
SHARP HARDY-LERAY INEQUALITY FOR AXISYMMETRIC
DIVERGENCE-FREE FIELDS

O. COSTIN1 AND V. MAZ’YA2

Abstract. We show that the sharp constant in the classical n-dimensional
Hardy-Leray inequality can be improved for axisymmetric divergence-free fields,
and find its optimal value. The same result is obtained for n = 2 without the
axisymmetry assumption.
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1. Introduction

Let u denote a C∞0 (Rn) vector field in Rn. The following n-dimensional gener-
alization of the one-dimensional Hardy inequality [1],

(1.1)
∫

Rn

|u|2

|x|2
dx ≤ 4

(n− 2)2

∫
Rn

|∇u|2dx

appears for n = 3 in the pioneering Leray’s paper on the Navier-Stokes equations
[2]. The constant factor on the right-hand side is sharp. Since one frequently
deals with divergence-free fields in hydrodynamics, it is natural to ask whether this
restriction can improve the constant in (1.1).

We show in the present paper that this is the case indeed if n > 2 and the
vector field u is axisymmetric by proving that the aforementioned constant can be
replaced by the (smaller) optimal value

(1.2)
4

(n− 2)2

(
1− 8

(n+ 2)2

)
which, in particular, evaluates to 68/25 in three dimensions. This result is a special
case of a more general one concerning a divergence-free improvement of the multi-
dimensional sharp Hardy inequality

(1.3)
∫

Rn

|x|2γ−2|u|2dx ≤ 4
(2γ + n− 2)2

∫
Rn

|x|2γ |∇u|2dx
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Let φ be a point on the (n − 2)-dimensional unit sphere Sn−2 with spherical
coordinates {θj}j=1,...,n−3 and ϕ, where θj ∈ (0, π) and ϕ ∈ [0, 2π). A point x ∈ Rn

is represented as a triple (ρ, θ,φ), where ρ > 0 and θ ∈ [0, π]. Correspondingly, we
write u = (uρ, uθ,uφ) with uφ = (uθn−3 , ..., uθ1 , uϕ).

The condition of axial symmetry means that u depends only on ρ and θ.

For higher dimensions, our result is as follows.

Theorem 1. Let γ 6= 1−n/2, n > 2, and let u be an axisymmetric divergence-free
vector field in C∞0 (Rn). We assume that u(0) = 0 for γ < 1− n/2. Then

(1.4)
∫

Rn

|x|2γ−2|u|2dx ≤ Cn,γ

∫
Rn

|x|2γ |∇u|2dx

with the best value of Cn,γ given by

(1.5) Cn,γ =
4

(2γ + n− 2)2

(
1− 2

n+ 1 + (γ − n/2)2

)
for γ ≤ 1, and by

(1.6) C−1
n,γ =

(n
2

+ γ − 1
)2

+ min
{
n− 1, 2 + min

x≥0

(
x+

4(n− 1)(γ − 1)
x+ n− 1 + (γ − n/2)2

)}
for γ > 1.

The two minima in (1.6) can be calculated in closed form, but their expressions
for arbitrary dimensions turn out to be unwieldy, and we omit them.

However, the formula for C3,γ is simple.

Corollary 1. For n = 3 inequality (1.4) holds with the best constant

(1.7) C3,γ =


4

(2γ + 1)2
· 2 + (γ − 3/2)2

4 + (γ − 3/2)2
, for γ ≤ 1

4
8 + (1 + 2γ)2

, for γ > 1.

For n = 2, we obtain the sharp constant in (1.4) without axial symmetry of the
vector field.

Theorem 2. Let γ 6= 0, n = 2, and let u be a divergence-free vector field in
C∞0 (R2). We assume that u(0) = 0 for γ < 0. Then inequality (1.4) holds with the
best constant

(1.8) C2,γ =


γ−2 1 + (1− γ)2

3 + (1− γ)2
for γ ∈ [−

√
3− 1,

√
3− 1]

(γ2 + 1)−1 otherwise.
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2. Proof of Theorem 1

