SHARP HARDY-LERAY INEQUALITY FOR AXISYMMETRIC
DIVERGENCE-FREE FIELDS

O. COSTIN! AND V. MAZ’YA?

ABSTRACT. We show that the sharp constant in the classical n-dimensional
Hardy-Leray inequality can be improved for axisymmetric divergence-free fields,
and find its optimal value. The same result is obtained for n = 2 without the
axisymmetry assumption.
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1. INTRODUCTION

Let u denote a C5°(R™) vector field in R™. The following n-dimensional gener-
alization of the one-dimensional Hardy inequality [1],

u/? 4 / 2
1.1 / —dr < ——— Vul“dx
(L) e TS =22 Jp 'V

appears for n = 3 in the pioneering Leray’s paper on the Navier-Stokes equations
[2]. The constant factor on the right-hand side is sharp. Since one frequently
deals with divergence-free fields in hydrodynamics, it is natural to ask whether this
restriction can improve the constant in .

We show in the present paper that this is the case indeed if n > 2 and the
vector field u is axisymmetric by proving that the aforementioned constant can be
replaced by the (smaller) optimal value

(1.2) m4zv<1‘@jzv>

which, in particular, evaluates to 68/25 in three dimensions. This result is a special
case of a more general one concerning a divergence-free improvement of the multi-
dimensional sharp Hardy inequality

4
1.3 2 |ufdx < 7/ 2| Vul?dx
(1.3 T el
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Let ¢ be a point on the (n — 2)-dimensional unit sphere S"~2 with spherical
coordinates {0;};=1, . ,—3 and ¢, where 0; € (0,7) and ¢ € [0, 27). A point z € R"
is represented as a triple (p, 8, @), where p > 0 and 0 € [0, 7]. Correspondingly, we
write u = (up, ug, ugp) with ug = (ug, 4, ..., us,, Uy)-

The condition of axial symmetry means that u depends only on p and 6.

For higher dimensions, our result is as follows.

Theorem 1. Lety# 1—n/2, n > 2, and let u be an azisymmetric divergence-free
vector field in C5°(R™). We assume that u(0) =0 for v < 1—n/2. Then

(1.4) / |z|2772|u|2d9:§6’n77/ |27 |Vu|?dx
R™ R™

with the best value of C), 4 given by

(1.5) Chr = 1 <1 2 )

2y +n—-22\" n+1+(y—n/2)?
forv <1, and by
_ n 2
(1L6) Cyl = (5 +7-1)

+min{n— 1, 2+ng151 (1:+ x+1711(711}k)((1—}1)/2)2)}

fory > 1.

The two minima in ([1.6)) can be calculated in closed form, but their expressions
for arbitrary dimensions turn out to be unwieldy, and we omit them.
However, the formula for C3 , is simple.

Corollary 1. Forn = 3 inequality (1.4)) holds with the best constant

4 24 (y—3/2)°

: <1
2y + 12 4+ (y-3/2)2 forvy <
(1.7) Cy.y =
4
_* 1.
S+ (11272 for >

For n = 2, we obtain the sharp constant in (|1.4) without axial symmetry of the
vector field.

Theorem 2. Let v # 0, n = 2, and let u be a divergence-free vector field in
Cs°(R?). We assume that u(0) = 0 for v < 0. Then inequality (1.4) holds with the
best constant

42 14+ (1—9)?
(1.8) Cyry = 3+ (1—7)?
(2 +1)7! otherwise.

fory € [—V3 —1,V/3 —1]
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2. PROOF OF THEOREM 1

In the spherical coordinates introduced above, we have

(29) divu=p' " () 4 o (sin ) (sin )" up)

dp 00
n—3 9
+ ;(p sinfsinf,,_3---sin 1) " (sin Gk)_ka—ak ((sin 0x)"ue, )
+ (psinfsin 6, _3---sin6 )*1%
p n—3 1 a(p

Since the components u, and ug,, k = 1,...,n — 3, depend only on p and 6, (2.9)
becomes

