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Abstract. We consider the Navier-Stokes initial value problem,

vt − ∆v = −P [v · ∇v] + f , v(x, 0) = v0(x), x ∈ R
3

where P is the Hodge-Projection to divergence free vector fields in the assump-
tion that ‖f‖µ,β < ∞ and ‖v0‖µ+2,β < ∞ for β ≥ 0, µ > 3, where

‖f̂(k)‖µ,β = sup
k∈R3

eβ|k|(1 + |k|)µ|f̂(k)|

and f̂(k) = F [f(·)](k) is the Fourier transform in x.

By Borel summation methods we show that there exists a classical solution
in the form

v(x, t) = v0 +

Z ∞

0
e−p/tU(x, p)dp

t ∈ C, Re 1
t

> α, and we estimate α in terms of ‖v̂0‖µ+2,β and ‖f̂‖µ,β . We show

that ‖v̂(·; t)‖µ+2,β < ∞. Existence and t-analyticity results are analogous to
Sobolev spaces ones.

An important feature of the present approach is that continuation of v

beyond t = α−1 becomes a growth rate question of U(·, p) as p → ∞, U being
is a known function. For now, our estimate is likely suboptimal.

A second result is that we show Borel summability of v for v0 and f analytic.
In particular, Borel summability implies a the Gevrey-1 asymptotics result:
v ∼ v0 +

P∞
m=1 vmtm, where |vm| ≤ m!A0Bm

0 , with A0 and B0 are given in

terms of to v0 and f and for small t, with m(t) = ⌊B−1
0 t−1⌋,

˛

˛

˛

˛

˛

˛

v(x, t) − v0(x) −

m(t)
X

m=1

vm(x)tm

˛

˛

˛

˛

˛

˛

≤ A0 m(t)1/2 e−m(t)

1. Introduction and main results

We consider the Navier-Stokes (NS) initial value problem

(1.1) vt − ∆v = −P[v · ∇v] + f(x) , v(x, 0) = v0(x), x ∈ R
3, t ∈ R

+

where v is the fluid velocity and P = I − ∇∆−1(∇·) is the Hodge-Projection
operator to the space of divergence free vector fields. We rescale v, x and t so that
the viscosity is one. The initial condition v0 and the forcing f(x) are chosen to
be divergence free. We assume f to be time-independent for simplicity, but a time
dependent f could be treated similarly. Moreocver, from the analysis presented
here, it will be clear that similar results can be obtained for the corresponding
periodic problem, i.e. v(., t) ∈ T

3.
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We first write the equation in the Fourier space. We denote by F or simplyˆthe
Fourier transform and ∗̂ is the Fourier convolution. Since ∇ · v = 0 we get

(1.2) v̂t + |k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂ , v̂(k, 0) = v̂0,

where as usual a repeated index j denotes summation over j (= 1, 2, 3). If Pk =
F(P) we get

(1.3) Pk ≡
(

1 − k(k·)
|k|2

)

,

Definition 1.1. We introduce the norm ‖ · ‖µ,β by

(1.4) ‖v̂0‖µ,β = sup
k∈R3

(1 + |k|)µeβ|k||v̂0(k)| , where v̂0(k) = F [v0(·)](k),

We assume ‖v̂0‖2+µ,β < ∞, ‖f̂‖µ,β < ∞ for some β ≥ 0 and µ > 3. Clearly, if
β > 0, then v0 and f are analytic in a strip of width at least β.

There is considerable mathematical literature for Navier-Stokes equation, start-
ing with Leray’s papers in the 1930s [18], [19], [20]. Global existence and uniqueness
are known in 2d (see for instance [4] and reference therein). However, this is not
the case in 3d. It is not known whether classical solutions exist globally in time for
arbitrary sized smooth or even analytic initial data. While weak solutions in the
space of distributions are known to exist since Leray, it is not known if they are
unique or not without additional assumptions. Only local existence and uniqueness
of classical solutions is known, with a time of existence inversely proportional to a
Sobolev norm of v0. There are sufficient conditions that guarantee existence for all
times [3], [8], but of course it is unknown whether they are satisfied. The solution,
as long as it exists, is known to be analytic in part of the right half complex t-plane
[21], [17], [12]. If space-periodic conditions are imposed, for v0 ∈ H1(T3), and f
analytic, then the solution v becomes analytic in space as well [13], [10].

The purpose of this paper is twofold. One is to introduce Borel transform tech-
niques (the notions are explained in the sequel) in time for nonlinear evolution

PDEs. The Borel transform in 1/t, Û = Bv̂ solves an integral equation (see (2.18)

below); the Laplace transform of Û is a classical solution of (1.2). The integral
equation (2.18) is shown to have a unique solution in an exponentially weighted
space, L1(dp e−αp) for some α > 0. An important advantage of this formulation
is that existence in t of the evolution PDE is transformed into finding the large p-
asymptotics of a known solution to an integral equation (finding α). In this paper
we do not obtain the optimal value of α, but only a rough bound which implies
existence for t < α−1. The question of asymptotic estimates is addressed in a more
general setting in [14].

Moreover, given a specific initial condition, the p-space integral equation provides
a basis for numerical investigation of global existence since there is no blow-up in
p. Furthermore, the solution has to be evaluated for small and moderate values of
p, since for large p the equation is naturally contractive. This will be the subject
of a different paper.

A second purpose is to show Borel summability of the formal power series in
small t of NS, when initial v0 and f are analytic. This corresponds to β > 0 in the
norm defined in 1.1. Borel summability is a subject of interest in its own right and
has been the subject of much investigation in the context of nonlinear ODEs [11],
[6], difference equations [5] as well as some particular type of PDEs [22], [23]; there
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are no results applying to initial value problems for nonlinear PDEs, as considered
in this paper. Borel summability implies in particular that the formal expansion in
powers of t,

ṽ(x, t) = v0(x) + tv1(x) + · · ·
where vj can be found algorithmically, is actually Gevrey-1 asymptotic to v. Borel
summability also implies that ‖vm‖∞ ≤ m!A0B

m
0 , where A0 and B0 are determined

by v0 and f .
Borel summability methods have been used by the authors [22] to prove complex

sectorial existence of solutions of a rather general class of nonlinear PDEs in C
d

for arbitrary d. This is in some sense a generalization of the classical Cauchy-
Kowalewski theorem to PDEs written as systems that are first order in time and
higher order in space(1)

The main results in this paper are given by the following two theorems. The
results in the first theorem are similar to classical ones, with ‖ · ‖µ,β replacing
Sobolev norms.

Theorem 1.1. If ‖v̂0‖µ+2,β < ∞, µ > 3, β ≥ 0, NS has a unique solution v(·, t)
such that ‖v̂(·, t)‖µ,β < ∞ for Re 1

t > α. Here α depends on v̂0 through (2.39).

Furthermore, v̂(·, t) is analytic for Re 1
t > α and ‖v̂(·, t)‖µ+2,β < ∞ for t ∈

[0, α−1). If β > 0, this implies that v is analytic in x with the same analyticity
width as v0 and f .

Remark 1.2. The main significance of Theorem 1.1 is not in the local existence
results, which are classical. Rather, it stems from the relation of v to the the solution
Û of an integral equtation whose solution in known a priori. If refined asymptotics
of Û(k, p) as p → ∞ show subexponential growth in p, then global existence follows.
In [14], we discuss approaches to this asymptotic problem and using more general

Borel transform methods. It is also shown in [14] that numerical calculation of Û
can be done with rigorously controlled errors unlike classical numerical techniques
(in NS). Hence the integral equation approach has a useful computational aspect
as well.

Remark 1.3. Sobolev space methods give local existence of solutions in Hm for
t ∈ [0, T ), where T is proportional to 1/‖v0‖Hm . In particular, for m > 7

2 , these
solutions are classical solutions (the second derivatives are continuous). The re-
sult in Theorem 1.1 is similar, but in a different space. The existence time,
t = α−1, involves ‖v̂0‖j+µ for j = 0, 1, 2 (see (2.39)). This solution is classical
since ‖v̂(., t)‖µ+2,β < ∞ for µ > 3 implies v(., t) ∈ C2(R3). Other norms, requiring
(and providing) lower regularity can be used as well, see [14].

Remark 1.4. If v0 has finite suitable Sobolev norms, it was known that v is analytic
in t in a region in the right half complex t plane. In our setting, v is analytic in
{t : Re 1

t > α} if ‖v̂0‖µ+2,β < ∞.

Remark 1.5. Previous results [13] show that for space-periodic boundary condi-
tions, analytic f and v0 ∈ H1, the solution v(·, t) becomes analytic in space, with
an analyticity strip improving with time for small time. Moreover, for f = 0, a

(1)Also, Cauchy-Kowalewski theorem usually requires a local expansion in all all independent

variables. Our methods accommodate series type expansion in just one variable.
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uniform estimate on the analyticity strip width for large time exists under the hy-
pothesis that the local dissipation ν‖∇v(., t)‖2

L2(T3) is bounded [10]. However, we

are not aware of similar results in R
3, as is the case in this paper. For β > 0, our

results of Theorem 1.1 show that the analyticity width is preserved for t ∈ [0, 1
α ).

Theorem 1.2. For β > 0 (analytic initial data) and µ > 3, the solution v is
Borel summable in 1/t, i.e. there exists U(x, p), analytic in a neighborhood of R

+,
exponentially bounded, and analytic in x for |Im x| < β so that

v(x, t) = v0(x) +

∫ ∞

0

U(x, p)e−p/tdp

Therefore, in particular, as t → 0,

v(x, t) ∼ v0(x) +

∞
∑

m=1

tmvm(x)

with
|vm(x)| ≤ m!A0B

m
0 ,

where A0 and B0 depend on v0 and f , through (3.55), (3.57) and (3.58)

Remark 1.6. Borel summability and classical Gevrey-asymptotic results [2] imply
for small t that

∣

∣

∣

∣

∣

∣

v(x, t) − v0(x) −
m(t)
∑

m=1

vm(x)tm

∣

∣

∣

∣

∣

∣

≤ A0 m(t)1/2e−m(t)

where m(t) = ⌊B−1
0 t−1⌋. Our bounds on B0 are likely suboptimal. Formal argu-

ments in the recurrence relation of vm+1 in terms of vm, vm−1,...,v1, indicate that B
only depends on β, but not on ‖v̂0‖µ,β . Indeed, for periodic boundary conditions,
with a finite number of nonzero initial modes, we have proved [15] that the radius

of convergence of the series of Û in powers of p does not depend on the size of the
initial data.

Remark 1.7. For β > 0 the assumption µ > 3 is not restrictive if β is consistent

with the analyticity strips of v0 and f . This is because (1 + |k|)µe−β̃|k| is bounded

in k for β̃ > 0.

