
RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA

OVIDIU COSTIN AND STAVROS GAROUFALIDIS

Abstract. The Euler-MacLaurin summation formula compares the sum of a function over the lattice
points of an interval with its corresponding integral, plus a remainder term. The remainder term has an
asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some
decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation
interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel summable series, and
give an exact Euler-MacLaurin summation formula.

Using a mild resurgence hypothesis for the function to be summed, we give a Borel summable transseries
expression for the remainder term, as well as a Laplace integral formula, with an explicit integrand which
is a resurgent function itself. In particular, our summation formula allows for resurgent functions with
singularities in the vertical strip containing the summation interval.

Finally, we give two applications of our results. One concerns the construction of solutions of linear
difference equations with a small parameter. And another concerns resurgence of 1-dimensional sums of
quantum factorials, that are associated to knotted 3-dimensional objects.
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2 OVIDIU COSTIN AND STAVROS GAROUFALIDIS

1.1. The Euler-MacLaurin summation formula. The Euler-MacLaurin summation formula relates
summation to integration in the following way (see [O, Sec.8]):

(1)

N
∑

k=1

f

(

k

N

)

= N

∫ 1

0

f(s)ds +
1

2
(f(1) − f(0)) + R(f, N)

where the remainder R(f, N) has an asymptotic expansion

(2) R(f, N) ∼ R̂(f, N)

in the sense of Poincaré, where

(3) R̂(f, N) =

∞
∑

n=1

B2n

(2n)!

(

f (2n−1)(1) − f (2n−1)(0)
) 1

N2n−1
∈ C[[N−1]].

and Bm are the Bernoulli numbers defined by the generating series

(4)
p

ep − 1
=

∞
∑

n=0

Bn

n!
pn.

Typically, the formal power series R̂(f, N) is divergent and Gevrey-1, due to the fact that the n-th
derivative in (3) is not divided by an n!. In the present paper, we discuss an exact form of the Euler-
MacLaurin summation formula, under a resurgence hypothesis of the function f(x); see Proposition 1.2
below.

1.2. Two applications of our exact Euler-MacLaurin summation formula. Our exact form of the
Euler-MacLaurin summation formula has two applications: in Quantum Topology (where one sometimes
needs to apply the Euler-MacLaurin summation formula to a resurgent function that has singularities in the
vertical strip which is perpendicular to the range of summation), and in Borel summability (with respect to
ε) of difference equations with a small ε-parameter. Let us discuss these applications.

Consider a triple t = (a, b, ε) where a, b ∈ Z, b > 0, ε = ±1 and the expression

(5) It(q) =

∞
∑

n=0

qa n(n+1)
2 (q)b

nεn

where (q)n is the quantum factorial defined by:

(6) (q)n =

n
∏

k=1

(1 − qk), (q)0 = 1.

Although It(q) does not makes sense when q is inside or outside the unit disk, it does makes sense when

(a) q is a complex root of unity; in that case It(q) ∈ C.
(b) q = e1/x; in that case It(q) ∈ Q[[1/x]].

Given t as above, consider the power series:

LNP
t

(p) = 1 +
∞
∑

n=0

It(e
2πi
n )pn(7)

LP
t
(p) = B(It(e

1/x))(8)

where B is the Borel transform defined below in Definition 1.1. Our present results, together with [CG3]
and additional arguments, imply the following theorem, which will be presented in detail in a forthcoming
publication [CG2].

Theorem 1. [CG2] For all t as above, the power series LNP
t

(p) and LP
t
(p) are resurgent functions.
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In particular, it follows that the generating series LNP
t

(p) of the Kashaev invariants of the two simplest
knots, the 31 and 41 (corresponding to t = (0, 1, 1) and t = (2,−1,−1)) are resurgent functions.

Another application of our exact Euler-MacLaurin formula is to prove parametric resurgence (i.e., resur-
gence with respect to ε) of a formal (WKB) solution to a linear difference equation with a small parameter:

(9) y(x + ε, ε) = a(x, ε)y(x, ε)

The formal solution of (9) is of the form:

(10) y(x, ε) = exp

(

1

ε

∞
∑

k=0

Fk(x)εk

)

.

Under suitable hypothesis on a(x, ε), Theorem 6 below proves resurgence of the above series for x fixed, and
constructs an actual solution to (9) which is asymptotic to the formal solution (10).

1.3. Known forms of the Euler-MacLaurin summation formula. Before we state our results, let us
recall what is already known. Suppose that f satisfies the following assumption:

f is analytic and satisfies the following bound:

(11) f(x) = O(|x|−s)

for some 0 < δ < 1 and s > 0, uniformly in the right-half plane <(x) ≥ δ.

