Borel summability in differential equations

159

We construct the surface \mathcal{R} , consisting in homotopy classes⁷ of smooth curves in \mathcal{W} starting at the origin, moving away from it, and crossing at most one singular line, at most once (see Fig. 5.1):

$$\mathcal{R} := \left\{ \gamma : (0,1) \mapsto \mathcal{W} : \ \gamma(0_+) = 0; \ \frac{\mathrm{d}}{\mathrm{d}t} |\gamma(t)| > 0; \ \frac{\mathrm{d}}{\mathrm{d}t} \arg(\gamma(t)) \text{ monotonic} \right\}$$
(modulo homotopies) (5.66)

Define $\mathcal{R}_1 \subset \mathcal{R}$ by (5.66) with the supplementary restriction $\arg \gamma \in (\max \{\arg \lambda_j : \arg \lambda_j < 0\}, \min\{\arg \lambda_j : \arg \lambda_j > 0\})$, now with $\arg \inf (-\pi, \pi)$.

 \mathcal{R}_1 may be viewed as the part of \mathcal{R} constructed over a sector containing \mathbb{R}^+ .

(Similarly we let $\mathcal{R}_j \subset \mathcal{R}$ with the restriction that the curves γ do not cross any singular direction *other* than $e^{i\phi_j}\mathbb{R}^+$.) We let $\psi_{\pm} = \pm \max(\pm \arg \gamma)$ with $\gamma \in \mathcal{R}_1$.

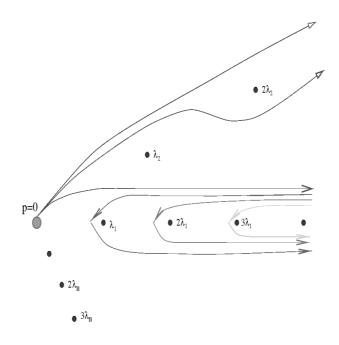


FIGURE 5.1: The paths near λ_1 relate to the medianized averages.

By symmetry (renumbering the directions) it suffices to analyze the singu-

 $^{^7}$ Classes of curves that can be continuously deformed into each other without crossing points outside $\mathcal W.$