2. Formulation of Navier Stokes equation: Borel transform

We define ŵ by

(2.5) v̂(k, t) = v̂0(k) + tv̂1(k) + ŵ(k, t) ,

where

(2.6) v̂1(k) =
(

−|k|2v̂0 − ikjPk [v̂0,j ∗̂v̂0]
)

+ f̂(k)

From (1.2) we get for ŵ

(2.7) ŵt + |k|2ŵ = −ikjPk [v̂0,j ∗̂ŵ + ŵj ∗̂v̂0 + tv̂1,j ∗̂ŵ + tŵj ∗̂v̂1 + ŵj ∗̂ŵ]

− t|k|2v̂1 − ikjtPk [v̂0,j ∗̂v̂1 + v̂1,j ∗̂v̂0 + tv̂1,j ∗̂v̂1]

We seek a solution as a Laplace transform

(2.8) ŵ(k, t) =

∫ ∞

0

Ŵ (k, p)e−p/tdp
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with the property limp→0+ Ŵ (k, p) = 0 and limp→0+ pŴp(k, p) = 0. The Borel
transform of (2.7), which is the same as the formal inverse-Laplace transform in
1/t gives in the dual variable p > 0,

(2.9)

pŴpp + 2Ŵp + |k|2Ŵ + ikjPk

[

v̂0,j ∗̂Ŵ + Ŵj ∗̂v̂0 + v̂1,j ∗̂(1 ∗ Ŵ ) + (1 ∗ Ŵj)∗̂v1

]

+ ikjPkŴj
∗∗Ŵ + |k|2v̂1 + ikjPk [v̂0,j ∗̂v̂1 + v̂1,j ∗̂v̂0 + pv̂1,j ∗̂v̂1] = 0,

where ∗∗ denotes Laplace convolution in p, followed by Fourier convolution in k.
Since the equation Dy := [p∂2

p+2∂p+|k|2]y = 0 has explicit independent solutions
in terms of Bessel functions, y = J1(z)/z and y = Y1(z)/z, where z = 2|k|√p which
do not vanish at zero, we formally obtain from (2.9) by inverting D the Duhamel
formulation

(2.10) Ŵ (k, p) =
ikjπ

2|k|√p

∫ p

0

G(z, z′)Ĥ [j](k, p′)dp′ , where

G(z, z′) = z′ (−J1(z)Y1(z
′) + Y1(z)J1(z

′)) , z = 2|k|√p , z′ = 2|k|
√

p′ ,

and

(2.11) Ĥ [j] = −Pk

[

v̂0,j ∗̂Ŵ + Ŵj ∗̂v̂0 + v̂1,j ∗̂(1 ∗ Ŵ ) + (1 ∗ Ŵj)∗̂v1

]

− Pk

[

Ŵj
∗∗W

]

+ ikj v̂1 − Pk [v̂0,j ∗̂v̂1 + v̂1,j ∗̂v̂0 + pv̂1,j ∗̂v̂1]

Remark 2.1. |G(z, z′)| is bounded for all real nonnegative z′ ≤ z. This follows
from standard properties of Bessel functions [1]. (The approximate bound is about
0.6.)

To obtain stronger results with less regularity of v0, it is convenient to introduce
Û(k, p) by:

(2.12) Ŵ (k, p) = Û(k, p) − v̂1(k)

Substituting (2.12) into (2.11), we obtain

(2.13) Ĥ [j](k, p) = Ĝ[j](k, p)+ikj v̂1 , where Ĝ[j] = −Pk

[

v̂0,j ∗̂Û + Ûj ∗̂v̂0 + Ûj
∗∗Û

]

We can further simplify the integral
∫ p

0
G(z, z′)Ĥ [j](k, p′)dp′ by noting that the only

solution to

(2.14) Dy = −|k|2v̂1,

satisfying y(k, 0) = 0, as it is easy to check, is

(2.15) y(k, p) = −v̂1(k)

(

1 − 2
J1(z)

z

)

, where z = 2|k|√p,

where we used the fact that J1(z)/z is a solution to the associated homogeneous
differential equation and that limz→0 J1(z)/z = 1/2. On the other hand, inversion
of D with zero boundary condition at p = 0 involves the same kernel G(z, z′).
Writing −|k|2v̂1 = ikj [ikj v̂1], it follows that

(2.16) y(k, p) =
ikjπ

2|k|√p

∫ p

0

G(z, z′) [ikj v̂1(k)] dp′
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Therefore

(2.17)
ikjπ

2k
√

p

∫ p

0

G(z, z′)
[

ikj v̂1(k̂)
]

= v̂1(k)

(

2
J1(z)

z
− 1

)

From (2.12),(2.13) and (2.17) we get

(2.18)

Û(k, p) =
ikjπ

2|k|√p

∫ p

0

G(z, z′)Ĝ[j](k, p′)dp′ + 2v̂1

J1

(

2|k|√p
)

2|k|√p
=: N [Û ](k, p),

where Ĝ[j](k, p) is given by (2.13).

We will show that N is contractive in a suitable space, and hence Û = N [Û ] has

a unique solution. The solution satisfies Û(0, k) = v̂1(k), Û and Ûp are bounded for

p ∈ R
+ and exponentially bounded at ∞. Then, Ŵ (k, p) = Û(k, p)− v̂1(k) satisfies

the integral equation (2.10) and hence the differential equation (2.9) is satisfied,

with limp→0 pŴp(k, p) = 0, limp→0 Ŵ (k, p) = 0, and Ŵ and Ŵp are exponentially

bounded at ∞. Thus the Laplace transform ŵ(k, t) =
∫ ∞

0
e−p/tŴ (k, p)dp will

indeed satisfy (2.7) for sufficiently large Re 1
t , and because of the continuity of Ŵ

at p = 0 we have limt→0+ ŵ(k, t) = 0. Thus,

(2.19) v̂(k, t) = v̂0 + tv̂1 +

∫ ∞

0

e−p/tŴ (k, p)dp = v̂0 +

∫ ∞

0

e−p/tÛ(k, p)dp

solves the NS equation (1.2) in the Fourier space, with the given initial condi-

tion. Furthermore, the sufficiently rapid decay in k of Û implies that v(x, t) =
F−1[v̂(·, t)](x) is indeed a classical solution to (1.1). It is known (See e.g. [24]) that
classical solutions are unique; thus v̂ is the only solution to (1.1).

2.1. Existence of a solution to (2.18). First, we prove some preliminary lem-
mas.

Lemma 2.2. If ‖v̂‖µ,β and ‖ŵ‖µ,β < ∞, then we have

(2.20) ‖v̂∗̂ŵ‖µ,β ≤ C0‖v̂‖µ,β‖ŵ‖µ,β

where ∗̂ denotes Fourier convolution,

C0(µ) = 2µ+2

∫

k∈R3

1

(1 + |k|)µ
dk =

32π2µ

(µ − 1)(µ − 2)(µ − 3)

Proof. From the definition of ‖ · ‖µ,β , we get

|v̂∗̂ŵ| ≤ ‖v̂‖µ,β‖ŵ‖µ,β

∫

k′∈R3

e−β(|k′|+|k−k′|)dk′

(1 + |k′|)µ(1 + |k − k′|)µ

≤ ‖v̂‖µ,β‖ŵ‖µ,βe−β|k|

∫

k′∈R3

dk′

(1 + |k′|)µ(1 + |k − k′|)µ

For large |k|, we break the integral range at |k′| = |k|/2. In the inner ball |k′| <
|k|/2, we have

1

(1 + |k′|)µ(1 + |k − k′|)µ
≤ 1

(1 + |k′|)µ(1 + |k|/2)µ
≤ 2µ

(1 + |k|)µ(1 + |k′|)µ

while, in its complement,

1

(1 + |k′|)µ(1 + |k − k′|)µ
≤ 1

(1 + |k|/2)µ(1 + |k − k′|)µ
≤ 2µ

(1 + |k|)µ(1 + |k − k′|)µ
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Using these estimates, we get for µ > 3,

(2.21)

∫

k′∈R3

dk′

(1 + |k′|)µ(1 + |k − k′|)µ
≤ C0

2(1 + |k|)µ

Lemma 2.3.

‖Pk [ŵj ∗̂v̂] ‖µ,β ≤ 2C0‖ŵj‖µ,β‖v̂‖µ,β

Proof. It is easily seen from the representation of Pk in (1.3) that

(2.22) |Pkĝ(k)| ≤ 2|ĝ(k)|
Therefore, using (1.4),

‖Pkĝ‖µ,β ≤ 2‖g‖µ,β

Using Lemma 2.2, with g = wjv, the proof follows.

Lemma 2.4. For C2 = 2πC0 supz∈R+,0≤z′≤z |G(z, z′)| (2), with C0 as defined in
Lemma 2.2,
(2.23)

‖N [Û ](·, p)‖µ,β ≤ C2√
p

∫ p

0

{

‖Û(·, p′)‖µ,β ∗ ‖U(·, p′)‖µ,β + ‖v0‖µ,β‖Û(·, p′)‖µ,β

}

dp′+‖v1‖µ,β

(2.24) ‖N [Û [1]](·, p) −N [Û [2]](·, p)‖µ,β

≤ C2√
p

∫ p

0

{(

‖Û [1](·, p′)‖µ,β + ‖Û [2](·, p′)‖µ,β

)

∗ ‖Û [1](·, p′) − Û [2](·, p′)‖µ,β

+‖v0‖µ,β‖Û [1](·, p′) − Û [2](·, p′)‖µ,β

}

dp′

Proof. From [1], |J1(z)/z| ≤ 1/2 for z ∈ R
+ and therefore

‖2v̂1(k)J1(z)/z‖µ,β ≤ ‖v̂1‖µ,β

From Lemma 2.3, we have

|Pk

{

Ûj
∗∗Û

}

(k, p)| ≤ 2C0‖Û(·, p)‖µ,β ∗ ‖Û(·, p)‖µ,β
e−β|k|

(1 + |k|)µ

Applying Lemma 2.3, we get
∣

∣

∣

∣

∣

Pk

{

v̂0j
∗̂Û(·, p) + Ûj(·, p)∗̂v̂0

}

∣

∣

∣

∣

∣

≤ 4C0‖v̂0‖µ,β‖Û(·, p)‖µ,β
e−β|k|

(1 + |k|)µ

By Remark 2.1 and the definition of N in (2.18), it follows that for C2 ≥ 2πC0|G(z, z′)|
(2.23) holds.

The second part of the lemma follows by noting that

(2.25) Û
[1]
j

∗∗Û [1] − Û
[2]
j

∗∗Û [2] = Û
[1]
j

∗∗
(

Û [1] − Û [2]
)

+
(

Û
[1]
j − Û

[2]
j

) ∗∗Û [2]

(2)Since sup of |G| ≈ 0.6, we get C2 ≈
32(1.2)π22µ

(µ−1)(µ−2)(µ−3)
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Applying Lemma 2.3 to (2.25), we obtain

∥

∥

∥

∥

∥

Pk

{

Û
[1]
j

∗∗Û [1](·, p) − Û
[2]
j

∗∗Û [2](·, p)
}

∥

∥

∥

∥

∥

µ,β

≤ 2C0‖Û [1](·, p)‖µ,β ∗ ‖Û [1](·, p) − Û [2](·, p)‖µ,β

+ 2C0‖Û [2](·, p)‖µ,β ∗ ‖Û [1](·, p) − Û [2](·, p)‖µ,β ,

from which (2.24) follows easily.

