We construct the surface \mathcal{R}, consisting in homotopy classes ${ }^{7}$ of smooth curves in \mathcal{W} starting at the origin, moving away from it, and crossing at most one singular line, at most once (see Fig. 5.1):

$$
\begin{equation*}
\mathcal{R}:=\left\{\gamma:(0,1) \mapsto \mathcal{W}: \gamma\left(0_{+}\right)=0 ; \frac{\mathrm{d}}{\mathrm{~d} t}|\gamma(t)|>0 ; \frac{\mathrm{d}}{\mathrm{~d} t} \arg (\gamma(t)) \text { monotonic }\right\} \tag{5.66}
\end{equation*}
$$

(modulo homotopies)
Define $\mathcal{R}_{1} \subset \mathcal{R}$ by (5.66) with the supplementary restriction $\arg \gamma \in$ (max $\left.\left\{\arg \lambda_{j}: \arg \lambda_{j}<0\right\}, \min \left\{\arg \lambda_{j}: \arg \lambda_{j}>0\right\}\right)$, now with $\arg \operatorname{in}(-\pi, \pi)$.
\mathcal{R}_{1} may be viewed as the part of \mathcal{R} constructed over a sector containing \mathbb{R}^{+}.
(Similarly we let $\mathcal{R}_{j} \subset \mathcal{R}$ with the restriction that the curves γ do not cross any singular direction other than $e^{i \phi_{j}} \mathbb{R}^{+}$.) We let $\psi_{ \pm}= \pm \max (\pm \arg \gamma)$ with $\gamma \in \mathcal{R}_{1}$.

- $3 \lambda_{n}$

FIGURE 5.1: The paths near λ_{1} relate to the medianized averages.

By symmetry (renumbering the directions) it suffices to analyze the singu-

[^0]
[^0]: ${ }^{7}$ Classes of curves that can be continuously deformed into each other without crossing points outside \mathcal{W}.

