∞e−πi/3

e
1
3 t

3−ztdt (1.227)

Bi(z) =
1

2π

∫ ∞eπi/3
−∞

e
1
3 t

3−ztdt+
1

2π

∫ ∞e−πi/3
−∞

e
1
3 t

3−ztdt (1.228)

The integral representations allow us to derive the global behavior at ∞, that
is, the asymptotic expansion in any direction towards infinity, with explicit
constants. With ζ = 2

3 |t|
3
2 we have

Ai(−t) ∼ 1

2
√
π
|t|−1/4e−ζ ; Bi(−t) ∼ 1√

π
|t|−1/4eζ ; t→ −∞ (1.229)

[1] and

Ai(−t) ∼ 1

π1/2t1/4
sin(ζ+ π

4 ), Bi(−t) ∼ 1

π1/2t1/4
cos(ζ+ π

4 ) (t→∞) (1.230)

as t→ −∞. We have to choose the limits of integration in (1.226) in order for
the right side of (1.226) to be a contractive mapping. The general prescription
is that the maximum point of the integration contour should be at the variable
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point of integration, if the integrand behaves exponentially. We note that we
cannot quite choose infinity as an upper limit since the Airy-type behavior
was derived in the inner region |x| � ~2/3 and in general is not expected to
be the same outside. We will choose as large a t-interval (−M1,M2), possibly
depending on ~ for which the leading order behavior ψ ∼ C1Ai(−t)+C2Bi(−t)
can be shown. We rewrite (1.225) in the integral form

ψ(t) = πAi(−t)
∫ t

0

f(s)Bi(−s)ψ(s)ds− πBi(−t)
∫ t

−M1

f(s)Ai(−s)ψ(s)ds

+ C1Ai(−t) + C2Bi(−t) = Jψ + ψ0 (1.231)

Next, to control the norm of J , for large M1 the estimate

|t|−1/4e− 2
3 |t|

3/2

~2/3
∫ |t|
0

s2s−1/4e
2
3 s

3/2

ds . ~2/3M1, (t→ −∞) (1.232)

follows from Watson’s Lemma after the change of variable p = 1− s3/2/|t|3/2,
and similarly

|t|−1/4e 2
3 |t|

3/2

~3/2
∫ M1

|t|
s2s−1/4e−

2
3 s

3/2

ds . ~2/3|t| . ~2/3M1 (1.233)

The right sides of (1.234) and (1.233) are small if M1 � ~−2/3. For t→ +∞,
estimating crudely | sin |, | cos | by one, we get

t−1/4~2/3
∫ t

0

|s2s−1/4|ds . ~2/3t5/2 . ~2/3M5/2
2 , (1.234)

which is small for M2 � ~−4/15. We now work in the sup norm on [−M1,M2]
and obtain, in the usual way, the following result

Proposition 1.235 If ~ is small enough, then J defined in Eq. (1.231) is
contractive in L∞(−M1,M2) when ~2/3M1 and ~4/15M2 are small enough.

We leave the details as an exercise. We see that the region of contractivity
for t < 0 simply requires |x| � 1. On the other hand, the same is true for
t > 0, with the price of making the argument quite a bit more involved.

Note 1.236 The contractivity of the map for x < 0 only requires |x| � 1.
However, the norm used, L∞ does not allow for controlling the asymptotic
behavior of solutions as t becomes large. In particular, we would like to un-
derstand for what range of (large, negative) t does the solution of (1.225) have
the behavior described by Airy function asymptotics, (1.229). The behavior
(1.229) does not follow from our arguments, and in fact it is not even correct
if |t| � ~−4/15 as we will see in §1.6b.
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1.6b Matching region

Let’s analyze the behavior of solutions in the region 1� |t| � ~−4/15. We
will only analyze t < 0, as for t > 0 the analysis is similar (in fact, slightly
simpler).