In the spherical coordinates introduced above, we have

(2.9) div u = ρ1−n ∂

∂ρ

(
ρn−1uρ

)
+ ρ−1(sin θ)2−n ∂

∂θ

(
(sin θ)n−2uθ

)
+

n−3∑
k=1

(ρ sin θ sin θn−3 · · · sin θk+1)−1(sin θk)−k ∂

∂θk

(
(sin θk)kuθk

)
+ (ρ sin θ sin θn−3 · · · sin θ1)−1 ∂uϕ

∂ϕ

Since the components uϕ and uθk
, k = 1, ..., n − 3, depend only on ρ and θ, (2.9)

becomes

(2.10) div u = ρ1−n ∂

∂ρ

(
ρn−1uρ(ρ, θ)

)
+ ρ−1(sin θ)2−n ∂

∂θ

(
(sin θ)n−2uθ(ρ, θ)

)
+

n−3∑
k=1

k(sin θn−3 · · · sin θk+1)−1 cot θk
uθk

(ρ, θ)
ρ sin θ

By the linear independence of the functions

1, (sin θn−3 · · · sin θk+1)−1 cot θk, k = 1, ..., n− 3

the divergence-free condition is equivalent to the collection of n− 2 identities

(2.11) ρ
∂uρ

∂ρ
+ (n− 1)uρ +

(
∂

∂θ
+ (n− 2) cot θ

)
uθ = 0

(2.12) uθk
= 0, k = 1, ..., n− 3

If the right-hand side of (1.4) diverges, there is nothing to prove. Otherwise, the
matrix ∇u is O(|x|m), with m > −γ − n/2, as x → 0. Since u(0) = 0, we have
u(x) = O(|x|m+1) ensuring the convergence of the integral on the left-hand side of
(1.4). We introduce the vector field

(2.13) v(x) = u(x)|x|γ−1+n/2

The inequality (1.4) becomes

(2.14)
(

1
Cn,γ

−
(n

2
+ γ − 1

)2
) ∫

Rn

|v|2

|x|n
dx ≤

∫
Rn

|∇v|2

|x|n−2
dx

The condition div u = 0 is equivalent to

(2.15) ρ div v =
(
n− 2

2
+ γ

)
vρ
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To simplify the exposition, we assume first that vφ = 0. Now, (2.15) can be
written as

(2.16) ρ
∂vρ

∂ρ
+

(n
2
− γ

)
vρ +Dvθ = 0

where

(2.17) D :=
∂

∂θ
+ (n− 2) cot θ

Note that D is the adjoint of −∂/∂θ with respect to the scalar product∫ π

0

f(θ)g(θ)(sin θ)n−2dθ

A straightforward though lengthy calculation yields

(2.18) ρ2|∇v|2 = ρ2
(∂vρ

∂ρ

)2

+ ρ2
(∂vθ

∂ρ

)2

+
(∂vρ

∂θ

)2

+
(∂vθ

∂θ

)2

+ v2
θ + (n− 1)v2

ρ + (n− 2)(cot θ)2v2
θ + 2

(
vρDvθ − vθ

∂vρ

∂θ

)
Hence

(2.19) ρ2

∫
Sn−1

|∇v|2ds =
∫

Sn−1

{
ρ2

(∂vρ

∂ρ

)2

+
(∂vθ

∂θ

)2

+ ρ2
(∂vθ

∂ρ

)2

+
(∂vρ

∂θ

)2

+ v2
θ + (n− 1)v2

ρ + (n− 2)(cot θ)2v2
θ + 4vρDvθ

}
ds

Changing the variable ρ to t = log ρ, and applying the Fourier transform with
respect to t,

v(t, θ) 7→ w(λ, θ)
we derive

(2.20)
∫

Rn

|∇v|2

|x|n−2
dx

=
∫

R

∫
Sn−1

{
(λ2 + n− 1)|wρ|2 + (λ2 − n+ 3)|wθ|2

+
∣∣∣∂wρ

∂θ

∣∣∣2 +
∣∣∣∂wθ

∂θ

∣∣∣2 + (n− 2)(sin θ)−2|wθ|2 + 4Re(wρDwθ)
}
dsdλ

and

(2.21)
∫

Rn

|v|2

|x|n
dx =

∫
R

∫
Sn−1

|w|2dsdλ

From (2.15), we obtain

(2.22) wρ = − Dwθ

iλ+ n/2− γ
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which implies

(2.23) |wρ|2 =
|Dwθ|2

λ2 + (n/2− γ)2

and

(2.24) Re(wρDwθ) = − (n/2− γ)|Dwθ|2

λ2 + (n/2− γ)2

Introducing this into (2.20), we arrive at the identity

(2.25)∫
Rn

|∇v|2

|x|n−2
dx =

∫ ∞

0

∫ π

0

{
(λ2 + n− 1)