For such functions f , Hardy proved in [Ha, Sec.13.15] that R̂(f, N) is Borel summable, and that the Borel

sum agrees with the original sum. In other words, the Borel tranform of R̂(f, N) can be extended to the ray

[0,∞), it is integrable of at most exponential growth, and replacing R̂(f, N) with the corresponding Borel
sum replaces the asymptotic relation (2) with an exact identity.

In a different direction, suppose that

f is continuous in the vertical strip 0 ≤ <(x) ≤ 1, holomorphic in its interior, and f(x) = o(e2π|=(x)|)
as |=(x)| → ∞ in the strip, uniformly with respect to <(x).

Then, the Abel-Plana formula states that (see [O, Sec.8.3]):

(12)

N
∑

k=1

f

(

k

N

)

= N

∫ 1

0

f(u)du +
1

2
(f(1) − f(0)) + i

∫ ∞

0

f
(

iy
N

)

− f
(

1 + iy
N

)

− f
(

− iy
N

)

+ f
(

1 − iy
N

)

e2πy − 1
dy.

1.4. What is a resurgent function? The notion of a resurgent function was introduced and studied by
Écalle; see [Ec1]. For our purposes, a resurgent function is one that admits endless analytic continuation
(expect at a countable set of non-accumulating singular points) in the complex plane, and is exponentially
bounded, that is, satisfies an estimate:

(13) |f(z)| < Cea|z|

for large z. Examples of resurgent functions are meromorphic functions, algebraic functions, or Borel trans-
forms of solutions of generic differential equations with analytic coefficients. The nth coefficient of the Taylor
series of a resurgent function around a regular point has a manifest asymptotic expansion with respect to
1/n that include small exponential corrections; see for example [CG1, Sec.7]. This property of resurgent
functions is key in applications to quantum topology, where a main problem is to show the existence of
asymptotic expansions. For example, an asymptotic expansion of the coefficients of the power series (3) is
almost trivial (for a fixed function f). On the other hand, the existence of asymptotic expansion for the
coefficients of F31(x) and F41(x) (or more generally, Fa,b,c(e

1/x)) is a highly non-trivial fact that follows from

the resurgence of the Borel transform of Fa,b,c(e
1/x); see [CG2].

For an introduction to resurgent functions and their properties, we refer the reader to the survey articles
[CNP1, CNP2, D, DP, Ma, Sa] and for a thorough study, the reader may consult Écalle’s original work
[Ec1, Ec2]. Let us point out, however, that our main results (Theorems 2 and 4 below) do not require any
substantial knowledge of resurgence.
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1.5. Statement of the results. Let us recall a useful definition.

Definition 1.1. The (formal) Borel transform of a formal power series in 1/N is a formal power series in p
defined by:

(14) B : C[[N−1]] −→ C[[p]], B

(

∞
∑

n=0

an
1

Nn+1

)

=

∞
∑

n=0

an

n!
pn.

Let Gf (p) denote the Borel transform of the power series R̂(f, N).

Theorem 2. If f(x) is resurgent and f ′(x) is continuous at x = 0, 1 then Gf (p) is given by:

(15) Gf (p) =
1

4π2

∞
∑

n=1

1

n2

(

f ′
(

1 +
p

2πin

)

+ f ′
(

1 −
p

2πin

)

− f ′
( p

2πin

)

− f ′
(

−
p

2πin

))

In particular, Gf (p) is resurgent with singularities given by

(16) N = {2πinω, 2πin(ω − 1) | n ∈ Z∗, ω = singularity of f ′}.

Let us consider a function f(x) that satisfies the following:

(A1) f is resurgent with no singularities in the vertical strip 0 ≤ <(x) ≤ 1, and f(u) = o(e2π|=(u)|) as
|=(u)| → ∞ in the strip, uniformly with respect to <(u).

Then, we have the following exact form of the Euler-MacLaurin summation formula.

Proposition 1.2. Under the hypothesis (A1), for every N ∈ N we have:

(17)

N
∑

k=1

f

(

k

N

)

= N

∫ 1

0

f(s)ds +
1

2
(f(1) − f(0)) +

∫ ∞

0

e−NpGf (p)dp.

In particular, the left-hand side of the above equation is the evaluation at N of an analytic function in the
right hand plane.

Our proof of Proposition 1.2 allows to generalize to the case that f is resurgent with singularities in the
vertical strip 0 ≤ <(x) ≤ 1; see Theorem 4 in Section 3.2. In that case, every singularity λ of f in the vertical
strip gives rise to exponentially small corrections, and the right hand side of Equation (17) is replaced by a
transseries.

Finally, let us give an integral formula for Gf (p) which is useful in studying the behavior of Gf (p) for
large p.

