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5.10j Equations and properties of Yk and summation of the
transseries

Proposition 5.215 Let Y be any L1
loc(R

+) solution of (5.89). For large ν
and some c > 0 the coefficients Dj in (5.92) are bounded by

|Dj(p)| ≤ ec0pc|m|

Note that L−1(g(m)(x,y)/m!) is the coefficient of Z∗m in the expansion of
N (Y + Z) in convolution powers of Z (5.87):
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Let ǫ be small and ν large so that ‖Y‖ν < ǫ. Then, for some constant K,
we have (cf. (5.135))
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(where I(II, resp.) ≡ {|l| ≥ 1(2, resp.); l ≥ m}) for large enough ν.

For k = 1, T1 = 0 and equation (5.92) is (5.191) (with p ↔ z) but now on
the whole line R

+. For small |z| the solution is given by (5.196) (note that
D1 = d(1,0,...,0) and so on) and depends on the free constant C (5.196). We
choose a value for C (the values of Y1 on [0, ǫ] are then determined) and we
write the equation of Y1 for p ≥ ǫ as


