We note that to get the coefficient of $f^{(n)}$ correctly, using iteration, we need to keep correspondingly many terms on the right side of (4.70) and iterate $n+1$ times.

In this case, we can find the coefficients explicitly. Indeed, examining the way the $C_{j}$ s are obtained, it is clear that they do not depend on $f$. Then it suffices to look at some particular $f$ for which the sum can be calculated explicitly; for instance $f(k)=e^{k / n}$ summed from 0 to $n$. By one of the definitions of the Bernoulli numbers we have

$$
\begin{equation*}
\frac{z}{1-e^{-z}}=\sum_{j=0}^{\infty}(-1)^{j} \frac{B_{j}}{j!} z^{j} \tag{4.72}
\end{equation*}
$$

Exercise 4.73 Using these identities, determine the coefficients $C_{j}$ in (4.71).
Using Exercise 4.73 we get

$$
\begin{equation*}
S(k) \sim \int_{k_{0}}^{k} f(s) d s+\frac{1}{2} f(n)+C+\sum_{j=1}^{\infty} \frac{B_{2 j}}{2 j!} f^{(2 j-1)}(k) \tag{4.74}
\end{equation*}
$$

Rel. (4.74) is called the Euler-Maclaurin sum formula.
Exercise 4.75 (*) Complete the details of the calculation involving the identification of coefficients in the Euler-Maclaurin sum formula.

Exercise 4.76 Find for which values of $a>0$ the series

$$
\sum_{k=1}^{\infty} \frac{e^{i \sqrt{k}}}{k^{a}}
$$

is convergent.
Exercise $4.77\left(^{*}\right)$ Prove the Euler-Maclaurin sum formula in the case $f$ is $C^{\infty}$ by first looking at the integral $\int_{n}^{n+1} f(s) d s$ and expanding $f$ in Taylor at $s=n$. Then correct $f$ to get a better approximation, etc.

That (4.74) gives the correct asymptotic behavior in fairly wide generality is proved, for example, in [20].

We will prove here, under stronger assumptions, a stronger result which implies (4.74). The conditions are often met in applications, after changes of variables, as our examples showed.

Lemma 4.78 Assume $f$ has a Borel summable expansion at $0^{+}$(in applications $f$ is often analytic at 0 ) and $f(z)=O\left(z^{2}\right)$. Then $f\left(\frac{1}{n}\right)=\int_{0}^{\infty} F(p) e^{-n p} d p$, $F(p)=O(p)$ for small $p$ and

$$
\begin{equation*}
\sum_{k=n_{0}}^{n-1} f(1 / k)=\int_{0}^{\infty} e^{-n p} \frac{F(p)}{e^{-p}-1} d p-\int_{0}^{\infty} e^{-n_{0} p} \frac{F(p)}{e^{-p}-1} d p \tag{4.79}
\end{equation*}
$$