Theorem 3. With the assumptions of Theorem 2 we have:

(18) Gf (p) =
1

(2πi)3

∫ ∞

0

∫

γ0

u

eu − 1

(

f(s)

s2
(e

pu
2πis + e−

pu
2πis ) −

f(1 + s)

(1 + s)2
(e

pu
2πi(1+s) + e−

pu
2πi(1+s) )

)

dsdu

where γ0 is a small circle around 0 oriented counterclockwise.

Let us end the introduction with some remarks.

Remark 1.3. Theorem 2, and especially Theorem 4 below provide a new construction of resurgent functions.
Best known resurgent functions are those that satisfy a difference or differential equation, linear or not; see
for example [Br, BrK, C1] and [Ec2].

On the other hand, due to the position and shape of their singularities, the resurgent functions Gf (p) of
Theorem 2 do not seem to satisfy any differential equations with polynomial coefficients.

For example, consider the function f(x) = (x−ω)−m where ω 6∈ [0, 1] which satisfies the linear differential
equation with polynomial coefficients:

(x − ω)f ′(x) − mf(x) = 0.

f is resurgent, with only one singularity at x = ω. The corresponding resurgent function Gf (p) of Theorem 2
Gf (p) has infinitely many singularities on the rays 2πiωR+, 2πiωR−, 2πi(ω− 1)R+, 2πi(ω− 1)R−. It seems
unlikely that Gf (p) satisfies a linear (or a nonlinear) differential equation with polynomial coefficients.
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Remark 1.4. Let us point out that Theorem 2 implies that the shape of the singularities of Gf (p) is the
same as that of f ′(x). For example, if f ′(x) is simply ramified, then so is Gf (p). We recall that a resurgent
function h(x) is simply ramified if, locally, at each singularity ω of h(x) we have:

(19) h(x) = P

(

1

x − ω

)

+
1

2πi
log(x − ω)r(x − ω) + s(x − ω)

where s, r are convergent germs, and P is a polynomial.

1.6. Acknowledgement. An early version of this paper was presented by the second author at talks in
Columbia University, Université Paris VII and Orsay in the spring and fall of 2006. The authors wish
to thank J. Écalle for encouraging conversations. The second author wishes to thank G. Masbaum, W.
Neumann, D. Thurston for their hospitality.

2. Proof of Theorem 2

2.1. Computation of the Borel transform Gf (p). Let ~ denote the Hadamard product of power series:

(20)

(

∞
∑

n=0

bnpn

)

~

(

∞
∑

n=0

cnpn

)

=

∞
∑

n=0

bncnpn.

It is classical, and easy to check, that the Hadamard product A~B of two functions A(p) and B(p) analytic
at p = 0 is also given by an integral formula:

(21) (A ~ B)(p) =
1

2πi

∫

γ

A(s)B
(p

s

)

ds,

where γ is a suitable contour around the origin. For a detailed explanation of the above formula, see [Ju,
p.302] and also [Bo, p.245].

Let Gf (p) denote the formal Borel transform of the power series in (2). Since Bm = 0 for odd m > 1, we
have:

Gf (p) = B

(

∞
∑

n=1

B2n

(2n)!

(

f (2n−1)(1) − f (2n−1)(0)
) 1

N2n−1

)

=

∞
∑

n=1

B2n

(2n)!

(

f (2n−1)(1) − f (2n−1)(0)
) p2n−2

(2n − 2)!

=

∞
∑

m=2

Bm

m!

(

f (m−1)(1) − f (m−1)(0)
) pm−2

(m − 2)!

=

(

∞
∑

m=2

Bm

m!
pm−2

)

~

(

∞
∑

m=2

(

f (m−1)(1) − f (m−1)(0)
) pm−2

(m − 2)!

)

= g1(p) ~ g2(p)

where

g1(p) =
∞
∑

m=2

Bm

m!
pm−2 =

1

p

(

1

ep − 1
−

1

p
+

1

2

)

(22)
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and

g2(p) =

∞
∑

m=2

(

f (m−1)(1) − f (m−1)(0)
) pm−2

(m − 2)!
(23)

=
d

dp

(

∞
∑

m=2

(

f (m−1)(1) − f (m−1)(0)
) pm−1

(m − 1)!

)

=
d

dp
(f(1 + p) − f(p) − f(1) + f(0)) = f ′(1 + p) − f ′(p).

Consider positive numbers r0 and δ such that g1(p) is analytic for |p| < r0 (eg, r0 < 2π) and g2(p) is analytic
for |p| < δ–the latter is possible by Equation (23) and our assumptions on f .