It is convenient to define a number of different norms for functions of (k, p) on
R

3 × (R+ ∪ {0})

Definition 2.5. For α ≥ 1, we define

(2.26) ‖f̂‖(α) = sup
p≥0

(1 + p2)e−αp|f̂(·, p)|µ,β

We define Aα to be the Banach-space of continuous functions of (k, p) for k ∈ R
3

and p ∈ [0,∞) for which ‖.‖(α) < ∞. It is also convenient to consider the Banach
space Aα

1 of locally integrable (L1
loc) functions for p ∈ [0, L) on R

+, and continuous
in k ∈ R

3 such that

(2.27) ‖f̂‖(α)
1 =

∫ L

0

e−αp‖f̂(·, p)‖µ,βdp < ∞ ,

where L is allowed to be finite or ∞. It is also convenient to define A∞
L to be the

Banach space of continuous functions of (k, p) on R
3 × [0, L] such that

(2.28) ‖f̂‖(∞)
L = sup

p∈[0,L]

‖f̂(·, p)‖µ,β < ∞

Lemma 2.6. For f̂ , ĝ ∈ Aα,Aα
1 or A∞

L , we have the following the following Banach
algebra properties:

‖f̂∗∗ĝ‖(α) ≤ M0‖f̂‖(α)‖ĝ‖(α), where M0 ≈ 3.76 · · ·

‖f̂∗∗ĝ‖(α)
1 ≤ ‖f̂‖(α)

1 ‖ĝ‖(α)
1 ,

‖f̂∗∗ĝ‖(∞)
L ≤ L‖f̂‖(∞)

L ‖ĝ‖(∞)
L

Proof. In the following, we take u(p) = ‖f̂(·, p)‖µ,β and v(p) = ‖ĝ(·, p)‖µ,β . We
observe that

∫ L

0

u(s)v(p − s)ds ≤ eαp

(

sup
p∈R+

(1 + p2)e−αpu(p)

) (

sup
p∈R+

(1 + p2)e−αpv(p)

)

×
∫ p

0

ds

(1 + s2)[1 + (p − s)2]

The first part of the lemma follows since [22]
∫ p

0

ds

(1 + s2)[1 + (p − s)2]
≤ M0

1 + p2
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with M0 = 3.76 · · · . For the second part note that

(2.29)

∫ L

0

e−αp

∫ p

0

u(s)v(p − s)ds

=

∫ L

0

∫ p

0

e−αse−α(p−s)u(s)v(p − s)ds ≤
∫ L

0

e−αsu(s)ds

∫ L

0

e−ατv(τ)

The third part follows from the fact that for p ∈ [0, L]
∫ p

0

|u(s)||v(p − s)| ≤
{

sup
p∈[0,L]

|u(p)|
} (

sup
p∈[0,L]

|v(p)|
)

L

Lemma 2.7. On Aα
1 , the operator N , defined in (2.18), satisfies the following

inequalities, with C2 defined in Lemma 2.4:

(2.30) ‖N [Û ]‖(α)
1 ≤ C2

√
πα−1/2

{

(

‖Û‖(α)
1

)2

+ ‖v̂0‖µ,β‖Û‖(α)
1

}

+ α−1‖v̂1‖µ,β

(2.31) ‖N [Û [1]] −N [Û [2]]‖(α)
1

≤ C2

√
πα−1/2

{(

‖Û [1]‖(α)
1 + ‖Û [2]‖(α)

1

)

‖Û [1] − Û [2]‖(α)
1 + ‖v̂0‖µ,β‖Û [1] − Û [2]‖(α)

1

}

while in A∞
L , we have

(2.32) ‖N [Û ]‖(∞)
L ≤ C2L

1/2

{

L
(

‖Û‖(∞)
L

)2

+ ‖v̂0‖µ,β‖Û‖(∞)
L

}

+ ‖v̂1‖µ,β

(2.33) ‖N [Û [1]] −N [Û [2]]‖(∞)
L

≤ C2L
1/2

{

L
(

‖Û [1]‖(∞)
L + ‖Û [2]‖(∞)

L

)

‖Û [1] − Û [2]‖(∞)
L + ‖v̂0‖µ,β‖Û [1] − Û [2]‖(∞)

L

}

Proof. For the space Aα
1 , for any L > 0, including L = ∞, we note that
∫ L

0

e−αp‖v̂1‖µ,βdp ≤ α−1‖v̂1‖µ,β ,

while
∫ L

0

p−1/2e−αpdp ≤ Γ

(

1

2

)

α−1/2 =
√

πα−1/2

Furthermore, we note that for u(p′) ≥ 0 we have

(2.34)
∫ L

0

e−αpp−1/2

(
∫ p

0

u(p′)dp′
)

=

∫ L

0

u(p′)e−αp′

(

∫ L

p′

p−1/2e−α(p−p′)dp

)

dp′

≤
∫ L

0

e−αp′

u(p′)

∫ L

0

s−1/2e−αsdsdp′

Therefore, it follows from (2.23) that
(2.35)
∫ L

0

e−αp‖N [Û ](·, p)‖µ,βdp ≤ C2

√
πα−1/2

(

[

‖Û‖(α)
1

]2

+ ‖v0‖µ,β‖Û‖(α)
1

)

+α−1‖v1‖µ,β
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Furthermore, from (2.24), it follows that

∫ L

0

‖N [Û [1]] −N [Û [2]]‖µ,βe−αpdp

≤ C2

√
πα−1/2

{(

‖Û [1]‖(α)
1 + ‖Û [2]‖(α)

1

)

‖Û [1] − Û [2]‖(α)
1

+‖v̂0‖µ,β‖Û [1] − Û [2]‖(α)
1

}

Hence the first part of the lemma follows.
For the second part, we first note that for any p ∈ [0, L] we have

(2.36)

∣

∣

∣

∣

p−1/2

∫ p

0

u(p′)dp′
∣

∣

∣

∣

≤ sup
p∈[0,L]

|u(p)|
√

L

We note that

(2.37)

∣

∣

∣

∣

∫ p

0

y1(s)y2(p − s)ds

∣

∣

∣

∣

≤ L

(

sup
p∈[0,L]

|y1(p)|
) (

sup
p∈[0,L]

|y2(p)|
)

Taking

u(p) = ‖Û(·, p)‖µ,β ∗ ‖Û(·, p)‖µ,β + ‖v0‖µ,β‖Û(·, p)‖µ,β

y1(p) = y2(p) = ‖Û(·, p)‖µ,β

(2.32) follows from (2.23). To bound N [Û [1]] −N [Û [2]] in A∞
L , we take

(2.38) u(p) =
(

‖Û [1](·, p)‖µ,β + ‖Û [2](·, p)‖µ,β

)

∗ ‖Û [1](·, p) − Û [2](·, p)‖µ,β

+ ‖v0‖µ,β‖Û [1](·, p) − Û [2](·, p)‖µ,β

y1(p) =
(

‖Û [1](·, p)‖µ,β + ‖Û [2](·, p)‖µ,β

)

; y2(p) = ‖Û [1](·, p) − Û [2](·, p)‖µ,β

in (2.36) and (2.37). The proof now follows from (2.24).

Lemma 2.8. Equation (2.18) has a unique solution in Aα
1 for any L > 0 (including

L = ∞) in a ball of size 2α−1‖v̂1‖µ,β, for α large enough to ensure

(2.39) 2C2

√
πα−1/2

(

‖v0‖µ,β + 2α−1‖v1‖µ,β

)

< 1,

where C2 ≈ 32(1.2)π22µ

(µ−1)(µ−2)(µ−3) is the same as in Lemma 2.4. Furthermore, this solu-

tion belongs to A∞
L for L small enough so that

(2.40) 2C2L
1/2 (‖v0‖µ,β + 2L‖v1‖µ,β) < 1,

In particular, limp→0 Û(k, p) = v̂1(k). Also, Ŵ (k, p) = Û(k, p)− v̂1(k) is the unique
solution to (2.9) which is zero at p = 0.

Proof. The estimates of Lemma 2.7 imply that N maps a ball of size 2α−1‖v1‖µ,β

in Aα
1 back to itself and that N is contractive in that ball when α satisfies (2.39).

From Lemma 2.7 in space A∞
L , it follows that N maps a ball of size 2‖v1‖µ,β to

itself and that N is also contractive in this ball if L is small enough to ensure (2.40).
Thus, there is a unique solution in this ball. Since A∞

L ⊂ Aα
1 , it follows that the

solutions are in fact the same.
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Using Lemma 2.7, with Û [1] = Û and Û [2] = 0, we obtain from (2.18),
∥

∥

∥
Û(k, p) − v̂1(k)

2J1(z)

z

∥

∥

∥

(∞)

L
≤ C2L

1/2

(

L
[

‖Û‖(∞)
L

]2

+ ‖v̂0‖µ,β‖Û‖(∞)
L

)

Since ‖Û‖(∞)
L < 2‖v̂1‖µ,β , it follows that as L → 0,

‖Û(k, p) − 2v̂1(k)J1(z)/z‖(∞)
L → 0

Since limz→0 2J1(z)/z = 1, it follows that for fixed k, limp→0 Û(k, p) = v̂1(k). By

construction, Û satisfies (2.18) iff Ŵ = Û − v̂1 satisfies (2.10). From the properties

of G and Ĥ [j], it follows that Ŵ will indeed satisfy (2.9) and that it is the only
solution which is zero at p = 0.

Proposition 2.9. If α is large enough so that (2.39) holds, then for an absolute

constant C3 > 0, the solution Û(k, p) in Lemma 2.8 and its p-derivative satisfy

|Û(k, p)| ≤ 2e−β|k|+αp‖v̂1‖µ,β

(1 + |k|)µ

|Ûp(k, p)| ≤ C3e
−β|k|‖v̂1‖µ,β

(1 + |k|)µ

{√
α

C2
|k|eαp + |k|2

}

In particular, Û ∈ Aα′

for any α′ > α, and

|Û(k, p)| ≤
(

sup
p∈R+

(1 + p2)e−(α′−α)p

)

2e−β|k|+α′p‖v̂1‖µ,β

(1 + p2)(1 + |k|)µ

Proof. With L = L0 = α−1, then (2.40) holds, and therefore Û ∈ A∞
L0

. For
p ∈ [0, L0], we obtain

(2.41) e−αp‖Û(·, p)‖µ,β < 2e−αp‖v̂1‖µ,β

We now consider p ∈ [L0,∞). We define

y(p) = ‖Û(·, p)‖µ,β ∗ ‖Û(·, p)‖µ,β + ‖v̂0‖µ,β‖Û(·, p)‖µ,β

We note that

(2.42)

∣

∣

∣

∣

1√
p
e−αp

∫ p

0

y(p′)dp′
∣

∣

∣

∣

≤ L
−1/2
0

∣

∣

∣

∣

∫ p

0

e−αp′

y(p′)dp′
∣

∣

∣

∣

≤ α1/2‖y‖(α)
1

From (2.18) and (2.39), it follows that for p ∈ [L0,∞)

(2.43)

|Û(k, p)| ≤ e−β|k|+αp

(1 + |k|)µ

{

C2α
1/2

(

‖Û‖(α)
1

)2

+ C2α
1/2‖v̂0‖µ,β‖Û‖(α)

1 + e−αp‖v̂1‖µ,β

}

≤ 2e−β|k|+αp

(1 + |k|)µ
‖v̂1‖µ,β

By (2.41), (2.43) holds for p ∈ [0, L0] as well; hence the bound for |Û | follows. For

α′ > α, ‖Û‖(α′) < ∞ because e−(α′−α)p(1 + p2) is bounded if α′ > α.

