$$
\begin{equation*}
A C_{\gamma}((\psi * \psi))=A C_{\gamma}(\psi) *_{\gamma} A C_{\gamma}(\psi) \text { if } \arg (\gamma(t))=\mathrm{const} \neq 0 \tag{5.266}
\end{equation*}
$$

(Since $\psi$ is analytic along such a line). The notation $*_{\gamma}$ means (2.21) with $p=\gamma(t)$.

Note though that, suggestive as it might be, (5.266) is incorrect if the condition stated there is not satisfied and $\gamma$ is a path that crosses the real line (see §5.11a)! From (5.266) and (5.264), we get

$$
\begin{array}{r}
(\psi * \psi)^{-}=\psi^{-} * \psi^{-}=\psi^{+} * \psi^{+}+\sum_{k=1}^{\infty}\left(\mathcal{H} \sum_{m=0}^{k} \psi_{m}^{+} * \psi_{k-m}^{+}\right) \circ \tau_{-k}= \\
(\psi * \psi)^{+}+\sum_{k=1}^{\infty}\left(\mathcal{H} \sum_{m=0}^{k}\left(\psi_{m} * \psi_{k-m}\right)^{+}\right) \circ \tau_{-k} \tag{5.267}
\end{array}
$$

Note. Check that, if $f, g$ are 0 on $\mathbb{R}^{-}$and $k \geq m$, then $\int_{0}^{p} f(s-m) g\{p-[s-$ $(k-m)]\} d s=\int_{0}^{p-m} f(t) g(p-t-k) d t=\int_{0}^{p-k} f(t) g(p-k-t) d t=(\mathcal{H} f * g)(p-k)$. Now the analyticity of $\psi * \psi$ in $\mathcal{R}_{1}$ follows: on the interval $p \in(j, j+1)$ we have from (5.265)

$$
\begin{equation*}
(\psi * \psi)^{-j}(p)=(\psi * \psi)^{-}(p)=\left(\psi^{* 2}\right)^{+}(p)+\sum_{k=1}^{j} \sum_{m=0}^{k}\left(\psi_{m} * \psi_{k-m}\right)^{+}(p-k) \tag{5.268}
\end{equation*}
$$

Again, formula (5.268) is useful for analytically continuing $(\psi * \psi)^{-j}$ along a path as the one depicted in Fig. 5.1. By dominated convergence, $(\psi * \psi)^{ \pm} \in$ $\mathcal{Q}_{(0, \infty)}^{ \pm},(5.206)$. By (5.265), $\psi_{m}$ are analytic in $\mathcal{R}_{1}^{+}:=\mathcal{R}_{1} \cap\{p: \operatorname{Im}(p)>0\}$ and thus by (5.266) the right side . of (5.268) can be continued analytically in $\mathcal{R}_{1}^{+}$. The same is then true for $(\psi * \psi)^{-}$. The function $(\psi * \psi)$ can be extended analytically along paths that cross the real line from below. Likewise, $(\psi * \psi)^{+}$ can be continued analytically in the lower half-plane so that $(\psi * \psi)$ is analytic in $\mathcal{R}_{1}$.
Combining (5.268), (5.266) and (5.263) we get a similar formula for the analytic continuation of the convolution product of two functions, $f, g$ satisfying the assumptions of Proposition 5.259

$$
\begin{equation*}
(f * g)^{-^{j}+}=f^{+} * g^{+}+\sum_{k=1}^{j}\left(\mathcal{H} \sum_{m=0}^{k} f_{m}^{+} * g_{k-m}^{+}\right) \circ \tau_{-k} \tag{5.269}
\end{equation*}
$$

Note that (5.269) corresponds to (5.264) and in those notations we have:

$$
\begin{equation*}
(f * g)_{k}=\sum_{m=0}^{k} f_{m} * g_{k-m} \tag{5.270}
\end{equation*}
$$