Now, Equation (21) implies that

(24) Gf (p) =
1

2πi

∫

γ

g1(s)g2

(p

s

) ds

s

for all p with |p| < δr, where γ is a circle around 0 with radius r < r0.
With our assumptions, when |p| < δr, the function s 7→ g2(p/s) has no singularities outside of γ. Thus,

outside of γ, the singularities of g1(s)g2(p/s)/s are simple poles at the points 2πin for n ∈ Z∗, with residues

Res

(

g1(s)g2

(p

s

) 1

s
, s = 2πin

)

= Res(g1(s), s = 2πin) g2

( p

2πin

) 1

2πin

= −
1

4π2n2
g2

( p

2πin

)

.

Moreover, g1(s) = O(1/s) when the distance of s from 2πiZ∗ is greater than 0.1 and g2(p/s) = O(1) for s
large, thus the integrand vanishes at infinity.

We now enlarge the circle γ and collect the corresponding residues by Cauchy’s theorem. Using the above
calculation of the residue and Equation (23), it follows that

Gf (p) =
1

4π2

∞
∑

n=1

1

n2

(

g2

( p

2πin

)

+ g2

(

−
p

2πin

))

=
1

4π2

∞
∑

n=1

1

n2

(

f ′
(

1 +
p

2πin

)

+ f ′
(

1 −
p

2πin

)

− f ′
( p

2πin

)

− f ′
(

−
p

2πin

))

Since f ′(x) is regular at x = 0, 1, it follows that the above series is convergent for p ∈ C−N , where N is
defined in (16). In addition, we conclude that Gf (p) has endless analytic continuation with singularities in
N .

It remains to prove that Gf (p) is exponentially bounded, assuming that f is. If f is exponentially bounded,
Cauchy’s formula implies that f ′ is exponentially bounded. Then, we have:

∣

∣

∣
f ′
(

1 +
p

2πin

)
∣

∣

∣
≤ C exp

(

a
∣

∣

∣
1 +

p

2πin

∣

∣

∣

)

≤ Cea exp

(

a
|p|

2π

)

.

Thus,

|Gf (p)| ≤
C(ea + 1)

2π2
exp

(

a
|p|

2π

) ∞
∑

n=1

1

n2
=

C(ea + 1)

12
exp

(

a
|p|

2π

)

.

This completes the proof of Theorem 2. �



RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA 7

3. An exact form of Euler-Maclaurin summation formula

3.1. Proof of Proposition 1.2. Proposition 1.2 follows easily from the Abel-Plana formula; see Appendix
A. However, we give a proof of Proposition 1.2 that allows us to generalize to Theorem 4 below.

Consider a resurgent function f that satisfies the assumptions (A1), and let us introduce the function

h(u) =
N

2
f(u)

eπiNu + e−πiNu

eπiNu − e−πiNu

and the contour ΓR,δ which is a rectangle oriented counterclockwise with vertices −iR, 1 − iR, 1 + iR, iR
that excludes the points 0, 1 together with small semicircles of radius δ at the points 0 and 1.

1C

2C4C

3C

0 1

iR

−iR

0 1

Figure 1. The contours C1, C2, C3, C4 of the critical strip, and a truncated contour ΓR,δ

Due to our assumptions on f , the singularities of h(u) inside ΓR,δ are simple poles at k/N with residue
f(k/N)/(2πi) for k = 1, . . . , N − 1. The residue theorem implies that

(25)

n
∑

k=1

f

(

k

N

)

=
N

2

∫

ΓR,δ

f(u)
eπiNu + e−πiNu

eπiNu − e−πiNu
du.

Let Γ+
R,δ (resp. Γ−

R,δ) denote the upper (resp. lower) part of the contour Γ. Since f(x) has no singularities

in <(u) ∈ [0, 1], the residue theorem implies that

(26) −N

∫ 1

0

f(u)du =
N

2

∫

Γ+
R,δ

f(u)du −
N

2

∫

Γ−

R,δ

f(u)du.

Adding up Equations (25), (26) and using

1

2

z + z−1

z − z−1
+

1

2
=

1

1 − z−2

1

2

z + z−1

z − z−1
−

1

2
=

1

z2 − 1

we obtain that

(27)

N−1
∑

k=1

f

(

k

N

)

− N

∫ 1

0

f(u)du = N

∫

Γ+
R,δ

f(u)

1 − e−2πiNu
du + N

∫

Γ−

R,δ

f(u)

e2πiNu − 1
du

Now let R → ∞. Due to assumption (A1), the integrals over the horizontal parts of Γ±
R,δ approach zero.

Next, let δ → 0. Since f is continuous, the integral around the quarter circle that links δ to iδ tends to
−f(0)/4. The other quarter circles are treated similarly.

Thus, we have:
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N
∑

k=1

f

(

k

N

)

− N

∫ 1

0

f(u)du =
1

2
(f(1) − f(0))

+

∫

C2

f(u) − f(1)

1 − e−2πiNu
du +

∫

C4

f(u) − f(0)

1 − e−2πiNu
du +

∫

C1

f(u) − f(1)

e2πiNu − 1
du +

∫

C3

f(u) − f(0)

e2πiNu − 1
du.

