Asymptotics and Borel summability

Note 4.141 Let us point out first a possible pitfall in proving Theorem 4.135. Inverse Laplace transformability of f and analyticity away from zero in some sector follow immediately from the assumptions. What does not follow immediately is analyticity of $\mathcal{L}^{-1}f$ at zero. On the other hand, $\mathcal{B}\tilde{f}$ clearly converges to an analytic function near p = 0. But there is no guarantee that $\mathcal{B}\tilde{f}$ has anything to do with $\mathcal{L}^{-1}f$! This is where Gevrey estimates enter.

PROOF of Theorem 4.135

(i) Uniqueness clearly follows once we prove (ii).

(ii) and (iii) By a simple change of variables we arrange $C_1 = C_2 = 1$. The series $\tilde{F}_1 = \mathcal{B}\tilde{f}$ is convergent for |p| < 1 and defines an analytic function, F_1 . By Proposition 2.12, the function $F = \mathcal{L}^{-1}f$ is analytic for |p| > 0, $|\arg(p)| < \delta$, and F(p) is analytic and uniformly bounded if $|\arg(p)| < \delta_1 < \delta$. We now show that F is analytic for |p| < 1. (A different proof is seen in §4.5a.1.) Taking p real, $p \in [0, 1)$ we obtain in view of (4.131) that

$$\begin{aligned} |F(p) - \tilde{F}^{[N-1]}(p)| &\leq \int_{-i\infty+N}^{i\infty+N} d|s| \left| f(s) - \tilde{f}^{[N-1]}(s) \right| e^{\operatorname{Re}(ps)} \\ &\leq N! e^{pN} \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{|x+iN|^N} = N! e^{pN} \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(x^2+N^2)^{N/2}} \\ &\leq \frac{N! e^{pN}}{N^{N-1}} \int_{-\infty}^{\infty} \frac{\mathrm{d}\xi}{(\xi^2+1)^{N/2}} \leq CN^{3/2} e^{(p-1)N} \to 0 \text{ as } N \to \infty \end{aligned}$$
(4.142)

for $0 \le p < 1$. Thus $\tilde{F}^{[N-1]}(p)$ converges. Furthermore, the limit, which by definition is F_1 , is seen in (4.142) to equal F, the inverse Laplace transform of f on [0,1). Since F and F_1 are analytic in a neighborhood of (0,1), $F = F_1$ wherever *either* of them is analytic⁹. The domain of analyticity of F is thus, by (ii), $\{p : |p| < 1\} \cup \{p : |p| > 0, |\arg(p)| < \delta\}$.

(iv) Let $|\phi| < \delta$. We have, by integration by parts,

$$f(x) - \tilde{f}^{[N-1]}(x) = x^{-N} \mathcal{L} \frac{d^N}{dp^N} F$$
(4.143)

On the other hand, F is analytic in S_a , some $a = a(\phi)$ -neighborhood of the sector $\{p : |\arg(p)| < |\phi|\}$. Estimating Cauchy's formula on a radius- $a(\phi)$ circle around the point p with $|\arg(p)| < |\phi|$ we get, for some ν ,

$$|F^{(N)}(p)| \le N! a(\phi)^{-N} ||F(p)e^{-\nu \operatorname{Re} p}||_{\infty,S_a} e^{\nu \operatorname{Re} p}$$

Thus, by (4.143), with θ , $|\theta| \leq |\phi|$, chosen so that $\gamma = \cos(\theta - \arg(x))$ is maximal we have

116

 $[\]overline{{}^{9}\text{Here}}$ and elsewhere we identify a function with its analytic continuation.