We first write t = −u to make the analysis clearer. We get

−ψ′′ + uψ = −~2/3u2ϕ1(−~2/3u)ψ (1.237)

We next bring (1.225) to a form that is best suited for looking at large t,
a process called normalization. In the region where solutions have Airy-like

asymptotic behavior, roughly u−1/4e±
2
3u

3/2

, we change variables so that the
leading behavior is of the form es. A way to do this is simply by rescaling the
dependent and independent variables, ψ(u) = u−1/4g( 2

3u
3/2).

With s = 2
3u

3/2, this leads to the equation

g′′ − g = − 5

36
s−2g(s) +

181/3

2
~φ1(s)s2/3g(s) = F (s)g(s) (1.238)

where φ1 is bounded. Choosing s0 large enough, we write (1.238) in the
integral form:

g = Aes+Be−s+
1

2

(
es
∫ s

M

F (v)e−vg(v)dv − e−s
∫ s

s0

F (v)evg(v)dv

)
(1.239)

where M will be “large but not too large” so that two solutions with asymp-
totic behavior es and e−s respectively exist for s ∈ [s0,M ].

We now look for a solution with the behavior g(s) = e−s for large s. The
adapted norm to measure this type of behavior is ‖g‖ = sups>s0 |g(s)es|. We
should take A = 0 in (1.239), since the norm of es is very large, of order e2M .
To check for the contractivity of the map in this norm, we use the fact that,
by the definition of the norm, |g(v)| ≤ ‖g‖e−v. For the first integral we have

es
∣∣∣∣es ∫ s

M

F (v)e−vg(v)dv

∣∣∣∣ . ‖g‖e2s ∫ s

M

(~2/3v2/3 + v−2)e−2vdv

. ‖g‖(~2/3s2/3 + s−2) . ‖g‖(~2/3M2/3 + s−20 ) (1.240)

where we used Watson’s lemma. In order for the norm of this part of the
operator to be less than one, we need s0 to be large, which we assumed
already, and, once more, |x| . 1.

For the second integral, we see that the exponential in the definition of the
norm cancels the exponential which was already in the integrand and we get

es
∣∣∣∣e−s ∫ s

s0

F (v)evg(v)dv

∣∣∣∣ . ‖g‖ ∫ s

s0

(~2/3v2/3 + v−2)ds . ‖g‖~2/3s5/3 + s−10

. x~−1|x|5/2 + s−10 (1.241)
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which can be made small if s0 is large, as before, and if |x| . ~2/5. The
mapping is now contractive in a smaller region– the one that we have obtained
before in the oscillatory regime.

Exercise 1.242 Complete the details of the analysis, and do a similar anal-
ysis for the behavior es (where now the norm would be ‖g‖ = sups |e−sg(s)|).
Show the existence of solutions of (1.225) with the behavior of the Airy func-
tions Ai and Bi, cf. (1.229) in the region |x| . ~2/5.

Note now that, when approaching x = 0 from the outer region, we have E−
V (x) = ax+o(x2) where, by scaling we chose a = 1; then i~−1

∫ √
E − V (x) =

i~−1 2
3 (x3/2 +O(x5/2)) and

(E − V (x))−1/4ei~
−1

∫ √
E−V (x) = x−1/4ei~

−1 2
3 (x

3/2+O(x5/2)) (1.243)

and by switching to the variable t = ~−2/3x we get the behavior of a linear
combination of Ai and Bi in the oscillatory region. Similarly, changing i to −i
in the analysis above we get a linearly independent solution, with the behavior
given by a different combination of Ai and Bi. This was to be expected since
we are, after all, dealing with the same equation in the inner and outer region,
up to these changes of variables, and the behaviors should correspond to each
other.

Matching means simply finding the concrete values of the constants so that
an outer solution equals an inner one.

We note that there is a difference between the oscillatory outer region and
the one with growing/decaying exponential behavior. If only the decaying
exponential is present in the outer solution, the matching is straightforward: it
corresponds simply to the solution with the behavior Ai in the inner region (Bi
should not be present since it grows exponentially). But if the outer solution
has both growing and decaying components, matching becomes more delicate
since the small exponential is masked by the larger one to all orders of an
asymptotic expansion in ~ and finding the correspondence between constants
cannot be done by classical asymptotic means. One has to go to the complex
domain if the potential is analytic or use exponential asymptotic tools.