(2.10) divu= pl_"g (p" tup(p, 0)) + p~ (sin§)* ™ 0 ((sin )" ug(p,0))

op 00
n—3 u ( 0)
+ kZ::l k(sin@,_s3---sinfy1)" " cot Gk%

By the linear independence of the functions

1, (sinf, 3---sinfp, 1) ‘cotp, k=1,..,n—3

the divergence-free condition is equivalent to the collection of n — 2 identities

(2.11) p%—%Jr(nf Du, + <£9+(n2) cot0> ug =0
(2.12) up, =0, k=1,...,n—3

If the right-hand side of diverges, there is nothing to prove. Otherwise, the
matrix Vu is O(|z|™), with m > —y —n/2, as  — 0. Since u(0) = 0, we have
u(z) = O(|z|™*!) ensuring the convergence of the integral on the left-hand side of
(L.4). We introduce the vector field

(2.13) v(z) = u(x)|z]~1+/?
The inequality (1.4) becomes

1 n 2 [v|? |Vv|?
2.14 — (= —1 —dx < d
(2.14) (o (5+9-1) )/ 2l —/ a2

The condition div u = 0 is equivalent to

_9
(2.15) pdivv = ("2 + 7) v,
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To simplify the exposition, we assume first that v = 0. Now, (2.15)) can be
written as

v, n
where
0
(2.17) D:=_—+(n—2)coth

00
Note that D is the adjoint of —9/060 with respect to the scalar product

/ £(0)g(6)(sin O)"~2d6
A straightforward though lengthy calculation yields
ov Ovg\ 2 ov,\ 2 Ovg\ 2
2 p 2( 229 P g
(218) pIVvIF =0 (ap) e (ap) +(50) + (%)

+ 03 + (n = 1u + (n — 2)(cot 6)v] +2 (”PDW’ - v%?)

Hence
e o [ evras= [ {2 () (5) 0 () + (G)
+ v + (n — 1)7}?, + (n — 2)(cot 0)*v + 4vavg}ds

Changing the variable p to t = logp, and applying the Fourier transform with
respect to ¢,
v(t,0) — w(A,0)

we derive
|Vv/|?

2.20 / dx
@20) [ e

:// {2 4= Dl + (7 =+ 3) o

Sn 1
‘3’[0,, 8w9‘ 9 9
\ + (n — 2)(sin ) % |wy| +4RC(wprg)}dsd/\

and

v[? 2
(2.21) ——dx = |w|*dsd\
e |2|" RJSn-1

From (2.15)), we obtain

Dwg

(222) S Sy g



SHARP HARDY-LERAY INEQUALITY 5

which implies

Dw9|2
2.2 2 |—
( 3) |wP‘ )\2 4 (n/2 . V)Q
and
i 2
(2.24) Re(,Dwg) = _ (/2 —~)|Dwe|*

24 (n/2 =7)?

Introducing this into (2.20]), we arrive at the identity

(2.25)
|VV|2 / / 2 % 2 ’
/Rn |x|n 2 )\ ) 2+(n/2_,y)2+()\ n+3)\w0|
dwy | in )~ 2|wg|? . “ 2
g | T Dm0 el + S | g P

n | Dwy |?
4= —7) ———— pdfdX
(2 7) X2+ (n)2 — )2

We simplify the right-hand side of (2.25)) to obtain

o [, e [ { (Gt

0
00

1

2 _ 2 -
+ (A —n+ 3)|wy] +)\2+(n/2_’y)

