1 Introduction

We start by looking at various simple examples. Some properties carry over to
more general settings, and many don’t. It is useful to look into this, as it gives
us some idea as to what to expect. Some intuition we have on operators comes
from linear algebra. Let A : C™ — C™ be linear. Then A can be represented by
a matrix, which we will also denote by A. Certainly, since A is linear on a finite
dimensional space, A is continuous. We use the standard scalar product on C™,

n
i=1

with the usual norm ||z||? = (x,z). The operator norm of A is defined as

Ax
1Al = sup 1221 _ g

= sup || Au] (1)
zecn |l2] - cecn

weCm:||ul|=1

]

Clearly, since A is continuous, the last sup (on a compact set) is in fact a max,
and ||Al| is bounded. Then, we say, A is bounded.
The spectrum of A is defined as
a(A) ={A\| (A=) is not invertible} (2)
This means det(A — A\) = 0, which happens iff ker (A — \) # {0} that is

a(A) = {\ | (Axz = Az) has nontrivial solutions} (3)

For these operators, the spectrum consists exactly of the eigenvalues of A. This
will not extend to infinite dimensional cases.
e Self-adjointness A is symmetric (self-adjoint, it turns out) iff

(Az,y) = (z, Ay) (4)
for all x and y. As an exercise, you can show that this is the case iff (4);; =

(A);i-

We can immediately check that all eigenvalues are real, using (4).

We can also check that eigenvectors x1,xo corresponding to distinct eigen-
values A1, Ao are orthogonal, since

<Al‘1,1‘2> = /\1 <Z‘1,JJ2> = <.TJ1,AJ?2> = )\2<$1,$2> (5)

More generally, we can choose an orthonormal basis consisting of eigenvectors
u, of A. We write these vectors in matrix form,

Uil U21 v Upi
U= U2 U2 - Up2 (6)
Ulp Uop - Unn
and note that
VU =U"U =1 (7)



where [ is the identity matrix. Equivalently,

U =0t (8)
We have
Ui U211 v Ul
A=A T2 T = (A Auy e Auy)
Ulp Unm ¢ Unn
A0 0
= (M dous o Agug) =U | 0 M l=up (9
0 0 An

where D is a diagonal matrix. In particular
U*AU =D (10)

which is a form of the spectral theorem for A. It means the following. If we
pass to the basis {u;}, that is we write

x = Z CLUE (11)
k=1

we have
Cr = <SC, Uk> (12)
that is, since & = (cg)g is the new representation of x, we have
T=U"z (13)
We also have . .
Ax = chAuk = ch)\kuk = D7 =: A"f (14)
k=1 k=1

another form of (10). This means that after applying U* to C", the new A, A
is diagonal (D), and thus is it acts multiplicatively.

e A few infinite-dimensional examples. Let us look at L2[0, 1]; here, as
we know,

1
= d
()= [ fs)ayds
We can check that X, defined by
(Xf)(@) =zf(x)

is symmetric. It is also bounded, with norm < 1 (exactly 1, it turns out), since

/ Cp)Pas < [ 1f(s)2ds (15)
0 0



What is the spectrum of X? We have to see for which A X — X is not invertible,
that is the equation

(z-=ANf=g (16)

does not have L? solutions for all g. This is clearly the case iff A € [0, 1].
But we note that now ¢(X) has no eigenvalues! Indeed,

(x—=Nf=0=f=0Vr#\= f=0a.e,= f=0in the sense of L> (17)

Finally, let us look at X on L?(R). The operator stays symmetric, wherever de-
fined. Note that now X is unbounded, since, with X the characteristic function,

xX[n,n+1] > nX[n,nJrl] (18)

and thus || X|| > n for any n. Likewise, X is not everywhere defined. Indeed,
f=(z|+1)7! € L?(R) whereas |z|(|z| + 1)7! — 1 as # — Fo0, and thus X f
is not in L2. What is the domain of definition of X (domain of X in short)? It
consists of all f so that

feL? and xf € L* (19)

This is not a subspace of L?. Rather, it is a dense set in L? since C§° is contained
in the domain of X and it is dense in L?. X is said to be densely defined.

2 Bounded and unbounded operators

1. Let X, Y be Banach spaces and D C X a linear space, not necessarily
closed.

2. A linear operator is any linear map 7: D — Y.
D is the domain of T, sometimes written Dom (T), or D (T)).

T(D) is the Range of T', Ran(T).

ook W

The graph of T is

I(T) = A{(z,Tx)|lx € D(T)}

6. The kernel of T is

Ker(T) ={x € D(T) : Tz = 0}



2.1

1.
2.

Operations
aTy + b1y is defined on D (Th) N D (Tz).
it :D(T) C X Y and Ty : D(Tz) C Y — Z then ThTh : {x €
D(Tl) : Tl(x) eD (TQ)}

In particular, if D(T) and Ran(T) are both in the space X, then, in-
ductively, D(T") = {x € D(T" ') : T(x) € D(T)}. The domain may
become trivial.

Inverse. The inverse is defined iff Ker(7T') = {0}. This condition implies T
is bijective. Then 7! : Ran(T) — D (T) is defined as the usual function
inverse, and is clearly linear. O is not invertible on C'*°[0,1]: Kerd = C.
How about 0 on C§°((0, 1)) (the set of C*° functions with compact support
contained in (0,1))?

Closable operators. It is natural to extend functions by continuity, when
possible. If z,, — = and Tz, — y we want to see whether we can define
Tx = y. Clearly, we must have

Tp — 0and Tz, -y =1y =0, (20)
since T(0) = 0 = y. Conversely, (20) implies the extension Tx = y

whenever x,, — x and Tz,, — y is consistent and defines a linear operator.

An operator satisfying (20) is called closable. This condition is the same
as requiring
I'(T) is the graph of an operator (21)

where the closure is taken in X @Y. Indeed, if (z,,Tz,) — (x,y), then,

by the definition of the graph of an operator, Tz = y, and in particular

T, — 0 implies T'z,, — 0. An operator is closed if its graph is closed. It

will turn out that symmetric operators are closable.

Many common operators are closable. E.g., 0 defined on a subset of
2

continuous, everywhere differentiable functions is closable. Assume f, 5o

2
(in the sense of L?) and f, Ly 9. Since 1} exist everywhere, see [4],

Fule) — fa(0) = /0 " F(9)ds = (£ Xo)) — (9 Xo)) = /0 " g(s)ds

Thus -
Jim (£u(o) = £,0) =0 = [ g(s)as (23)

implying g = 0.
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2.2

As an example of non-closable operator, consider, say L?[0,1] (or any
separable Hilbert space) with an orthonormal basis e,. Define Ne, =
neyp, extended by linearity, whenever it makes sense (it is an unbounded
operator). Then z, = e,/n — 0, we have Nz,, = ¢; # 0. Thus N is not
closable.

Every infinite-dimensional normed space admits a nonclosable linear op-
erator. The proof requires the axiom of choice and so it is in general
nonconstructive,

The closure through the graph of T is called the canonical closure of T.

Note: if D (T) = X and T is closed, then T is continuous, and conversely
(see §2.3, 5).

. As we know, T is continuous iff ||T| < oo. Indeed, by linearity only

continuity at zero needs to be checked. For the latter, simply note that
[Tz || < (T (l|zn ]l — 0 if [z || — 0.

The space L(X,Y) of bounded operators from X to Y is a Banach space
too, with the norm T — ||T||.

We see that T € L(X,Y) takes bounded sets in X into bounded sets in
Y.

A brief review of bounded operators

. L(X,Y) denotes the space of bounded linear operators from X to Y.

We have the following topologies on £(X,Y’) in increasing order of weak-
ness:

(a) The uniform operator topology or norm topology is the one given
by [|T']| = supy,=1 [|[T'u[|. Under this norm, £(X,Y’) is a Banach
space.

(b) The strong operator topology is the one defined by the conver-
gence condition T,, — T € L(X,Y) iff T,o — Tz for all z € X.
We note that if T,z is Cauchy for every = then, in this topology,
T, is convergent to a T € L(X,Y). Indeed, it follows that T,x is
convergent for every x. Now note that ||T,z| < C(z) for every x
because of convergence. Then, ||T,| < C for some C by the uni-
form boundedness principle. But || Tz| = |[(T — Th, + Thny)z|| <
T — Ty )x|| + C|lz]| = C|lx|| as n — oo thus ||T|| < C.

We write T'= s — lim T, in the case of strong convergence.

Note also that the strong operator topology is a pointwise convergence
topology while the uniform operator topology is the “L>°” version
of it.
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2.3

(c) The weak operator topology is the one defined by T,, — T if
T, (xz)) — £(Tz) for all linear functionals on X, i.e. V¢ € X*. In
the Hilbert case, X = Y = H, this is the same as requiring that
(Thzx,y) = (Tx,y) Vo, y that is the “matrix elements” of T' converge.
It can be shown that if (T},z,y) converges Vz,y then there is a T so
that T,, - T.

Reminder: The Riesz Lemma states that if T' € H*, then there is a unique
yr € H so that Tz = (z,yr) for all z.

Adjoints. Let first X = Y = H be separable Hilbert spaces and let
T € L(H). Let’s look at (T'x,y) as a linear functional ¢ (x). It is clearly
bounded, since by Cauchy-Schwarz we have

[Tz, y)| < ([yllITIDI]] (24)

(T2, 9)] < (WIITD 2. Thus (Te,y) = (z,yr) for all 2. Define T+ by
(x, T*) = (x,yr). Using (24) we get

[, T < Iyl TNl (25)

This is clearly linear, well defined by linearity by (u,T*) = (u,yr) when
|lu|| = 1. Furthermore

1T ||* = (T, T*2)| < |7y T|l||]]

by definition , and thus ||T*| < ||T||. Since (I™*)* = T we have ||T|| =
171

. In a general Banach space, we mimic the definition above, and write

T (0)(x) =: £(T(x)). Tt is still true that ||T]| = ||T”]|, see [2].

Review of some results

. Uniform boundedness theorem. If {T}};eny C £(X,Y) and ||T)z| <

C(z) < oo for any x, then for some C € R, ||T;]| < C V j.
In the following, X and Y are Banach spaces and T is a linear operator.

Open mapping theorem. Assume T : X — Y is onto. Then A C X
open implies T(A) C Y open.

. Inverse mapping theorem. If T : X — Y is one to one, then T~ is

continuous.

Proof. T is open so (T~1)~! = T takes open sets into open sets.

Closed graph theorem T : X — Y (note: T is defined everywhere) is
bounded iff T'(T)) is closed.

Proof. Tt is easy to see that T bounded implies I'(T') closed.



Conversely, we first show that Z =T'(T) C X @Y is a Banach space, in
the norm
Iz, T2)|| z = lle] x + [Ty

It is easy to check that this is a norm, and that (x,,, T, )nen is Cauchy iff
Zy is Cauchy and Tz, is Cauchy. Since X,Y are already Banach spaces,
then x, — z for some x and Tz, — y = Txz. But then, by the definition
of the norm, (z,,Tx,) — (z,Tx), and Z is complete, under this norm,
thus it is a Banach space.

Next, consider the projections P, : z = (x,Tx) — z and Py : z =
(x,Tx) — Tz. Since both |z| and ||Tz| are bounded above by |z||,
then P; and P, are continuous.

Furthermore, P; is one-to one between Z and X (for any x there is a
unique Tz, thus a unique (z,Tz), and {(z,Tx) : z € X} = I'(T), by
definition. By the open mapping theorem, thus P, !is continuous. But
Tx = PyP 'z and T is also continuous.

. Hellinger-Toeplitz theorem. Assume 7' : H — H, where H is a Hilbert
space. That is, T is everywhere defined. Furthermore, assume 7' is sym-
metric, i.e. {x,T2') = (Tx,2’) for all z,2’. Then T is bounded.

Proof. We show that T'(T') is closed. Fix 2’ and assume z,, — = and T'z,, —
y. Let 2’ be arbitrary. Then lim, oo (@n, T2") = lim, oo (Tx,,z’) =
(x,T2'y = (Tz,2') = (y,a’'), for all 2/, thus Tz = y, and the graph is
closed.

. Consequence: The differentiation operator i0, say, with domain is Cg§°
(and many other unbounded symmetric operators in applications), which
are symmetric on certain domains cannot be extended to the whole space.
We cannot “invent” a derivative for general L? functions in a linear, sym-
metric way! General L? functions are fundamentally nondifferentiable.

Unbounded symmetric operators come with a nontrivial domain D (T') C
X, and addition, composition etc are to be done carefully.

Closed operators, examples of unbounded op-
erators, spectrum

. We let X, Y be Banach space. Y’ is a subset of Y.

. We recall that bounded operators are closed. Note that T is closed iff
T + M is closed for some/any A.

Proposition 1. If T: D(T) C X =Y’ CY is closed and injective, then
T~ is also closed.



Proof. Indeed, the graph of T and T—! are the same, modulo switching
the order. Directly: let y, — v and Ty, = x,, — 2. This means that
Tz, — y and z, — =, and thus Tz = y which implies y = T 'z. O

Proposition 2. If T is closed and T : D(T) — X is bijective, then T—!
is bounded.

Proof. We see that T~ is defined everywhere and it is closed, thus bounded.
O

Exercise™ 5. Show that if T" is not closed but bijective between Dom T and Y, there
exist sequences x,, — x # 0 such that Tz,, — 0. (One of the “pathologies”
of non-closed, and more generally, non-closable operators.)

Spectrum 6. The spectrum of an operator plays a major role in characterizing it and
working with it. Of course in a more sophisticated way, we can, in “good”
cases, find unitary transformations that essentially transform an operator
to the multiplication operator on the spectrum, an infinite dimensional
analog of diagonalization of matrices.

The spectrum of T', as we noted, equals
o(T) =: {\ € C: (T—)\)"*does not exist as a bounded operator : X — Dom 7'}

By the above and the closed graph theorem, if T is closed, we have
o(T) = {z : (T — 2) is not bijective}. That is, the possibility (T — z)~*! :
Y — Dom (T — z) is unbounded is ruled out if T' is closed.

For closed operators, there are thus two possibilities: (a) T : D(T) —» Y
is not injective. That means that (T' — z)xz = (T — z)y for some z # y,
which is equivalent to (T — Nu =0, u =2z —y # 0, or Ker(T — z) # {0}
or, which is the same Tu = Au for some uw # 0. This u is said to belong
to the point spectrum of T. (b) RanT # Y. There is a subcase, RanT is
not dense. This subcase is called the residual spectrum.

Examples 7. (a) Consider the operator X on L2([0, 1]). We noted already that o(X) =
[0,1]. You can show that there is no point spectrum and residual
spectrum for this operator.

(b) Consider now operator X on {f € L*(R) | zf € L*(R)} . Show that
o(X)=R.
Exercise (¢) Let H and H’ be Hilbert spaces, and let U : H — H’ be unitary. Let
TH — H and consider its image UTU*. Show that T and UTU*
have the same spectrum.

(d) Show that —id densely defined on the functions in L?(R) so that f’
exists and is in L?(R), and that it has as spectrum R. For this, it is
useful to use item 7c above and the fact that F, the Fourier transform
is unitary between L2(R) and L2(R).



Exercise

(e) The spectrum of unbounded operators, even closed ones, can be any
closed set, including () and C. The domain of definition plays an
important role. In general, the larger the domain is, the larger the
spectrum is. This is easy to see from the definition of the inverse.

(f) Let T = 0 be defined on D(T}) = {f € C*[0,1] : £(0) = 0} (V) with
values in the Banach space C]0,1] (with the sup norm). (Note also
that Dom T is dense in C[0,1].) Then the spectrum of Ty is empty.
In particular T3 is closed.

Indeed, to show that the spectrum is empty, note that by assumption
(0 — 2)D(Th) C C[0,1]. Now, (0 —z)f =g, f(0) = 0 is a linear
differential equation with a unique solution

f@) = [ e g(s)as

0

We can therefore check that f defined above is an inverse for (0 — z),
by checking that f € C'[0,1], and indeed it satisfies the differential
equation. Clearly || f|| < const(z)]g]-

(g) At the “opposite extreme”, Ty = 9 defined on D(Tp) = C1[0, 1] has
as spectrum C.
Indeed, if f(x;z) = e**, then Tof — zf = 0.
We note that T} is closed too, since if f,, — 0 then f, — f,(0) — 0
as well, so we can use 6 and 7f above.

8. Operators which are not closable are ill-behaved in many ways. Show that
the spectrum of such an operator must be the whole of C.

9. An interesting example is S defined by (Sv)(z) = ¢(z + 1). This is well
defined and bounded (unitary) on L?(R). The “same” operator can be
defined on the polynomials on [0, 1], an L* dense subset of C[0, 1]. Note
that now S is unbounded.

10. S : P[0,1] — SPJ0,1] is bijective and thus invertible in a function sense.
But the inverse is unbounded as seen in a moment.

(a) It is also not closable. Indeed, since P[0,1] C P[0,2] and P[0, 2] is
dense in C0, 2], it is sufficient to take a sequence of polynomials P,
converging to a continuous nonzero function which vanishes on [0, 1].
Then P, — 0 as restricted to [0,1] while P, (2 + 1) converges to a
nonzero function, and closure fails (?). In fact, P, can be chosen so
that P,(x 4 1) converges to any function that vanishes at x = 1.

(b) Check that S — z is not injective if z # 0. So S — z is bijective iff
z=0.

(1) £(0) = 0 can be replaced by f(a) = 0 for some fixed a € [0, 1].
@ Proof due to Min Huang.



11.

(c) However, S restricted to {P € P[0,1] : P(0) = 0} (a dense subset
of {f € C[0,1] : £(0) = 0} it is injective for all z. Again, (S — 2)~*
(understood in the function sense), is unbounded.