1.7 Recovering actual solutions from formal ones

Consider the simple ODE

y′ = y + 1/x (1.244)
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(1.244) has an irregular singularity at infinity. If we look for formal asymptotic
series solutions ỹ =

∑
k>0 ckx

−k we get c0 = 0, ck = (−1)k(k − 1)!, that is

ỹ =

∞∑
k=0

(−1)kk!

xk+1
(1.245)

This series has empty domain of convergence. Nonetheless, we can do the
following. Writing

k! =

∫ ∞
0

e−ttkdt⇒ (−1)kk!

xk+1
=

∫ ∞
0

e−pxpkdp (1.246)

and inserting (1.246) into (1.247), we get

ỹ =

∞∑
k=0

∫ ∞
0

e−pxpkdp (1.247)

This following step requires serious justification, but for now we formally
interchange summation and integration,

ỹ =

∫ ∞
0

e−px
∞∑
k=0

pkdp =

∫ ∞
0

e−px

1 + p
dp = exEi1(x) (1.248)

If our sole purpose was to solve (1.244) we could bypass the intermediate steps
and any need for justification, and simply check that the function we obtained
at the end, exEi1(x), satisfies the ODE. For the general solution of (1.244),
we just add Cex, the solution of the associated homogeneous equation, to
exEi1(x).

Of course however, (1.244) is very simple and we could have solved it by
variation of constants or other elementary means. The questions are (1) Can
we extend this to a much more general procedure, applicable to generic ODEs
near irregular singularities? (the answer is yes) and (2) Can we justify the
formal steps that led from (1.247) to the function in (1.248)? (the answer is
yes again). We leave these issues for later, now we simply note that there is
another way to interpret the operations that led to “summing” the divergent
series: (1) we took the formal inverse Laplace transform of the series, that
is, term-by-term; (indeed L−1x−k−1 = pk/k!, (2) we summed the geometric
series

∑∞
k=0(−p)k = (1 + p)−1, and, since the radius of convergence of this

geometric series is one, we extended (1 + p)−1 analytically (1 + p)−1 on R+,
and (3) we took the Laplace transform of L the result. Since LL−1 = I the
identity, and at a formal level what we did is just that, LL−1, we expect that
if ỹ satisfied an ODE, so will the LL−1ỹ. This is the route we will take in
justifying this procedure.

We also note that the formal series ỹ is divergent since it is obtained by re-
peatedly differentiating a function which is not entire: the iterative asymptotic
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process leading to ỹ is y[n+1] = −1/x+∂xy
[n]. The inverse Laplace transform

is a Fourier transform in the imaginary direction, and the Fourier transform is
the unitary operator that diagonalizes differentiation. After a form of Fourier
transform, repeated differentiation becomes repeated multiplication by the
“symbol” of the differential operator, denoted by p here. This can only lead
to geometric behavior of the terms of the formal series, something we know
much more about: this is dealt with by analytic function theory.

Finally, and this is another important point, in this and many problems,
applying the inverse Laplace transform has a regularizing effect. Indeed, the
formal solution

∑∞
k=0(−1)kk!x−k−1 becomes, after applying L−1,

∑∞
k=0(−p)k

which is convergent. Whatever problem the new series is a solution of, that
new problem is expected to have at mot a regular singularity, given this con-
vergence. Indeed, taking L−1 in (1.244) we get, with L−1y = Y ,

(p+ 1)Y = 1 (1.249)

an ordinary equation with meromorphic solutions.

The same can be dome in the context of PDEs. Let’s take the heat equation,

ht = hxx; with h(0, x) =
1

1 + x2
(1.250)

Since the equation if parabolic, the Cauchy-Kowalesky does not apply. In fat,
looking for power series solutions

h =

∞∑
k=0

Hk(x)tk (1.251)

we obtain the recurrence

Hk+1(x) =
H ′′k (x)

k + 1
; H0(x) =

1

1 + x2
= Re

(
1

1 + ix

)
(1.252)

where we wrote the initial condition in a way that facilitates taking high order
derivatives. We get for Hk,

Hk+1 =
H ′′k
k + 1

⇒ Hk =
H

(2k)
0 (x)

k!
= (−1)k

(2k)!

k!
Re
(
(1 + ix)−2k−1

)
(1.253)

and (1.253) shows that, with the given initial condition, (1.254) is divergent.