Consider now the corresponding function Gf (p) from Theorem 2. We have:

Gf (p) = G1(p) + G2(p) + G3(p) + G4(p)

where

G1(p) =
1

4π2

∞
∑

n=1

1

n2
f ′
(

1 +
p

2πin

)

G2(p) =
1

4π2

∞
∑

n=1

1

n2
f ′
(

1 −
p

2πin

)

G3(p) = −
1

4π2

∞
∑

n=1

1

n2
f ′
( p

2πin

)

G4(p) = −
1

4π2

∞
∑

n=1

1

n2
f ′
(

−
p

2πin

)

.

Consider the contours C1, C2, C3, C4 on the boundary of our strip, as shown in Figure 1.
We claim that the Laplace transform of the Gj(p) for j = 1, . . . , 4 is given by:

(28)

∫ ∞

0

e−NpGj(p) =



















































N

∫

Cj

f(u) − f(1)

e2πiNu − 1
du for j = 1

N

∫

Cj

f(u) − f(0)

e2πiNu − 1
du for j = 3

N

∫

Cj

f(u) − f(1)

1 − e−2πiNu
du for j = 2

N

∫

Cj

f(u) − f(0)

1 − e−2πiNu
du for j = 4.

Let us show this for j = 3; the other integrals are treated in the same way. We compute as follows:

∫ ∞

0

e−NpG3(p) = −
1

4π2

∫ ∞

0

∞
∑

n=1

e−Np 1

n2
f ′
( p

2πin

)

dp by interchanging sum and integral

=
1

2πi

∫

C3

∞
∑

n=1

e−2πiNnu

n
f ′(u)du by p = 2πinu

= −
1

2πi

∫

C3

log(1 − e−2πiNu)f ′(u)du by (29)

= N

∫

C3

f(u) − f(0)

e2πiNu − 1
du by integration by parts

where

(29)
∞
∑

n=1

e−2πiNnu

n
= − log(1 − e−2πiNu)

This concludes the proof of Proposition 1.2 in case f satisfies (A1). �



RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA 9

Let us end this section with a remark.

Remark 3.1. If f(x) = ecx, one may verify Equation (15) directly by using the Mittag-Leffler decomposition
of the function x/(ex − 1).

3.2. Euler-MacLaurin summation for functions with singularities in the vertical strip. In this
section we consider a function f that satisfies the following assumptions:

(A2) f is resurgent, and let Λ denote its set of singularities on the critical strip 0 ≤ <(x) ≤ 1. We assume
that λ 6∈ [0, 1] for all λ ∈ Λ, and f(u) = o(e2π|=(u)|) as |=(u)| → ∞ in the strip, uniformly with
respect to <(u). We also assume that on a vertical ray λ+iR+, we have f(u)e−2π=(u) ∈ L1(λ+iR+).

(A3) For every λ ∈ Λ there exist a holomorphic germ hλ(u) and real numbers αλ, βλ so that for u near 0
we have:

(30) f(u + λ) = uαλ(log u)βλhλ(u).

(A4) For simplicity, let us also assume that <(λ) 6= <(λ′) for λ 6= λ′, and that Λ is a finite set.

Let

(31) (LG)(x) =

∫ x

0

e−xpG(p)dp

denote the Laplace transform of G(p). We denote by fλ(u) the variation (or jump) of the multivalued
function f(u + λ) at u; where u lies the vertical ray starting at 0 (see for example, [Ma]). We also define:

(32) Gf,λ,m(p) = i
1

2πm
fλ

(

ip

2πm

)

.

In case f(u + λ) is single-valued then Gf,λ,m(p) is a distribution supported at p = 0.
Then, we have the following exact form of the Euler-MacLaurin summation formula.

Theorem 4. (a) If f satisfies (A1-A4) and αλ > −1 for all λ ∈ Λ, then for every N ∈ N we have:

N
∑

k=1

f

(

k

N

)

= N

∫ 1

0

f(s)ds +
1

2
(f(1) − f(0)) + (LGf )(N)(33)

+ Ne2πiλN
∑

λ:=(λ)>0

∞
∑

m=0

e2πiλmN (LGf,λ,m)(N)

+ Ne−2πiλN
∑

λ:=(λ)<0

∞
∑

m=0

e−2πiλmN (LGf,λ,m)(N)

(b) If some αλ ≤ −1, Equation (33) is true after integration by parts M -times where M ≥ maxλ:αλ≤−1[−αλ].

Proof. Without loss of generality, let us assume that f has a single singularity λ in the vertical strip 0 ≤
<(x) ≤ 1 with =(λ) > 0.