Exercise 1. Show that Ty = 0 defined on D(Ty) = {f € C*[0,1] : £(0) =
f()} has spectrum exactly 2miZ.

It is also useful to look at the extended spectrum, on the C,, We say that
00 € 05o(T) if (T — z)~! is not analytic in a neighborhood of infinity.

4 Integration and measures on Banach spaces

In the following €2 is a topological space, B is the Borel o-algebra over
Q, X is a Banach space, p is a signed measure on €). Integration can be
defined on functions from ) to X, as in standard measure theory, starting
with simple functions.

(a) A simple function is a sum of indicator functions of measurable mu-
tually disjoint sets with values in X:

flw) = ijXA]. (w); card(J) < o0 (26)
JjeJ
where z; € X and U;A; = Q.
(b) We denote by B4(€, X) the linear space of simple functions from {2
to X.

(c) We will define a norm on B,(€2, X) and find its completion B(2, X)
as a Banach space. We define an integral on B4(2, X), and show it
is norm continuous. Then the integral on B is defined by continuity.
We will then identify the space B(£2, X) and find the properties of
the integral.

(d) Bs(€,X) is a normed linear space, under the sup norm

1flloo = sup [ f(w)] (27)
weN
(e) We define B(), X) the completion of Bs(€2, X) in || f]|co-
(f) Check that, for a partition {A;};=1, ., we have
= = . 28
1flle max sup I (@)l == max [ f]].4, (28)
(g) Refinements. Assume {A;};—1 ., is partition and {A;}jzl _____ o IS a

subpartition, in the sense that for any A; there exists A%, ..., A% so
that A; = UzllA;z

10



(h) The integral is defined on B,(€2, X) as in the scalar case by
[ fan =3 uas)e; (29)
JjeJ

and likewise, the integral over a subset of A € B(Q2) by

/A fp = / Xoafdy (30)

which is the natural definition since A is also a topological space with
a Borel o-algebra (the induced one) and with the same measure p.
Check that, is we choose @y = x; for each A’ C A; then

D wXa, =Y @i Xa (31)
J J

and

/ijXAjdu:/Zx;XA;d,u (32)
2 2

(i) Note that if A, B are disjoint sets in B(£2), then
[ gdn= [ gaus [ san (3)
AuUB A B
()

Lemma 3. If f € B(Q,X), then for any e there is a (disjoint)
partition {A;}i=1,...n of Q so that for any w; € A; we have

If =D flwi)Xa,llx <e (34)
i=1

Proof. Since f € B(€,X) there is a g = Y1 | #;X4,, so that [|g —
fII < €/2. This means in particular that for any j, | > e 4, f(w) —
x| < €/2. Choosing any w; € Aj, it follows that || f(w;) — ;|| < €/2.
The rest follows from the triangle inequality. U
Lemma 4. If {A}}i=1,. . is a subpartition of {A;}i=1,..n in the
sense that A, C A; for any ¢ and some i, and if xy = x; whenever

A;/ C A;, then ZZ:l xi/XAi, = Z?:l ‘TzXAI
Proof. Since X4+ = Xa + XB, this is immediate. O

Lemma 5. If f1, fo € B(Q, X), then for any € there is a (disjoint)
partition {A;}i=1,..n of Q so that for any w; € A; we have

1Fi = Flw)Xa,llx <e i=1,2 (35)

=1

11



Exercise

Proof. Taking as a partition a common refinement of the partitions
for f1 and fo which agree with f; and f> resp. within €/2 this is an
immediate consequence of the previous two lemmas and the triangle
inequality. O

Lemma 6. Assume |u|(2) < oo (otherwise choose £ € Q so that
Iwl(Q) < o0). The map f — [ fdu is well defined, linear and
bounded in the sense

H / fduH < [ WF1lel < 17 a4 (36)
A A

where || is the total variation of the signed measure pu, |u| = pt+up~,
where p = p* — p~ is the Hahn-Jordan decomposition of .

Proof. All properties are immediate, except perhaps boundedness.
We have

“Afd’“‘”<ziﬂl<flj>llell= /A 1 £ldlid < 1 flloo.alul(4)  (37)

JjeJ
O

Thus [, is a linear bounded operator from B (€2, X) to X and it
extends to a bounded linear operator on from B(€, X) to X.

Lemma 7. f € B(Q, X) — Ve there is a partition {A;}i=1,...n of Q
so that for any w; € A; we have

If = Zf(wj)XA]-H <e (38)

Proof. Choose a partition {A4;}i=1, ., of Q and z; so that
1F = aiXa,ll <e/2
J

This implies by the 11f above that
[z = flw)ll < €/2
for all w; € A;. The rest follows from the triangle inequality. O

Show that the same holds for a pair of functions fi, f2, namely there
is a common partition {A;};=1, ., of Q so that

I1fi =D filwi)Xa, | < €i= 1,2
J

12



(1) Let T be a closed operator and f € B(€, X) be such that f(Q) C
D(T). Assume further that f is such that T'f € B(Q, X).

Theorem 1 (Commutation of closed operators with integration).
Under the assumptions above we have

T/Afdu:/Adeu (39)
Proof.

- For any m we can f,, € Bs(Q,X), so that |f — fil] < 1/m,
where

Nm

fm = ZXijj
j=1

and g, € Bs(Q, X), so that | Tf — gml|| < 1/m,

M,
Im = Z XAjyj
j=1

where we have assumed N,,, A; are the same, since this can be
arranged by a subpartition of the A;s.

- Furthermore, we can arrange that z; = f(w;) for some w; € A;.
Indeed, we have, throughout A;, || f(w)— f(w;)| < || f(w)—xz;]+
lz; — f(w)|l < 2/m since the estimate ||f(w) — ;|| < 1/m is
uniform in A;.

- Then T applies to f,,, and we have, on A;, T fr, —gm = T f(w;j)—
y; which is estimated in norm by 1/m since ||Tf(w) —y;|| < 1/m
throughout A;.

- On the other hand, [, T fm = Z;V:"‘l WA)Tx; =Ta [ fm-

- But g,,, converges in the sup norm, by assumption, to T'f. Thus
T f,, converges in norm to T'f.

- Furthermore, [ 4T fm converges, since g,, converge uniformly,
thus [, g converge, and || T f, — gl < 1/m. Since T is closed,
and T [, fm converges, and [, fm — [, f, then T [, frn —
T[,f O

Exercise 1. Formulate and prove a theorem allowing to differentiate
under the integral sign in the way

d [* )
%/a f(ffvy)dy=/a %f(w,y)dy

Corollary 8. In the setting of Theorem 1, if T is bounded we can
drop the requirement that Tf € B.

Proof. T f,, is a simple function, and it converges to T'f. The rest is
immediate. O

13



(m)

(n)

An important case of Corollary 8 is that for any ¢ € X*, we have

b /A fp = /A bFd (40)

We recall a corollary of the Hahn-Banach theorem:

Proposition 9. Let X be a normed linear space, Z C X a subspace
of it and y € X such that dist(y, Z) = d. Then there exists a ¢ € X*
such that ||¢|| <1, ¢(y) = d and ¢(Z) = {0}.

(see [2], p.77).

Corollary 10. If ¢(z) = ¢(y) V¢ € X*, then x = y.

Definition 11. The last results allow us to transfer many properties
of the usual integral to the vector setting.
For instance, if A and B are disjoint, then

| g~ [ gans [ s (41)

Proof. By Corollary 10 , (42) is true iff for any ¢ we have

ofdy = /A o fdu+ /B ofdy (42)

AUB
which clearly holds.

f is measurable between two topological spaces if the preimage of a
measurable set is measurable.

Proposition 12. If f € B(Q, X) then f is measurable.

Proof. Usual proof, f is a uniform limit of measurable functions,
fm- O

Remark 1. We recall that in a complete metric space M, a set S
s precompact iff it is totally bounded, that is for any € > 0 there
is an N(e) and a set of points Jy = {x1,....,ax} C M so that
SuUp,eg dist(z, Jn) < e.

Theorem 2. The function f is in B(Q, X) iff f is measurable and
f(2) is relatively compact.

Proof. We first show that f is in B(2, X) implies f(€) is relatively
compact. We have f = f,, + O(1/m) and f,, = Z?’Z"l Xa,x;. Thus
the whole range of f is within 1/m of the finite set z1,...,xn,, . Thus
() is totally bounded, thus precompact.

Now, if f(£2) is precompact, then it is totally bounded and f(w) is
within € of a set {z1,...,2x}. Out of it, it is easy to construct a
simple function approximating f within e. U

14



Corollary 13. Let Q2 be compact and denote by C(Q, X) the contin-
uous functions from § to X. Then C(Q, X) is a closed subspace of
B(Q,X).

Proof. It f € C(Q,X), then f(Q) is compact, since ) is compact
and f is continuous. Measurability follows immediately, since the
preimage of open sets is open. O

(p) If f, € B(Q,X), f — f in the sup norm, then [ f,du — [ fdu.
This is clear, since [ 4 is a continuous functional.

5 Extension

A theory of integration similar to that of Lebesgue integration can be
defined on the measurable functions from Q, X to Y ([1])

The starting point are still simple functions. Convergence can be under-
stood however in the sense of L!. We endow simple functions with the
norm

|Wh=[ﬂﬂwww

and take the completion of this space. Convergence means: f,, — fa.e.
and f,, are Cauchy in L;(A). Then lim [ f,du is by definition [, fdu.

Integration is continuous, and then the final result is L!(A).

Then, the usual results about dominated convergence, Fubini, etc. hold.

6 Basic Banach algebra notions

We need to work in a systematic way with sums, products, and more
generally functions of operators.

Definition 14. A Banach algebra is a Banach space which is also an
associative algebra, in which multiplication is continuous:

[labll < [lal[[b]] (43)

Ezxamples: (1) C(Q);
(2) L*(R) with the product given by fg := f * g where

U*m@r::}wmw—@m

Exercise 1. Show that (2) is indeed a Banach algebra.
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A Banach algebra may or may not have an identity element, for which
Va, la = al = a. (1) has an identity, the function f(z) = 1, while (2)
does not.

Note. Often the condition of existence of an identity is included in the
definition of a Banach algebra.

(a)

7

Remark 2. If A has an identity, then ||1| > 1. It is clear that
|I1]| # 0. Then, we must have ||1|| = [|12|| < |[1]|>. We can arrange
that ||1]] = 1 by changing to an equivalent norm. Indeed, let

[zll~ = sup [laz]]
a€A:llal|=1
Then clearly, by the continuity of multiplication, we have ||z||~ <
lz]|. On the other hand, |a||l~ > ||1la||/||1||, so the two norms are
equivalent.
Clearly, ||1]|~ = 1 essentially by definition.

There is a good notion of spectrum on Banach algebras:

Definition 15. Let A be a Banach space with an identity and let
a € A. The spectrum of a, denoted by o,(a) is defined by

op(a) = {z € C: z — a has no inverse in A} (44)

Note 3. If T is a bounded operator, then T is called invertible if
T is one-to-one with bounded inverse. Then TT~! = T-!T = 1.
In general, invertible means two sided inverses exist. Note that the
shift operator on [2, S(ay,as,...,an,...) = (0,a1,az, ..., ap,...) has a
left inverse, S’(a1, a2, ...,an,...) = (az,as,, ..., an, ...) but not a right
inverse, since the image S(I?) has codimension one (all vectors in the
image have 0 as the first component). Show that if the right inverse
and left inverse of an element in a group exist, then they coincide.

Spectral radius. This is defined by

r(a) = limsup ||a"||1/" (45)

n—oo
Clearly, r(a) < |la]|(< o0). But it can be smaller. Think of the
algebra generated by a nilpotent matrix.

In fact we will show that r(a) = sup{|A| : A € o(a)}. This explains
the name and also shows that o(a) # C.

Analytic vector valued functions

Let X be a Banach space. Analytic functions : C — X are functions which
are, locally, given by convergent power series, with coefficients in X.
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(a) More precisely, let {x} C X be such that limsup,,_,.. ||z.['/" =
p < co. Then, for z € C |z| < R =1/p the series

S(z,x) = Zajkzk (46)
n=0

converges in X (because it is absolutely convergent (3)). (There is an
interchange of interpretation here. We look at (46) also as a series
over X, with coefficients z*.)

(b) Abel’s theorem. Assume S(z) converges for z = zy. Then the

series converges uniformly, together with all formal derivatives on
D, where D, = {z : |z| <}, if r < |z

Proof. This follows from the usual Abel theorem, since the series

Z lzll|2)® =: S(|2|, |lz]|x) converges (uniformly) in D,.. O

n=0

7.1 Functions analytic in an open set O € C

(a) Let O € C be an open set. The space of X-valued analytic functions
H(0O, X) is the space of functions defined on O with values in X such
that for any zg € O, there is an R(2p) # 0 and a power series S(z; 2¢)
with radius of convergence R(zp) such that

f(z) = S(%; 20, 21) =: Zxk(zo)(z —20)% V2, |z — 20| < R(z0) (47)
k=0

(b) If f is analytic in C, then we call it entire.

Proposition 16. An analytic function is continuous.

Proof. We are dealing with a uniform limit on compact sets of con-
N

tinuous functions, Z zr(20)(z — 20)F. O
k=0

Corollary 17. Let O be precompact. Then H(O,X) C B(Q, X).
Proof. This follows from Proposition 16 and Corollary 13. O

(c) Let now X be a Banach algebra with identity.

Lemma 18. The sum an product of two series s(z; zo, ) and S(z; 2o, Yx)
with radia of convergence r and R respectively, is convergent in a disk
D of radius at least min{r, R}.

oo}
() That is, Z |z ]|z converges.
n=0

17



Proof. By general complex analysis arguments, the real series s(||z||; zo, |||z« |)

and S(||z|l; zo, |||z |]) converge in D and then so does s(||z]|; zo, ||||zx])+
S(I21; 2o, Hlzx ) ete. O

Corollary 19. The sum and product of analytic functions, whenever
the spaces permit these operations, is analytic.

Let O a relatively compact open subset of C. We can introduce a
norm on H(O, X) by ||f| = sup.co [|f(2)]x-

Let us recall what a rectifiable Jordan curve is: This is a set of the
form T" = ~(][0, 1]) where v : [0,1] — C is in CBV (continuous func-
tions of bounded variation), such that z < y and v(z) = y(y) = (z =
y or x =0,y = 1) (that is, there are no nontrivial self-intersections;
if v(0) = (1) then the curve is closed). (Of course, we can replace
[0,1] by any [a, b], if it is convenient.) Then ' exists a.e., and it is in
L'. Thus dy(s) = 7/(s)ds is a measure absolutely continuous w.r.t
ds. As usual, we define positively oriented contours, the interior and
exterior of a curve etc.

We can define complex contour integrals now. Note that if f is ana-
lytic, then it is continuous, and thus f(v) : [0,1] — C is continuous,
and thus in B(O, X). Then, by definition,

/F f(2)dz = / FO/ () (5)ds = / F(()dr(s)  (48)

Proposition 20. If f € B(S, X) (S! =the unit circle) and z € D!
(the open unit disk), then

F(z)= 2 f(s)(s—2)"tds (49)

1s analytic in D1.

Proof. As usual, we pick zg € D!, let d =dist(d, S') and take the disk

D2 (25). We write (s — 2) = (s — 20) /(1 — (2 — 20) /(5 — 20)) =:
(s —20)"/(1 — ). Using

1— n+1

1/(1—2) :1+x+...+xn:%

we get

f(s)(s —2)"tds — f(s)(s —2z9) " tds
Sl Sl
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We now check that the last integral has norm < 27"C where C is
independent of n, and the result follows. O

(h)
Proposition 21. Let Y be a Banach space, T : X — Y continuous
(i.e. bounded), and f € H(O,X). Then Tf € H(O,Y).

Proof. Let zy € O. Then there is a disk D(zp,€) such that for all
z € D(zp,€) we have |f(z) — Z,ZCV:O (2 — 20)F|| = 0, as n — oo.
then,

N N
ITf(z) = Tan(z = 20)F| < TN (2) =Y an(z = 20)F[| = 0
k=0 k=0
and the result follows. O

(i) In particular, f analytic implies ¢f analytic for any ¢ € X*.
(j) As a result of (11m) on p. 14 we have, for any ¢ € X*

o [ 11z = [ori: (51)

(k) The last few results allow us to transfer the results that we know
from usual complex analysis to virtually identical results on strongly
analytic vector valued functions.

1)
Proposition 22. The function f is analytic iff it is weakly analytic,
that is ¢ f is analytic for any ¢ € X*.

Proof 1. Let ¢ € X* be arbitrary. Then ¢f(s) is a scalar valued
analytic function, and then

6f(2) = 7{) 61(s)(s — )" ds = & 7{) fs)(s—2)"tds  (52)

if the circle around z is small enough. Since this is true for all ¢, we
thus we conclude that

f(2) = ;{j F(5)(s — 2)"1ds (53)

and by Proposition 20, f is analytic. O

Proof 2. Consider the family of operators f... := (f(z) — f(2'))/(z —
2') on 0%\ D where D is the diagonal (z,z) : z € O. Then |¢f,./| <
Cy for all ¢ € X*. Now we interpret f,.. as a family of functionals
on X**, indexed by z,2’. By the uniform boundedness principle,
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| fzz]|x+ < B < oo is bounded with the bound independent of
z,7', and by standard functional analysis || f../||x+ = [|fz,2]lx <
B. Then, f(z) is continuous, and thus integrable. But then, since
$a @f(s)ds = 0 it follows that §, f(s)ds = 0 for all A € O, and thus
f is analytic. O

For instance:

i

ii.

iii.

iv.

vi.

fr does not depend on the parametrization of I', but on I' alone.
If we take a partition of I', I' = UN | T; then

/Ff(z)dz - ﬁ:/r F(2)dz (54)

We have Cauchy’s formula: Assume O is a precompact open set
in C, I' a a closed, positively oriented contour in O and if z ¢ T,
where T is a closed, positively oriented contour, then

ﬁf(s)(s — 2) " Yds = 2mif(2) X1mer (2) (55)

Proof. Note that f(s)(s — z)~! is analytic in z, for any s. Thus
it is continuous, integrable, etc. We have for any ¢ € X*,

ygqﬁf(s)(s — 2)"tds = 2mid f(2) Ximer (2) (56)

O

Liouville’s theorem: If f is analytic in C and bounded, in the
sense that || f(C, X)|| € K € R where K is compact, then f is a
constant.