Since Û is a solution to (2.18), differentiation with respect to p implies that

Ûp(k, p) = v̂1(k)

(

J1(z)

z

)′
4|k|2

z
+

ikjπ

p

∫ p

0

{

Gz(z, z′) − G(z, z′)

z

}

Ĝ[j](k, p′)dp′
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Since the functions Gz(z, z′), G(z, z′)/z and z−1 (J1(z)/z)
′
are easily checked to be

bounded for z ≥ z′ ∈ R
+, there exists C3 > 0, independent of any parameter, so

that

|Ûp(k, p)| ≤ C3|k|
p

∣

∣

∣

∣

∫ p

0

|Ĝ|(k, p′)|dp′ + C3|k|2|v̂1(k)

∣

∣

∣

∣

≤ C3|k|e−β|k|

(1 + |k|)µ

×
[

1

p

∫ p

0

(‖U(·, p′)‖µ,β ∗ ‖U(·, p′)‖µ,β + ‖v̂1‖µ,β‖U(·, p′)‖µ,β) dp′ + |k|‖v̂1‖µ,β

]

For p ∈ [0, L0], with L = L0 = 1
α satisfying (2.40), we have

|Ûp(k, p)| ≤ C3|k|e−β|k|

(1 + |k|)µ

[{

L0

(

‖U‖(∞)
L0

)2

+ ‖v̂0|µ,β‖U‖(∞)
L0

}

+ |k|‖v̂1‖µ,β

]

≤ C3e
−β|k|

(1 + |k|)µ

(√
α

C2
|k| + |k|2

)

‖v̂1‖µ,β

For p ∈ [L0,∞) and α satisfying (2.39), we have

|Ûp(k, p)| ≤ C3|k|e−β|k|+αp

L0(1 + |k|)µ

[{

(

‖U‖(α)
1

)2

+ ‖v̂0|µ,β‖U‖(α)
1

}

+ |k|L0e
−αp‖v̂1‖µ,β

]

≤ C3e
−β|k|‖v̂1‖µ,β

(1 + |k|)µ

{√
α

C2
|k|eαp + |k|2

}

Continuity of Û in p follows from the boundedness of Ûp for p ∈ R
+ for fixed k.

Lemma 2.10. Let ‖v̂0‖µ+2,β < ∞ and ‖f̂‖µ,β < ∞, with µ > 3, β ≥ 0. Then NS
has a unique solution with ‖v̂(·, t)‖µ,β < ∞ and v̂(·, t) analytic in t for Re 1

t > α,
where α depends on the initial data (see (2.39)). For β > 0, this implies v is
analytic in x in the same analyticity strip as v0, f .

Proof. From (2.6) we see that ‖v̂1‖µ,β < ∞, since

(2.44) ‖v̂1‖µ,β ≤ ‖v̂0‖µ+2,β + 2C0‖v̂0‖µ,β‖v̂0‖µ+1,β + ‖f̂‖µ,β

Therefore, when α is large enough to ensure (2.39), it follows that Û(k, ·) and

Ŵ (k, .) ≡ Û(k·, .) − v̂1(k) are in L1(e−αpdp). From Lemma 2.8, it follows that

limp→0 Ŵ (k, p) = 0 and Proposition 2.9 implies Ŵp(k, p) (same as Ûp(k, p)) is

bounded for p ∈ R
+ and hence limp→0+ pŴp = 0. Since Û satisfies (2.18), it follows

that Ŵ will satisfy (2.10) and hence (2.9). For Re t−1 > α, we take the Laplace

transform of (2.9) in p, using the fact ∂p[pŴ ] and pŴ vanish at p = 0. There is

no contribution at ∞ because of boundedness of e−αp
(

|Ŵ | + Ŵp

)

which follows

from Proposition 2.9. It can be checked that ŵ(k, t) =
∫ ∞

0
Ŵ (k, p)e−p/tdp satisfies

(2.7). Therefore,

v̂(k, t) = v̂0 + tv̂1 +

∫ ∞

0

Ŵ (k, p)e−p/tdp = v̂0 +

∫ ∞

0

Û(k, p)e−p/tdp

satisfies NS in Fourier space. Since ‖Û(·, p)‖µ,β < ∞, it follows that ‖v̂(·, t)‖µ,β <
∞ if Re 1

t > α.
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Proposition 2.11 (Bounds on ‖v̂(., t)‖µ+2,β). For the solution v̂(k, t) given in
Lemma 2.10 for t ∈ [0, α−1], we have

sup
t≤T

‖v̂(·, t)‖µ+2,β < C (‖v̂0‖µ+2,β , T ) < ∞

Proof. We note from (1.2) that if we define V = ∇v, then V̂ = F [V ] = ikv̂ satisfies,

(2.45) V̂t + |k|2V̂ = −ikP
[

v̂j ∗̂V̂ [j]}
]

+ ikf̂ , V̂0(k) = F [∇v0]

where V̂ [j] = ikj v̂j . Therefore,

(2.46) V̂ (k, t) = e−|k|2tV̂0(k) − ik

∫ t

0

e−|k|2(t−τ)
{

P
[

v̂j ∗̂V̂ [j]
]

(k, τ)} − f̂(k)
}

Therefore,

(2.47) |V̂ (·, t)| ≤ e−β|k|

(1 + |k|)µ

{

‖V̂0‖µ,β+

|k|
∫ t

0

e−|k|2(t−τ)
(

‖f̂‖µ,β + 2C0‖v̂(·, τ)‖µ,β‖‖V̂ (·, τ)‖µ,β

)

dτ

}

Let VT1
be the Banach space of continuous functions g of k ∈ R

3 and t ∈ [0, T1] for
which

‖g‖T1
= sup

t∈[0,T1]

‖g(·, t)‖µ,β < ∞

Then, the estimates in (2.47), together with the fact that for any t ∈ [0, T ],

2C0‖v̂(·, t)‖µ,β ≤ C̃ (T, ‖v̂0‖µ+2,β) imply there exists C1(T, ‖v0‖µ+2,β) > 0 so that

(2.48) ‖V̂ ‖T1
≤ C1

{

√

T1‖V̂1‖T1
+ ‖V̂0‖µ,β +

√

T1‖f̂‖µ,β

}

,

where we have used the fact that

|k|
∫ t

0

e−|k|2(t−τ)dτ =
1 − e−|k|2t

|k| ≤
√

T1 sup
γ∈R+

1 − e−γ

γ1/2
≤ C∗

√

T1,

for some C∗ > 0. Thus, thinking of v̂ as given in (2.45), the estimates in (2.48) and

similar estimates on V̂ [1]−V̂ [2] show that for C1

√
T1 < 1 the right hand side of (2.45)

is contractive in VT1
. We choose T1 ≤ T . Therefore, supt∈[0,T1] ‖V̂ (·, t)‖µ,β < ∞.

Since the choice of T1 depends on C1, which is independent of ‖V̂0‖µ,β , we can
repeat the same argument in another interval [T1, 2T1] and so on until we span the
whole interval [0, T ] over which ‖v̂1(·, t)‖µ,β is uniformly bounded.

We can take additional derivative and repeat the same type argument for F [D2v̂] =
−kkv̂ to show that in ‖|k|2v̂(·, t)‖µ,β is also bounded uniformly for t ∈ [0, T ]. In
this part of the argument, we use the prior knowledge that both ‖v̂(·, t)‖µ,β and
‖kv̂(·, t)‖µ,β are uniformly bounded in [0, T ] and that

|k|2
∫ t

0

e−|k|2(t−τ)‖f̂‖µ,βdτ = ‖f̂‖µ,β

(

1 − e−|k|2t
)

≤ ‖f̂‖µ,β sup
γ∈R+

[1−e−γ ] ≤ C‖f̂‖µ,β

Combining all the results, it follows that ‖v̂(·, t)‖µ+2,β is bounded for t ∈ [0, T ]
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Proof of Theorem 1.1. This follows from Lemma 2.10 and Proposition 2.11,
noting that ‖v̂(k, t)‖µ+2,β < ∞ implies v(x, t) = F−1[v̂(·, t)](x) ∈ C2(R3) and so v
is a classical solution to (1.1) for Re 1

t > α, which is known to be unique. From the

definition of ‖ · ‖µ,β it follows that ‖v̂0‖µ+2,β < ∞ and ‖f̂‖µ,β < ∞ for β > 0 imply
‖v̂(., t)‖µ+2,β < ∞. Thus v preserves the analyticity strip width for t ∈ [0, 1

α ).

3. Analyticity of Û(k, p) at p = 0

We now consider the case β > 0. We note that by Remark 1.7 we can choose
µ > 3. The starting point of this section is (2.9), which is satisfied by Ŵ (k, p) =

Û(k, p) − v̂1(k). From Lemma 2.8, this is the only solution to (2.9) satisfying

Ŵ (k, 0) = 0. We seek an potentially alternate solution to (2.9) as a power series,

(3.49) Ŵ (k, p) =

∞
∑

l=1

Ŵ [l](k)pl

Substituting (3.49) into (2.9) and identifying the coefficients of pl, l = 0, 1 we get

(3.50) 2Ŵ [1] = −|k|2v̂1 − ikjPk [v̂0,j ∗̂v̂1 + v̂1,j ∗̂v̂0] ,

(3.51) 6Ŵ [2] = −k2Ŵ [1] − ikjPk

[

v̂0,j ∗̂Ŵ [1] + Ŵ
[1]
j ∗̂v̂0 + v̂1,j ∗̂v̂1

]

It follows from (3.50) and Lemma (2.3) that

(3.52) |Ŵ [1](k, p)| ≤ e−β|k|

2(1 + |k|)µ

(

|k|2‖v1‖µ,β + 4C0|k|‖v0‖µ,β‖v1‖µ,β

)

The coefficient of pl for l ≥ 2 in (2.9) can be computed as well, using pl1 ∗ pl2 =

pl1+l2+1l1!l2!/(l1 + l2 + 1)!. Interpreting Ŵ [0] = 0, we get

(3.53)

(l + 1)(l + 2)Ŵ [l+1] = −k2Ŵ [l] − ikjPk

[

l−2
∑

l1=1

l1!(l − 1 − l1)!

l!
Ŵ

[l1]
j ∗̂Ŵ [l−1−l1]

]

− ikjPk

[

v̂0,j ∗̂Ŵ [l] + Ŵ
[l]
j ∗̂v̂0 +

1

l
v̂1,j ∗̂Ŵ [l−1] +

1

l
Ŵ

[l−1]
j ∗̂v̂1

]

Definition 3.1. It is convenient to define the n-th order polynomial Qn:

Qn(y) =

n
∑

j=0

2n−j yj

j!

Lemma 3.2. If ‖v0‖µ+2,β < ∞, for µ > 3, β > 0, then there exist positive
constants A0, B0 > 0 independent of l and k so that for any l ≥ 1 we have

(3.54) |Ŵ [l](k)| ≤ e−β|k|A0B
l
0(1 + |k|)−µ Q2l(|βk|)

(2l + 1)2

and

|W [l](x)| ≤ 8πA0(4B0)
l

(2l + 1)2
, |DW [l](x)| ≤ 8πA0(4B0)

l

β(2l + 1)2
, |D2W [l](x)| ≤ 16πA0(4B0)

l

β2(2l + 1)2

Furthermore, the solution in Lemma 2.8, §2 has a convergent series representation
in p: Û(k, p) = v̂1(k) +

∑∞
l=1 Ŵ [l]pl for |p| < (4B0)

−1.
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Remark 3.3. Lemma 3.2 is proved by induction on l. For l = 1, by (3.52) we just
choose

(3.55) A0B0 ≥ 18

β2
‖v̂1‖µ,β(1 + βC0‖v0‖µ,β)

Let now l ≥ 2. For the induction step, we will estimate each term on the right of
(3.53).

