$$
\begin{equation*}
\sum_{j=1}^{n-1} \frac{1}{j}-\gamma=\ln n+\int_{0}^{\infty} e^{-n p}\left(\frac{1}{p}-\frac{1}{1-e^{-p}}\right) d p=\frac{\Gamma^{\prime}(n)}{\Gamma(n)} \tag{4.63}
\end{equation*}
$$

Exercise: The Zeta function. Use the same strategy to show that

$$
\begin{equation*}
(n-1)!\zeta(n)=\int_{0}^{\infty} p^{n-1} \frac{e^{-p}}{1-e^{-p}} d p=\int_{0}^{1} \frac{\ln ^{n-1} s}{1-s} d s \tag{4.64}
\end{equation*}
$$

4.3.1 The Euler-Maclaurin summation formula

Assume $f(n)$ does not increase too rapidly with n and we want to find the asymptotic behavior of

$$
\begin{equation*}
S(n+1)=\sum_{k=k_{0}}^{n} f(k) \tag{4.65}
\end{equation*}
$$

for large n. We see that $S(k)$ is the solution of the difference equation

$$
\begin{equation*}
S(k+1)-S(k)=f(k) \tag{4.66}
\end{equation*}
$$

To be more precise, assume f has a level zero transseries as $n \rightarrow \infty$. Then we write \tilde{S} for the transseries of S which we seek at level zero (see p. 93). Then $\tilde{S}(k+1)-\tilde{S}(k)=\tilde{S}^{\prime}(k)+\tilde{S}^{\prime \prime}(k) / 2+\ldots+\tilde{S}^{(n)}(k) / k!+\ldots=\tilde{S}^{\prime}(k)+L \tilde{S}^{\prime}(k)$ where

$$
\begin{equation*}
L=\sum_{j=2}^{\infty} \frac{1}{j!} \frac{d^{j-1}}{d k^{j-1}} \tag{4.67}
\end{equation*}
$$

is contractive on level zero transseries (check) and thus

$$
\begin{equation*}
\tilde{S}^{\prime}(k)=f(k)-L \tilde{S}^{\prime}(k) \tag{4.68}
\end{equation*}
$$

has a unique solution,

$$
\begin{equation*}
\tilde{S}^{\prime}=\sum_{j=0}^{\infty}(-1)^{j} L^{j} f=: \frac{1}{1+L} f \tag{4.69}
\end{equation*}
$$

(check that there are no transseries solutions of higher level). From the first few terms, or using successive approximations, that is writing $S^{\prime}=g$ and

$$
\begin{equation*}
g_{l}=f-\frac{1}{2} g_{l}^{\prime}-\frac{1}{6} g_{l}^{\prime \prime}-\cdots \tag{4.70}
\end{equation*}
$$

we get

$$
\begin{equation*}
\tilde{S}^{\prime}(k)=f(k)-\frac{1}{2} f^{\prime}(k)+\frac{1}{12} f^{\prime \prime}(k)-\frac{1}{720} f^{(4)}(k)+\cdots=\sum_{j=0}^{\infty} C_{j} f^{(j)}(k) \tag{4.71}
\end{equation*}
$$