Proof. Indeed, it follows that ¢(f)(z) = ¢(f(z) is entire and
bounded, thus constant. Hence, ¢(f)(z)—(¢f)(0) =0 = o(f(2)—
f(0)). Since ¢ is arbitrary, we have f(z) = f(0) Vz. O

Morera’s theorem. Let f: (O, X) — Y be continuous (it means
it is single-valued, in particular), and assume that [, f(s)ds =0
for every triangle in . Then, f is analytic.

Proof. Indeed, ¢f is continuous on O and we have 59A ofds =10
for every triangle in 2. But then ¢f is a usual analytic function,
and thus

61() = 5 ;{) F(5)(s — 2)~Lds

By Proposition 20, the right side is analytic. O
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Corollary 23. f is analytic iff f is strongly differentiable in z
iff it is weakly differentiable in z.

Proof. Assume that f is weakly differentiable. This implies that
for any ¢ € X* we have ¢f is analytic, which in turn implies
that for a small enough circle around z we have

or = § Las— g f 10 (57)

S —Z

which means
16) 4 f 1)

0SsS—z 0OS—z

ds (58)

and, again by Proposition 20, f is analytic. The rest is left as a
simple exercise. O

vii. (Removable singularities) If f is analytic in O\ a and (z —a)f =
o(z — a) then f extends analytically to O.

Proof. This is true for ¢f. O

If f, — f in norm, uniformly on compact sets, then furthermore for
any ¢ € X* we have ¢f, — ¢f uniformly on compact sets. Then f
is weakly analytic thus strongly analytic.

Corollary 24. H(O, X) is a linear space; if X is a Banach algebra
then H(O, X) is a Banach algebra.

Proof. Straightforward verification. O

We can likewise define double integrals, as integrals with respect to the
product measure. If f € B(2, X7 x X3), then f(-,z2) and f(z1,) are in
B(Q, X2) and B(f2, X7) respectively, and Fubini’s theorem applies (since
it applies for every functional). Check this.

7.2 Functions analytic at infinity

(a)

Cauchy formula at co 12.

f is analytic at infinity if f is analytic in C \ K for some compact
set K (possibly empty) and f is bounded at infinity. Equivalently,
f(1/2) is analytic in a punctured neighborhood of zero and bounded
at zero. Then f(1/z) extends analytically uniquely by f(c0).

Let f be analytic at infinity and I" positively oriented about infinity,
which by definition means that the neighborhood of infinity is to the
left of the curve as we traverse it. (That is, I is negatively oriented
if seen as a curve around 0). Then

LI G- o)+ X (2)£(2) (59)

21 Jp s — 2
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Proof. This follows from the scalar case, which we recall. Let f be
analytic in C, \ K We have

PR GO ! Uy (60)

2 Jrs—2 2mi yr (1)t = 2)

where 1/T" is the positively oriented closed curve {1/v(1 —t) : t €
[0,1]} (where we assumed a standard parametrization of v, and we
can assume that v # 0, since otherwise f is analytic at zero, and
the contour can be homotopically moved away from zero). There
is a changes in sign: z — 1/z changes the orientation of the curve,
so it becomes positively oriented in 7 as claimed; the second, from
ds = —dt/t?.

Then, with g(¢) = f(1/t) and writing

1 1 z 1 1

R g ) P

(61)

O

8 Analytic functional calculus

Let B be a Banach algebra with identity, not necessarily commutative and
let a € B, with spectrum o(a). Then C\ o(a) is the resolvent set of a,
pla). Let z € p(a).

The resolvent. Then (a — z) is invertible by definition, and thus (z —

a)~!: p(a) — B is well defined and it is denoted by R.(a), the resolvent
of a. See again Note 3

Note 4. This may be confusing, but the definitions R.(a) = (a—zI)~1 [3]
and R.(a) = (2I —a)~! [2] are almost evenly distributed in the literature.
Of course, they only differ by a sign and the theory is the same, but we
have to pay attention to which definition is adopted. I would prefer the
one in [3], but we are more closely following [2].

The domain of R,(a), p(a) is nonempty since we have
Proposition 25. p(a) D {z: |z| > r(a)

Note. We have, formally,

11 1 I & 1
z—a 2 1—a/z_zzaz
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Proof. The series
h(z) = Zakz_k (62)

is norm convergent, thus convergent and analytic for |z| > r(a), since
limsup ||a™||*/™ = r(a). We can check that z~'h(2)(z — a) = 1. Indeed,
we can, as usual, truncate the series and estimate the difference:

L Z a—]. (z—a)=1—z""a """ (63)

O
Proposition 26 (First resolvent formula). For s,t € p(a) we have
Ry(a) = Ri(a) = (t — s)Ri(a) Rs(a) (64)
and in particular Ry and R; commute.
Note. Formally, we would write
11 :(tfa)f(sfa) (65)

s—a t—a (s—a)(t—a)

Of course, this is nonsense as such, especially if the algebra is noncommu-
tative, but it can serve as a template to work out a correct formula.

Proof. If a,b € B and b is invertible, then ab = cb is equivalent to a = c.
This is seen by direct multiplication. Now, by assumption, (s —a), (t —a)
are invertible. Note that, if b is invertible, then z = y is equivalent to
bx = by. Then (64) is equivalent to

(t —a)(Rs(a) = Ri(a))(s — a) = (t — a)(t — s)Ri(a)Rs(a)(s —a)  (66)

which means

Rs(a)(s—a)(t—a) — Re(a)(s—a)(t—a)=t—s (67)
(t—a)—(s—a)=t—s (68)
O

Proposition 27. The resolvent set is open. The resolvent is analytic on
the resolvent set.

Proof. We use the resolvent formula, first formally. Suppose R; exists,

|IR:]]| = m and € < 1/m. Then we define Rs from the first resolvent
equation, written as

Rs(a)(1+ (t = s)Ri(a)) = Ri(a) (69)
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More precisely, let 29 € p(a) and let s be such that (s — 29) Y| R,,| < 1.
Define
Ty = (1+ (20 = 8) Rz (a)) ™' Rz (a) (70)

This is clearly well defined since 1/(zg — s) is outside the disk of radius
IR, |- Clearly, the right side of (70) is analytic in s near zg, since we
can write the inverse as a norm-convergent power series, see (62). Then,
(s—a)Ts = (s—zp+20—a)Ts = 1. Check that Ts(s —a) =1 as well. O

Theorem 3. For every a € B, the set o(a) is nonempty and compact.

Proof. We have already shown that diam o(a) < r(a) and that the com-
plement is open. It remains to show that o(a) is nonempty. We'll use

(64). Let 2z € p(a) be fixed and v be any large enough complex number.
Let N = [Ragioll, A = | Ryl and B = [ RiM| = fla — zofl. Then,

VR20+V = (Rzo - Rzo+v)(Rzo)71 =

VIN < (4+N)B = N(v| - B) S AB = N < o
.

AB

=Oo(v|™" (1)

and thus @R, 1, is entire and — 0 as |z| = oo, implying ¢R. 4+, =0 =
R.,+» = 0 which is impossible, since 0 is not the inverse of anything. [

The spectrum of 1 is just 1 (why?)

Exercise 1. * Let K be a compact set in C. Find a Banach algebra and
an element a so that its spectrum is exactly K. Hint: look at f(z) = z
restricted to a set.

9 Functions defined on B

Clearly, right from the definition of an algebra, for any polynomial P and any
element a € B, P(a) is well defined, and it is an element of the algebra. A
rational function R(a) = P(a)/Q(a) can be also defined provided that the zeros
of @ are in p(a), with obvious notations, by

Ra)=m1—a) (pm—1)(@—a) " (g —a)”"

(since we have already shown the resolvents are commutative, the definition is
unambiguous and it has the expected properties.

What functions can we define on Banach algebras? Certainly analytic ones
(and many more, in fact).

A natural way is to start with Cauchy’s formula,

fa) = o § LD

2mi Jp s—=2
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and replace z by a. We have to ensure that (a) The integral makes sense and it
is useful. For that we choose the contour so that a “is inside” that is, I" should
be outside the spectrum.

(b) on the other hand, f should be analytic in the interior of T, o(a) included.
We can see that by looking at Exercise 1, where a would be z. If we don’t assume
analyticity of f on the spectrum of z, we don’t get an analytic function.

So, let’s make this precise. Let a be given, with spectrum o (a). Consider the
set of functions analytic in an open set O containing o(a). For a generalization
see 5 below.

Proposition 28. Let T' be a Jordan curve in O\ o(a). Then f(s)Rs(a) is
continuous thus integrable, and the function

f(a) = — f F(5)(s — a)~1ds (73)

" 2mi
s well defined and it is an element of B.
Exercise 1. * Prove Proposition 28 above.
We thus define f(a) by (73).

1. Show that the integral only depends on the homotopy class of T in O\ o (a).
So in this sense, f(a) is canonically defined.

2. P(a) defined through (72) coincides with the direct definition. By linearity
it suffices to check this on monomials z™ Then we can choose a disk D,
around zero with r > 7(a) Then

1
n n_ —1 —1
= — 1-— d 74
a 27 o, s"sT (1 —a/s)  ds (74)
Indeed, (1 —a/s)~! has a convergent expansion in 1/s where |s| > r(a).
Then the integral can be expanded convergently, as usual, and the result
coincides with a™.

Proposition 29. (i) (fg)(a) = f(a)g(a) (ii) in particular f(a)g(a) =
gla)f(a). The set of functions of a forms a commutative algebra.

Proof. (i) Indeed let IntI' D I”. Then (by Fubini, etc.) and the first
resolvent formula,

flalgla) = =z § § 1= o — ) asds
— = OG- f 6 - @) ) - )
= 57 P IG)(s)(s — a) s = (fo)la) (75)
(if) is immediate. O
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4. We can now of course re-prove in a simpler way 2 above.

Exercise 2. More generally than in item 2 above, let E(z) =Y~ erzh
be an entire function. Then E(a) as defined by (73) coincides with

oo

3" erat (76)

k=0

5. Note also that O need not be connected. We have defined analyticity
in terms of local Taylor series. More generally, we consider an open set
O D o(a), connected or not. If I' =T’y = 90O, counsists of a finite number
of rectifiable Jordan curves, then the definition (73) is still meaningful.
Clearly, a function analytic on a disconnected open set is simply any col-
lection of analytic functions, one for each connected component, and no
relation needs to exist between two functions belonging to different com-
ponents. Cauchy’s formula still applies on I';. This will allow us to define
projectors, and some analytic functions of unbounded operators.

6. We are technically dealing with classes of equivalence of functions of a,
where we identify two elements f; and f5 if they are analytic on a com-
mon subdomain and coincide there. But this just means that f; and fs
are analytic continuations of each-other, and we make the choice of not
distinguishing between a function and its analytic continuation. So we’ll
write f(a) and not [f](a) where [f] would be the equivalence class of f.

Exercise 3. Let 2 D o(a) be open in C.
(i) Show that if f,, — f in the sup norm on €, then f,(a) — f(a)
(ii) Show that the map f — f(a) is continuous from H (), with the sup

norm, into X.

Remark 5. Let p ¢ o(a) and f(2) = 1/(p — 2). Then f(a) = (p —a)~ L.
Indeed f(z)(p—x) = (p—x)f(x) = 1 and thus, by2 we have f(a)(p—a) =
(p—a)f(a) =1, that is f(a) = (p—a)™".

More generally, if P and @ are polynomials and the roots ¢1, ..., ¢, of @
are outside o(a), then (P/Q)(a) = P(a)(a —q1)~'---(a —q.)~ . @.

7. Thus we can write

1

sS—a

(s — a)*1 =

Exercise 4. Show that f — f(a), for fixed a, defines an algebra homomorphism
between H () and its image.

(4)Note however that there is no immediate extension in general of the local Taylor theorem
flz) =3 £ (@0)(z — x0)¥, since ||Jzo — a|| would be required to be arbitrarily small to apply
this formula for every analytic f, which in turn wold imply a = zo.
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Exercise 5. Let f be analytic in a neighborhood of the spectrum of a and at
infinity. Let T be a simple closed curve outside o(a), positively oriented about
00. Then we can define

1 -
@) = ~1(60) + 3= § F(3)(s =) ds

This allows for defining functions (analytic at infinity) of unbounded oper-
ators having a nonempty resolvent set. The properties are very similar to the
case where f is analytic on o(a).

10 Further properties of analytic functional cal-
culus

10.1 Spectrum of f(a)

The spectrum of an operator, or of an element of a Banach Algebra is very
robust, in that it “commutes” with many operations.

Proposition 30. Let f be analytic on o(a). Then o(f(a)) = f(o(a)).

Proof. We first prove that o(f(a)) C f(o(a)). Indeed, let z ¢ f(o(a)). That is,
f(2) — 2’ does not vanish for 2z’ on the compact set o(a), and therefore it does
not vanish on some open set O D o(a).

Then g = 1/(z — f) is analytic in O D o(a). Thus there is an analytlc g(g=
1/(f = 2")), so that g(2")(z — f(2')) = (z — f(2))g(¢') = 1 for 2’ € O, and thus
z—

1= [9(z') (z— F()](@) = [(z— F())g(=)] = g(a) (z— F(@) = (=~ F(a))gla) = 1
and thus z ¢ o(f(a)).

In the opposite direction, we show that z ¢ o(f(a)) = =z ¢ f(o(a)). We
show that [ og € o(a) and (f(oo) — f(a))~! := h(a) 3] leads to a contradiction.
Note first that [f(z) — f(00)]/[z — 00] =: g(2) is analytic on o(a) (as it has only
one —removable— singularity at og. We would have

[f(a) = f(o0)] = (a = 00)g(a) = g(a)(a — 00)
and using the invertibility of f(a) — f(op) we have

1= h(a)[f(a) = f(o0)] = h(a)(a — 00)g(a) = (a — oo)h(a)g(a)
= h(a)g(a)(a —oo) (77)

(
which means (a — 09) is invertible (with inverse h(a)g(a)), and thus o¢ € p(a),
contradiction. O

Exercise 1. Prove the following corollary.

Corollary 31. Let B be a Banach algebra, a € B and o(a) = K. Assume
further that f,qg are analytic in the open set O D K.

Then, [f(a) = g(a)} & [f(z) =yg(z)Vz € K] In particular, if card(K) =
0o, then f=g.
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10.2 Behavior with respect to algebra homeomorphisms

Proposition 32. Let Ay and Ay be Banach algebras with identity and H :
A1 — As a Banach Algebra homeomorphism.

(i) Then oa,(H(a)) :=o(H(a)) C o(a).

In particular, if H is an isomorphism, then the spectrum is conserved: o(H(a)) =
ol(a).

(ii) H(f(a)) = f(H(a)).
Proof. (i) This is because (a—a)g(a) = g(a)(a—a) = 1 implies H((a—a)g(a)) =
H(g(a)(a — «)) = 1, which, in view of the assumptions on H means H(a) —

0)H(g(a)) = (H(g(a))(H(a) ~ 0)) = 1.
(ii) We know that H is continuous and it thus commutes with integration.

If we write
27rz % f(s)(s —a)

we simply have to show that H(s — a) (s — H(a))~! which holds by (i).
O

10.3 Composition of operator functions

Proposition 33. Let f be analytic in an open set Q D o(a) and g be analytic
in Q' D f(o(a)). Then g(f(a)) exists and it equals (g o f)(a).

Proof. That ¢g(f(a)) exists follows from Proposition 30 and the definition of f
and g. We have, for suitably chosen contours (find the conditions!)

(@) = § Hsas (78)

while on the other hand

1 1 1
e ik ey rerk 7
and thus . 1
sr@) = f gwin f s (50)

We also have

e e o)
(g f)(a) ]{Fls_adt ﬁls_ajiu_ﬂs)d (s1)

The rest follows easily from the uniform bounds on the integrand, which allow
interchange of orders of integration. O

Remark 6. In particular, this proves again, in a different way that (fg)(a) =
f(a)g(a). Indeed, since 2fg = (f + g)> — f? — g%, it is enough to show that
f?(a) = f(a)®. But this follows from Proposition 33 with g(x) = x%. (Note
that f(o(a)) is a bounded set, f(a) is a bounded operator, and the contours in
Proposition 33 can be chosen so that no use of Proposition 30 is needed).
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10.4 Spectral radius

We now want to show that
R(a) := limsup ||a"||*/™ = sup{|A| : A € o(a)} =: R,(a) (82)
n—oo
Indeed, (z—a) ™! exists and is analytic for all |z| > R(a) (simply write (z—a)~! =
2711 —a/z)~! and expand in powers of 1/z). Furthermore, the very existence
and convergence of this series means z7(1 — a/z)~! is analytic at co. On
the other hand, by Proposition 27, (z —a)™! = 27}(1 — a/2)~! is analytic in
o(a)¢, in particular outside the disk of radius R,(a). That, is, the function
¢(1 —a¢)~! is analytic inside the disk of radius 1/R,(a), and in no larger disk,
since otherwise (z — a)~! would be analytic on a part of the spectrum of a.
Thus 1/R,(a) is the maximal disk of analyticity of ((1 — a¢)~!, which implies
R, (a) = limsup ||a™||*/™.