Use the modified contour ΓR,δ,λ in Figure 2.
Let HR denote the portion of ΓR,δ,λ that consists of the truncated Hankel contour around λ, and SR,δ =

ΓR,δ,λ − HR. Equations (25) and (26) become:

(34) −
N

2

∫

HR

f(u)
eπiNu + e−πiNu

eπiNu − e−πiNu
du +

n
∑

k=1

f

(

k

N

)

=
N

2

∫

SR,δ

f(u)
eπiNu + e−πiNu

eπiNu − e−πiNu
du

and

(35) −
N

2

∫

HR

f(u)du − N

∫ 1

0

f(u)du =
N

2

∫

S+
R,δ

f(u)du −
N

2

∫

S−

R,δ

f(u)du.

Adding up, the extra contribution from HR becomes:
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iR

−iR

10
λ λ

Figure 2. The modified truncated contour ΓR,δ,λ on the left and a Hankel contour H on the right.

(36) −N

∫

HR

f(u)

1 − e−2πiNu
du

Now let R → ∞. Notice that f(u + λ) is uniformly L1 for u near 0 iff αλ > −1 for all λ. Using this and our
integrability assumption (A2), it follows that in the limit the above integral equals to

Iλ = −N

∫

H

f(u)

1 − e−2πiNu
du

= −Ni

∫ ∞

0

fλ(is)

1 − e−2πiN(λ+is)
ds.

Now, λ = λ1 + iλ2 with λ2 > 0, and we may write

1

1 − e−2πiN(λ+is)
=

1

1 − ω−Ne2πNs

= −ωNe−2πNs
∞
∑

m=0

ωNme−2Nms

where ω = e2πiλ satisfies |ω| < 1. Thus,

Iλ = −NωN
∞
∑

m=0

ωNm(LGλ,m)(N).

Part (a) of Theorem 4 follows. Part (b) follows from the fact that if f(u + λ) has a local expansion of the
form (30), and F (s)(u) = f(u), then F (u + λ) as a local expansion of the form:

(37) F (u + λ) = uαλ+s(log u)βλHλ(u)

for a holomorphic germ Hλ(u). Cf. also [C1, Thm.1]. �

3.3. Euler-MacLaurin with logarithmic singularities at x = 0. In this section we consider functions
f(x) that have a logarithmic singularity at x = 0. Motivated by our applications to quantum topology, we
consider functions f of the form:

(38) f(x) = c log x + g(x)

where g that satisfies (A1), and c ∈ C. Let us define
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(39) H(p) =
1

p2

(

p

ep − 1
− 1 +

p

2

)

It is easy to see that H(p) is analytic at p = 0. In fact, the Taylor series of H at p = 0 is given by:

(40)
∞
∑

n=1

B2n

(2n)!
p2n−2

Theorem 5. Under the above hypothesis, for every N ∈ N we have:

(41)

N
∑

k=1

f

(

k

N

)

= N

∫ 1

0

f(s)ds +
c

2
log N +

c

2
log(2π) +

1

2
(g(1) − g(0)) + L(Gg + cH)(N).

Proof. Since f is given by (38), we have:

N
∑

k=1

f

(

k

N

)

= c log

(

N !

NN

)

+

N
∑

k=1

g

(

k

N

)

Recall now from [Ha, Sec.13.15] the following exact form of Stirling’s formula:

(42) log

(

N !

NN

)

=
1

2
log N − N +

1

2
log(2π) + (LH)(N).

Applying Proposition 1.2 to g gives:

N
∑

k=1

g

(

k

N

)

= N

∫ 1

0

g(s)ds +
1

2
(g(1) − g(0)) + (LGg)(N).

Adding up, and using

N

∫ 1

0

f(s)ds = N

∫ 1

0

g(s)ds + Nc

∫ 1

0

log sds = N

∫ 1

0

g(s)ds − Nc

we obtain (41). The result follows. �

4. Parametric resurgence of difference equations with a parameter

Consider the first order linear difference equation with a small parameter ε:

(43) y(x + ε, ε) = a(x, ε)y(x, ε)

where a(x, ε) is smooth. (43) has a unique formal solution (often called a WKB solution) of the form:

(44) y(x, ε) = e
1
ε

P

∞

k=0 Fk(x)εk

where Fj(0) = 0. See for example, [CC] and [GG]. For simplicity, suppose that a(x, ε) = a(x) is independent
of ε. Under the stated assumptions, the next theorem gives an exact solution to (43) which is asymptotic to
the formal solution (44).