Lemma 3.4. If for l ≥ 1, W [l] satisfies (3.54), then

|k|2|Ŵ [l]|
(l + 1)(l + 2)

≤ 6A0B
l
0e

−β|k|

β2(1 + |k|)µ

Q2l+2(β|k|)
(2l + 3)2

Proof. The proof simply follows from the (3.54) and noting that for y ≥ 0

y2

(2l + 2)(2l + 1)
Q2l(y) ≤ Q2l+2(y) ,

(2l + 3)2

(2l + 1)(l + 2)
≤ 3

Lemma 3.5. If W [l] satisfies (3.54), then for l ≥ 1,

1

(l + 1)(l + 2)
|kjPkû0,j ∗̂Ŵ [l]| ≤ 2µ‖v0‖µ,β

9πA0B
l
0e

−β|k|

β3(2l + 3)2(1 + |k|)µ
Q2l+2(β|k|)

1

(l + 1)(l + 2)
|kjPkŴ

[l]
j ∗̂û0,j | ≤ 2µ‖v0‖µ,β

9πA0B
l
0e

−β|k|

β3(2l + 3)2(1 + |k|)µ
Q2l+2(β|k|)

Proof. We use the estimate (3.54) on Ŵ [l]. From Lemma 6.7 for n = 0, we obtain

|kjŴ
[l]
j ∗̂û0| ≤ ‖v0‖µ,β

A0B
l
0

(2l + 1)2

(

|k|
∫

k′∈R3

e−β(|k′|+|k−k′|)

(1 + |k′|)µ[1 + |k − k′)]µ
Q2l(β|k′|)dk′

)

≤ ‖v0‖µ,βA0B
l
0

(2l + 1)2

2l
∑

m=0

22l−m

m!
|k|

∫

k′∈R3

e−β(|k′|+|k−k′|)(1+|k′|)−µ(1+|k−k′))−µ|k′|2mdk′

≤ 2π‖v0‖µ,βA0B
l
02

µe−β|k|

(2l + 1)2β3(1 + |k|)µ

2l
∑

m=0

22l−m(m + 2)Qm+2(β|k|)

≤ 2µ+1π

(2l + 1)β3(1 + |k|)µ
‖v0‖µ,βA0B

l
0e

−β|k|(l + 2)Q2l+2(β|k|)

The first part of the lemma follows by using (1.4) and checking that 2(2l+3)2

(2l+1)(l+1) ≤ 9

for l ≥ 1. The proof of the second part is essentially the same since |Ŵ [l]
j | ≤ |Ŵ [l]|.

Lemma 3.6. If W [l−1] satisfies (3.54) for any l ≥ 2, then

1

l(l + 1)(l + 2)
|kjPk

[

û1,j ∗̂Ŵ [l−1]
]

| ≤ 2µ‖v1‖µ,β9πA0B
l
0(1+|k|)−µe−β|k| Q2l(β|k|)

β3(l + 2)(2l + 1)2

1

l(l + 1)(l + 2)
|kjPk

[

Ŵ
[l−1]
j ∗̂û1,j

]

| ≤ 2µ‖v1‖µ,β9πA0B
l−1
0 (1+|k|)−µe−β|k| Q2l(β|k|)

β3(l + 2)(2l + 1)2
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Proof. The proof is identical to that of Lemma 3.5 with l replaced by l − 1 and v0

by v1.

Lemma 3.7. If for l ≥ 3, Ŵ [l1] and Ŵ [l−1−l1] for l1 = 1, ..., (l − 2) satisfy (3.54),
then

∣

∣

∣

∣

∣

kj

(l + 1)(l + 2)
Pk

[

l−2
∑

l1=1

l1!(l − 1 − l1)!

l!
Ŵ

[l1]
j ∗̂Ŵ [l−1−l1]

]∣

∣

∣

∣

∣

≤ 2µ36A2
0B

l−1
0 (1 + |k|)−µe−β|k| Q2l(β|k|)

β3(2l + 3)2

Proof. First note that if we define l2 = l−1− l1, then for l ≥ 3, Lemma 6.9 implies

l1!l2!

l!

∣

∣

∣
kjŴ

[l1]
j ∗̂Ŵ [l2]

∣

∣

∣
≤ A2

0B
l−1
0

(l1)!(l2)!

l!(2l1 + 1)2(2l2 + 1)2
×

|k|
∫

k′∈R3

e−β(|k′|+|k−k′|)(1 + |k′|)−µ(1 + |k − k′))−µQ2l1(β|k′|)Q2l2(β|k − k′|)dk′

≤ 2µ+1πA2
0B

l−1
0 e−β|k|

3β3(1 + |k|)µ

(2l − 1)(2l)(2l + 1)l1!l2!

l!(2l1 + 1)2(2l2 + 2)2
Q2l(β|k|)

Therefore,

l−2
∑

l1=1

l1!l2!

l!(l + 1)(l + 2)
|kjŴ

[l1]
j ∗̂Ŵ [l2]|

≤ 2µ+2πe−β|k|Q2l(β|k|)(2l − 1)(2l + 1)

3(l + 1)(l + 2)β3(1 + |k|)µ

l−2
∑

l1=1

l1!l2!

(l − 1)!(2l1 + 1)2(2l2 + 1)2

and the proof follows noting that l1!l2!
(l−1)! = l1!l2!

(l1+l2)!
≤ 1 and checking 4(2l−1)(2l+1)

(l+1)(l+2) ≤
16; by breaking up the sum in the ranges: l1 ≤ (l − 1)/2 and l1 > (l − 1)/2 (in
which l2 ≤ (l − 1)/2) it is easily seen that for some C∗ > 0 and any l ≥ 3 we have

l−2
∑

l1=1

1

(2l1 + 1)2(2l2 + 1)2
≤ C∗

(2l + 3)2
,

where C∗ = 1.07555 · · · (the upper-bound being achieved at l = 4).

Lemma 3.8.

(3.56) |Ŵ [2]| ≤ e−β|k|

(1 + |k|)µ

Q4(β|k|)
72

(

A0B0

β2
+ A0B0‖v0‖µ,β

2µ36π

β2
+ ‖v1‖2

µ,β

)

and therefore Ŵ [2] satisfies (3.54) if

(3.57) A0B
2
0 ≥ 3A0B0

β2
+ A0B0‖v0‖µ,β

2µ36π

β2
+

C0

β
‖v1‖2

µ,β

Proof. We use Lemmas 3.4, 3.5 and 2.2 to estimate different terms on the right
hand side of (3.53) for l = 1.
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Proof of Lemma 3.2
We use Lemmas 3.4, 3.5 3.6 and 3.7 to estimates the terms on the right hand side

of (3.53) and note that Q2l(y) ≤ 1
4Q2l+2(y). Hence, combining all the estimates,

we obtain for l ≥ 2,

|Ŵ [l+1]| ≤ A0B
l−1
0

Q2l+2(β|k|)e−β|k|

(2l + 3)2(1 + |k|)µ

×
{

6

β2
B0 + 2µ 18π

β3
B0‖v0‖µ,β +

2µ18π(2l + 3)2

(l + 2)(2l + 1)2β3
‖v1‖µ,β +

9A02
µ

β3

}

≤ A0B
l+1
0 e−β|k|

(1 + |k|)µ(2l + 3)2
Q2l+2(β|k|)

for large enough B0 so that

(3.58)

{

6

β2
B0 + 2µ 18π

β3
B0‖v0‖µ,β +

2µ18π

β3
‖v1‖µ,β +

9A02
µ

β3

}

≤ B2
0

Combining (3.58) with (3.55) and (3.57), we that (3.54) is satisfied for any l ≥ 1.

Therefore, it follows that
∑∞

l=1 Ŵ [l](k)pl is convergent for |p| < 1
4B0

. The recurrence

relations (3.50),(3.51) and (3.53) imply that
∑∞

l=1 Ŵ [l](k)pl is indeed a solution to
(2.9), which is zero at p = 0. However, from §2 Lemma 2.8, we know that there is a

unique Ŵ = Û(k, p) − v̂1(k) with this property in A∞
L , which for sufficiently small

L includes analytic functions at the origin. Therefore

Û(k, p) = v̂1(k) +
∞
∑

l=1

Ŵ [l](k)pl

Moreover, from the well-known relation between a function and its Fourier trans-

form, ‖f‖L∞(R3) ≤ ‖f̂‖L1(R3 , the inequalities involving W [l](x) and its x-derivatives
follow.

4. Estimates on ∂l
pŴ (k, p) and proof of Theorem 1.2

In this section, we find inductively (in l) that Ŵ [l] := ∂l
pŴ/l! exists for any l

and Ŵ [l] generate power series (4.72) with p0− independent radius of convergence.

This does not necessarily imply in itself that the series converges to Ŵ . The fact
that these objects do coincide locally will be shown in Lemma 4.13. This leads to
proof of Theorem 1.2.

Definition 4.1. It is convenient to define for l ≥ 1,

Ŵ [l](k, p) =
1

l!
∂l

pŴ (x, p) ,

It is also convenient to define Ŵ [0](k, p) = Ŵ (k, p) = Û(k, p) − v̂1(k).

The proof therefore reduces to finding appropriate bounds on Ŵ [l](k, p). The
main result proved in this section is the Lemma 4.2, which, using Lemma 4.13,
leads directly to the proof of Theorem 1.2.

Proposition 2.9 implies that Û ∈ Aα′

for α′ > α, with α chosen large enough to
satisfy (2.39). In particular, if we choose α′ = α + 1, it follows that Ŵ [0](k, p) =
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Û(k, p) − v̂k(k) satisfies

(4.59) |Ŵ [0](k, p)| ≤ 3e−β|k|+α′p‖v̂1‖µ,β

(1 + p2)(1 + |k|)µ

In the rest of this section, with some abuse of notation, we will replace α′ by α.

Lemma 4.2. If ‖v0‖µ+2,β < ∞, µ > 3, there exists positive constants A, B inde-
pendent of l, k and p so that for any l ≥ 0

(4.60) |Ŵ [l](k, p)| ≤ eαpe−β|k|

(1 + p2)(1 + |k|)µ
ABl Q2l(|βk|)

(2l + 1)2

The series (4.72) converges uniformly for any p0 ≥ 0 for |p − p0| < 1
4B .

Remark 4.3. The proof requires some further lemmas. We will use induction on
l. Clearly, from (4.59), the conclusion is valid for l = 0, when

(4.61) A = 3‖v̂1‖µ,β

We assume (4.60) for l ≥ 0 and then establish it for l + 1. We obtain a recurrence

relation for Ŵ [l+1](k, .) for any k ∈ R
3 in terms of Ŵ [j](k, .) for j ≤ l.