Dwg

2
}de/\

On the other hand, by and

(2.27) / x";l: / / (/\2 |7:1/)§| e +|we|2>d9d/\

Defining the self-adjoint operator

0
2.28 T:=——D
(2.28) 50
or, equivalently,
n—2
2.29 T=-9 —
(2:29) ot (sin 9)2

where dg is the §-part of the Laplace-Beltrami operator on S™~!, we write (2.26)

and (2.27) as

2
(2.30) / VP = / Q(, we)dsd
R Sn—l

. a2

and
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2
(2.31) / |V—|dm:// q(X, we)dsdA
R™ Z‘|n R Jgn-1

respectively, where ) and g are sesquilinear forms in wg, defined by

—n—1+ X\ +4y
A+ (n/2 —7)?
+ (A% —n +3)|wg|* +

(232) QA wp) = ( + 1) Twp -5

1

S —r 2
N (nj2 el

and

Twe - wo 9
2. A ==
(2.33) 00 00) = S s + ol

The eigenvalues of T are o, = v(v +n —2), v € ZT. Representing wy as an
expansion in eigenfunctions of 7', we find

/ Q(N\, wg)dsd\
R JSn—1

(2.34) inf
v / / q(\, wy)dsdA
RJSn—1
—n— 14+ A2 + 4y ) 9 o
+1)ay +A —n+3+ 5—r L0
ot (G N+ (/2= )
AeRveN Qy

N (n/2-9)%+1

Thus our minimization problem reduces to finding

(2:35) inf inf, /(@ 00,7)
where
16(1 — )
2. v =4 = v 1=
(2.36) f@,a,y)=2-n+3+a ( 4x+40éy+(n—27)2>

Since v < 1, it is clear that f is increasing in x, so the value (2.35) is equal to

i = 16(1 — )
(2.37) if f(0,ay,7) = inf <3 —n+a, <1 - W))
‘We have
(2.38) 0 F0,a0,7) = 1 — 16(1 —v)(n —27)

Oay, (4o, + (n — 27)2)2

Noting that
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(2.39) 4oy, +(n—29)2 > 4(n—1) + (n —27)* > 4v/n — 1(n — 2v)
we see that
0] 1—7
. >1- - - '
(2.40) 8ayf(0,al,,'y) >1 = D)n—27) >0

Thus the minimum of f(0, a,,y) is attained at a; = n — 1 and equals

(2.41) 3—n+(mn—1) (1 _ 16(1 — ) ) _ 2(y—14n/2)?

dn—1+n—-2y)2) n—1+(y—n/2)2

This completes the proof for the case vy = 0.

If we drop the assumption v4 = 0, then, to the integrand on the right-hand side
of (2.19)), we should add the terms

5 49 5 ( Ov, 2 vy, 2 1 6 sin 0 002 02
(2.42) p B + 20 + (sin@sin @y, 3 ---sin 1) " vy

The expression in (2.42) equals

(2.43) P |V (0,6) |

As a result, the right-hand side of (2.30) is augmented by

(2.44) / / R(X\, wy)dsdA
R.JSn—1

where

(2~45) R()‘vwcp) = )‘2‘wcp|2 + ‘Vw(wtpew)‘Q

with w = (6,0,_3, ..., ¢). Hence,

/R mdm B /R/D_ (Q(A,we) +R(/\,w<p))dsd/\

inf

'v 2 B we , W
/ ﬂdw o8 // (q()\,wg) + \w¢|2>dsd/\
R~ |I’|n RJSn—1

Using the fact that wg and w, are independent, the right-hand side is the lesser of

(2.34) and
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// R(X\, wy)dsdA
(2.47) inf JRZS™7I

e // w2 dsdX
R Snfl

Since wye™ is orthogonal to one on "', we have

lw|*ds
1

(2.48) /SH 19 (1,6) P ds > (n— 1)/S

Hence the infimum in ([2.47) is at most n — 1, which exceeds the value in (2.41]).
The result follows for v < 1.
For ~ > 1 the proof is similar. Differentiation of f in «, gives

16(y = 1)((n — 29)? + 42)
(4 + 4oy, + (n — 27)?)?

(2.49) 1+

which is positive. Hence the role of the value (2.41]) is played by the smallest value
of f(;n —1,7) on RT. Therefore,

/ |Vv|? i

: n || 2 : An-1(v -1

2. g Jenlal =2

(2.50) v / ﬁdax +racrlzlg(x+x+n—1+(’y—n/2)2>
Ro [2]™

The proof is complete.