Theorem 6. (a) For all x such that s → log a(sx) satisfies (A1) we have:

(45)
1

ε

∞
∑

k=0

Fk(x)εk ∼
1

ε

∫ x

0

log a(q)dq −
1

2
log a(x) +

1

2
log a(0) +

∫ ∞

0

e−q/εG(q, x)dq
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where

(46) G(q, x) =
1

4π2

∞
∑

n=1

1

n2

(

a′
(

x + q
2πin

)

a
(

x + q
2πin

) +
a′
(

x − q
2πin

)

a
(

x − q
2πin

) −
a′
(

q
2πin

)

a
(

q
2πin

) −
a′
(

− q
2πin

)

a
(

− q
2πin

)

)

=
1

(2πi)3

∫ ∞

0

∫

γ0

u

eu − 1

(

log a(s)

s2
(e

pu
2πis + e−

pu
2πis ) −

log a(x + s)

(x + s)2
(e

pu

2πi(x+s) + e−
pu

2πi(x+s) )

)

dsdu.

where γ0 is a small circle around 0 oriented counterclockwise.
(b) Moreover, (43) has a solution y(x, ε) of the form:

(47) y(x, ε) =

√

a(0)

a(x)
exp

(

1

ε

∫ x

0

log a(q)dq +

∫ ∞

0

e−q/εG(q, x)dq

)

.

Remark 4.1. It follows that the singularities of G(q, x) are of the form 2πinλ or 2πin(λ−x) where n ∈ Z∗ and
λ is a singularity of log a. These type of singularities appear in parametric (i.e., co-equational) resurgence

of Écalle; see [Ec2].
The proof of Theorem 6 indicates the close relation between the Euler-MacLaurin summation formula

and the formal solutions of a linear difference equation with a parameter.
From that point of view, resurgence of Gf (p) translates to parametric resurgence of formal solutions of

linear difference equations. In the case of formal solutions of linear differential equations with a parameter,
Écalle shows that their singularities are of the form n(αi − x) for n = −1, 1, 2, 3, . . . ; see [Ec2, Eqn.(6.9)].

Proof. (a) Let z(x, ε) = log y(x, ε). Taking the logarithm of (43), it follows that

z(kε + ε, ε) = log a(kε) + z(kε, ε).

Summing up for k = 0, . . . , N − 1 and using the variable

(48) x = Nε

we obtain that:

z(x, ε) − z(0, ε) =

N−1
∑

k=0

log a(kε)

= − loga(x) + log a(0) +

N
∑

k=1

log a(xk/N).

Let us fix x and apply Proposition 1.2 to the function s → log a(sx). We obtain that

z(x, ε) − z(0, ε) = N

∫ 1

0

log a(xs)ds −
1

2
log a(x) +

1

2
log a(0) +

∫ ∞

0

e−NpH(p, x)dp

=
1

ε

∫ x

0

log a(s)ds −
1

2
log a(x) +

1

2
log a(0) +

∫ ∞

0

e−xp/εH(p, x)dp

=
1

ε

∫ x

0

log a(s)ds −
1

2
log a(x) +

1

2
log a(0) +

∫ ∞

0

e−q/εH
( q

x
, x
) dq

x

where by Theorems 2 and 3 we have:

H(p, x) =
x

4π2

∞
∑

n=1

1

n2

(

a′
(

x
(

1 + p
2πin

))

a
(

x
(

1 + p
2πin

)) +
a′
(

x
(

1 − p
2πin

))

a
(

x
(

1 − p
2πin

)) −
a′
(

x p
2πin

)

a
(

x q
2πin

) −
a′
(

−x p
2πin

)

a
(

−x p
2πin

)

)

=
1

(2πi)3

∫ ∞

0

∫

γ0

u

eu − 1

(

log a(sx)

s2
(e

pu
2πis + e−

pu
2πis ) −

log a((1 + s)x)

(1 + s)2
(e

pu

2πi(1+s) + e−
pu

2πi(1+s) )

)

dsdu.
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Since H(q/x, x)/x = G(q, x) (where G(q, x) is given by (46)) and z(0, ε) = 0, it follows that for all ε > 0 and
k ∈ Z we have:

(49) z(kε + ε, ε) = log a(kε) + z(kε, ε).

To prove (b), let us consider the difference

E(x, ε) = ε(log y(x + ε, ε) − log a(x) − log y(x, ε)).

It follows by definition that E(x, ε) is analytic in (x, ε). Thus,

E(x, ε) =

∞
∑

i,j=0

cijx
iεj .

Moreover, (49) implies that for all ε > 0 and all k ∈ Z we have:

0 = F (kε, ε) =

∞
∑

i,j=0

cijk
iεi+j .

Thus ci,j = 0 for all i, j and E(x, ε) = 0. This completes the proof of (b).
The definition of y(x, ε) by a Laplace integral and Watson’s lemma (see [O, Sec.4.3.1]) implies that

y(x, ε) ∼
1

ε

∞
∑

k=0

φk(x)εk

for analytic functions φk(x) that satisfy φk(0) = 0. Since a formal WKB solution given by (44) is unique, it
follows that Fk(x) = φk(x) for all k. Thus, (a) follows. �

Remark 4.2. Theorem 6 can be generalized when

a(x, ε) =

∞
∑

k=0

ak(x)εk

is analytic with respect to (x, ε), and the coefficients ak(x) are resurgent functions. It may also be generalized
to the case of higher order linear difference equations with a parameter. This will be explained elsewhere.