Taking ∂l
p in (2.9) and dividing by l!, we obtain

(4.62) p∂2
pŴ [l] + (l + 2)∂pŴ

[l] + |k|2Ŵ [l] =

−ikjPk

[

∫ p

0

{

Ŵ
[l]
j (·, p − s)∗̂Ŵ [0](·, s)

}

ds +

l−1
∑

l1=1

l1!(l − 1 − l1)!

l!
Ŵ

[l1]
j (·, 0)∗̂Ŵ [l−1−l1](·, p)

]

− ikjPk

[

v̂0,j ∗̂Ŵ [l] + v̂0∗̂Ŵ [l]
j +

1

l
v̂1,j ∗̂Ŵ [l−1] +

1

l
v̂1∗̂Ŵ [l−1]

j + v̂1,j ∗̂v̂1δl,1

]

− ikjPk [v̂0,j ∗̂v̂1 + v̂1,j ∗̂v̂0] δl,0 ≡ R̂(l)(k, p)

Lemma 4.4. For any l ≥ 0, for some absolute constant C6 > 0, if Ŵ [l](k, p)

satisfies (4.62) and is bounded at p = 0, then Ŵ [l+1](k, p) is bounded in terms of

R̂(l)(k, p), defined in (4.62):

|Ŵ [l+1](k, p) ≤ C6

(l + 1)5/3
sup

p′∈[0,p]

|R̂[l](k, p)| + |k|2|Ŵ [l](k, 0)|
(l + 1)(l + 2)

Proof. We invert the operator on the left hand side of (4.62). With the requirement

that Ŵ [l] is bounded at p = 0, we obtain

(4.63) Ŵ [l](k, p) =

∫ p

0

Q
(

z(p), 2|k|
√

p′
)

R̂(l)(k, p′)dp′

+ 2(l+1)(l + 1)!Ŵ [l](k, 0)
Jl+1(z)

zl+1
, where z = 2|k|√p

and

(4.64) Q(z, z′) = πz−(l+1)
[

−Jl+1(z)z′
(l+1)

Yl+1(z
′) + z′

(l+1)
Jl+1(z

′)Yl+1(z)
]
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On taking the first derivative with respect to p, we obtain

(4.65) (l + 1)Ŵ [l+1](k, p)

=
|k|√

p

∫ p

0

Qz

(

2|k|√p, 2|k|
√

p′
)

R̂(l)(k, p′)dp′ − 2l+2(l + 1)!|k|2 Jl+2(z)

zl+2
Ŵ [l](k, 0)

Using again the properties of Bessel functions [1] we get

(4.66)

1

z
Qz(z, z′) =

π

z

[

−
(

Jl+1(z)

zl+1

)′

z′
(l+1)

Yl+1(z
′) + z′

(l+1)
Jl+1(z

′)

(

Yl+1(z)

zl+1

)′
]

= π

[

Jl+2(z)

zl+2
z′

(l+1)
Yl+1(z

′) − z′
(l+1)

Jl+1(z
′)

Yl+2(z)

zl+2

]

It is also known [1] that

2l+2(l + 1)!
∣

∣

∣

Jl+2(z)

zl+2

∣

∣

∣
≤ 1

(l + 2)

Using (4.66) and the known uniform asymptotics of Bessel functions for large l [1],
it is easily to see that C∗ independent of l so that

∫ z

0

z′

z
|Qz(z, z′)|dz′ ≤ C∗

(l + 1)2/3

It follows that
(4.67)

(l + 1)|Ŵ [l+1](k, p)| ≤ sup
p′∈[0,p]

|R̂(l)(k, p′)|
∫ z

0

z′

z
|Qz(z, z′)|dz′ +

|k|2
(l + 2)

|Ŵ [l](k, 0)|

Therefore, it follows that

(4.68)
∣

∣

∣
Ŵ [l+1](k, p)

∣

∣

∣
≤ C6

(l + 1)5/3
sup

p′∈[0,p]

|R̂(l)(k, p′)| + |k|2|Ŵ [l](k, 0)|
(l + 1)(l + 2)

Remark 4.5. We now find bounds on the different terms in R̂(l)(k, p).

Lemma 4.6. If W [l] satisfies (4.60), for l ≥ 0 then

|kjPk

(

v̂0,j ∗̂Ŵ [l]
)

| ≤ C1‖v̂0‖µ,β
(l + 1)2/3ABle−β|k|+αpQ2l+2(β|k|)

(2l + 1)(1 + |k|)µ(1 + p2)

|kjPk

(

Ŵ
[l]
j ∗̂v̂0,j

)

| ≤ C1‖v̂0‖µ,β
(l + 1)2/3ABle−β|k|+αpQ2l+2(β|k|)

(2l + 1)(1 + |k|)µ(1 + p2)

Proof. We use (4.60). From Lemma 6.10, we obtain

(1+p2)e−αp|kjŴ
[l]
j ∗̂v̂0| ≤ ‖v̂0‖µ,β

ABl

(2l + 1)
|k|

∫

k′∈R3

e−β(|k′|+|k−k′|)

(1 + |k′|)µ[1 + |k − k′)]µ
Q2l(β|k′|)dk′

≤ C1(l + 1)2/3‖v̂0‖µ,β
ABl

(2l + 1)

e−β|k|

(1 + |k|)µ
Q2l+2(β|k|)
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The first part of the Lemma follows. The proof of the second part is essentially the

same since |Ŵ [l]
j | ≤ |Ŵ [l]|.

Lemma 4.7. If W [l−1] satisfies (4.60) for l ≥ 1, then

∣

∣

∣

kj

l
Pk

[

v̂1,j ∗̂Ŵ [l−1]
]
∣

∣

∣
≤ C1‖v1‖µ,βABl−1 e−β|k|+αp

(1 + p2)(1 + |k|)µ

l2/3Q2l(β|k|)
l(2l − 1)

∣

∣

∣

kj

l

(

1 − k(k·)
|k|2

)

v̂1∗̂Ŵ [l−1]
j

∣

∣

∣
≤ C1‖v1‖µ,βABl−1 e−β|k|+αp

(1 + p2)(1 + |k|)µ

l2/3Q2l(β|k|)
l(2l − 1)

Proof. The proof is identical to Lemma 4.6 replacing l by l − 1 and v̂0 by v̂1.

Lemma 4.8. If W [l] satisfies (4.60), then for l ≥ 1,
∣

∣

∣

kj

l
Pk

[

Ŵ [l−1](·, 0)∗̂Ŵ [0](·, p)
] ∣

∣

∣
≤ C1

(l + 1)2/3A2Bl−1e−β|k|+αpQ2l(β|k|)
l(2l − 1)(1 + |k|)µ(1 + p2)

Proof. Noting that

|Ŵ [0](k, p)| ≤ A
e−β|k|+αp

(1 + |k|)µ(1 + p2)

and

|Ŵ [l−1](k, 0) ≤ e−β|k|

(2l − 1)2(1 + |k|)µ
ABl−1Q2l−2(β|k|)

the rest of the proof is very similar to the proof of Lemma 4.6

Lemma 4.9. If Ŵ [l1] and Ŵ [l−1−l1] for l1 = 1, ..(l − 2) for l ≥ 2 satisfy (4.60),
then

∣

∣

∣
kjPk

[

l−2
∑

l1=1

l1!(l − 1 − l1)!

l!
Ŵ

[l1]
j (·, 0)∗̂Ŵ [l−1−l1](·, p)

]

∣

∣

∣

≤ C82
µ+1πA2Bl−1 e−β|k|+αp

3β3(1 + p2)(1 + |k|)−µ

lQ2l(β|k|)
(2l + 3)2

; where C8 = 82

Proof. First note that if we define l2 = l − 1− l1, then for l ≥ 2, using Lemma 6.9,
we get

l1!l2!

l!
|kjŴ

[l1]
j (·, 0)∗̂Ŵ [l2](·, p)| ≤ eαp

(1 + p2)
A2Bl−1 l1!l2!

l!(2l1 + 1)2(2l2 + 1)2

× |k|
∫

k′∈R3

e−β(|k′|+|k−k′|)(1 + |k′|)−µ(1 + |k − k′))−µQ2l1(β|k′|)Q2l2(β|k − k′|)dk′

≤ A2Bl−12µ+1πe−β|k|+αp

3β3(1 + p2)(1 + |k|)µ

l1!l2!(2l)(2l − 1)(2l + 1)

l!(2l1 + 1)2(2l2 + 1)2
Q2l(β|k|)

Therefore,

l−2
∑

l1=1

l1!l2!

l!
|kjŴ

[l1]
j (.; 0)∗̂Ŵ [l2](.; p)|

≤ 2µA2Ble−β|k|+αpQ2l(β|k|)
β3(1 + |k|)µ(1 + p2)

l−2
∑

l1=1

l1!l2!(2l)(2l + 1)(2l − 1)

l!(2l1 + 1)2(2l2 + 1)2
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We claim that for l ≥ 2, with l1 ≥ 1, l2 = l − l1 − 1 ≥ 1,

l−1
∑

l1=1

l1!l2!(2l)(2l − 1)(2l + 1)

l!(l − 1)(2l1 + 1)2(2l2 + 1)2
≤ C8l

(2l + 3)2

for some C8 independent of l; C8 is bounded by 82.
Proving the above bound only requires consideration for sufficiently large l. We

will therefore assume l ≥ 5. Further, consider summation terms other than l1 = 1
and l2 = 1. So, we may assume l1, l2 ≥ 2. Then, we claim that

(4.69)
l1!l2!2l(2l + 1)(2l − 1)

l!(2l1 + 1)2(2l2 + 1)2
=

(

(l1 − 2)!(l2 − 2)!

(l − 5)!

) (

l1(l1 − 1)l2(l2 − 1)

(2l1 + 1)2(2l2 + 2)2

)

×
(

2l(2l − 1)(2l + 1)

l(l − 1)(l − 2)(l − 3)(l − 4)

)

≤ 12

(2l + 3)2

This follows since the first two parenthesis term on the right of (4.69) is clearly
bounded, while the last term is a cubic in l divided by fifth order polynomial, and
simple estimates give the upperbound of 12. Therefore, for l ≥ 5,

l−3
∑

l1=2

l1!l2!2l(2l + 1)(2l − 1)

l!(2l1 + 1)2(2l2 + 1)2
≤ 12

(l − 4)

(2l + 3)2

For l1 = 1 or l2 = 1, clearly

l1!l2!2l(2l + 1)(2l − 1)

l!(2l1 + 1)2(2l2 + 1)2
=

(l − 2)!2l(2l + 1)(2l − 1)

9l!(2l − 3)2
=

2l(2l + 1)(2l − 1)

9l(l − 1)(2l − 3)2
≤ 82

l

(2l + 3)2

Lemma 4.10. If Ŵ [l] satisfies (4.60), then for l ≥ 0,
∣

∣

∣

∣

kj

(

1 − k(k·)
|k|2

)
∫ p

0

Ŵ
[l]
j (.; p − s)∗̂Ŵ [0](.; s)ds

∣

∣

∣

∣

≤ C1(l + 1)2/3A2Bl e−β|k|+αpQ2l+2(β|k|)
(1 + p2)(1 + |k|)µ(2l + 1)

Proof. We note that Lemma 6.10 implies
∣

∣

∣

∣

kj

∫

k′∈R3

∫ p

0

Ŵ
[l]
j (k′, p − s)Ŵ [0](k − k′; s)dsdk′

∣

∣

∣

∣

≤ A2Bleαp

(1 + p2)(2l + 1)2

× |k′|
∫

k′∈R3

e−β|k′|−β|k−k′|

(1 + |k′|)µ(1 + |k − k′)µ
Q2l(βk′)dk′

≤ C1(l + 1)2/3A2Bleαp−β|k|

(2l + 1)(1 + p2)(1 + |k|)µ
Q2l+2(β|k|)

Lemma 4.11.
∣

∣

∣

∣

kj

(

1 − k(k · .)
|k|2

)

(v̂0,j ∗̂v̂1 + v̂1,j ∗̂v̂0)

∣

∣

∣

∣

≤ 4C0|k|
e−β|k|

(1 + |k|)µ
‖v̂0‖µ,β‖v̂1‖µ,β

∣

∣

∣

∣

kj

(

1 − k(k · .)
|k|2

)

v̂1,j ∗̂v̂1

∣

∣

∣

∣

≤ 2C0|k|
e−β|k|

(1 + |k|)µ
‖v̂1‖2

µ,β
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Proof. This follows simply from the observation that
∣

∣

∣

∣

kj

(

1 − k(k · .)
|k|2

)

v̂0,j ∗̂v̂1

∣

∣

∣

∣

≤ 2|k|‖v̂1‖µ,β‖v̂0‖µ,β

∫

k′∈R3

e−β|k′|−β|k−k′|

(1 + |k′|)µ(1 + |k − k′|)µ
dk′

and using (2.21) to bound the convolution. Other parts of the Lemma follow
similarly.