|Dwθ|2

λ2 + (n/2− γ)2
+ (λ2 − n+ 3)|wθ|2

+
∣∣∣∣∂wθ

∂θ

∣∣∣∣2 + (n− 2)(sin θ)−2|wθ|2 +
1

λ2 + (n/2− γ)2

∣∣∣∣ ∂∂θDwθ

∣∣∣∣2
− 4

(n
2
− γ

) |Dwθ|2

λ2 + (n/2− γ)2

}
dθdλ

We simplify the right-hand side of (2.25) to obtain

(2.26)
∫

Rn

|∇v|2

|x|n−2
dx =

∫ ∞

0

∫ π

0

{(
−n− 1 + λ2 + 4γ
λ2 + (n/2− γ)2

+ 1
)
|Dwθ|2

+ (λ2 − n+ 3)|wθ|2 +
1

λ2 + (n/2− γ)2

∣∣∣∣ ∂∂θDwθ

∣∣∣∣2
}
dθdλ

On the other hand, by (2.21) and (2.22)

(2.27)
∫

Rn

|v|2

|x|n−2
dx =

∫ ∞

0

∫ π

0

(
|Dwθ|2

λ2 + (n/2− γ)2
+ |wθ|2

)
dθdλ

Defining the self-adjoint operator

(2.28) T := − ∂

∂θ
D

or, equivalently,

(2.29) T = −δθ +
n− 2

(sin θ)2

where δθ is the θ-part of the Laplace-Beltrami operator on Sn−1, we write (2.26)
and (2.27) as

(2.30)
∫

Rn

|∇v|2

|x|n−2
dx =

∫
R

∫
Sn−1

Q(λ,wθ)dsdλ

and
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(2.31)
∫

Rn

|v|2

|x|n
dx =

∫
R

∫
Sn−1

q(λ,wθ)dsdλ

respectively, where Q and q are sesquilinear forms in wθ, defined by

(2.32) Q(λ,wθ) =
(
−n− 1 + λ2 + 4γ
λ2 + (n/2− γ)2

+ 1
)
Twθ · wθ

+ (λ2 − n+ 3)|wθ|2 +
1

λ2 + (n/2− γ)2
|Twθ|2

and

(2.33) q(λ,wθ) =
Twθ · wθ

λ2 + (n/2− γ)2
+ |wθ|2

The eigenvalues of T are αν = ν(ν + n − 2), ν ∈ Z+. Representing wθ as an
expansion in eigenfunctions of T , we find

(2.34) inf
wθ

∫
R

∫
Sn−1

Q(λ,wθ)dsdλ∫
R

∫
Sn−1

q(λ,wθ)dsdλ

= inf
λ∈R

inf
ν∈N

(
−n− 1 + λ2 + 4γ
λ2 + (n/2− γ)2

+ 1
)
αν + λ2 − n+ 3 +

α2
ν

λ2 + (n/2− γ)2

αν

λ2 + (n/2− γ)2 + 1

Thus our minimization problem reduces to finding

(2.35) inf
x≥0

inf
ν∈N

f(x, αν , γ)

where

(2.36) f(x, αν , γ) = x− n+ 3 + αν

(
1− 16(1− γ)

4x+ 4αν + (n− 2γ)2

)
Since γ ≤ 1, it is clear that f is increasing in x, so the value (2.35) is equal to

(2.37) inf
ν∈N

f(0, αν , γ) = inf
ν∈N

(
3− n+ αν

(
1− 16(1− γ)

4αν + (n− 2γ)2

))
We have

(2.38)
∂

∂αν
f(0, αν , γ) = 1− 16(1− γ)(n− 2γ)

(4αν + (n− 2γ)2)2

Noting that
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(2.39) 4αν + (n− 2γ)2 ≥ 4(n− 1) + (n− 2γ)2 ≥ 4
√
n− 1(n− 2γ)

we see that

(2.40)
∂

∂αν
f(0, αν , γ) ≥ 1− 1− γ

(n− 1)(n− 2γ)
> 0

Thus the minimum of f(0, αν , γ) is attained at α1 = n− 1 and equals

(2.41) 3− n+ (n− 1)
(

1− 16(1− γ)
4(n− 1) + (n− 2γ)2

)
=

2(γ − 1 + n/2)2

n− 1 + (γ − n/2)2

This completes the proof for the case vφ = 0.

