(ii) We have the following embeddings: $L_{\nu}^{1}(S) \subset L_{\nu}^{1}\left(S_{K}\right), \mathcal{A}_{\nu, 0}\left(S_{K} \cup B\right) \subset$ $L_{\nu}^{1}\left(S_{K}\right)$. Thus, by Remark 5.18, there exists a unique solution Y of (5.19) which belongs to all these spaces.

Thus Y is analytic in S and belongs to $L_{\nu}^{1}(S)$, in particular it is Laplace transformable. The Laplace transform is a solution of (4.54) as it is easy to check.
It also follows that the formal power series solution \tilde{y} of (4.54) is Borel summable in any sector not containing \mathbb{R}^{+}, which is a Stokes ray. We have, indeed, $\mathcal{B} \tilde{y}=Y$ (check!).

5.3b Borel summation of the transseries solution

With \tilde{y}_{0} the asymptotic series of $\mathcal{L} Y_{0}$ (note that $\tilde{y}_{0}=\tilde{y}$ in (4.56)), we get

$$
\begin{equation*}
\tilde{y}=\tilde{y}_{0}+\sum_{k=1}^{\infty} C^{k} e^{-k x} \tilde{y}_{k} \tag{5.25}
\end{equation*}
$$

in (4.54) and equate the coefficients of $e^{-k x}$ we get the system of equations

$$
\begin{equation*}
\tilde{y}_{k}^{\prime}+\left(1-k-3 \tilde{y}_{0}^{2}\right) \tilde{y}_{k}=3 \tilde{y}_{0} \sum_{j=1}^{k-1} \tilde{y}_{j} \tilde{y}_{k-j}+\sum_{j_{1}+j_{2}+j_{3}=k ; j_{i} \geq 1} \tilde{y}_{j_{1}} \tilde{y}_{j_{2}} \tilde{y}_{j_{3}} \tag{5.26}
\end{equation*}
$$

The equation for \tilde{y}_{1} is linear and homogeneous:

$$
\begin{equation*}
\widetilde{y}_{1}^{\prime}=3 \tilde{y}_{0}^{2} \tilde{y}_{1} \tag{5.27}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\tilde{y}_{1}=C e^{\tilde{s}} ; \quad \tilde{s}:=\int_{\infty}^{x} 3 \tilde{y}_{0}^{2}(t) d t \tag{5.28}
\end{equation*}
$$

Since $\tilde{s}=O\left(x^{-3}\right)$ is the product of Borel summable series (in $\mathbb{C} \backslash \mathbb{R}^{+}$), then, by Proposition 4.109, $e^{\tilde{s}}$ is Borel summable in $\mathbb{C} \backslash \mathbb{R}^{+}$. We note that $\tilde{y}_{1}=1+o(1)$ (with $C=1$) and we cannot take the inverse Laplace transform of \tilde{y}_{1} directly. But the series $x^{-1} \tilde{y}_{1}$ is Borel summable (say to Φ_{1}) see Proposition 4.109. It is convenient to make the substitution $\tilde{y}_{k}=x^{k} \tilde{\varphi}_{k}$. We get

$$
\begin{equation*}
\tilde{\varphi}_{k}^{\prime}+\left(1-k-3 \tilde{\varphi}_{0}^{2}+k x^{-1}\right) \tilde{\varphi}_{k}=3 \tilde{\varphi}_{0} \sum_{j=1}^{k-1} \tilde{\varphi}_{j} \tilde{\varphi}_{k-j}+\sum_{j_{1}+j_{2}+j_{3}=k ; j_{i} \geq 1} \tilde{\varphi}_{j_{1}} \tilde{\varphi}_{j_{2}} \tilde{\varphi}_{j_{3}} \tag{5.29}
\end{equation*}
$$

where clearly $\tilde{\varphi}_{0}=\tilde{y}_{0}, \tilde{\varphi}_{1}=x^{-1} \tilde{y}_{1}$, with \tilde{y}_{1} given in (5.28). After Borel transform, we have

$$
\begin{equation*}
-p \boldsymbol{\Phi}+(1-\hat{k}) \boldsymbol{\Phi}=-\hat{k} * \boldsymbol{\Phi}+3 Y_{0}^{* 2} * \boldsymbol{\Phi}+3 Y_{0} * \boldsymbol{\Phi} * \boldsymbol{\Phi}+\boldsymbol{\Phi} * \boldsymbol{\Phi} * \boldsymbol{\Phi} ;(k \geq 2) \tag{5.30}
\end{equation*}
$$

where $\boldsymbol{\Phi}=\left\{\Phi_{j}\right\}_{j \in \mathbb{N}},(\hat{k} \boldsymbol{\Phi})_{k}=k \Phi_{k}$ and $(F * \mathbf{G})_{k}:=F * G_{k}($ cf. (5.13)).