Denoting t = 1/T we write

h̃ = T

∞∑
k=0

Hk(x)T−k−1 = T

∞∑
k=0

(−1)k
(2k)!

k!
Re
(
(1 + ix)−2k−1

)
T−k−1

(1.254)
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and we apply to the sum in (1.254) the procedure we used in (1.248), (1.247),
(1.246), with x = T . We get

T

∞∑
k=0

(−1)k
(2k)!

k!
Re
(
(1 + ix)−2k−1

)
T−k−1

= t−1
∫ ∞
0

e−
p
t

∞∑
k=0

(−1)k(2k)!(1 + ix)−2k−1pk

k!2
dp

= t−1
∫ ∞
0

e−
p
t F (p, x)dp :

F (p, x)) = −2Re

(
4p

ξ3 + ξ2
√
ξ2 − 4p− 4pξ

)
ξ = (1 + ix) (1.255)

1.8 Appendix

In this book we work in Rn (or C) and we will state the results in this
simpler setting. See [55] for general measure spaces. The integrals we use
are Lebesgue integrals. A function is in L1(S) where S is a measurable set
if
∫
S
|f(x)|dx < ∞. The Lebesgue measure λ is simply the measure defined

first on boxes B by λ(B) = volume(B), and then extended to measurable
sets by additivity and “continuity” (regularity). A function is measurable if
its inverse image of any measurable set is measurable.

1.8a The dominated convergence theorem

Theorem 1.256 (dominated convergence) Assume {fn}n∈N is a family
of real-valued functions and that fn(x) → f(x) for almost all x in S 13.
Assume further that for all n |fn| ≤ g a.e [λ] 13 , where g is in L1(S). Then
f ∈ L1(S) and

lim
n→∞

∫
S

fn(s)ds→
∫
S

f(s)ds (1.257)

The Theorem also applies for complex valued functions, when real and imag-
inary parts have the requisite properties. Furthermore, it is easy to see that
a similar statement holds for more general parametric convergence, that is, if
n is replaced by a parameter y in a, say, metric space, under similar assump-
tions: |f(y, x)| ≤ g(x) for all (x, y) where g is integrable, and f(y, x)→ f(x)
as y → y0 a.e.[λ].

Note 1.258
13That is, except possibly for a set of measure zero; a set has zero measure if it contained
in a union of boxes of arbitrarily small total measure. The notation a.e. [λ] simply means
for all x except for a zero measure set.
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if K is a compact set in R, then F ∈ L1
ν(K), see (1.45), iff F ∈ L1(K).

Indeed, in this case there exist two positive constants c1 ≤ c2 such that
c1 < e−νp < c2; the rest is straightforward. Nonetheless, if F ∈ L1([a, b]), it
is still useful to work in L1

ν([a, b]) 0 ≤ a < b ∈ R, since ‖F‖L1
ν([a,b])

→ 0 as
ν →∞. Indeed, if ν > 0 we have |F (p)|e−νp ≤ |F (p)| and |F (p)|e−νp → 0 on

[a, b]. Thus Theorem 1.8a applies and
∫ b
a
F (p)e−xpdp→ 0.

1.9 Banach spaces and the contractive mapping princi-
ple

In rigorously proving asymptotic results about solutions of various problems,
where a closed form solution does not exist or is awkward, the contractive
mapping principle is a handy tool. Once an asymptotic expansion solution
has been found, if we use a truncated expansion as a quasi-solution, the re-
mainder should be small. As a result, the complete problem becomes one
to which the truncation is an exact solution modulo small errors (usually in-
volving the unknown function). Therefore, most often, asymptoticity to a
formal solution can be shown rigorously by rewriting this latter equation as
a small perturbation of the identity operator (in a suitable norm) acting on
a truncation of the formal solution. Some general guidelines on how to con-
struct this operator are discussed in §1.9b. It is desirable to go through the
rigorous proof, whenever possible — this should be straightforward when the
asymptotic solution has been correctly found—, one reason being that this
quickly signals errors such as omitting important terms, or exiting the region
of asymptoticity.