Lemma 4.12.

|Ŵ [1](·, p)| ≤ e−β|k|+αp

(1 + |k|)µ(1 + p2)
ABQ2(β|k|)

with

(4.70) AB ≥
(

2C1‖v0‖µ,βA + C1A
2 +

2C0

β
‖v̂0‖µ,β‖v1‖µ,β

)

Proof. Combining Lemmas 4.6, 4.10 and 4.11 with (4.68) for l = 0, we obtain

|Ŵ [1](·, p)| ≤ e−β|k|+αp

(1 + |k|)µ(1 + p2)
Q2(β|k|)

(

2C1‖v0‖µ,βA+C1A
2+

2C0

β
‖v̂0‖µ,β‖v̂1‖µ,β

)

≤ e−β|k|+αp

(1 + |k|)µ(1 + p2)
ABQ2(β|k|)

Proof of Lemma 4.2
From Lemmas 4.6-4.10 and 4.11 (the latter is only needed for l = 1), it follows

that R̂(l) (cf. (4.60)) satisfies

|R̂(l)| ≤ ABl−1 e−β|k|+αp

(2l + 3)2(1 + p2)(1 + |k|)µ
Q2l+2(β|k|)

×
[

ABC1
(l + 1)2/3(2l + 3)2

(2l + 1)
+

AC1(l + 1)2/3(2l + 3)3

4l(2l − 1)
+

82 2µ+1πAl

12β3
+

2C1‖v̂1‖µ,β(2l + 3)3

4l1/3(2l − 1)

+
2C0(l + 1)2/3(2l + 3)2‖v̂0‖µ,β

(2l + 1)
+

25C0

β
(1 + p2)e−αp‖v̂1‖2

µ,βδl,1

]

Noting that e−αp(1 + p2) ≤ 1 and

sup
p′∈[0,p]

eαp′

1 + p′2
=

eαp

1 + p2

for α ≥ 1, it follows from Lemma 4.4 and the above bounds that (4.60) holds when
l is replaced by l + 1, provided B is chosen large enough to satisfy (4.70) and

(4.71)

C6

[

ABC1
(2l + 3)2

(l + 1)(2l + 1)
+

AC1(2l + 3)3

4l(l + 1)(2l − 1)
+

(82)2µ+1πAl

12β3(l + 1)5/3
+

2C1‖v̂1‖µ,β(2l + 3)3

4l1/3(l + 1)5/3(2l − 1)

+
2C0(2l + 3)2‖v̂0‖µ,β

(l + 1)(2l + 1)
+

25C0

β
(1 + p2)e−αp‖v̂1‖2

µ,βδl,1

]

+
100B

9β2
≤ B2,
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for any l ≥ 1, with A given by (4.61). From the asymptotic behavior of the left hand
side of (4.71) as l → ∞ and recalling that constants C0, C1 and C6 are independent
of l, it follows that B can be chosen independent of l. Therefore, by induction,
(4.60) follows for all l. The proof of Lemma 4.2 is complete.

From (4.60), after noting that that Q2l(|q|) ≤ 4le−|q|/2, it follows that

(4.72) W̃ (k, p; p0) =

∞
∑

l=0

Ŵ [l](k, p0)(p − p0)
l := Ŵ1(k, p)

is convergent for |p−p0| < 1
4B for B independent of p0 ∈ R

+. The following Lemma

shows that W̃ (k, p; p0) is indeed the local representation of the solution Ŵ (k, p) to
(2.9).

Lemma 4.13. The unique solution to (2.9) satisfying Ŵ (k, 0) = 0, given by

Ŵ (k, p) = Û(k, p)− v̂1(k), where Û(k, p) is determined in §2 in Lemma 2.8, has the

local representation W̃ (k, p; p0) in a neighborhood of p0 ∈ R
+. Therefore, Ŵ (k, .)

(and therefore Û(k, .)) is analytic in R
+ ∪ {0}.

Proof. First, by permanence of relations (for analyticity of convolutions, see e.g.,

[6]), it follows that if V̂ is an analytic solution of an equation of the form (2.9) on

an interval [0, L] and V̂ has analytic continuation on [0, L′] with L′ > L, then the
equation is automatically satisfied in the larger interval. Therefore, if we analyti-
cally continue Ŵ to R

+, the analytic continuation will automatically satisfy (2.9)

and will therefore be the same as Ŵ (k, p).

From §3, Lemma 3.2, we know that the actual solution to (2.9) satisfying Ŵ (k, 0) =
0, is unique, and given by

Ŵ (k, p) = W̃ (k, p; 0)

for |p| < (4B)−1.
We now choose a sequence of {p0,j}∞j=0, with p0,j = j/(8B) and define the

intervals Ij = (p0,j − 1/(4B), p0,j + 1/(4B)). Consider the sequence of analytic

functions
{

W̃ (k, p; p0,j)
}∞

j=0
. Since p0,1 ∈ I0 ∩ I1, it follows from (4.72) that

Ŵ (k, p) has analytic continuation to I1, namely W̃ (k, p; p0,1). Again p0,2 ∈ I1∩I2.

Hence W̃ (k, p; p0,2) provides analytic continuation of Ŵ (k, p) to the interval I2. We

can continue this process to obtain analytic continuation of Ŵ to any interval Ij .

Since the union of {Ij}∞j=0 contains R
+ ∪ {0}, it follows that Ŵ (k, .) is analytic in

R
+. In particular, (4.72) provides the local Taylor series representation of Ŵ (k, p)

near p = p0.

Proof of Theorem 1.2
Using Lemma 4.2, it follows from the inequality ‖W [l](·, p0)‖∞ ≤ ‖Ŵ [l](·, p0)‖L1

by integration in k that

|W [l](x, p0)| ≤
8πA(4B)leαp0

β(2l + 1)2(1 + p2
0)

|DW [l](x, p0)| ≤
8πA(4B)leαp0

β(2l + 1)2(1 + p2
0)

|D2W [l](x, p0)| ≤
16πA(4B)leαp0

β2(2l + 1)2(1 + p2
0)
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and therefore, the series (4.72) converges for |p−p0| < B−1/4 and, from Lemma 4.13

it is the local representation of the solution Ŵ (k, p) to (2.9) satisfying Ŵ (k, 0) = 0

for any p0 ≥ 0. These estimates on W in terms of Ŵ , and the fact that W (x, p)
is analytic in a neighborhood of for p ∈ {0} ∪ R

+ and is exponentially bounded

in p for large p (recall Ŵ ∈ Aα) implies Borel summability of v in 1/t. Watson’s
Lemma [25] implies w(x, t) =

∫ ∞

0
e−p/tW (x, p)dp ∼ ∑∞

m=2 vm(x)tm, implying

v(x, t) = v0(x) + tv1(x) +

∞
∑

m=2

vm(x)tm,

where vm(x) = m!W [m−1](x; 0) = m!U [m−1](x; 0) for m ≥ 2. It follows from the

bounds on Ŵ [m−1](k) in §3, that for m ≥ 2, |W [m−1](x; 0)| ≤ A0B
m
0 , where A0 and

B0
(3) are chosen to ensure (3.55), (3.57) and (3.58).
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6. Appendix

6.1. Some Fourier convolution inequalities. The following lemmas are rela-
tively straightforward.

Definition 6.1. Consider the polynomial

Pn(z) =
n

∑

j=0

n!

j!
zj

Remark 6.2. Integration by parts yields

(6.73)

∫ z

0

e−ττndτ = −e−zPn(z) + n!

Lemma 6.3. For all y ≥ 0 and nonnegative integers m,n ≥ 0 we have

ym+1

∫ 1

0

ρmPn(y(1 − ρ))dρ = m!n!

n
∑

j=0

ym+j+1

(m + j + 1)!

Proof. This follows from a simple computation:

ym+1

∫ 1

0

ρmPn(y(1−ρ))dρ =

n
∑

j=0

n!

j!
yj+m+1

∫ 1

0

(1−ρ)jρmdρ = m!n!

n
∑

j=0

yj+m+1

(m + j + 1)!

(3) We may express it in terms of A and B as well, however, the estimates A0 and B0 found

in §3, are better.
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Lemma 6.4. For all y ≥ 0 and nonnegative integers n ≥ m ≥ 0 we have

ym+1

∫ ∞

1

e−2y(ρ−1)ρmPn(y(ρ − 1))dρ ≤ 2−m(m + n)!

m
∑

j=0

yj

j!

Proof. First we note that

ym+1+l

∫ ∞

1

e−2y(ρ−1)ρm(ρ − 1)ldρ = ym+1+l

∫ ∞

0

e−2yρ(1 + ρ)mρldρ

= ym+1+l
m

∑

j=0

m!

j!(m − j)!

∫ ∞

0

e−2yρρl+jdρ = 2−l−1
m

∑

j=0

ym−jm!(l + j)!

j!(m − j)!2j

= 2−l−1
m

∑

j=0

yjm!(l + m − j)!

(m − j)!j!2m−j

Therefore, from the definition of Pn, it follows that

ym+1

∫ ∞

1

e−2y(ρ−1)ρmPn(y(ρ − 1))dρ

= m!n!

m
∑

j=0

yj

j!(m − j)!2m−j

(

n
∑

l=0

(l + m − j)!

2l+1l!

)

Taking the ratio of two consecutive terms we see that (l + m − j)!/l! is nondecreas-
ing with l since m− j ≥ 0. Therefore the l = n term is the largest term in the sum-
mation over l. Further,

∑n
l=0 2−l−1 ≤ 1. Therefore,

∑n
l=0 2−l−1(l + m − j)!/l! ≤

(m − j + n)!/n!, and hence

ym+1

∫ ∞

1

e−2y(ρ−1)ρmPn(y(ρ − 1))dρ ≤ 2−mm!n!

m
∑

j=0

yj

j!

2j(m − j + n)!

n!(m − j)!

The ratio of two consecutive (in j) terms in 2j(m − j + n)!/(m − j)! is ≤ 1 for
m ≤ n, hence the largest value is attained at j = 0 and thus

ym+1

∫ ∞

1

e−2y(ρ−1)ρmPn(y(ρ − 1))dρ ≤ 2−m(m + n)!
m

∑

j=0

yj

j!