10.5 Extended spectrum

We say that oo is in the extended spectrum, o, of an operator if (z — T) ™! is

not analytic at infinity.

Proposition 34. If T is closed, then oo is not an essential singularity of (z —
T)~tiff T is bounded.

Proof. We have already shown that T' bounded implies (z —T)~! is analytic for
large z, thus, by definition oo is not a singularity of R,.

In the opposite direction, assume that R, := (z — T)~! has at most a pole
at infinity where the series is convergent and k is the largest power of z so that
the Laurent coefficient A is nonzero. We have

R, =2FA+2"'B+...
On the other hand,
1=(z—T)R,=2R, — TR,
TR, =zR, -1 (83)

We first show that k& < —1. Indeed, assume k£ > 0. On the one hand, as
have 2 *"'R, = A/z+--- — 0. On the other hand

T(z""'R,) = 2" 'TR, = 27" (2R, = 1) = A+ O(1/2)
Since
Z—k—lRZ — A/Z+

we have 2 *"1R_ — 0. This together with T(27*"1R,) convergent (to A) and
the closure of T implies that T(2 *"'R,) — T0 = 0 and thus A = 0. Here we
used k > 0 since otherwise 1z7%=1 = (1/z). Thus k < —1 and zR, — A. We
have

TR, =zR,—-1—5A-1
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Since kK < —1 R, — 0 and, as before, we must have A — 1 = 0 that is A = 1.
We see that zR, — 1. Now, for any vector u,

TzR.u=2*(1/2+ B/2* +---) — 2 = Bu+ O(1/2)

Since T is closed, zR,u — wu is convergent and TzR,u converges to Bu. Since

T is closed, the limits have to coincide, u = lim zR,u € Dom (T) and Tu = Bu,
thus T is bounded.

It is clear that for any closed operator, the extended spectrum is nonempty.

O

10.6 Further remarks on Banach algebras

1. Let A be a Banach algebra with identity, and x € A, not necessarily
commutative. Then z;(a) = za and z,(a) = ax define linear bounded
operators from A into A.

2. Assume a and b commute, ab = ba(*). If a=! exists, then a='b = ba~".
Indeed, from (*) we have a=*(ab) = a=*(ba) and thus b = a~!(ba). Multi-
plying with a=! on the right, we have ba=! = a~'b. Likewise, if b~! exists
as well, then b~! commutes with ¢!

3. If @ and b are in A and commute with each other and f(a) and g(b) are
analytic functions of a and b, then f(a) and g(b) commute as well.

Proof. Clearly, it is enough to show that f(a) and b commute. For that
we use 1 above

bﬂ@=muw»=m(;%%ﬂ@@—@”%>

271” b (f(s)(s—a)™! 2m?{f Yoi(s —a)"tds
:7}{]‘ (s —a) lbdsf—j{f (s —a) 'bds
= oy P HO (s =) Hds = = (@) = b (59

4. The notion of spectrum in a Banach algebra and spectrum of operators
are closely related. Let A be a Banach algebra and = € A. As above,
we can define x as an operator on A (either left or right multiplication).
If £ — z is invertible in A then the operator x — z is invertible, and vice-
versa. Conversely, the space B of all bounded operators on X is a Banach
algebra and the spectrum of T as an operator on X is clearly the same as
the spectrum of T as an element of B.
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11 Projections, spectral projections

This is an important ingredient in understanding operators and in spectral rep-
resentations.

Note. The spectrum K does not have to be connected for the spectral
theorem to hold. Indeed, if o(K) € K; + K> (disjoint union) it means there
exist @1 D K7 and Oy D K open sets, O; N Oy = (). A function analytic on
01 U0, is any pair of functions (f1, f2) =: f so that f; is analyticin O;, i =1, 2.
Check this. Check that, if I'; € O;, then f(z) = . . f(s)/(s — 2)ds and thus
the definition of f(a) in this case is the same,

= S s—ail S
f<a>—7§1+rzf<>< )~ld

Let us first look at operators. Assume for now the operator is bounded,
though we could allow unbounded operators too.

Definition 35. Let A be a Banach algebra, and P € A, P is a projector if
P? = 1. Perhaps the simplest example, and a relevant one as we shall see is a
characteristic function X 4 in L.

General properties.

1. Assume P € L(X) is a projector. Then PX is a closed subspace of X and
P is the identity on PX.

Proof. Assume Pxj, — z. Continuity of P implies P2z}, converges to Pz,
thus z = Pz, and thus z € PX. We have x = Py = Px = P’y =Py =2
and thus Pz = x. O

2. If T and P commute, and Xp = PX then TXp C Xp, that is T can be
restricted to Xp. Indeed, TXp =TPXp = PIT Xp C Xp.

Let us first look at operators. Assume for now the operator is bounded,
though we could allow unbounded operators too.

As we have seen in 6 on p. 8, A € o(T) iff T'— X is not bijective.

Assume now that the spectrum of 7" is not connected. Then o(T) = K7+ K>
where K7 and Ky are compact, nonempty, and disjoint (of course, K; and Ko
could be further decomposable).

Theorem 4 (Elementary spectral decomposition). Let T € L(X) an operator
such that o(T) = K1 + Ko, K12 as above.

Then there exist nonzero closed subspaces of X, X1 and Xo so that

(i) X = X1 + Xo, X1 N Xy ={0} (X is isomorphic to X = X1 & X3).

(1)) TX; C X; and ox,(T) C K.

Proof. 1. Let O12 D Ki 2 be two open disjoint sets in C, O = O; U Oy,
and let f;(z) = Xo,(z). Note that f;(z) are analytic in O (the parts are
disjoint; f is differentiable in each piece).
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2. Let P; = Xo,(T). Since X3, (z) = Xo,(2), we have P? = P;, that is, P,
are projectors.

3. Similarly, we have PPy = X1(T)X2(T) = (XaX2)(T) = 0.
4. We have P; + P> =1 (the identity). Indeed Xo, + X0, = Xo. Then,

f X01(5)+Xo2(s)dszf Xoi(s)d{g:% Lds:l
Ul s—a rur, $—4a ryury § =4

(recall the calculation (74)).

5. Let X; = P;X. These are closed subspaces of X by 1.

6. If x € PLX and x € P, X, then x = Pix1 = Poxo. We multiply the latter
equality by P;. We get Pz = P12x1 = Piz; = P Pyxo = 0. Similarly,
Pyx = 0. Thus z = Pyx 4+ Pz = 0 and X N X2 = {0}.

7. Since 1 = P, + P, any x € X can be written as Pix + Pox =1 + 2,
r; € X;.

8. We have o(P,T) = o(X;(T)Ide(T)) (where, here, Ide(z) = z) = (2X;(2))(o(T))

=K;.
O

12 Analytic functional calculus for unbounded,
closed operators with nonempty resolvent set

As we have seen, the spectrum of an unbounded closed operator can be any
closed set (that it is necessarily closed we will see shortly), including C and
(. (The extended spectrum is never empty though, as we have seen). If the
spectrum of 7" is the whole of C, then it is closed, and this is about all we will
say for now in this case, and will shall assume from this point on that p(T") # 0.

Also, calculus with better behaved operators (normal, self-adjoint) is richer,
and we will later focus on that.

If an operator is closed, then it is invertible iff it is bijective, 6, on p. 8.

Evidently, the domain of T'— z is the same as the domain of T, so T'—z; 2z € C
share a common domain. So z € o(T) iff T — z is not bijective from D(T) to
Y. With this remark, the proof in the first resolvent formula goes through
essentially without change.

Assume in the following that X =Y.

Proposition 36 (First resolvent formula, closed unbounded case). (i) C N
0oo(T) = p(T) is open (possibly empty).
(i1) Assume p(T) # 0 and (s,t) € p(T). Then,

R,(T) = Ry(T) = (t — ) Ri(T)Ry(T) (85)

In particular Ry and R; commute.
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Proof. We start with (85), assuming for the moment that there are at least two
elements, s,t € p(T). Of course, this will follow once we have proved that p(T)
is open. The proof is not circular, check this.

Obviously (85) holds iff it holds for any y € Y. Once more, since T is closed,
s € p(T) iff (s —T) is bijective between D(T) C X and X. In particular,
x € D(T) is zero iff (s — T)x = 0. We have by the def. of the resolvent,
R, (T) is a bounded bijection between Y and D(T). So is R:(T). In particular,
[Rs(T) — R(T)]x and R:(T)Rs(T)x € D(T) If we apply (¢t — T) to both sides
we get

{(s—T+(t—8)}Ry—(t—T)Ry(T) = (t—s)Rs (s—t)(t—T)R,Rs = (s—t)R, (86)

so the equality checks Vx € X.
Suppose R, exists, ||R:|| = m, e < 1/m, and |s — t| < e. Define R, from the
first resolvent equation (as on pp. 23), written as by

Ry(T) = (1 + (t = ) Re(T)) "' Re(T) (87)
Then clearly Rs : X — D(T) and

_(t—T+(S—T))Rt_ 1+(S—t)Rt -
(s =T)R, = L+ (t—s)R(T) 1+ (t—s)R(T) !

Vo € X. Similarly, Rs(s —T) = 1. O

12.1 Analytic functions of unbounded, closed operators

Since in this section we specifically deal with unbounded operators, we shall will
always have 0o € 0.(T), see Proposition 34.

In the following, we assume that o..(T) # C, to be able to define non-
trivial analytic functions on oo (7).

Note 7. Note that a function analytic on oo, (T) is therefore analytic in an
open set Oy containing co. Clearly, the complement in C of O is compact.
So f is analytic in Ext(K) for some K and on the rest of the spectrum of T,
necessarily contained in a compact set. We can break oc(7) in a (possibly
infinite, possibly consisting of just one set) disjoint union of connected compact
sets. Each connected component K, is contained in a connected O, where all
O, are disjoint. By the finite covering theorem, f is analytic in Ext(K) and
in U}, 0; where O; are open and connected. Now, for each of these, we can
assume that the boundary is a polygonal arc (check!). In fact, by a similar
construction, we can take the boundary to be an analytic curve. How?

Recall that, from (59), if z € Ext I we have

£(2) = floo) + = ¢ L gy (88)

2 Jps— 2
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1. An identity: If f is analytic at infinity, and 0 € Ext(T") that is, to the
right of I' traversed clockwise, where I" is a curve or system of curves so
that f is analytic in Int,,I" then we have

J¥f§#@%=—ﬂm) (89)

21

(The left side is not necessarily f(0) which could be undefined. Even if
defined, there are typically other singularities of f in Extoo(T).) Indeed,

_ 1 fls) 1 [f(s) 1 f(s)
f(z)/z_o—’_fm' s(s—z)ds__Qﬂ'iz% s ds+2m'z s—zds
=g § s L cp0) 4 50 o0

and the conclusion follows after multiplication by z.

2. Let f be analytic on O D K = 04(T). We take A C O be an open set
between O and K , such that its boundary consists of a finite number of
nonintersecting simple Jordan curves, positively oriented with respect to
infinity. We can always reduce to this case as explained at the beginning
of the section.

3. Analytic functions on the spectrum are now functions analytic at infinity
as well. Let f be such a function.

4. Therefore, we define for such an f and a (multi) contour I such that
the spectrum of T lies in Exzt I, or in the language of item 2 above the
spectrum F'is in A and T' = 0A,

FT) = f(00) + 5= § S5 =T)ds o1)

Note that this is a bounded operator, by the definition of the spectrum and the
properties of integration. Note also that now we don’t have the luxury to define
polynomials first, etc.

Note 8 (Independence of contour). Assume I'y is a contour homotopic to T'y
in Dy, inFig. 2. Then

f(s)(s —T) tds = f(s)(s —T) tds (92)
T s

(As usual, this can be checked using functionals.)

If ¢ is a linear functional in X*, since (s — T)~! is analytic outside the

spectrum of T, I';, and I'; and I'y are as above, we have

g f(5)d(s =T)"'ds = g f(s)o(s —T)""ds (93)
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That is,
¢ g f(s)(s=T)'ds = ¢ g f(s)(s =T)"'ds (94)

and therefore, the contour of integration is immaterial in the definition of f(7T),
modulo homotopies.

Proposition 37. (i) Assume f is as in item 3, and satisfies f(co) = 0. Then
f(TYX € D(T).

(ii) [ be as above and let g = zf(z). Then clearly g is analytic at infinity.
We have g(T) =T f(T) = f(T)T. That is, also, (zf(2))(T) =T f(T).

Recall the fundamental result of commutation of closed operators with inte-
gration, Theorem 1.

For convenience, we repeat it here: Theorem (1, p. 13 above) Let T be
a closed operator and a € B(Q2, X) be such that a(2) C D(T'). Assume further
that T is measurable, in the sense that Ta € B(€, X). Under the assumptions
above we have

T/Aa(w)du(w):/ATa(w)du(w) (95)

(In particular [, a(w)du(w) € D(T) if a(w) € D(T) for all w.) Check that the
following satisfies all requirements w.r.t. T'.

a(s)=(s—T)"

Proof. We can assume that the contour of integration does not pass through 0;
in case it did, then 0 would be in the domain of analyticity of f and we can
deform the contour around zero.

By definition we have

ﬂﬂ=mmH~Léﬁ®w—ﬂ*%

2m
= g(00) + 5= P (s =T+ T)(5)(s =) s
= g(oo) + %ﬁs_lg(s)ds + %f}Tf(s)(s —T) 'ds
- % ) Tf(s)(s =) s = T%j{f(s)(s —T)y"lds (96
where we used (89) and Theorem 1. O

Corollary 38. If p € p(T) and f(z) =1/(p — 2), then (p — T)~* = f(T), and
we can again write

(p=T)"= DT
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Proof. Evidently, by a change of T', we can assume that p = 0. Take f(z) = 1/z.
We see that f(oo) = 0, Proposition 37 applies and thus

L= (f())T) =THT) = f(T)T
O

Proposition 39. Let T € C(X) and f € H(0x(T),C). Then, oo (f(T)) =
floo(T)).

Proof. The proof is similar to the one in the bounded case. If p ¢ f(o(T)) then
p — f(z) is invertible on o(7T'), and let the inverse be g. Then (note that g is
always a bounded operator),

(p—=f(2))9(2) = 9(2)(p = f(2)) =1 = g(T)(p - f(T)) = (p— F(T)g(T) = 1

and thus p ¢ o(f(T)). Conversely, assume that f(og) € f(0so(T)), but that
f(T) — f(oo) was invertible. Without loss of generality, by shifting 7" and f we
can assume 0g = 0 € 0,(T) and f(0) = 0. Then, f(z) = zg(z) with g analytic
at zero (and on o (7))). Then g(oco) = 0 and thus, since f(T') was assumed
invertible, we have

F(T) =Tg(T) = g(T)T, orl =Tlg(T)f (D)) = [g(D)f (DT (97)

so that T is invertible and thus 0 ¢ o (T), a contradiction. O

12.2 *Analyticity at zero and at infinity: a discussion®

Consider an open set D C C,, including a neighborhood of infinity and let g
be analytic in D. (Functions analytic in C., are trivial.) We then take a point
in C \ D, say the point is zero, and make an inversion: define f(z) = g(1/z)
defined in Dy = 1/D := {1/z: z € D}. Then g is analytic in D;. If Dy C Dy
is a multiply connected domain whose boundary is a finite union of disjoint,
simple Jordan curves, then Cauchy’s formula still applies, and we have

=5 § Ty

27 oDy, S — 2 (98)
where the orientation of the contour is as depicted. Green regions are regions
of analyticity, red ones are excluded regions. The first region is an example of
a relatively compact D. Cauchy’s formula (98) applies on the boundary of the
domain, the integral gives f(z) at all z € Dy. The orientation of the curves
must be as depicted.

The second domain is D = {1/z : z € Ds}. It is the domain of analyticity
of g(z) = f(1/2) and it includes co. Here we can apply Cauchy’s formula at
infinity to find g in the green region.

The orientation of the contours is the image under z — 1/z of the original
orientations.
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Figure 1: Analyticity near zero

Figure 2: Analyticity near oo
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If the spectrum of an operator is contained in the green region in the second
figure (infinity included, clearly) then the contours should be taken as depicted.

Assume as before that 0o, (T) # Coo. Then there is a zg € C\ 0(T) and
we assume without loss of generality that zg = 0. We can define, as before, the
set 01 =1/0(T) ={1/2: 2z € 05c(T)}.

Then a function f is analytic on D D 0 (T) iff f(1/2) is analytic on o1 (7).
The spectrum o (T) is contained in D iff 1/D D 1/04(T). A curve, or set
of curves, gives the value of f(T') iff the curves are so chosen that 1/04(T) is
contained in the domain defined by the curves.

If f is nontrivial and analytic on 0 (T'), then

Proposition 40. The Banach algebra of analytic functions on O with the sup
norm is isomorphic to the algebra of bounded operators f[T], in the operator
norm.

Proof. Linearity, continuity etc are proved as before. Multiplicativity could also
be proved by density, taking say polynomials in 1/(z — z), z0 ¢ o(T') as a dense
set.
Alternatively, it could be proved directly from the definition (91) by Fubini.
In any case, the analysis is rather straightforward and we leave all details to
the reader. O

Finally,

Proposition 41. Assume o0o(T) = K; + Ky (disjoint union) where K; is
compact in C. Let O D Kj be open, relatively compact and disjoint from K,
and (w.l.o.g.) with rectifiable boundary T'. Then

1 1

Pg, = —
S omi Jp2—T

dz (99)

defines a projector such that

(i) P, (X) € D(T), T(Px, (X)) C Pk, (X).