Remark 4.3. The reader may compare Theorem 6 with the results of the last section of [Sa].

5. An integral formula for Gf (p)

In this section we give a proof of Theorem 3. We follow the ideas of [C2] to convert the sum of Equation
(15) into an integral. Let us show that

(50)

∞
∑

n=1

1

n2
f ′
( p

2πin

)

=
1

2πi

∫ ∞

0

∫

γ0

uf(s)

s2(eu − 1)
e

pu
2πis dsdu

and similarly for the sum of the other three terms in (15).
To prove Equation (50), we first expand f ′ at p = 0, then take a Laplace transform with respect to the

summation variable n, interchange the order of summation and sum the geometric series. We obtain that:

∞
∑

n=1

1

n2
f ′
( p

2πin

)

=
∞
∑

n=1

∞
∑

j=0

f (j+1)(0)

j!

( p

2πi

)j 1

nj+2

=

∞
∑

n=1

∞
∑

j=0

f (j+1)(0)pj

j!(j + 1)!(2πi)j

∫ ∞

0

e−nuuj+1du

=

∞
∑

j=0

∫ ∞

0

f (j+1)(0)pj

j!(j + 1)!(2πi)j
uj+1 1

eu − 1
du
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Using Cauchy’s formula

f (j+1)(0)

(j + 1)!
=

1

2πi

∫

γ0

f(s)

sj+2
ds

and interchanging summation and integration it follows that:
∞
∑

n=1

1

n2
f ′
( p

2πin

)

=
1

2πi

∞
∑

j=0

∫ ∞

0

∫

γ0

f(s)pj

j!sj+2

uj+1

(2πi)j

1

eu − 1
dsdu

=
1

2πi

∫ ∞

0

∫

γ0

uf(s)

s2(eu − 1)

∞
∑

j=0

1

j!

( pu

2πis

)j

dsdu

=
1

2πi

∫ ∞

0

∫

γ0

uf(s)

s2(eu − 1)
e

pu
2πis dsdu.

The interchanges of summation and integration are justified by dominated convergence. This concludes the
proof of (50) and Theorem 3. �

Appendix A

For completeness, let us show how the Abel-Plana formula implies Proposition 1.2. With the notation as
in Proposition 1.2, we claim that for every N ∈ N we have:

−i

∫ ∞

0

f
(

1 + iy
N

)

− f(1)

e2πy − 1
=

1

4π2

∞
∑

n=1

1

n2

∫ ∞

0

e−Npf ′
(

1 −
p

2πin

)

dp(51)

i

∫ ∞

0

f
(

1 − iy
N

)

− f(1)

e2πy − 1
=

1

4π2

∞
∑

n=1

1

n2

∫ ∞

0

e−Npf ′
(

1 +
p

2πin

)

dp(52)

i

∫ ∞

0

f
(

iy
N

)

− f(0)

e2πy − 1
= −

1

4π2

∞
∑

n=1

1

n2

∫ ∞

0

e−Npf ′
(

−
p

2πin

)

dp(53)

−i

∫ ∞

0

f
(

− iy
N

)

− f(0)

e2πy − 1
= −

1

4π2

∞
∑

n=1

1

n2

∫ ∞

0

e−Npf ′
( p

2πin

)

dp.(54)

Adding up, and using the Abel-Plana formula (12), gives a proof of Proposition 1.2. Let us give the proof
of (51) and leave the rest as an exercise. For y > 0, we have e−2πy < 1 and the geometric series gives:

(55)
1

e2πy − 1
=

∞
∑

n=1

e−2πny.

Interchanging summation and integration, changing variables 2πny = Np and integrating by parts (justified
by the hypothesis (A1)), we obtain that

−i

∫ ∞

0

f
(

1 + iy
N

)

− f(1)

e2πy − 1
= −i

∞
∑

n=1

∫ ∞

0

e−2πny

(

f

(

1 +
iy

N

)

− f(1)

)

dy

= −
iN

2π

∞
∑

n=1

1

n

∫ ∞

0

e−Np
(

f
(

1 −
p

2πin

)

− f(1)
)

dp

=
i

2π

∞
∑

n=1

1

n

∫ ∞

0

(e−Np)′
(

f
(

1 −
p

2πin

)

− f(1)
)

dp

=
1

4π2

∞
∑

n=1

1

n2

∫ ∞

0

e−Npf ′
(

1 −
p

2πin

)

dp.
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