Lemma 6.5. For all y ≥ 0 and nonnegative integers n ≥ m ≥ 0 we have

ym+1

∫ ∞

0

e−y(ρ−1)[1+sgn(ρ−1)]ρmPn(y|1 − ρ|)dρ ≤ m!n!Qm+n+1(y)

Proof. By breaking up the integral range into
∫ 1

0
and

∫ ∞

1
and using the two previous

Lemmas, we obtain

ym+1

∫ ∞

0

e−y(ρ−1)[1+sgn(ρ−1)]ρmPn(y|1 − ρ|)dρ ≤ m!n!

(

m+n+1
∑

j=m+1

yj

j!

+ 2−m−n (m + n)!

m!n!

m
∑

j=0

2n yj

j!

)

≤ m!n!
m+n+1

∑

j=0

2m+n+1−j yj

j!
= m!n!Qm+n+1(y)
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where we used 2−m−n (m+n)!
m!n! ≤ 1.

Lemma 6.6. If m and n, are integers no less that −1 we obtain

|q|
∫

q′∈R3

e|q|−|q′|−|q−q′||q′|m|q − q′|ndq′ ≤ 2π(m + 1)!(n + 1)!Qm+n+3(|q|)

Proof. We note that we may assume m ≤ n without loss of generality since changing
variable q′ 7→ q − q′ switches the roles of m and n.

First, we will show that

(6.74)
|q|
2π

∫

q′∈R3

e|q|−|q′|−|q−q′||q′|m|q − q′|ndq′

≤ |q|m+2

∫ ∞

0

e−|q|(ρ−1)[1+sgn(ρ−1)]ρm+1Pn+1(|q|(|ρ − 1|)dρ

We scale q′ with |q| and use a polar representation (ρ, θ, φ) for q′/|q|, where θ is
the angle between q and q′. As a variable of integration however, we prefer to use

z =
√

1 + ρ2 − 2ρ cos θ to θ. Then, it is clear that

|q − q′| = |q|
√

1 + ρ2 − 2ρ cos θ = |q|z, and dz =
ρ sin θdθ

√

1 + ρ2 − 2ρ cos θ

Therefore,

|q|
∫

q′∈R3

e|q|−|q′|−|q−q′||q′|m|q − q′|ndq′

= 2π|q|m+n+4

∫ ∞

0

dρρm+1e−|q|(ρ−1)

{

∫ 1+ρ

|ρ−1|

dze−|q|zzn+1

}

= 2π|q|m+2

∫ ∞

0

dρρm+1e−|q|(ρ−1)
[

e−|q||ρ−1|Pn+1(|q||ρ − 1|) − e−|q|(1+ρ)Pn+1(|q|(1 + ρ))
]

Inequality (6.74) follows since e−|q|(1+ρ)Pn+1(|q|(1+ρ)) ≥ 0. The rest of the Lemma
follows from Lemma 6.5, with y = |q|, and m replaced by m + 1, n by n + 1
respectively.

Lemma 6.7. For any µ ≥ 1, and nonnegative integers m,n we have

|k|
∫

k′∈R3

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|βk′|m|β(k − k′)|ndk′

≤ π2µ+1e−β|k|m!n!

β3(1 + |k|)µ
(m + n + 2)Qm+n+2(β|k|)

Proof. We break up the integral into two ranges:

(6.75)

∫

|k′|≤|k|/2

+

∫

|k′|>|k|/2

In the first integral we have

1

(1 + |k − k′|)µ(1 + |k′|)µ
≤ 1

(1 + |k|/2)µ(1 + |k′|) ≤ β

(1 + |k|/2)µ|βk′|
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While in the second integral we have

1

(1 + |k − k′|)µ(1 + |k′|)µ
≤ 1

(1 + |k|/2)µ(1 + |k − k′|) ≤ β

(1 + |k|/2)µ|β(k − k′)|

Introducing in the first integral q = βk and q′ = βk′, we obtain

|k|
∫

|k′|≤|k|/2

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|βk′|m|β(k − k′)|ndk′

≤ 2µe−β|k|

β3(1 + |k|)µ
|q|

∫

q′∈R3

e−|q′|−|q−q′|+|q||q′|m−1|q − q′||ndq′

while in the second integral, with q = βk and q − q′ = βk′, we obtain

|k|
∫

|k′|>|k|/2

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|βk′|m|β(k − k′)|ndk′

≤ 2µe−β|k|

β3(1 + |k|)µ
|q|

∫

q′∈R3

e−|q′|−|q−q′|+|q||q′|n−1|q − q′|mdq′

We now use Lemma 6.6 to bound the first integral, with m replaced by m− 1. We
also use Lemma 6.6 to bound the second integral, with n−1 replacing n. The proof
is completed by adding the two bounds.

Lemma 6.8. For any µ ≥ 2, and n ∈ N \ {0} we have

|k|
∫

k′∈R3

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|β(k − k′)|ndk′

≤ 2µ+1πe−β|k|

β2(1 + |k|)µ







(n − 1)!Qn+1(|q|) +
3(n + 1)!|q|2/3

2β2/3

n+1
∑

j=0

|q|j
j!







Proof. We break up the integral into
∫

|k′|<|k|/2
+

∫

|k′|≥|k|/2
. In the first integration

range we have [1 + |k − k′]−µ ≤ 2µ[1 + |k|]−µ, whereas in the second range [1 +
|k′|]−µ ≤ 2µ[1 + |k|]−µ. Therefore, using Lemma 6.6,

|k|
∫

|k′|≥|k|/2

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|β(k − k′)|ndk′

≤ 2µe−β|k|

β2(1 + |k|)µ
|q|

∫

q∈R3

e−|q′|−|q−q′|+|q| |q−q′|n−2dq′ ≤ 2µ+1πe−β|k|

β2(1 + |k|)µ
(n−1)!Qn+1(|q|)

On the other hand, using (1 + |k′|)−µ ≤ (1 + |k′|)−2+2/3 ≤ |k′|−2+2/3 we get

|k|
∫

|k′|<k|/2

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|β(k − k′)|ndk′

≤ 2µe−β|k|

β2+2/3(1 + |k|)µ
|q|

∫

|q′|≤|q|/2

|q′|−2+2/3e−|q′|−|q−q′|+|q| |q − q′|ndq′
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We note that

|q|
2π

∫

|q′|<|q|/2

|q′|−2+2/3e−|q′|−|q−q′|+|q| |q − q′|ndq′

= |q|n+2+2/3

∫ 1/2

0

ρ−1+2/3e−|q|(ρ−1)

{
∫ 1+ρ

1−ρ

dze−|q|zzn+1

}

dρ

≤ |q|2/3

∫ 1/2

0

ρ−1+2/3Pn+1(|q|(1 − ρ)dρ

≤ |q|2/3
n+1
∑

j=0

(n + 1)!

j!
|q|j

∫ 1

0

ρ−1/3(1 − ρ)jdρ ≤ 3

2
|q|2/3(n + 1)!

n+1
∑

j=0

|q|j
j!

Lemma 6.9. For any µ ≥ 1 and nonnegative integers l1, l2 ≥ 0 we have

(6.76) |k|
∫

k′∈R3

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
Q2l1(|βk′|)Q2l2(|β(k − k′)|)dk′

≤ 2µ+1πe−β|k

3β3(1 + |k|)µ
(2l1 + 2l2 + 1)(2l1 + 2l2 + 2)(2l1 + 2l2 + 3)Q2l1+2l2+2(β|k|)

Proof. As before, we define q = βk. Also, for notational convenience, we define

km
⋊⋉ kn = |k|

∫

k′∈R3

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|βk′|m|β(k − k′)|ndk′

K =
2µ+1πe−β|k|

β3(1 + |k|)µ

Lemma 6.7 and 22l1+2l2+2−(j+2)Qj+2(|q|) ≤ Q2l1+2l2+2 for j ≤ 2l1 + 2l2 imply that
the left side of (6.76) is given by

2l1
∑

m=0

2l2
∑

n=0

22l1+2l2−m−n

m!n!
km

⋊⋉ kn ≤ K

2l1
∑

m=0

2l2
∑

n=0

22l1+2l2−m−n(m+n+2)Qm+n+2(β|k|)

≤ K

2l1+2l2
∑

j=0

22l1+2l2+2−(j+2)(j + 2)(j + 1)Qj+2(|q|)

≤ KQ2l1+2l2+2(|q|)
2l2+2l1
∑

j=0

(j + 1)(j + 2)

≤ K

3
(2l1 + 2l2 + 1)(2l1 + 2l2 + 2)(2l1 + 2l2 + 3)Q2l1+2l2+2(|q|),

which imply the result.

Lemma 6.10. If µ ≥ 2 and l ≥ 0, then

|k|
(l + 1)2/3

∫

k′∈R3

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
Q2l(|β(k − k′)|)dk′

≤ C1e
−β|k

(1 + |k|)µ
(2l + 1)Q2l+2(β|k|),
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where

C1 = 12π2µβ−8/3 + 2π2µβ−2 +
1

2
C0(µ)β−1

Proof. The case l = 0 follows easily by using (2.21) and the fact that

|k| = β−1|q| ≤ 1

2
β−1Q2(|q|)

For l ≥ 1, it is convenient to separate out the constant term 22l in Q2l and note
that from (2.21) and the definition of Qn(z) we have

|k|
∫

k′∈R3

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
22ldk′ ≤ C0|k|e−β|k|

(1 + |k|)µ
22l ≤ C0e

−β|k|

2β(1 + |k|)µ
Q2l(β|k|)

As in previous Lemma, for notational convenience, we define

km
⋊⋉ kn = |k|

∫

k′∈R3

e−β[|k′|+|k−k′|]

(1 + |k′|)µ(1 + |k − k′|)µ
|βk′|m|β(k − k′)|ndk′

Then, it is clear from Lemma 6.8 that

[Q2l(β|k|) − 22l] ⋊⋉ k0 =

2l
∑

n=1

22l−n

n!
kn∗̂k0

≤ 2µ+1πe−β|k|

β2(1 + |k|)µ

2l
∑

n=1

22l−n

n!







(n − 1)!

n+1
∑

j=0

2n+1−j(β|k|)j

j!
+

3(n + 1)!|q|2/3

2β2/3

n+1
∑

j=0

(β|k|)j

j!







≤ 2µ+1πe−β|k|

β2(1 + |k|)µ

{

2l+1
∑

j=0

22l+1−j(β|k|)j

j!

2l+1
∑

n′=max{j,2}

(n′ − 2)!

(n′ − 1)!

+
3|q|2/3

β2/32

2l+1
∑

j=0

22l+1−j(β|k|)j

j!

2l+1
∑

n′=max{j,2}

2j−n′

n′

}

≤ 2µ+1πe−β|k|

β3(1 + |k|)µ

[

βQ2l+1(β|k|) log(2l + 2) + 3(2l + 1)β1/3|βk|2/3Q2l+1(β|k|)
]

The lemma follows since log(2l + 2)/(2l + 1) ≤ 1, while if |βk| ≤ (l + 1),
( |βk|

(l + 1)

)2/3

Q2l+1(β|k|) ≤ Q2l+1(β|k|) ≤
1

2
Q2l+2(β|k|)

whereas for β|k| ≥ (l + 1) we have
( |βk|

(l + 1)

)2/3

Q2l+1(β|k|) ≤
2β|k|
2l + 2

Q2l+1(β|k|) ≤ 2Q2l+2(β|k|)
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