Proof of Corollary 1. We need to consider only v > 1. It follows directly from

[T6) that
3 2
-1
Cs, = <2+”yl) + 2
which gives the result.

Remark 1. Using , we see that a minimizing sequence {vy};>1 which shows
the sharpness of inequality with the constant can be obtained by tak-
ing vi = (vpk,vo,k,0) with the Fourier transform wy = (w i, wg,x,0) chosen as
follows:

1—n

(2.51) o,k (A,6) = (N sinf, - w,k (A 0) = =mmm =

hi(X\) cos 6

The sequence {|hg|*}r>1 converges in distributions to the delta function at A = 0.
The minimizing sequence that gives the value (1.7 of C , is

we, (A, 0) =0, w,x(A,0) =0, and wy (A, 0) = hg(\)sind

where {|hy|?}x>1 is as above.
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3. PROOF OF THEOREM 2.

The calculations are similar but simpler than those in the previous section. We
start with the substitution v(z) = u(x)|z|*’ and write (2.14) in the form

/ |Vv|2dz
1
(3.52) — =94 1nf

Co,
! / |v| ||~ 2dx

In polar coordinates p and ¢, with ¢ € [0, 27), we have

(3.53) /RQ|VV|2dm:/Rz{|va|2+|VU¢|2+p_2 (02 + % — 40, (D)) Y

Changing the variable p to t = log p, and applying the Fourier transform v(p, ¢) —
w(\, ), we obtain

2
@50) [ [ {08 4 0wl + 0ol + 0,0 + [0, 400,
R JO
The divergence-free condition for u becomes

Op,Wy

which yields

27r 2
(3.56) / |Vv|2dx—// A +4’Y 5 +1) 10w, |
R2 7)

|8i11)<p|2

2 1 2
oy T O Dl }idn

Analogously,

27
1) [ WPl e = [ [l 4w P)dgdy
R2 RJO
27 2
0w 2
= Rl I dpd\
/R/O (A2+(1—v)2 |w“’|) v

Therefore, by (3.52))

1
. — = f f
(3.58) Cs =7+ ;I;o Vé%uof(x v:7)

where
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(3.59) f(x,vm)=w+1+V<1—m>

Let first v < 1. Then f is increasing in x, which implies f(x,v,v) > f(0,v,7).
Since the derivative

401 —7)?

9
(3.60) - f0,v,) =1~ =22

ov

is positive for v > 2, we need to compare only the values f(0,0,v), f(0,1,v) and
£(0,2,7). An elementary calculation shows that both f(0,0,~) and f(0,2, ) exceed
f<07 1”7) for v g (_1 - \/§7 -1+ \/g)

Let now v > 1. We have

5 A - D@+ (1-)?)
(3.61) gl @) = e T )

o >0

and therefore f(z,v,v) > f(2,0,7) = 2+ 1 > 1. The proof of Theorem 2 is
complete.

Remark 2. Minimizing sequences which give Cs - in (|1.8]) can be chosen as follows:
wfhk()‘? SD) = Oa wgo,k()‘v 90) = hk ()\)

for v ¢ (=1 — /3, —1 ++/3), and

hi(N) sin(p — @o)
Wp g = Atl— We.k = hi(A) cos(¢ — o)

when v € (=1 — /3, —1 4 1/3), for any constant ¢g. Here {|h1|?}x>1 converges in
distributions to the delta function at 0.

Corollary 2. Let vy # 0. Denote by v a real-valued scalar function in C§°(R?) and
assume in addition that V(0) = 0 if v < 0. Then the sharp inequality

(3.62) /R V|20 Vde < Oy /R (2 o, + 202 .+ 2, ) [2[Pdz

holds with Cs ~ given in (|1.8)).

Indeed, for n = 2, inequality (1.4 becomes (3.62) if ¢ is interpreted as a stream
function of the vector field u, i.e. u =V x .
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