5.10j Equations and properties of Y_{k} and summation of the transseries

Proposition 5.215 Let \mathbf{Y} be any $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{+}\right)$solution of (5.89). For large ν and some $c>0$ the coefficients $\mathbf{D}_{\mathbf{j}}$ in (5.92) are bounded by

$$
\left|\mathbf{D}_{\mathbf{j}}(p)\right| \leq e^{c_{0} p} c^{|\mathbf{m}|}
$$

Note that $\mathcal{L}^{-1}\left(\mathbf{g}^{(\mathbf{m})}(x, \mathbf{y}) / \mathbf{m}!\right)$ is the coefficient of $\mathbf{Z}^{* \mathbf{m}}$ in the expansion of $\mathcal{N}(\mathbf{Y}+\mathbf{Z})$ in convolution powers of Z (5.87):

$$
\begin{align*}
& \left(\left(\sum_{|1| \geq 2} \mathbf{g}_{0,1} \cdot+\sum_{|1| \geq 1} \mathbf{G}_{\mathbf{I}^{*}}\right)(\mathbf{Y}+\mathbf{Z})^{* 1}\right)_{\mathbf{Z}^{* \mathrm{~m}}}= \\
& \left(\left(\sum_{|1| \geq 2} \mathbf{g}_{0,1} \cdot+\sum_{|1| \geq 1} \mathbf{G}_{\mathbf{1}} *\right) \sum_{0 \leq \mathbf{k} \leq 1}\binom{\mathbf{l}}{\mathbf{k}} \mathbf{Z}^{* \mathrm{k}} \mathbf{Y}^{*(\mathbf{l}-\mathbf{k})}\right)_{\mathbf{Z}^{* \mathrm{~m}}}= \\
& \left(\sum_{|1| \geq 2} g_{0,1} \cdot+\sum_{|1| \geq 1} \mathbf{G}_{1} *\right) \sum_{\mathbf{l} \geq \mathrm{m}}\binom{\mathbf{l}}{\mathbf{m}} \mathbf{Y}^{*(\mathbf{l}-\mathbf{m})} \tag{5.216}
\end{align*}
$$

(\mathbf{m} is fixed) where $\mathbf{l} \geq \mathbf{m}$ means $l_{i} \geq m_{i}, i=1, \ldots, n$ and $\binom{\mathbf{l}}{\mathbf{k}}:=\prod_{i=1}^{n}\binom{l_{i}}{k_{i}}$.
Let ϵ be small and ν large so that $\|\mathbf{Y}\|_{\nu}<\epsilon$. Then, for some constant K, we have (cf. (5.135))

$$
\begin{gather*}
\left\|\left(\sum_{I I} \mathbf{g}_{0, \mathbf{1}} \cdot+\sum_{I} \mathbf{G}_{\mathbf{l}} *\right)\binom{\mathbf{l}}{\mathbf{m}} \mathbf{G}_{\mathbf{l}} * \mathbf{Y}^{*(\mathbf{l}-\mathbf{m})}\right\|_{\nu} \leq \sum_{I} c_{0}^{-|\mathbf{l}|} K e^{c_{0}|p|}\left(c_{0} \epsilon\right)^{|\mathbf{1}-\mathbf{m}|}\binom{\mathbf{l}}{\mathbf{m}}= \\
\epsilon^{-|\mathbf{m}|} K e^{c_{0}|p|} \prod_{i=1}^{n} \sum_{l_{i} \geq m_{i}}\binom{l_{i}}{m_{i}}\left(c_{0} \epsilon\right)^{l_{i}}=K \frac{e^{c_{0}|p|} c_{0}|\mathbf{m}|}{\left(1-\epsilon c_{0}\right)^{|\mathbf{m}|+n}} \leq e^{c_{0}|p|} c^{|\mathbf{m}|} \tag{5.217}
\end{gather*}
$$

(where $I(I I$, resp. $) \equiv\{|\mathbf{l}| \geq 1(2$, resp. $) ; \mathbf{l} \geq \mathbf{m}\})$ for large enough ν.
For $k=1, \mathbf{T}_{1}=0$ and equation (5.92) is (5.191) (with $p \leftrightarrow z$) but now on the whole line \mathbb{R}^{+}. For small $|z|$ the solution is given by (5.196) (note that $\mathbf{D}_{1}=\mathbf{d}_{(1,0, \ldots, 0)}$ and so on) and depends on the free constant C (5.196). We choose a value for C (the values of \mathbf{Y}_{1} on $[0, \epsilon]$ are then determined) and we write the equation of \mathbf{Y}_{1} for $p \geq \epsilon$ as

