Note 4.141 Let us point out first a possible pitfall in proving Theorem 4.135. Inverse Laplace transformability of f and analyticity away from zero in some sector follow immediately from the assumptions. What does not follow immediately is analyticity of $\mathcal{L}^{-1} f$ at zero. On the other hand, $\mathcal{B} \tilde{f}$ clearly converges to an analytic function near $p=0$. But there is no guarantee that $\mathcal{B} \tilde{f}$ has anything to do with $\mathcal{L}^{-1} f$! This is where Gevrey estimates enter.

PROOF of Theorem 4.135

(i) Uniqueness clearly follows once we prove (ii).
(ii) and (iii) By a simple change of variables we arrange $C_{1}=C_{2}=1$. The series $\tilde{F}_{1}=\mathcal{B} \tilde{f}$ is convergent for $|p|<1$ and defines an analytic function, F_{1}. By Proposition 2.12, the function $F=\mathcal{L}^{-1} f$ is analytic for $|p|>0,|\arg (p)|<$ δ, and $F(p)$ is analytic and uniformly bounded if $|\arg (p)|<\delta_{1}<\delta$. We now show that F is analytic for $|p|<1$. (A different proof is seen in $\S 4.5 \mathrm{a} .1$.) Taking p real, $p \in[0,1)$ we obtain in view of (4.131) that

$$
\begin{align*}
& \left|F(p)-\tilde{F}^{[N-1]}(p)\right| \leq \int_{-i \infty+N}^{i \infty+N} d|s|\left|f(s)-\tilde{f}^{[N-1]}(s)\right| e^{\operatorname{Re}(p s)} \\
& \quad \leq N!e^{p N} \int_{-\infty}^{\infty} \frac{\mathrm{d} x}{|x+i N|^{N}}=N!e^{p N} \int_{-\infty}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+N^{2}\right)^{N / 2}} \\
& \leq \frac{N!e^{p N}}{N^{N-1}} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi}{\left(\xi^{2}+1\right)^{N / 2}} \leq C N^{3 / 2} e^{(p-1) N} \rightarrow 0 \text { as } N \rightarrow \infty \tag{4.142}
\end{align*}
$$

for $0 \leq p<1$. Thus $\tilde{F}^{[N-1]}(p)$ converges. Furthermore, the limit, which by definition is F_{1}, is seen in (4.142) to equal F, the inverse Laplace transform of f on $[0,1)$. Since F and F_{1} are analytic in a neighborhood of $(0,1), F=F_{1}$ wherever either of them is analytic ${ }^{9}$. The domain of analyticity of F is thus, by (ii), $\{p:|p|<1\} \cup\{p:|p|>0,|\arg (p)|<\delta\}$.
(iv) Let $|\phi|<\delta$. We have, by integration by parts,

$$
\begin{equation*}
f(x)-\tilde{f}^{[N-1]}(x)=x^{-N} \mathcal{L} \frac{d^{N}}{d p^{N}} F \tag{4.143}
\end{equation*}
$$

On the other hand, F is analytic in S_{a}, some $a=a(\phi)$-neighborhood of the sector $\{p:|\arg (p)|<|\phi|\}$. Estimating Cauchy's formula on a radius- $a(\phi)$ circle around the point p with $|\arg (p)|<|\phi|$ we get, for some ν,

$$
\left|F^{(N)}(p)\right| \leq N!a(\phi)^{-N}\left\|F(p) e^{-\nu \operatorname{Re} p}\right\|_{\infty, S_{a}} e^{\nu \operatorname{Re} p}
$$

Thus, by (4.143), with $\theta,|\theta| \leq|\phi|$, chosen so that $\gamma=\cos (\theta-\arg (x))$ is maximal we have

[^0]
[^0]: ${ }^{9}$ Here and elsewhere we identify a function with its analytic continuation.