(1) o(T'|py, (x)) = K1

(#ii) T restricted to Pr, (X) is bounded.
Proof. Let P = Pk,,X = Xk, , First, we note that P = X(T') and X is analytic
on 000 (T), X(00) = 0 and thus, by Proposition 37 (i), PX is in D(T). P2=P
since X*> = X. Thus P is a projector, as in §11. By Prop. 37 (ii) we have
TP = (:X)(T) = (X2)(T) = PT. Thus TP = TP? = PTP, and TPX C PX,
and thus TP|px C PX. We further have oo (T'P) = X(0(r)) = K1. Since
00 & 00o(TP), TP is bounded.

O

12.3 Bounded self-adjoint and normal operators on a Hilbert
space H

Note 9. Assume A is bounded on the Hilbert space H and self-adjoint, that is
(Az,y) = (z, Ay) Va,y € H (this condition is not enough if A is unbounded).
Then ¢(A) = K C R.
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Indeed, if z € o(A) then A — z is either not injective or not surjective.
If it is not injective, then (A — z)z = 0 for some z, which implies (Az,z) =
(zz,x) = z{(x,x) = (2, Ax) = (2, 22) = Z(x,x), thus (z — Z)||z|| = 0, or, z € R.
If the range of A — z is not dense in H, then there is a vector y such that
((A—2)z,y) =0 = (z,(A—2)y) for all z € H, that is (A — Z)y = 0 which, as
above, implies z € R. We are left with Ran(A — z) dense in H but # H. Then,
the densely defined (A — 2)~! is not bounded, or, which is the same , there is a
sequence Uy, ||u,| =1 and ||(A — 2)u,|| = 0. In particular

Im({(A — 2)up, un)) = Im({(Aty, up) — (U, up)) = (Imz){Up, uy) — 0
which is not possible unless Imz = 0.

For a bounded operator to be self-adjoint, it suffices that it is symmetric,
that is (Az,y) = (x, Ay). Note that if A is self-adjoint, then || 42| = || A]>.
Indeed, with ||u|| = 1, we have

sup [[A%] > sup [[(A%u,u)|| = sup [[(Au, Au)|| = sup [Aul® = [|A]?
lull=1 flull=1 [lull=1 [lull=1
(100)
From our excursion in Banach algebras we know that || 42| < || A]|?; thus ||A?]| =
IA[J>.

Exercise 1. * Show that this holds for all powers of A, that is || A™]| = || A||™.

The conjugate f* of a function which is analytic in a region containing an
interval of J C R is given by f*(z) = >, ¢k(z — 20)", where z, 29 € J.

Exercise 2. * Show that if A is self-adjoint, then f*(A) = (f(A))* where
(f(A))* denotes the (Hilbert-space) adjoint of A.

Exercise 3. Show that the analysis above shows that || f(A)|| = supycq vy [f(A)| =
sup |f(o(A)]. In particular ||A]| = sup |o(A)| = R(A).

Exercise 4. More generally, if N is a bounded normal operator (i.e., NN* =
N*N) and f is as above, then

[F(N)I = sup |F(N)] (101)

Aea(N)
13 Unbounded operators: adjoints, self-adjoint
operators etc.
In this section we work with operators in Hilbert spaces.

1. Let H,K be Hilbert spaces (we will most often be interested in the case
H = K), with scalar products (, )% and (,)x.

2. T:D(T) C H— K is densely defined if D(T') = H.
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10.

. Assume T is densely defined.
. The adjoint of T is defined as follows. We look for those y for which

Jv=v(y) e HstVYaxecDT), (y,Tx)k = (v,2)x (102)

Since D(T) is dense, such a v = v(y) is unique.

. We define D(T™) to be the set of y for which v(z) as in (102) exists, and

define T*(y) = v. Note that Tx € K, y € K, T*y € H.

. Check that D(T*) is a linear space and T*(a1y1 + azy2) = a1T*(y1) +

asT*(y2) that is, T* is linear.

Exercise 1. Show that y € D(T*) iff (y,Tx)x extends to a bounded
(linear) functional on H. Does this mean that Tx exists for all ?

Exercise 2. Define the operator T(P(z)) = P(z + 1) where H = L?[0,1]
and D(T) consists of the polynomials on [0,1]. What is D(T*)?

. Definition. We write T} C T iff T'(T1) C T'(T2).

Exercise 3. Show that Ty C To = T3 C Ty. (A short proof is given in
Corollary 46.)

Proposition 42. In the setting of 1 and 3, T™ is closed.
Proof. Let y, — y and T*y,, — v. Then, for any « € D(T') we have
(Yn, Tx) =: (T yYp,x) = (v,2) = lim(y,, Tx) = (y, Tx)

Thus, for any « € D(T') we have (y, Tx) = (v,z) and thus, by definition,
y € D(T*) and Ty = v. O

Proposition 43. Let T and D(T) be as in 1 and 3. Then,
(i) For any a € C, we have (oT)* = aT™.

(i) If T € L(H,K), then T* is the usual adjoint, everywhere defined, and
for two such operators, we have (Ty + To)* =T + T5.

Proof. Exercise. O
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Proposition 44. (i) Let T; and D(T;) be as in 1 and 3. Assume further-
more that D(Ty)ND(Ts) is dense. Then (Ty+T2)* D Ty +Ty (this means
that the domain is larger, and wherever all adjoints make sense, we have
(T +T3)" =17 + 13).

(ii) Let Th : H — K1, To : H — K2 and assume D(Ts) as well as D(TyT)
are dense. Then, (ToT1)* D TTTy.

Proof. We define Ty + T, on D(T1) N D(T3). Let « € D(Ty) N D(T3) and
assume that y € D(T1)* N D(T3)*. This is, by definition, the domain of
T} 4+ T5. Then

(y, (T1 + Tz)z) = (y, Tho + Tox) = (y, T1w) + (y, Tax)
= (T7y,z) + (Tyy, ) = (T7y + T3y, x) = (1 + 12)"y,x) (103)

and thus y € D(Ty + T»)*, and (71 + T2)* =Ty + T3

(ii) Let € D(T2Ty) (note that, by definition, D(T2Ty) C D(T1)) and
w € D(TFTS). Then,

(TY (Tyw), zy = (Tsw), Thz) = (w, TyT1x) (104)

and thus w € D(T5T1)* etc. O

13.1 Example: An adjoint of d/dx

1. Let T = d/dx be defined on C*[0,1]. We need to see for which y do we
have (y, Tf) = (w, f) Vf € D(T), that is, Vf € D(T)

[ i = [ wisisas

Let h(s) = [ w(t)dt. Then, h € AC[0,1] and we can integrate by parts

LT g [ g i ¥y
v L= [ poyas = rm- [ n L as o)

hence

! S
| s+ wen Las = roma) (106)

Let v € C[0,1] be arbitrary and take f = ["v. Then f € C*[0,1], f' =v
and f(1) = 0. Then,

/0 (y(s) + h(s)) v(s)ds = 0 (107)
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Note that the set of such v is dense. We can also set, for each v € C[0,1]
f = [[v+1 Asbefore, f € C'[0,1], f' = v but now f(1) = 1. Thus,
also on a dense set,

1
/ (u(s) + h(s)) v(s)ds = h(1) (108)

0

Thus k(1) = 0. Also, by density, say from (107), y(s) + h(s) = 0 Thus,
D(T*) = AC[0,1]p1 where the subscript 01 indicates that the function
vanishes at both ends. Clearly, (d/dxz)* = —d/dx.

13.2 Symmetric does not mean self-adjoint

One property we certainly want to preserve is that o(A) C R for a self-adjoint
operator. Note that T = d/dz defined on {f € C'[0,00]o N L*(RT) : f' €
L?(RT)}, the subscript 0 indicating that the functions vanish at zero, is sym-
metric on its domain, just by integration by parts. But note that, for A > 0,
i\ € o(T), since f' — Af = g, f(0) = 0 has the unique solution f(z) =
e [7e**g(s)ds, which is not everywhere defined (apply it to e=**. So i\ €
o(T), and in fact, all A with Im A > 0 are in the spectrum.

13.3 Operators on graphs and graph properties

From now on, H and K are Hilbert spaces. Recall that H ® K is a Hilbert space
under the scalar product

(z1,91), (22, 92)) = (21, 91) + (22,92) (109)
1. Recall that the graph of an operator T is the set of pairs

I(T) = {(z,Tz) 1z € D(T)} CH®K

Remember also that an operator 7' is closed iff I'(T) is a closed set, and
it is closable iff the closure of T'(T) is the graph of an operator.

Exercise 4. If T is closable, then T'(T) = I'(T)

13.3.1 A formula for the adjoint

1. Let us note something simple but very important. Assume y € D(T™).
Then

<’w,.’£>’;{*<y,T.’£>}C =0= (7T*y7y) = (7’(1),y) 1 (1'7Tx) - V(va*y)
(110)

where V : K® H — H ® K is defined by
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Exercise 5. Compute the adjoint of V (in K&QH ) and show that VV* =1,
that is, V is unitary. Then V(E+) = (V(E))* for any subspace of K@ H.
Clearly also, V? = —1.

Thus there is a simple link between I'(T") and I'(T™):
Lemma 45 (A unitary operator, and action on graphs). We have
D(T*) = V(D)
Proof. Of course, (y,w) L T'(T) iff (y,w) L (x,Tx) Vz, that is
Vee D(T): (y,w) L (z,Tx) & (y,z) = (—w,Tx)
that is, by definition, iff w € D(T*) and w = —T*y. That is,
I(T)*" = {(-T"w,w) : w € D(T*)}
and
V(D(T))* = {(w, T*w) : w € D(T*)} = [(T*) (112)
O
Corollary 46. Ty C 1o = T5 C TY.

Theorem 5. Let T be densely defined. Then,

(i) T* is closed.

(ii) T is closable iff D(T*) is dense, and then T = T**.

(iii) If T is closable, then the adjoints of T and of T coincide.

Proof. (i) By (112), T* is closed (since its graph is closed).

(ii) Assume D(T™*) is dense. Then T** is well defined. By (112) its graph
is given by

(VD) = (VVIT)H: = (VD)) = (0T)H) =T

o (113)
and thus I'(T') is the graph of an operator. Since T™* is densely defined,
T** exists, and by Lemma 45 the left side of (113) is I'(T**). Conversely,
assume D(T*) is not dense. Let y € D(T*)% (y # 0); then (y,0) is
orthogonal on all vectors in I'(T*), so that (y,0) € (I'(T*))*. Then,
V(y,0) = (0,y) € V(I'(T*))* = T(T) by (113), and thus I'(T) is not the
graph of an operator.

(iii) We have by definition I'(T) = I'(T") and thus
I(T") = VIT(T))"] = V(N(T)") = I(T") (114)

since EL=E" for any E.
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13.4 Self-adjoint operators

1
2

. Assume now that K = H.

. Definition: Symmetric (or Hermitian) operators. Let T be densely
defined on Hilbert space. T is symmetric if (T'z,y) = (x,Ty) for all
{z,y} € D(T). This means that T" C T™*.

. A symmetric operator is always closable, by Theorem 5 since T* is densely
defined, since T* D T', by 2.

. If T is closed, then I'(T") = I'(T") and thus by Theorem 5,

T =T* (115)

. For symmetric operators, T is closable (since D(T*) is dense) and then by
Theoremb (ii) we have

T:T**

. Note that, if T is symmetric, then (Tx,z) € R , since

(Tz,z) = (z,Tx) = (Tz,x)

and also, for any x € D(T), (T £i)z||* = |Tz|* + ||z||?, since

(T +4)z||? = (Tz, Tx) + (x,z) £ (Tz,iz) + (iz, Tx) = (Tz, Tz) + (z,x)
(116)

Lemma 47. If T is symmetric and (assume already) closed, then (i)
Ran(T =+ i) is closed and (i) (T i) are injective.

Proof. (ii) if Tx = iz, then

(x,Tz) = (Tz,z) = (tiz,z) = (z,+izr) = — +i{z,x) =0 (117)

(i) Let now (T + i)z, be a convergent sequence, or, which is the same,
a Cauchy sequence. But then, by (116) Tz, and x, are both Cauchy
sequences. Then =z, converges to x; since T is closed, x € D(T), and
Tx, — Tx.

Exercise 6. Note that ||(T £ i)x| and the norm on the (closed) graph
T(T) coincide and that the space (0, Ran(T+1)) is an orthogonal projection
(P = P*) of (T £ i). Provide an alternative proof of (i) based on this.

Definition: Self-adjoint operators. T is self-adjoint if 7' = T*. It
means D(T) = D(T*), and T is symmetric.

O
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8. It follows that self-adjoint operators are closed.
9. For self-adjoint operators we have from 4 that T'= T = T**.

Lemma 48. If T is closed and symmetric and T is symmetric.
then T is self-adjoint.

Proof. By 2, T C T*. Since T* is symmetric, 7" C T** But T"* =T
since T is closed, thus T* C T, hence T* =T O

13.5 Symmetric versus self-adjoint: an example
Define

Ty = id/dz on D(Tp) = AC|0,1]o := {f € AC[0,1] : £(0) = f(1) = 0} (118)

If {«,y} C D(Tp), then a simple integration by parts shows that (y, Tox) =
(Toy, x), and thus Ty C T§.

The range of Tj consists of the functions of average zero, since fol Ty =yl§ =
0 and conversely y = ¢’ has a solution g if fol y = 0. Another way to phrase it
is

RanTj = C* (119)
Note 10. Similarly, Ran(Tp £ i) = (eT=C)+.
What is 757
Lemma 49. We have
T§ =id/dx on D(T§) = ACI0,1] (120)

Proof. (First proof) Let 7 be the operator in §13.1; we showed there that 7* =
To. Thus Tj is closed. We also proved before that 7 is closed. (See also the
interesting discussions in the chapter “The Fundamental Theorem of Calculus”
in Rudin, Real and Complex analysis.) Then 7 = 7** = T.

O

Proof. (Direct proof)
Assume that y € D(T}). Then, there exists a v € L2[0, 1] such that for all
x € D(Tp), we have
(y, Toz) = (v,x) (121)
Since v € L2[0,1], we have v € L'[0,1], and thus h(z) = [ v(s)ds € AC[0,1],
and h(0) = 0. With u =7, it follows from (121) by integration by parts that

! du(s) L dh(s) B ! du(s)
/Oy(s) I 77/0 I u(s)dsf/o h(s) Is
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Let ¢ =y — h. By (119), we have

/1 o(s)w(s)ds =0 VYwe Ct
0

This means that ¢ € C*+ = C. Thus y is an element of AC[0, 1]y plus an
arbitrary constant, which simply means y € AC[0,1] = D(T}). O

By essentially the same argument as in §13.1, we have T}* = id/dx on D(Tp).
Thus T} is closed. We note that 7§ is not symmetric. In some sense, T is too
small, and then 7§ is too large.

Definition: Normal operators. The definition of an unbounded normal
operator is essentially the same as in the bounded case, namely, operators which
commute with their adjoints.

More precisely: an operator T" which is closed and densely defined is nor-
mal if TT* = T*T. The questions of domain certainly become very important.
The domain if T*T is {x € D(T) : Tx € D(T*)}. (Similarly for 7T*.) Thus,
the operator T in (118) is not normal. Indeed, D(T*T') consists of functions in
AC|0, 1] vanishing at the endpoints, with derivative in AC[0, 1], while D(T'T™*)
consists of functions in AC|0, 1], with the derivative, in AC[0, 1], vanishing at
the endpoints.

Definition: Essentially self-adjoint operators. A symmetric operator is
essentially self-adjoint if its closure is self-adjoint. “Conversely”, if T is closed
a core for T is a set D1 C D(T) such that T|p, =T.

Note 11. We will show that T*T and TT* are selfadjoint, for any closed
and densely defined T'. If an operator T is normal, then in particular D =
D(T*T) = D(TT*), and since D is dense and T is closed, we see that D is a
core for both 7" and T*.

Lemma 50. (i) If T is essentially self-adjoint, then there is a unique self-adjoint
extension, T. (Phrased differently, if S D T is self-adjoint, then S = T**.)

(ii) (Not proved now). Conversely, if T has only one self-adjoint extension,
then it is essentially self-adjoint.

Proof. (i) By 9, T is closable and T' = T**. But, by assumption, 7 is self-adjoint.
Thus

T*** _ T**
Let S D T be self-adjoint. Then, firstly, S is closed, by 8. Then, T* D §* = S
and T** C S, while T"** = T** 5 S. Therefore, T** = S. O

Corollary 51. A self-adjoint operator is uniquely specified by giving it on
a core.

Exercise 7. * Consider the operator T in §13.2. Is T closed? What is the
adjoint of T'? What is the range of T +i?
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1. A symmetric operator is essentially self-adjoint if and only if its adjoint is
self-adjoint.

Indeed, assume T is e.s.a. and symmetric. Since T™* is the closure of T,
then T" C T**. But this means T D T"** = T™* since T** is self-adjoint,
and thus T* = T** is self-adjoint.

Conversely, if T' is symmetric and T™ is self-adjoint, then 7T** = T™* is also
self-adjoint, and thus 7T is e.s.a.

Lemma 52. If T is self-adjoint, then Ker(T + i) = {0}.

Theorem 6 (Basic criterion of self-adjointness). Assume that T is sym-
metric.

Then the following three statements are equivalent:

(a) T is self-adjoint

(b) T is closed and Ker(T* £14) = {0}.

