100 Asymptotics and Borel summability
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Exercise: The Zeta function. Use the same strategy to show that
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4.3.1 The Euler-Maclaurin summation formula

Assume f(n) does not increase too rapidly with n and we want to find the

asymptotic behavior of
n

Stn+1)= > f(k) (4.65)
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for large n. We see that S(k) is the solution of the difference equation
S(k+1)—Sk) = f(k) (4.66)

To be more precise, assume f has a level zero transseries as n — oo. Then we
write S for the transseries of S which we seek at level zero (see p. 93). Then
S(k+1) — S(k) = S'(k) + S"(k)/2 + ... + ST (k)/K! + ... = S"(k) + LS'(k)
where
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is contractive on level zero transseries (check) and thus
S'(k) = f(k) — LS (k) (4.68)
has a unique solution,
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S = -1 f= —— 4.69
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(check that there are no transseries solutions of higher level). From the first
few terms, or using successive approximations, that is writing S’ = g and
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we get
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