Asymptotics and Borel summability

5.10j Equations and properties of Y_k and summation of the transseries

Proposition 5.215 Let **Y** be any $L^1_{loc}(\mathbb{R}^+)$ solution of (5.89). For large ν and some c > 0 the coefficients $\mathbf{D}_{\mathbf{j}}$ in (5.92) are bounded by

$$|\mathbf{D}_{\mathbf{j}}(p)| \le e^{c_0 p} c^{|\mathbf{m}|}$$

Note that $\mathcal{L}^{-1}(\mathbf{g}^{(\mathbf{m})}(x, \mathbf{y})/\mathbf{m}!)$ is the coefficient of $\mathbf{Z}^{*\mathbf{m}}$ in the expansion of $\mathcal{N}(\mathbf{Y} + \mathbf{Z})$ in convolution powers of Z (5.87):

$$\left(\left(\sum_{|\mathbf{l}| \ge 2} \mathbf{g}_{0,\mathbf{l}} \cdot + \sum_{|\mathbf{l}| \ge 1} \mathbf{G}_{\mathbf{l}}^* \right) (\mathbf{Y} + \mathbf{Z})^{*\mathbf{l}} \right)_{\mathbf{Z}^{*\mathbf{m}}} = \\ \left(\left(\sum_{|\mathbf{l}| \ge 2} \mathbf{g}_{0,\mathbf{l}} \cdot + \sum_{|\mathbf{l}| \ge 1} \mathbf{G}_{\mathbf{l}}^* \right) \sum_{0 \le \mathbf{k} \le \mathbf{l}} \binom{\mathbf{l}}{\mathbf{k}} \mathbf{Z}^{*\mathbf{k}} \mathbf{Y}^{*(\mathbf{l}-\mathbf{k})} \right)_{\mathbf{Z}^{*\mathbf{m}}} = \\ \left(\sum_{|\mathbf{l}| \ge 2} \mathbf{g}_{0,\mathbf{l}} \cdot + \sum_{|\mathbf{l}| \ge 1} \mathbf{G}_{\mathbf{l}}^* \right) \sum_{\mathbf{l} \ge \mathbf{m}} \binom{\mathbf{l}}{\mathbf{m}} \mathbf{Y}^{*(\mathbf{l}-\mathbf{m})} \quad (5.216)$$

(**m** is fixed) where $\mathbf{l} \geq \mathbf{m}$ means $l_i \geq m_i, i = 1, ..., n$ and $\binom{\mathbf{l}}{\mathbf{k}} := \prod_{i=1}^n \binom{l_i}{k_i}$.

Let ϵ be small and ν large so that $\|\mathbf{Y}\|_{\nu} < \epsilon$. Then, for some constant K, we have (cf. (5.135))

$$\left\| \left(\sum_{II} \mathbf{g}_{0,\mathbf{l}} \cdot + \sum_{I} \mathbf{G}_{\mathbf{l}} * \right) \begin{pmatrix} \mathbf{l} \\ \mathbf{m} \end{pmatrix} \mathbf{G}_{\mathbf{l}} * \mathbf{Y}^{*(\mathbf{l}-\mathbf{m})} \right\|_{\nu} \leq \sum_{I} c_{0}^{-|\mathbf{l}|} K e^{c_{0}|p|} (c_{0}\epsilon)^{|\mathbf{l}-\mathbf{m}|} \begin{pmatrix} \mathbf{l} \\ \mathbf{m} \end{pmatrix} =$$

$$\epsilon^{-|\mathbf{m}|} K e^{c_0|p|} \prod_{i=1}^n \sum_{l_i \ge m_i} \binom{l_i}{m_i} (c_0 \epsilon)^{l_i} = K \frac{e^{c_0|p|} c_0^{|\mathbf{m}|}}{(1 - \epsilon c_0)^{|\mathbf{m}| + n}} \le e^{c_0|p|} c^{|\mathbf{m}|} \quad (5.217)$$

(where $I(II, resp.) \equiv \{ |\mathbf{l}| \ge 1(2, resp.); \mathbf{l} \ge \mathbf{m} \})$ for large enough ν .

I.

For k = 1, $\mathbf{T}_1 = 0$ and equation (5.92) is (5.191) (with $p \leftrightarrow z$) but now on the whole line \mathbb{R}^+ . For small |z| the solution is given by (5.196) (note that $\mathbf{D}_1 = \mathbf{d}_{(1,0,\ldots,0)}$ and so on) and depends on the free constant C (5.196). We choose a value for C (the values of \mathbf{Y}_1 on $[0, \epsilon]$ are then determined) and we write the equation of \mathbf{Y}_1 for $p \geq \epsilon$ as

188