(c) Ran(T i) = H. (Since T is closed, this is equivalent to i ¢ o(T).)
(d) o(T) CR

Of course (we can take) D(T +4) = D(T). Remember the operator T in
§13.2: it follows from (c) that T is not s.a.

Proof. (a)= (b) is simply Lemma 52.
(b)= (c). By Lemma 47 it is enough to show that Ran(7T" + ) are dense.

Assume y € Ran(T +4)*. Then, (y, (T +4)z) = 0 for all x € D(T). In
particular, there is a v(= 0) such that (y,(T + i)x) = (v,z), and thus
y € D(T*) and (T* — i)y = v =0, thus y € Ker(T* — i) = {0}. The other
sign is treated similarly.

(¢c) = (a) Let y € D(T™). We want to show that y € D(T'). By definition,
there is a v such that for any z € D(T) we have

(v, (T +1)x) = (v, z)
Since Ran(T — i) = H, we have
v= (T —1)s

for some s € D(T'). Thus, since x € D(T') and since T' is symmetric, we
have

(v, (T +i)2) = (v, 2) = (T —i)s, )
= (Ts,z) —i(s,z) = (s,Tx) + (s,iz) = (s, (T +i)x) (122)

Now we use the fact that Ran(T" + ) = H to conclude that s = y. But s
was in D(T') and the proof is complete. O
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Corollary 53. Let T be symmetric. Then, the following are equivalent:

1. T 1is essentially self-adjoint.
2. Ker(T* +1i) = {0}.

Note 12. If 71 C T3 and T; are self-adjoint, then 77 = T5. Indeed,
T CT2:>T1:T1* DTQ*:TQ

3. Ran(T +1i) are dense.

Corollary 54. Let A be a self-adjoint operator. Then o(A) C R.

Proof. Let A =a+1ib,b#0. Then A—a = A" and A” = A’ /b are is self-adjoint
as well. Then Ker(A” + i) = {0} and Ran(A” +1i) = H. O

Note 13. Let again T = id/dx on AC|0, 1]p1. The range of T' (see (119)) and

Corollary 53 show that T' is symmetric (thus closed since D(T) is dense), but
not essentially self-adjoint. Also, we note that Ker(T™ £ ¢) # {0}. Indeed,

0

dx

+ip=0=¢=Ce"

13.5.1 All self-adjoint extensions of id/dx on [0, 1]

See once more the discussions in the chapter “The Fundamental Theorem of Cal-
culus” in Rudin, Real and Complex analysis. The natural, “maximal” domain
of d/dz in which the fundamental theorem of calculus holds w.r.t. Lebesgue
integration is AC|0, 1].

Lemma 55. If T = id/dx defined on a dense domain in AC[0,1] then T is
selfadjoint iff D(T) = ACI0,1]s where AC[0,1]4 = {f € AC[0,1] : f(0) =
e’ f(1)}.

Since (f,Tg) = (T'f,g) then f(0)g(0) = f(1)g(1). In particular this holds
for f = g and thus |f(0)|?> = |f(1)?. If there is no f € D(T) so that |f(0)|* +
|f(1)]> > 0, then we are in the case D(T) C AC[0,1]¢1. D(T*) DC AC[0,1]
This case has been settled: T is symmetric, but not self-adjoint. Otherwise
f(0) =€e'r f(1), ¢y € R. Now taking f and g so that f(0) # 0 and g(0) # 0, we

have £(0)g(0) = e'?s=%s f(1)g(1) = f(1)g(1) meaning that ¢ does not depend
on f. Welet AC[0,1], = {f : f(0) = € f(1)}. T is clearly symmetric as well
as densely defined. To see whether it is self-adjoint we check Ran(T + ).

if £if =h=if(x) = e”/ = eT5h(s)ds 4+ CeT®
0
and we have

f(0)=C = f(1)e® = T171? (C + /01 e%h(s)ds)
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This can be always solved for C. Thus Ran(T £ i) = H implying that T is
self-adjoint. This shows that Ty := id/dx with D(T) = AC[0,1], are all the
self-adjoint extensions of id/dx on [0, 1].

To is called the minimal operator associated to id/dz, T is the maximal
operator. We see that T has as spectrum C (since e®® is an eigenvalue for
any a); Tg is already a bit “too large”).

13.6 Further remarks on closed operators

Proposition 56. Let T be closed, densely defined and bounded below (that is,
inf| ;=1 [Tz = a > 0). Then Hy = Ran(T) = Ker(T*)* is closed, and
T :D(T) — Hr is invertible.

Note that under these assumptions, Hr can still be a nontrivial closed sub-
space of H. An example is provided by T = (z1,x2,...) — (0,x1, z2, ...).

Proof. If Tx,, is Cauchy, then z,, is Cauchy, by the lower bound, z,, — x and
thus, since T is closed, Tx,, — Tx. Clearly, T is injective, and also surjec-
tive. Then T~ is well defined, and bounded by 1/a. The rest follows from
Proposition 56.

O

14 Extensions of symmetric operators; Cayley
transforms

Overview: The Cayley transform of a self-adjoint operator, U = % is unitary
(by functional calculus). Conversely, we will show that unitary operators such
that 1—U is injective generate self-adjoint operators. Thus self-adjoint operators
can be fully analyzed if we simply understand unitary operators! Of course, more
careful proofs are needed, and they follow below.

Partial isometries are used to measure self-adjointness, find whether self-
adjoint extensions exist, and find these extensions.

1. Let H* be closed subspaces of a Hilbert space .
2. Definitions

(a) A unitary transformation U from HT to H~ is called a partial
isometry.

(b) The dimensions of the spaces (H*)L, finite or infinite, are called
deficiency indices.

Lemma 57. Let U, by a partial isometry. Then U, extends to a unitary
operator on H iff the deficiency indices of U, are equal.
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Proof. This is straightforward: assume the deficiency indices coincide.
Two separable Hilbert spaces are isomorphic iff they have the same di-
mension. Let U, be any unitary between (H*)1. Let U = U,. We write
H=HT&(H")* and H=H & (H")! and define U = U,®U, . Clearly
this is a unitary operator.

Conversely, let U is a unitary operator that extends U,. Then U(H*1) =
(UHT))* = (Uy(H))t = H=+, and in particular H*+ and H~* have
the same dimension.

O

. In the steps below, T' is closed and symmetric.

Proposition 58. Assume T is as in 4. Then (i) Ker(T*) = Ran(T)~*

and (ii) Ker(T)t = Ran(T*).

Proof. The proof is straightforward; it consists of interpreting the equality
(T*y,z) = 0 = (y,Tx) where y spans Ker(T™*) and z spans D(T), or =
spans Ker(T') and y spans D(T™*). For instance

y € Ker(T*) if f (y € D(T™) and T*y = 0)
< (T*y,z) =0=(y,Tx) Ve € D(T) (123)

O

. By Lemma 47 H* = Ran(T 4 i) are closed, and T + i are one-to-one onto
from D(T) to H*.

Lemma 59. The operator (T —i)(T + i)~ is well defined and a partial
isometry between Ran(T + i) and Ran(T — i).

Note 14. The partial isometry (T —i)(T +1i)~! is known as the Cayley
transform of T'.

By 5, U, = (T —4)(T +14)~ ! is well defined on H+ with values in H~, and
also, for any u~ € H~ there is a unique f € D(T) such that (T—4)f = u".
With vt € HT, we have Upu™ = w™. Since [Ju_|| = (T — i)f] and
(T +i)tut = f, that is ut = (T + i) f, we have |lux||®> = || f||* + [|Tf]|

Lemma 60. z € D(T) iff x = y — Upy for somey € H', i.e., D(T) =
Ran(l —U,).

Proof. Let y € HT and (T +4)~t'y = f. Evidently, f € D(T +1i) = D(T)
(by the definition of T+4). Then (T+i)f = y and (T—4)(T+i) 'y = (T —
1) f, which means that x = (T'+1i)f — (T'—i)f = 2if € D(T). Conversely,
if f € D(T), then 2if = (T +i)f — (T —i)f =y — (T —i)(T+i)~'y. O
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14.1 Duality between self-adjoint operators and unitary
ones

Lemma 61. (i) If U is unitary and Ker(1 — U) = {0} ©®), then there exists a
self-adjoint T such that U = (T —i)(T + i)~ L.

(ii) Conversely, if T is symmetric, then T is self-adjoint iff its Cayley trans-
form is unitary on H.

Proof. 1. We start with (ii). Since T is s.a., T' £ i are invertible, and in
particular Ran(T £4) = H, and o(T) C R. The map (t —¢)/(t +14) = u is
conformal between the upper half plane and the unit disk, and in particular
it maps the real line bijectively on the unit circle. Its inverse is t =
i(14+u)/(1 —u). We could proceed by functional calculus, which we leave
as an exercise. Direct proof: By the above, (T —i)(T +i)~'H — H, since
D(T—i)~' = Ran(T+i) = H. We have already shown that (T —i)(T+i)~!
is an isometry wherever defined, thus in this case it is unitary. Conversely,
U= (T —i)(T +i)" ! is defined on H, thus Ran(T + i) = H and it since
it is an isometry, it follows that (T'—i)D (T) = (T — i)(T +14)"'H = H
thus Ran(T + i) = H.

2. We now prove (i). Note that Ker(l1 — U) = Ker(l — U*). Indeed, z =
Ur & Uz = 2. Let T = i(1+ U)(1 —U)~t. Then T is defined on
Ran(1—"U), which is dense in H, since Ran(1 —U)* = Ker(1—-U*) = {0}.

Now we want to see that for all {z,y} C D(T) we have (x,Ty) = (Tx,y).

3. Note first that Ran(1—-U) = (1-U)H = -U(U* —1)H = URan(1 - U"™).
4. Let x € D(T). Symmetry: x € D(T) is, by the above, the same as

r=UU"-1)z=(1-U)z (and z=(1-U) 'a) (124)

Thus, to determine the adjoint, by (124) we analyze the expression (x, T'y)
where we first show T is symmetric:

(x,Ty) == (UWU* = 1)z, i(1 +U)(1 - U)"y)

(Uz,i(U-1DA+U)1=U)"Yy) = Uz, —i(1+U)y) = (i(1 + U"Uz,y)
=(((U+1)zy) =(((U+1)1-U) " a,y) = (Tz,y) (125)

5. Let’s check the range of T+ i. We have D(T') = Ran(1 — U), and thus
(T+i)D(T) = (T+i)(1-U)H = i(1+U)(1-U)" A -U)H+i(1-U)H
=i+ U)H+i(1-U)H =2H =H (126)

Likewise, Ran(T — i) = H.
O

(5)Or, equivalently, Ran(1 — U) is dense. This condition is needed to ensure D(T) is dense,
see Lemma 60.
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14.2 Von Neumann’s Theorem on self-adjoint extensions

Theorem 7. Let T be a closed, densely defined, symmetric operator. Then T
has a self-adjoint extension iff the deficiency indices of its Cayley transform are
equal.

Proof. (i) Assume T, is a self-adjoint extension of T. Let U = (T —4)(T +1i)~*
and U = (T, —i)(T. +i)~*. By Lemma 61, U is unitary. We want to show that
U, is an extension of U. Remember U : HY — H~. Let x € HT, then = =
(T+i)f = (T.+i)f and Upz = (T—i)f = (T. —i)f = (To —i)(To+i) "'z = Ux.
Since U, admits a unitary extension, then the deficiency indices are equal, see
Lemma 57.

(ii) Conversely, assume that Hy have the same dimension. Then there is a
unitary U, extending U. We first need to show that 1 — U, is injective. If this
was not the case, and z € Ker(l — U.), thus, as before, z € Ker(1 — UZ) thus
z € Ran(1 — U,)*t C Ran(1 — U)*+ = D(T)*+ = {0}.

The rest of the proof is quite similar to that of (i). Let T, = i(1 + U)(1 —
U)~!, a self-adjoint operator. We want to show that T, D T. U, is defined on
Ran(T+i) and D(T) = Ran(1-U,). Ifz € D(T), thenz = (1-U.)y = (1-U)y
for some y and thus Tz = i(1 4+ U.)(1 — Up) "tz = i(1 + U)(1 — U,)"to =
i1+0)1-U) e =T,z O

Corollary 62. Let T be symmetric and closed. Then T has a self-adjoint
extension iff Ker(T* — i) and Ker(T™* + ) have the same dimension, that is, iff
Ran(T + i) have the same dimension.

Exercise 1. Show that the symmetric operator in §13.2 has no self-adjoint
extension.

15 Spectral theorem: various forms

We first formulate the various forms of this theorem, then apply it on a number
of examples, and then prove the theorem.

15.1 Bounded operators

Theorem 8 (Functional calculus form (I)). Let A be a bounded self-adjoint
operator on H, a separable Hilbert space. Then there exists a finite measure space
{M, u}, a unitary operator from H onto L*(M,du) and a bounded function F
so that the image of A under U is the operator Fy of multiplication by F. That
is A=U"1FU, where (Fyx f)(w) =: F(w)f(w).

Equivalently (the equivalence is simple, we’ll show it later).

Theorem 9 (Functional calculus form (II)). Let A be a bounded self-adjoint
operator on H, a separable Hilbert space. Then there exists a decomposition

H=aN M, N<oo

92



so that, on each H,,, A is unitarily equivalent to multiplication by x on L?(R, du,,)
for some finite measure y, (meaning A = U= X, U where X (f(z)) = zf(x)).
That is, A is unitarily equivalent to multiplication by X. The measures depend
on A, of course. Furthermore, they are however non-unique, thus non-canonical.

Also, for any analytic f, f(A) = U~ fU.

The measures du,, are called spectral measures.

15.2 Unbounded operators

Theorem 10. Let A be a self-adjoint operator on H, a separable Hilbert space.
Then there exists a finite measure space { M, u}, a unitary operator from H onto
L?(M,du) and a function F finite a.e. so that so that the image of A under U
is the operator of multiplication by F. That is A= U"1F,U. Also, ¢ € D(A)
iff F(w)(U)(w) € L*(M, dp)).

Furthermore, the measure space can be arranged F € LP(du) for any p €
[0, 00).

15.2.1 Spectral projection form

Let A be selfadjoint. There is a family of orthogonal projections P associated
to A, with the following properties. For every measurable set S in R there is a
projection Pg (the projection on the part S of the spectrum of A). They have
the following properties.

Theorem 11 (Spectral projection form. This form is the same for bounded or
unbounded operators). We have (i) Py =0, Pr = I.

(i) if S = US°S,, (all sets being measurable) and S, NS, = @ for n # m,
then P = s — lim ETO P,, where s — lim s the strong limit.

(#i) Ps, Ps, = Ps,ns,-

(i)

A= / Ad Py,
R

For now, we understand (iv) in the sense

where d(f, Prg) is a usual measure, as it is straightforward to check using the
properties of the family P.

Note 15. It is important to emphasize that, unlike the other forms of the spectral
theorem, this is canonical: given A there is a unique family of projections with
the properties above.

Returning to our functional calculus, if g is analytic on the spectrum of A
(contained in R, of course), the image of g(A) is the function g(F). But note
that now we can define ¢4 = [L e"dPy.
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16 Proof of the functional calculus form

16.1 Cyclic vectors

Consider a bounded self-adjoint operator A, a vector v in H and the vectors
{A"Y}nen. If we take all linear combinations of A" and then its closure, the
“span” of A" denoted by \/o—; A", is a Hilbert space Hy. If ¢ is such that
Hy = H, then % is a cyclic vector. Not all operators A have cyclic vectors.

Exercise 1. Do self-adjoint matrices have cyclic vectors?

Note that we can take any vector, form H, and then pick a vector in ’Hi.
The construction can go on indefinitely, if ®Y_;H,, # H for some finite N.

Exercise 2. Show (for instance using Zorn’s Lemma) thal every separable
Hilbert space can be written as

H=Cn1Hyy, N<oo (127)

Now, to prove Theorem 9 it suffices thus to prove it in each Hy, , or, w.Lo.g.,
assume that v is already cyclic for H. Of course, we can assume |[|9|| = 1.
We can define a functional L, first on analytic functions f on o(A) by

L(f) = (F(A)¢, ¥) (128)

L is bounded since

LN < 1A = sup{[f V)] - A € o(A)} = [[ [l (129)

(see Prop. 30 above, p. 27, (100), and Exercise 4 on p. 39.
On the other hand, this is a positive functional, since if f is positive on o(A)
then f = ¢ with ¢ analytic too and real valued, and thus

(F(A), ) = (9(A)*%, ) = (9(A)v, g(A)y) = lg(A)¥[* = 0 (130)

Since analytic functions on a compact set in R, o(A4), are dense in C(c(A))
(polynomials are already dense) and the functional f +— (f(A)y, ) is positive
and of norm one on a dense subset, it extends to C'(c(A4)) and, by the Riesz-
Markov theorem, there is a measure djiy so that

Ut - [

a(

fdpy(2) (131)
4)

For simplicity, we drop the subscript 9 : u = py. We can now consider Hy =
L3(o(A),duy). We want to define a unitary transformation between H and H .
(Note that up to now we showed bounds between H and L*(c(A)).)

It is more convenient to define U on H 4 with values in H. The vectors in
H 4 are of course functions on o(A4). From (131) we expect ¢ to be mapped into
©(A)y. Define thus for f analytic (not necessarily real-valued) on o(A),

Uf = f(A) (132)
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Remember (see p. 39) that

f(A)" = f*(A) and for = € R we have f*(x) = f(z) (133)

Therefore
/ 12 "2 (A (F(A) e, 8) = [ F(A))12 = [UF)? (134)

Thus the transformation U, defined on a dense subset of L?(c(A), du) extends
to an isometry from L?(o(A),du) into H.

