For this purpose we use (5.33) and (5.34) in order to derive the behavior of Y. It is a way of exploiting what Écalle has discovered in more generality, bridge equations.
We start with exploring a relatively trivial, nongeneric possibility, namely that $y_{0}^{+}=y_{0}^{-}=: y_{0}$. (This is not the case for our equation, though we will not prove it here; we still analyze this case since it may occur in other equations.) Since in this case

$$
\begin{equation*}
y_{0}^{ \pm}=\int_{0}^{\infty e^{ \pm i \epsilon}} Y(p) e^{-p x} d p=y_{0} \tag{5.44}
\end{equation*}
$$

we have $y \sim \tilde{y}_{0}$ in a sector of arbitrarily large opening. By inverse Laplace transform arguments, Y is analytic in an arbitrarily large sector in $\mathbb{C} \backslash\{0\}$. On the other hand, we already know that Y is analytic at the origin, and it is thus entire, of exponential order at most one. Then, \tilde{y}_{0} converges.
Exercise 5.45 Complete the details in the argument above.
We now consider the generic case $y^{+} \neq y^{-}$. Then there exists $S \neq 0$ so that

$$
\begin{equation*}
y^{+}=\int_{0}^{\infty e^{-i \epsilon}} e^{-p x} Y^{-}(p) d p=y^{-}+\sum_{k=1}^{\infty} S^{k} e^{-k x} x^{k} \varphi_{k}^{-}(x) \tag{5.46}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{\infty e^{-i \epsilon}}^{\infty e^{+i \epsilon}} e^{-p x} Y(p) d p=\int_{1}^{\infty} e^{-p x}\left(Y^{+}(p)-Y^{-}(p)\right) d p=\sum_{k=1}^{\infty} S^{k} e^{-k x} x^{k} \varphi_{k}^{-}(x) \tag{5.47}
\end{equation*}
$$

In particular, we have (since $\Phi^{ \pm}=\Phi$ for $|p|<1$)

$$
\begin{gather*}
\frac{1}{x} \int_{1}^{\infty} e^{-p x}\left(Y^{+}(p)-Y^{-}(p)\right) d p=S e^{-x} \int_{0}^{\infty e^{-i \epsilon}} e^{-p x} \Phi_{1}(p) d p+O\left(x^{2} e^{-2 x}\right) \\
=S \int_{1}^{\infty e^{-i \epsilon}} e^{-p x} \Phi_{1}(p-1) d p+O\left(x^{2} e^{-2 x}\right) \tag{5.48}
\end{gather*}
$$

Then, by Proposition 2.22, $\int_{0}^{p} Y^{+}=\int_{0}^{p} Y^{-}+S \Phi_{1}(p-1)$ on (1,2). (It can be checked that $\int Y$ has lateral limits on $(1,2)$, by looking at the convolution equation in a focusing space of functions continuous up to the boundary.)

Since Φ_{1} is continuous, this means (for $p \neq 1$) $\int_{0}^{p} Y^{+}=S \Phi_{1}(p-1)+\int_{0}^{p} Y^{-}$ or $Y^{+}=Y^{-}+S Y_{1}(p-1)$, or yet, $Y^{+}(1+s)=Y^{-}(1+s)+S Y_{1}(s)$ everywhere in the right half s plane where $Y^{-}(1+s)+S Y_{1}(s)$ is analytic, in particular in the fourth quadrant. Thus the analytic continuation of Y from the upper plane along a curve passing between 1 and 2 exists in the lower half-plane; it equals the continuation of two functions along a straight line not crossing any singularities. The proof proceeds by induction, reducing the number of crossings at the expense of using more of the functions Y_{2}, Y_{3}, etc.

This analysis can be adapted to general differential equations, and it allows for finding the resurgence structure (singularities in p) by constructing and solving Riemann-Hilbert problems, in the spirit above.

