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Exercise: The Zeta function. Use the same strategy to show that
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4.3.1 The Euler-Maclaurin summation formula

Assume f(n) does not increase too rapidly with n and we want to find the
asymptotic behavior of
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for large n. We see that S(k) is the solution of the difference equation

S(k + 1) − S(k) = f(k) (4.66)

To be more precise, assume f has a level zero transseries as n → ∞. Then we
write S̃ for the transseries of S which we seek at level zero (see p. 93). Then
S̃(k + 1) − S̃(k) = S̃′(k) + S̃′′(k)/2 + ... + S̃(n)(k)/k! + ... = S̃′(k) + LS̃′(k)
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is contractive on level zero transseries (check) and thus

S̃′(k) = f(k) − LS̃′(k) (4.68)
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(check that there are no transseries solutions of higher level). From the first
few terms, or using successive approximations, that is writing S′ = g and
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we get
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