We only have to check that indeed the image U~'AU of A is the operator
of multiplication by the variable. We have for analytic f,

UM AUS = U Af(A)g = U Af(A)y
- Uﬁlw =U'UXy fx =Xxfx (135)

Since holds on a dense set, the proof is complete.

Note 16. Whether 1 is cyclic or not, formulas (132) and (134) above allow us to
define any L? functions of A. Indeed, analytic functions (or even polynomials)
are dense in L?. If f, — h in the sense of L?, then f,(A)y converges to (by
notation) h(A)y. Thus we can define, given 1 arbitrary, h(A)y for any h € L2.
It is easy to check that A is bounded and linear: Indeed, if ¢ is cyclic for the
whole of H there is essentially nothing to show. If it is not, then it is correctly
defined and bounded on each H, with values in H, while H, are mutually
orthogonal. Simply define h(a)x = " h(A)x,, where (x,,),<n is the orthogonal
decomposition of . Now, if h = X g, the characteristic function of a measurable
set, then Xg(A), is, of course, a spectral projection.

Note 17. Note that (129) shows that if we take the closure in the operator
norm of A(A) := {f(A4) : f analytic on o(A)} then we get C(A) the continuous
functions on o(A). In Note 16 we have taken the strong-limit closure of A(A),
since convergence of f, is only used pointwise— convergence of f, for any .
This gives us in particular M (A), the bounded measurable functions on o(A),
applied to A. Compare also with what we have done in §4. The apparent
similarity can be misleading.

Note 18. Note also that we have made substantial use of the fact that A was
self-adjoint to define M (A) (for instance, in using (133)).

17 Examples: The Laplacian in R?

Most of this section is based on [3], where more results, details, and examples
can be found.

In a number of cases, the unitary transformation mapping an unbounded
self-adjoint operator T' to a multiplication operator is explicit. Then, we can
use the exercise below to find all information about 7'
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Exercise 1. Show that, if U is unitary between Hy and Ho, then T is self-
adjoint on D(T) C Hy iff UTU~! = UTU* is self-adjoint in UD(T).

As an example, consider defining —A in R3. Define it first on Dg(A) = C§°
where it is symmetric. Let U be the Fourier transform, a unitary operator. It
is in fact easier to work with another set of functions, still dense in L?(R?) as
can be easily checked, which admit an explicit Fourier image:

D, = {e_x2/2P(x) : P polynomial} (136)
This is Fourier transformed to
UD, = {e_kz/zP(k) : P polynomial} (137)

Exercise 2. Check that Dy is dense in L?(R3). Check that on Dy T is sym-
metric and that UT(f) = |k?|U f, a multiplication operator.

We will denote [k2| by k2 and Uf by f.

Exercise 3. Check that k? is self-adjoint on
D(k*) ={f € L*(R%) : k*f € L*(R*)} = {f : (k* + 1)f € L*(R®)} ~ (138)
Thus, we have

Proposition 63. —A is self-adjoint on U~ D(k?). Call this operator Hy.

The characterization of D(Hy) is simplest through Fourier transform. This
gives another dimension to the need for Sobolev spaces etc.

Let w € D(Hp) and @ be its Fourier transform. A direct space characteriza-
tion is more difficult, though we might simply say that u together with all second
order partial derivatives exist as weak derivatives, in distributions (equivalently,
defined in L? as as inverse Fourier transforms of k;k;), and the derivatives are
in L2.

We can see some classical properties of elements of u € D(Hy). We can
show that u is bounded and uniformly continuous as follows. Noting that both
@ and k?@ are in L? it follows immediately that (o + |k|[*)a € L? for any a.
Let k = |k| and dk be the Lebesgue measure on R3.

For boundedness, we use Cauchy-Schwarz:

(/RS |ﬁ|dk>2 : /JRS (k’zc-lf'kOé)2 /Ra (k% + )l dk = %QH(HO+OZ)’LLH2 < o0

(139)
Note also that . ‘
lekx — kY| < max{2, k|x — y|} (140)
Similarly, we can calculate that, if § < 1/2, then
[u(x) = u(y)| < Calx = yI” (@~ /2P| Houll + 0¥ u]) - (141)
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which easily implies that w is Holder continuous with any exponent < 1/2.
However, u is not even once classically differentiable!

The inequalities (139) and (141) are special cases of Sobolev inequalities.

For more details and examples, see [3], pp. 299.

Here is a very useful and general criterion of self-adjointness, in the un-
bounded case. First, a definition:

Definition 64. (i) An operator A is relatively bounded with respect to T (T —bounded)
if D(A) D D(T) and for some a,b and all w € D(T) we have

[ Aull < alull + bl|Tu (142)
An equivalent condition is that for some (different) o', b’ we have
[Aul* < (a')?[full® + ()| Tul|? (143)

The equivalence of (142) and (143) is left as an exercise (details are given in
[8], p. 287, but the exercise is simple enough). (ii) The T—bound is defined as
the greatest lower bound of the b for which there is an a so that (142) holds, or
equivalently the greatest lower bound of the b/ for which there is an a’ so that
(143) holds.

Theorem 12 (Kato-Rellich). Let T be self-adjoint. If A is symmetric and
T—bounded with T—bound V' < 1 then T + A is self-adjoint. This is the case
in particular if A is bounded.

Proof. First, it is clear that D(T + A) = D(T') and T + A is symmetric. We
will show that (¢) in Theorem 6 holds. Without loss of generality we take also
a’ > 0. Recall (116). This implies immediately that

[Az|| < [|(V'T ¥ ia)z, (x € D(T)) (144)

Denote ¢ = a'/b’ and (T Ficd')x =y, and recall Theorem 6 (b) (c). This implies
that (T Fic') = R(Fic') exist and are bounded. Thus

[AR(Fic )yl < Vllyll, (= € D(T)) (145)
In particular (again by Theorem 6 (b) (c)) this means that
By = —AR(Fic') are bounded and ||BL|| <V <1 (146)

Therfore, by the standard Neumann series argument, (1 — B1)~! exist and are
bounded (with norm < 1/(1 —¥')) and thus (1 — By) are bounded and one-to-
one. Note now that T Fic’ is one to one, so is (1 — By) and thus their product
is one-to-one.

(1-Bu) (T Fid)=TFid + AR(Fid)(T Fid) =T Fic + A (147)

Thus Ran(T+AFic’) = Ran (T+A)Fi = H and thus T+A is self-adjoint. [
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Example The operator —A+V (x) is self-adjoint on D(—A) for any bounded
real function V. This follows trivially from Theorem 12.

In one dimension, say on L?[0,1], for any bounded, measurable, real f,
id/dx + f(z) (or —d?/dz?® + f(z)) are self-adjoint on any domain on which
id/dz (or —d?/dx?) is self-adjoint. Find self-adjointness domains for —d?/dx?.

More generally, one can show (see [3]) the following.

Proposition 65 ([3], p. 302). Consider functions of the form q = qo+q1 where
qo € L®°(R®) and ¢1 € L*(R3). Then

~A+gq (148)
is essentially self-adjoint on C§°(R3) and self-adjoint on D(—A).

Example ¢ = 1/r, r = |x| satisfies the assumptions of Proposition 65. Thus
the Hamiltonian of the Coulomb atom,

—A+e/r (149)
is self-adjoint on D(Hy).

17.0.1 Second resolvent formula

This is a simple but very important identity. It holds in more generality than
described below, but this is all we need for now.

Theorem 13. Let A, B, A+ B be defined common domain D, and all of them
invertible. Then
At~ (A+B) ' =4"'B(A+B)! (150)

Proof. Since all operators involved are invertible, (150) holds iff it holds after
multiplication by (A 4+ B). This gives:

A (A+B)-1=4"'B (151)
which clearly holds. O

18 Compact operators: a summary

We present some of the main results (some without proofs). See [2] for a compact
yet complete and clear presentation.

Definition 66. A (bounded) operator T between two Banach spaces X,Y s
compact if it takes bounded sets into relatively compact ones (that is, every
sequence has a convergent subsequence).

Example On C[0,1] or L2[0, 1] taking T'f = [ h(s)f(s)ds (or T f = fol h(s)f(s))
where h € L, then the image of T' consists of functions which are in AC0, 1]
with derivative uniformly bounded by || f||. Then Arzela-Ascoli applies and T
is compact.
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Theorem 14. Let X, Y be Banach spaces and T,T, € L(X,Y) (recall that
L(X,Y) denotes the bounded operators from X to Y ). Then:

(a) If {Ty}nen are compact and T,, — T in norm, then T is compact.

(b) T is compact iff T* is compact.

(c) If S € LIX,Y) and S, or T, is compact, then ST is compact. (d) The
sum of compact operators is compact.

Corollary 67. The resolvent of id/dx + z on AC|0,1] with periodic boundary
conditions, where z ¢ o(id/dx) is compact. Indeed the resolvent is

_ iz ‘ —izs ieiZ(aH_l) ! —1iz8
(R(2)g) (x) = —ie g(s)e™ds + e g(s)e™%ds (152)
0 0

a combination of compact and bounded operators as in Theorem 14.

Corollary 68. If A,B are as in Theorem 18 and A~ is compact and B is
bounded, then (A+ B)~! is compact.

This is immediate from the second resolvent formula and Theorem 14.

Corollary 69. Let T = id/dx 4+ V(z) on AC|0,1] with periodic boundary con-
ditions, where V(x) is real valued and bounded. Then T is self-adjoint with
compact resolvent.

Proof. This follows from Theorem 12, Corollary 67 and the second resolvent
formula, Theorem 13. U

Theorem 15 (The Fredholm alternative). If A is a compact operator on H
then either (I — A)™1 exists or Ay = ).

Theorem 16 (Riesz-Schauder). Let A be a compact operator on H. Then o(A)
is a discrete set of eigenvalues A, of finite multiplicity, except 0 which might be
an accumulation of the \,.

Theorem 17 (The Hilbert-Schmidt theorem). Let A be compact and self-
adjoint. Then there is a complete orthonormal basis ¢, for H so that Ap, =
Anpn and Ay, — 0 as n — oo.

In view of Theorem 15 this is essentially the spectral theorem (functional
form I).

Corollary 70. In the setting of Corollary 69, the spectrum of T is discrete,
with finite degeneracy, and the eigenfunctions form a basis in L*[0,1].

That follows from Corollary 70 and the fact that o(1/4) = 1/0(A).

Theorem 18. Let H be a Hilbert space. Then T is compact iff it is the norm
limit of operators of finite rank (meaning that dim Ran(T,,) < co.
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18.0.2 Equivalence with Theorem 8

For that we simply take N copies of R, take their disjoint union M = UN_;R
and on each copy we take a vector of norm 27". Then we take the measure
= ®u, on M, and clearly u(M) < co. The rest is immediate.

18.0.3 Extension to Borel functions of A

Since A corresponds to multiplication by x, if /& is any bounded Borel measurable
function on o(A) we define h(A) = Uh(x)U~!. In particular, if & is chosen to
be Xg, the characteristic function of a subset S, then Py = UXgU ™! is an
orthogonal projection, in fact a spectral measure. We want to see that

A= / wdP(z)

Let S be an arbitrary measurable subset of 0(A) C R and define, for each pair
z,y € H,
v(S) = (Psz,y)

Then,

18.1 Defining self-adjoint operators

Suppose A is symmetric, and that we can find a unitary transformation U
that maps H into L?(R,du) in such a way that A is mapped onto a- for all
¢ € D(A), and that means that a- is initially defined on U(D(A)) which is also
dense, since U is unitary. Then, clearly, (A=414)~! are mapped to (a+i)~!, since
(A+i)(A+i)~t =1 on D(A). It is clear that U, = (a-—i)(a-+i)~!, the image
of Uy = (A—1i)(A+1i)~! is extends to a unitary operator on UD(A) = UH. But
this does not mean that it was unitary to start with, since it was only defined
on {(a+1i)f: f € UD(A)} which may not be dense in L*(R, dpu).

Nevertheless, U, extends to a unitary operator, and thus U, extends to a
unitary operator, and thus A has some self-adjoint extension A;, (canonical wrt
this particular construction...). What is the domain of A;? This can be written
in terms of Ua: D(A) = Ran(Ua — 1), which is simply U ~'Ran(u, —1) = D(a-).
On the other hand, this is simple to calculate, it consists of the functions g such
that

D(a) = {g € L2(R, dp) : /}R l9]2a2da < oo} (153)

Exercise 1. Apply these arguments to A = id/dx defined originally on C§°,
using as U the discrete Fourier transform and, as usual k instead of a as a
discrete variable. What is UD(A)? On UD(A) k- is simply multiplication by
k. The domain of the adjoint is larger than the set of sequences {ci }rez with
kci, € L?. What is it? Find a self-adjoint extensions of A. Can you find more
than one?
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Thus,

D(A) =U"1 {g e L2(R, dy) : /R lg|2a%da < oo} (154)

19 Spectral measures and integration

We have seen that finitely many isolated parts of the spectrum of an operator
yvield a “spectral decomposition”: The operator is a direct sum of operators
having the isolated parts as their spectrum. Can we allow for infinitely many
parts?

We also saw that, if the decomposition of the spectrum is K7 + K5, where
X1 X2 = 0, then the decomposition is obtained in terms of the spectral projec-
tions P; = X;(T) where Py P, = 0 and P, + P> = I. We can of course reinterpret
(probability-)measure theory in terms of characteristic functions. Then a mea-
sure becomes a functional on a set of characteristic functions such that X;X; = 0
(the sets are disjoint) then

oo

X(J4)=>Y_x

i=1 =1
and

X(A1NAs) = X1 X2

In terms of measure, we then have

M(i Xi) = f: 1(Xk)
k=1 k=1

n(l) =1
(continuity of the functional) etc.
In the following, we let E; := E(A;).

Note 19. 1. In a Hilbert space it is natural to restrict the analysis of pro-
jectors to orthogonal projections. Indeed, if H1 € H is a closed subspace
of H, itself then a Hilbert space, then any vector x in H can be written in
the form x;, + zo where x1 € H; and x5 L x1. So to a projection we can
associate a natural orthogonal projection, meaning exactly the operator
defined by (x1 + x2) — 1.

2. An orthogonal projection P is a self-adjoint operator. Indeed,
(Pz,y) = (v1,91 + y2) = (x1,91) = (¥1 + 22,91) = (2, Py)

3. Conversely, if P is self-adjoint, and = = x1 + z2, where Px; = x1, then

(21,22) = (Px,(1 - P)a) = (x, P(1 - P)a) = 0
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Let Q be a topological space, Bq be the Borel sets on Q and A(H) be the self-
adjoint bounded operators on the Hilbert space H: Y(z,y), (Tz,y) = (z,Ty).
Thus, with A; € Bg, the spectral projections E := X(T') should satisfy

1.

i=1 k=1

E((Al N AQ) = F1FEs

EQ)=1I; EW) =0

Definition 71. A projector valued spectral measure on Bg with values in A(H)
is a map E : B — H with the properties 1,2,3 above.

Note 20. E(A) is always a projector in this case, since E(A) = E(ANA) =
E(A)? and E(A)E(B) = E(B)E(A) since they both equal E(AN B).

Proposition 72 (Weak additivity implies strong additivity). Assume 2. and
3. above, and that for all (z,y) € H? we have

(Vi#j,A;NA; =0) UA x,y) ZExy

Then 3. above holds.
Remark 21. Note a pitfall: we see that
E((JA)z=> Ewx (155)
i=1 k=1
for all x. But this does not mean that Zfil E;x converge normwise!

Note 22. If (v,,y) — (v,y) for all y and ||v,|| — ||v|| then v,, — v. This is
simply since

(U, — v, 0 — V) = (U, V) — (Up, V) — (V,0,) + (v, V)
Proof. Note first that E(A;)x form an orthogonal system, since
(E(A1)z, E(A3)z) = (x, E(A1)E(As)zx) = (z, E(A1 N Ag)x) =0 (156)

N N N
<Z Eil', Z Ei(E, > = Z<E1$, Ei.’E, >
=1 i=1 i=1

while



converges. Thus Zf\; ||E;z|| converges too and thus || Zfil Ex—>7, Eiz| —
0.
O

Lemma 73. If A; 1 A then Ejx — E(A)x.

Proof. Same as in measure theory. Aj;;; \ A; are disjoint, their sum to N is
Apn+1 and their infinite sum is A, see figure. |

20 Integration wrt projector valued measures

Let f be a simple function defined on S € Bg. This is a dense set in B(, C).
N
Flw) =" £X(S;5) (157)
i=1
As usual, S;NS; =0 and US; = S. Then we naturally define
N
[ 1@ape) =3 £8s) (15%)
i=1

This is the usual way one defines integration wrt a scalar measure.

Note 23. We note an important distinction between this setting and that of
84: here we integrate scalar functions wrt operator valued measures, whereas in
84 we integrate operator-valued functions against scalar measures.
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Note 24. ) In §4 as well as in the few coming sections, we restrict ourselves
to integrating uniform limits of simple functions. The closure in the sup norm
of simple functions are the measurable bounded functions, which is not hard
to verify, so this is a more limited integration than Lebesgue’s (e.g., L' is not
accessible in this way.)

It is also interesting to note the following theorem:

Theorem 19 (Siki¢, 1992). A function f is Riemann integrable iff it is the
uniform limit of simple functions, where the supporting sets A; are Lebesgue
measurable with the further property that p(94;) = 0.

Without the restriction on u(9A;), the closure of simple functions in the sup
norm is the space of bounded measurable functions (exercise).

Proposition 74. The definition (158) is independent of the choice of S;, for a
given f.