If we drop the assumption vφ = 0, then, to the integrand on the right-hand side
of (2.19), we should add the terms

(2.42) ρ2

(
∂vϕ

∂ρ

)2

+
(
∂vϕ

∂θ

)2

+ (sin θ sin θn−3 · · · sin θ1)−2
v2

ϕ

The expression in (2.42) equals

(2.43) ρ2
∣∣∇(vϕe

iϕ)
∣∣2

As a result, the right-hand side of (2.30) is augmented by

(2.44)
∫

R

∫
Sn−1

R(λ,wϕ)dsdλ

where

(2.45) R(λ,wϕ) = λ2|wϕ|2 + |∇ω(wϕe
iϕ)|2

with ω = (θ, θn−3, ..., ϕ). Hence,

(2.46) inf
v

∫
Rn

|∇v|2

|x|n−2
dx∫

Rn

|v|2

|x|n
dx

= inf
wθ,wϕ

∫
R

∫
Sn−1

(
Q(λ,wθ) +R(λ,wϕ)

)
dsdλ∫

R

∫
Sn−1

(
q(λ,wθ) + |wϕ|2

)
dsdλ

Using the fact that wθ and wϕ are independent, the right-hand side is the lesser of
(2.34) and
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(2.47) inf
wϕ

∫
R

∫
Sn−1

R(λ,wϕ)dsdλ∫
R

∫
Sn−1

|wϕ|2dsdλ

Since wϕe
iϕ is orthogonal to one on Sn−1, we have

(2.48)
∫

Sn−1

∣∣∇ω

(
wϕe

iϕ
)∣∣2 ds ≥ (n− 1)

∫
Sn−1

|wϕ|2ds

Hence the infimum in (2.47) is at most n − 1, which exceeds the value in (2.41).
The result follows for γ ≤ 1.

For γ > 1 the proof is similar. Differentiation of f in αν gives

(2.49) 1 +
16(γ − 1)((n− 2γ)2 + 4x)
(4x+ 4αν + (n− 2γ)2)2

which is positive. Hence the role of the value (2.41) is played by the smallest value
of f(·, n− 1, γ) on R+. Therefore,

(2.50) inf
v

∫
Rn

|∇v|2

|x|n−2
dx∫

Rn

|v|2

|x|n
dx

= 2 + min
x≥0

(
x+

4(n− 1)(γ − 1)
x+ n− 1 + (γ − n/2)2

)

The proof is complete.

Proof of Corollary 1. We need to consider only γ > 1. It follows directly from
(1.6) that

C−1
3,γ =

(
3
2

+ γ − 1
)2

+ 2

which gives the result.

Remark 1. Using (2.22), we see that a minimizing sequence {vk}k≥1 which shows
the sharpness of inequality (1.4) with the constant (1.5) can be obtained by tak-
ing vk = (vρ,k, vθ,k,0) with the Fourier transform wk = (wρ,k, wθ,k,0) chosen as
follows:

(2.51) wθ,k(λ, θ) = hk(λ) sin θ, wρ,k(λ, θ) =
1− n

iλ+ n/2− γ
hk(λ) cos θ

The sequence {|hk|2}k≥1 converges in distributions to the delta function at λ = 0.
The minimizing sequence that gives the value (1.7) of C3,γ is

wθ,k(λ, 0) = 0, wρ,k(λ, θ) = 0, and wφ,k(λ, θ) = hk(λ) sin θ

where {|hk|2}k≥1 is as above.
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3. Proof of Theorem 2.