In §1.9.1 we discuss, for completeness, a few basic facts about Banach
spaces. There is of course a vast literature on the subject; see e.g. [50].

1.9.1 A brief review of Banach spaces

Familiar examples of Banach spaces are the n-dimensional Euclidian vector
spaces Rn. A norm exists in a Banach space, which has the essential properties
of a length: scaling, positivity except for the zero vector which has length zero
and the triangle inequality (the sum of the lengths of the sides of a triangle
is no less than the length of the third one). Once we have a norm, we can
define limits, by reducing the notion to that in R: xn → x iff ‖x − xn‖ → 0.
A normed vector space B is a Banach space if it is complete, that is every
sequence with the property ‖xn − xm‖ → 0 uniformly in n,m (a Cauchy
sequence) has a limit in B. Note that Rn can be thought of as the space
of functions defined on the set of integers {1, 2, ..., n}. If we take a space of
functions on a domain containing infinitely many points, then the Banach
space is usually infinite-dimensional. An example is L∞[0, 1], the space of



Introduction 53

bounded functions on [0, 1] with the norm ‖f‖ = sup[0,1] |f |. A function L
between two Banach spaces which is linear, L(x+ y) = Lx+ Ly, is bounded
(or continuous) if ‖L‖ := sup‖x‖=1 ‖Lx‖ < ∞. Assume B is a Banach space
and that S is a closed subset of B. In the induced topology (i.e., in the same
norm), S is a complete normed space.

1.9.2 Fixed point theorem

Assume M : S 7→ B is a (linear or nonlinear) operator with the property
that for any x, y ∈ S we have

‖M(y)−M(x)‖ ≤ λ‖y − x‖ (1.259)

with λ < 1. Such operators are called contractive. Note that ifM is linear,
this just means that the norm of M is less than one.

Theorem 1.260 Assume M : S 7→ S, where S is a closed subset of B is a
contractive mapping. Then the equation

x =M(x) (1.261)

has a unique solution in S.

PROOF Consider the sequence {xj}j ∈ N defined recursively by

x0 = x0 ∈ S (1.262)

x1 =M(x0)

· · ·
xj+1 =M(xj)

· · ·

We see that

‖xj+2 − xj+1‖ = ‖M(xj+1)−M(xj)‖ ≤ λ‖xj+1 − xj‖ ≤ · · · ≤ λj‖x1 − x0‖
(1.263)

Thus,

‖xj+p+2 − xj+2‖ ≤
(
λj+p + · · ·λj

)
‖x1 − x0‖ ≤

λj

1− λ
‖x1 − x0‖ (1.264)

and xj is a Cauchy sequence, and it thus converges, say to x. Since by (1.259)
M is continuous, passing the equation for xj+1 in (1.262) to the limit j →∞
we get

x =M(x) (1.265)

that is existence of a solution of (1.261). For uniqueness, note that if x and
x′ are two solutions of (1.261), by subtracting their equations we get

‖x− x′‖ = ‖M(x)−M(x′)‖ ≤ λ‖x− x′‖ (1.266)

implying ‖x− x′‖ = 0, since λ < 1.
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Note 1.267 Note that contractivity and therefore existence of a solution of a
fixed point problem depends on the norm. An adapted norm needs to be chosen
for this approach to give results.

Definition 1.268 The norm ‖.‖ of a linear operator L : A → B is simply
defined as

‖L‖ = sup
‖x‖=1

‖Lx‖

Exercise 1.269 Show that if L is a linear operator from the Banach space B
into itself and ‖L‖ < 1 then I −L is invertible, that is x−Lx = y has always
a unique solution x ∈ B. “Conversely,” assuming that I −L is not invertible,
then in whatever norm ‖ · ‖∗ we choose to make the same B a Banach space,
we must have ‖L‖∗ ≥ 1 (why?).