Proof. Straightforward. O

Proposition 75. The map f — fsf is uniformly continuous on simple func-
tions, and thus extends to their closure. We have

Proof. We can assume that the sets S; are disjoint. Then the vectors E;x are
orthogonal and

wammm

< sup | f(w)] (159)
S

N

2 N
=Y LIES)z)? < sup IFPY (Bix,z) < sup |f12 1)
=1

=1

wammw

O

Consider then the functions in B(f2, C) which are uniform limits of simple
functions. The integral extends to B(),C) by continuity and we write

/Sf(s)dE(s) = lim [ fn(s)dE(s) (160)

n—oo S

Definition 76. A C* algebra is a Banach algebra, with an added operation,
conjugation, which is antilinear and involutive ((f*)* = f) and || f*f| = |||

Exercise 1. Show that || f*| = || f]|-

Proposition 77. f — fs fW)dE(w) is a C* algebra homeomorphism.

(6) Pointed out by Sivaguru Ravisankar.
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Proof. We only need to show multiplicativity, and that only on characteristic
functions, and in fact, only on very simple functions, where N = 1, and the
coefficients are one. We have

/ X(S1)X(S2)dE(S) = E(S1 N Ss) = E(S1)E(Ss) (161)

Exercise 2. Complete the details.
O

20.1 Spectral theorem for (unbounded) self-adjoint oper-
ators

Theorem 20. Let A be self-adjoint. There is a spectral measure on the Borel
o-algebra of R such that

k
Az = /thE(t) x = hm/il€ tdE(t) x (162)
for all x € D(A). Furthermore,
DA)={zxeH: / t2d(BE(t)z,2) < oo} (163)
R

We know that self-adjoint operators are in a one-to-one correspondence with
unitary operators. Assuming we have the spectral theorem for bounded normal
operators and w is a unitary operator, then we have

U= / udE(u) (164)
c
where C' is the unit circle. Then, with A =4(1+ U)(1 —U)~! we expect
1+u
A= [ i
/Czl — udE(u) (165)
which we can formally write
A / td(E o 8)(t) = / 1E (1) (166)
R R
where )
olt) = — (167)
ottt

and where E'(S) = E(¢(S)) is a new spectral measure.
We have to ensure that the theory of integration holds, and that it is com-
patible with changes of variable, and to interpret the singular integrals obtained.
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21 Spectral representation of self-adjoint and nor-
mal operators

We first state the main results, which we will prove in the sequel.

Theorem 21 (Spectral theorem for bounded normal operators). Let N be
bounded and normal (that is, NN* = N*N ). Then there is spectral measure E
defined on the Borel sets on o(N), see Definition 71, such that

N = /a ) (168)

Theorem 22 (Uniqueness of the spectral measure). Let N be a normal, bounded
operator.
(i) Assume EMN and EP are spectral measures on the Borel sets on o(N)

such that
N = / zdEM = / zdEP] (169)
o(N) a(N)
Then EM = E2,

(ii) More generally, if @ € C D o(N) is a closed set and EP is a spectral
measure on () such that

N = / 2d BB (170)
a(N)

Then E(Q\a(N)) = 0 and the Borel measure induced by EB on o(N) coincides
with E, the spectral measure of N.

What can the spectrum of a normal operator be? Let D be a compact set in
R?, and consider L?(D). Consider the operator Z := f(x,y) = (z + iy) f(z,y).
Then Z* = f(z,y) — (z — ) f(z,y), and Z is a normal operator. Clearly, if
(z0,y0) ¢ D and A = g + iyg, then 1/(x + iy — A) is bounded on D and it is
the inverse of (x + iy — A); otherwise, if (2o, yo) € D, then (x + iy — A) has no
nonzero lower bound, and thus is not invertible. Then o(Z) = D.

21.1 Spectral theorem in multiplicative form

Definition 78. A vector ¢ € H is cyclic for the (bounded) operator A if the
closure of the set of linear combinations of vectors of the form A™p, n € N
(denoted by \/7—; A™) is H.

In this formulation, self-adjoint operators are unitarily equivalent with mul-
tiplication operators on a direct sum of L?(c(A)), du, with respect to certain
measures. If A has a cyclic vector, then the measure is naturally defined in the
following way. We know how to define bounded measurable functions of A (for
instance taking limits of polynomials). Then, (¢, f(A4)y) = fa(A) fw)dpy (w).
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Note 25. In Quantum mechanics, if o (angular momentum, energy, etc.) is
an observable, then it is described by a self-adjoint operator O. The spectrum
of O consists of all possible measured values of the quantity o. An eigenvector
1, of O is a state in which the measured observable has the value o = a with
probability one.

If v is not an eigenvector, then the measured value is not uniquely deter-
mined, and for an ensemble of measurements, a number of values are observed,
with different probabilities. The average measured value of o or the expected
value of o, in an ensemble of particles, each described by the wave function ¥
is (1), O1).

Imagine that the measured quantity is X{, 4 (0). That is, if say o is the energy,
then X(4(0) is a filter, only letting through particles with energies between a
and b (a spectrometer only lets through photons in a certain frequency range,
and since F = hv, certain energies).

Then, (1, Xq,5(E)1) is the expected number of times the energy falls in [a, b],
that is, the density of states. This would be the physical interpretation of dv,.

Theorem 23. Assume A is a bounded self-adjoint operator with a cyclic vec-
tor . Then there is a unitary transformation U that maps H onto Ha =
L3(0(A),duy) and A into the multiplication operator A = f(X) = Af(N):

UAU ' =A (171)

Note 26. This unitary transformation is non-canonical. But cyclicity means
that the transformation ¢ — O is ergodic, mixing, and the measures are
expected to be equivalent, in some sense.

Clearly, uniqueness cannot be expected. L2([0,1]) with respect to dz and
with respect to f(z)dx o < 0 < f < [ are unitarily equivalent, and the unitary
transformation is g — +/fg. X, multiplication by x is invariant, since UXU ! =
X. The measure is determined up to measure equivalence: two measures are
equivalent iff they have the same null sets. Instead, the spectral projections are
unique.

In case A does not have a cyclic vector, then H can be written as a finite
or countable direct sum of Hilbert spaces H = @Y ;H,, N < oo such that
Aly, has a cyclic vector 1,,. Then, as before, there is a unitary transformation
U:H— &N L?(R,du,) so that

(AU )y, = A (172
Let F be the operator g — fg where f,g C L?(M,du). As a corollary,

Proposition 79. Let A be bounded and self-adjoint. Then, there exists a finite
measure space (M, ) (W(M) < 00), a bounded function f on M and a unitary
operator U : H — L?(M,dy) so that

UAU ' =F (173)
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Like all other measures, uy, can be decomposed uniquely into three disjoint
measures: fpp + flac + fsing- Let p be a finite measure on R.

(1) ppp (pure point). A measure is pure point, p,, if, by definition, for any
B € Q we have u(B) = > cp#(w). We note that the support of i, is a
countable set, since the sum of any uncountable family of positive numbers is
infinite.

(ii) ftae. A measure is absolutely continuous with respect to the Lebesgue
measure dz if, by definition, du = f(x)dr where f € L!(dx).

(iii) A measure is singular with respect to the Lebesgue measure if there is
a set S of full Lebesgue measure (R = S + S’ where S’ is a set of measure zero,
and p(S) = 0. Thus psing is concentrated on a zero Lebesgue measure set.

(iv) Pure point measures are clearly singular. To distinguish further, we say
that a measure p is continuous if p(x) = 0 for any point z.

(V) fsing- A measure is singular continuous if y is continuous and singular
with respect to the Lebesgue measure.

Decomposition theorem. Any measure p on R has a canonical decomposition

B = tpp + Hac + Ksing (174)
L*(o(A), dprp) = L*(a(A), dppp) © L*(a(A), dptac) ® L*(0(A), dptsing)  (175)

where the norm square in the lhs space is the sum of the square norms of the
three rhs spaces. We can then decompose ¢ € L%(c(A),duy) in (o1, ¢2,93), in
the usual orthogonal decomposition sense.

Then, through the unitary transformation, we have

H = pr S Hac S 7'Lsing (176)

where
Hyy = U L*(R, dpyp)

etc. How is A acting on Hp,? Assume pp, is concentrated on the points
T1yeey Tpy .. We see that UAU™! = F. Here we take g = d(x = ).
Then, Fg, = zkgk, and also any g € L3*(R,du,,) = > oo, grg(zx) and thus
AU g, = xxU gy, and for any ¢ € Hy, ¥ = > cpdy, where ¢, = U~ lgy.
Thus, H,, is a Hilbert space where the restriction of A has a complete set of
eigenvectors (relative to Hpp).

In Quantum Mechanics, these are the bound states, or eigenstates. For
instance, for the Hydrogen atom, we have infinitely many bound states, or
orbitals, of increasing size. Here, the energy operator is unbounded though,

1
H=-A+-
-

Likewise, H,. consists of scattering states. For the Hydrogen atom, these
would be energies too large for the electron to be bound, and it travels to infinity.

H,;pg is in some sense non-physical, and the struggle is to show it does not
exist.
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21.2 Multiplicity free operators

Definition 80. A bounded self-adjoint operator A is multiplicity-free if, by
definition, A is unitarily equivalent with A on L*(R).

Proposition 81. The following three statements are equivalent:
1. A is multiplicity-free
2. A has a cyclic vector
3. {B: AB = BA} is an Abelian algebra

Exercise 1. Let A be a diagonal matriz. Show by direct calculation that 2. and
3. hold iff the eigenvalues are distinct.

Exercise 2. Does the operator X of multiplication by x on L?[0,1] have cyclic
vectors? How about id/dx?

21.3 Spectral theorem: continuous functional calculus

Assume N is normal and & = o(N). Let C(&) be the C*-algebra of continuous
functions on & in the sup norm.

Let on the other hand C*(N) be the C* algebra generated by N. This is
the norm closure of the set {f(N), f(N*) : f analytic}. Since it is a closure in
“sup” norm, we get continuous functions in this way. When we need measurable
functions, we have to take a strong (not norm) closure.

Theorem 24 (Spectral theorem: continuous functional calculus). There is a
unique isomorphism between C(6) and C*(N) C L(H) such that p(xz — x) =
N. Furthermore, the spectrum of § € C(&) is the same as the spectrum of g(IN)

and if N = X, then f(N)yp = f(A).

We consider Cs = C(6) in the sup norm, and the closure Cy of P(N, N*)
in the operator norm. Let f be an analytic function. We write ¢(f)(N) = f(V)

and ¢(f)(N) = f*(IN*). It is easy to check that this is an algebra homeomor-
phism. Furthermore, we have

IP(N)l 2y = sup [PA)] = [[Plloo (177)
A€G

SO ¢ is an isometry. In particular, ¢ is one-to-one on its image. The domain
of ¢, D(¢), contains all functions of the form P(z) and P(z) where P is a
polynomial, and by the Stone-Weierstrass theorem, the closure of D is C(&).
Thus, ¢ extends by continuity to C(&). On the other hand, since ¢ is one-to-
one isometric, ¢(C(&)) = C*(N), the closure of polynomials in N, N* in the
operator norm.
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21.4 Spectral theorem, measurable functional calculus form

Now that we have defined continuous functions of N, we can extend calculus to
measurable functions by taking strong limits, in the following way.
Recall that:

Lemma 82. T, is a sequence of operators which converges strongly iff (v, T ®)
converge for all ¥, ¢. By the polarization identity, T, converges strongly iff

(1, Tpp) converges for all 1.
Proof. This is Theorem VI.1 in [2]. O

We then take the closure of C*(N) in the strong limit. This is the von
Neumann, or W*-algebra. Strong closure of C*(N) corresponds to essup-type
closure of C(o(N), giving Borel functions. This essup is however calculated
with respect to an infinite system of measures, one for each pair of vectors in
the original Hilbert space. For every 1,95 € H and g € C(&), consider the
application g — (1, g(IN)12). This is a linear functional on C(&), and thus
there is a complex Baire measure so that

g )0) = [ al5)dna () (178)
(cf. Theorem IV.17 in [2]). (alternatively, we could use the polarization identity
and work with positive measures generated by (¢, g(N)¢). The closure contains
all pointwise limits of uniformly bounded sequences.

Proposition 83. If g, — f pointwise and |g,| < C Vn, then g,(N) converges
strongly to an element in W*(N'), which we denote by f(N). We have ||f(N)| =
[[flloo-

Proof. Let B(&) be the bounded Borel functions on &.

We take a sequence g, converging in the sense of the Theorem to f € B(&).
Then the rhs of (180) converges, by dominated convergence, and so does the
left side. Then, the sequence of g, (T) converge strongly, let the limit be 7. We
then have,

(6, T) = /6 £(5) g (5) (179)

and it is natural to denote T' by f(N). Likewise, we could have defined f(IV)
by

(i, F(N)p) = /6 £(8)dp(s) (10)

with 19 = 1 and v; spanning H.

We have an isometric correspondence ® between operators g(T'), and bounded
measurable functions. The isometric isomorphism extends to W*(N).

Note that the collection of spectral measures only depends on N.

Remark 27. We note that f(N) is self-adjoint iff [ is real-valued. Indeed, in

this case we have f(N) < f(z) = f(z) & f*(N*) = f(N*) since f is real.
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O

Now we can define spectral measures! It is enough to take E(S) = Xgs(N).

By Remark 27, we have that E(S) are self-adjoint. They are projections,
since P? = P, orthogonal if S; NSy = 0. In fact, {E(S) : S € Bor(&) is
a spectral family, the only property to be checked is sigma-additivity, which
follows from the same property of characteristic functions, and continuity of ®.

What is the integral wrt dE? We have, for a simple function f =Y fiX(Sk),
by definition,

/ fAE =3 fB(SK) = 71> fiX(Sk) = 71(f) = f(N)
k

We thus get the projection-valued measure form of the spectral theorem

Theorem 25 (Spectral theorem for bounded normal operators). Let N be
bounded and normal (that is, NN* = N*N). Then there is a spectral mea-
sure E defined on the Borel sets on o(N), see Definition 71, such that

N:/ zdE(z) (181)
o(N)
Furthermore, if f € B(&), we have

F) = [ f(2)dB) (182)

21.5 Changes of variables

Let now u(s) be measurable from & to the measurable set 2 € C, taken as
a measure space with the Borel sets. Then, E(u~1(0)) is a spectral family,
on Bor(Q). It is defined in the following way: if O € Q is measurable, then
u™H(O) = S € & is measurable, X(S) is well defined, and so is F1(O) =
O~ 1(X(u=1(0))). We have, for a simple function f on Q: f = fi on Oy, by
definition,

/kadE1 =Y feBi(Ok) =Y fuB(u™'(Ok) = > fuE(Sk) = /6 fdE

] (183)
where f = fi if s € Sy or, which is the same, u(s) € Op. In other words,
f = fou. Thus,

f)dEL(t) = /

u(S)

FO)A(E o u™)(t) /6 f(u(s))dE(s) (184)

u(6)

In particular, assuming wu is one-to-one, taking f to be the identity, we have

u(s s) = 1 = ou~t
/G (s)dE(s) /u(g)tdE (t) /u@ td(E )(t) (185)

71



This form of the spectral measure theorem is still a form of functional
calculus, it allows to define Borel functions of IV, in particular characteristic
functions of N which are projections, and the Hilbert space is, heuristically,

@ dE(MN)(H), but this not does not yet really relate the action of N on H
Aeo(N)

to multiplication by n on o(N). And in fact, A is not, in general, isomorphic
to L?(o(N)) in such a way that N becomes multiplication by N, but in fact to
a direct sum, maybe infinite, of such spaces.

Remark 28. Let N be normal. Then A= 1(N + N*) and B = —%(N — N*)
are self adjoint, commute with each-other and N = A 4+ iB. Thus the spectral
theorem for mormal operators follows from the one on self-adjoint operators,
once we deal with families of commuting ones.

Let first A be a self-adjoint, operator.

Proposition 84. If A is multiplicity-free, then there is a measure p so that H
is isomorphic with L*(o(A),du) in such a way that the unitary equivalence U
has the property UAU ™! = a- where a- is the operator of multiplication by a.

Proof. If f is, say, continuous, then f(A) is dense in H. We then define U on
this dense set: U(f(A)y) = f. We have

1F (A1 = (F(AY, F(AY) = (FATA, 6) = ST, )
- / Py = |If]l2 (186)

so f(A)Y = g(A)yY ift f = g[duy]. This is a point is where the type of measure
tty, which depends of course on A, is important. The same equality shows that
WU f(A)Y| =11 fll2 = || f(A)¥|| so that U is an isometry, on this dense set, so U
extends to an isometry on H. Clearly, UAf(A)y = af(a), so UAU! = a-.

In general, we can “iterate” the construction: we take any ¢ and look at
the closure H; of the orbit of g(A)¢; if this is not the whole of H, then we
take ¢’ in the orthogonal complement of H; and consider the orbit of that.
This construction requires transfinite induction (Zorn’s lemma). For separable
spaces we can be more constructive, but this is not the main point. Then,

H = @ H, and on each, H,,, the theorem holds, with a different measure.
neN
O

Let A be selfadjoint, unbounded (the bounded case has been dealt with).
Then N = (A —4)~! is a normal operator, and the spectrum of N is 1/(z —
i)(c(A)) = Q, a piece of a circle.

We have

N= [ ndEm) = / (t — i)~ dE, (1) (187)
Q o(A)

We define the operator of multiplication by ¢ on L?(c(A)). To it we attach an
operator A:
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Theorem 26. Let A be self-adjoint. There is a spectral measure E : Bor(R) —
L(H), so that

(i)
D(A) = {x EH: /Rt2d<E(t)a:,a:> < oo}

(i1) For x € D(A) we have

A;vz(/thE)x
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