The calculations are similar but simpler than those in the previous section. We
start with the substitution v(x) = u(x)|x|2γ and write (2.14) in the form

(3.52)
1

C2,γ
= γ2 + inf

v

∫
R2
|∇v|2dx

∫
R2
|v|2|x|−2dx

In polar coordinates ρ and ϕ, with ϕ ∈ [0, 2π), we have

(3.53)
∫

R2
|∇v|2dx =

∫
R2

{
|∇vρ|2 + |∇vϕ|2 + ρ−2

(
vρ

2 + vϕ
2 − 4vρ(∂ϕvϕ)

) }
dx

Changing the variable ρ to t = log ρ, and applying the Fourier transform v(ρ, ϕ) →
w(λ, ϕ), we obtain

(3.54)
∫

R

∫ 2π

0

{
(λ2 + 1)(|wρ|2 + |wϕ|2) + |∂ϕwϕ|2 + |∂ϕwρ|2 − 4 (∂ϕwϕ)wρ

}
dϕdλ

The divergence-free condition for u becomes

(3.55) wρ = − ∂ϕwϕ

iλ+ 1− γ

which yields

(3.56)
∫

R2
|∇v|2dx =

∫
R

∫ 2π

0

{( λ2 + 4γ − 3
λ2 + (1− γ)2

+ 1
)
|∂ϕwϕ|2

+
|∂2

ϕwϕ|2

λ2 + (1− γ)2
+ (λ2 + 1)|wϕ|2

}
dϕdλ

Analogously,

(3.57)
∫

R2
|v|2|x|−2dx =

∫
R

∫ 2π

0

(|wρ|2 + |wϕ|2)dϕdλ

=
∫

R

∫ 2π

0

( |∂ϕwϕ|2

λ2 + (1− γ)2
+ |wϕ|2

)
dϕdλ

Therefore, by (3.52)

(3.58)
1

C2,γ
= γ2 + inf

x≥0
inf

ν∈N∪0
f(x, ν, γ)

where
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(3.59) f(x, ν, γ) = x+ 1 + ν

(
1− 4(1− γ)

x+ ν + (1− γ)2

)
Let first γ ≤ 1. Then f is increasing in x, which implies f(x, ν, γ) ≥ f(0, ν, γ).
Since the derivative

(3.60)
∂

∂ν
f(0, ν, γ) = 1− 4(1− γ)3

(ν + (1− γ)2)2

is positive for ν ≥ 2, we need to compare only the values f(0, 0, γ), f(0, 1, γ) and
f(0, 2, γ). An elementary calculation shows that both f(0, 0, γ) and f(0, 2, γ) exceed
f(0, 1, γ) for γ 6∈ (−1−

√
3,−1 +

√
3).

Let now γ > 1. We have

(3.61)
∂

∂ν
f(x, ν, γ) = 1 +

4(γ − 1)(x+ (1− γ)2)
(x+ ν + (1− γ2))2

> 0

and therefore f(x, ν, γ) ≥ f(x, 0, γ) = x + 1 ≥ 1. The proof of Theorem 2 is
complete.

Remark 2. Minimizing sequences which give C2,γ in (1.8) can be chosen as follows:

wρ,k(λ, ϕ) = 0, wϕ,k(λ, ϕ) = hk(λ)

for γ 6∈ (−1−
√

3,−1 +
√

3), and

wρ,k =
hk(λ) sin(ϕ− ϕ0)

iλ+ 1− γ
, wϕ,k = hk(λ) cos(ϕ− ϕ0)

when γ ∈ (−1−
√

3,−1 +
√

3), for any constant ϕ0. Here {|hk|2}k≥1 converges in
distributions to the delta function at 0.

Corollary 2. Let γ 6= 0. Denote by ψ a real-valued scalar function in C∞0 (R2) and
assume in addition that ∇ψ(0) = 0 if γ < 0. Then the sharp inequality

(3.62)
∫

R2
|∇ψ|2|x|2(γ−1)dx ≤ C2,γ

∫
R2

(
ψ2

x1x1
+ 2ψ2

x1x2
+ ψ2

x2x2

)
|x|2γdx

holds with C2,γ given in (1.8).

Indeed, for n = 2, inequality (1.4) becomes (3.62) if ψ is interpreted as a stream
function of the vector field u, i.e. u = ∇× ψ.
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