1.9a Fixed points and vector valued analytic functions

A theory of analytic functions with values in a Banach space can be con-
structed by almost exactly following the usual construction of analytic func-
tions. For the construction to work, we need the usual vector space operations
and a topology in which these operations are continuous. A typical setting
is that of a Banach algebra14. A detailed presentation is found in [32] and
[42], but the basic facts are simple enough for the reader to redo the necessary
proofs.

1.9b Choice of the contractive map

An equation can be rewritten in a number of equivalent ways. In solving an
asymptotic problem, as a general guideline we mention:

• The operator N appearing in the final form of the equation, which we
want to be contractive, should not contain derivatives of highest order,
divided differences with small denominators, or other operations poorly
behaved with respect to asymptotics, and it should only depend on
the sought-for solution in a formally small way. The latter condition
should be, in a first stage, checked for consistency: the discarded terms,
calculated using the first order approximation, should indeed turn out
to be small.

• To obtain an equation where the discarded part is manifestly small it
often helps to write the sought-for solution as the sum of the first few
terms of the approximation, plus an exact remainder, say δ. The equa-
tion for δ is usually more contractive. It also becomes, up to smaller
corrections, linear.

14A Banach algebra is a Banach space of functions endowed with multiplication which is
distributive, associative and continuous in the Banach norm.
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• The norms should reflect as well as possible the expected growth/decay
tendency of the solution itself and the spaces chosen should be spaces
where this solution lives.

• All freedom in the solution has been accounted for, that is, we should
make sure the final equation cannot have more than one solution.

Note 1.270 At the stage where the problem has been brought to a contrac-
tive mapping setting, it usually can be recast without conceptual problems,
but perhaps complicating the algebra, to a form where the implicit function
theorem applies (and vice versa). The contraction mapping principle is often
more natural, especially when the topology, suggested by the problem itself,
is not one of the common ones. But an implicit function reformulation might
bring in more global information.

1.10 Examples

1.10a Linear differential equations in Banach spaces

Consider the equation

Y ′(t) = L(t)Y (t); Y (0) = Y0 (1.271)

in a Banach space X, where L(t) : X → X is linear, norm continuous in t and
uniformly bounded,

sup
t∈[0,∞)

‖L(t)‖ < L (1.272)

Then the problem (1.271) has a global solution on [0,∞), and ‖Y (t)‖ ≤
‖Y0‖e(L+ε)t.

PROOF By comparison with the case when X = R, the natural growth is
indeed CeLt, so we rewrite (1.271) as an integral equation, in a space where the
norm reflects this possible growth. Consider the space of continuous functions
Y : [0,∞) 7→ X in the norm

‖Y ‖∞,L = sup
t∈[0,∞)

e−Lt/λ‖Y (t)‖ (1.273)

with λ < 1 and the auxiliary equation

Y (t) = Y0 +

∫ t

0

L(s)Y (s)ds =: A[Y ](t) (1.274)
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which is well defined on X and is contractive there since

e−Lt/λ
∣∣∣∣∫ t

0

L(s)Y (s)ds

∣∣∣∣ ≤ Le−Lt/λ ∫ t

0

eLs/λ‖Y ‖∞,Lds

= λ(1− e−Lt/λ)‖Y ‖∞,L ≤ λ‖Y ‖∞,L, (1.275)

and therefore in a ball of radius (1 + γ)‖Y0‖, for large enough γ (in fact, we
need (1 + γ)(1− λ) > 1),

‖A[Y ]‖∞,L ≤ ‖Y0‖+ λ(1 + γ)‖Y0‖ < (1 + γ)‖Y0‖

while
‖A[Y1]−A[Y2]‖∞,L ≤ λ‖Y1 − Y1‖∞,L,

implying A to be contraction map; and so a unique solution exists for the
initial value problem (1.271) with given exponential bounds for growth as
given. We note that in linear problems, we do not need to restrict the analysis
to a ball.
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[47] D.A. Lutz, M. Miyake and R. Schäfke, Nagoya Math. J. 154, 1, (1999).

[48] J. Martinet and J-P. Ramis, Annales de l’Institut Henri Poincaré (A)
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