Integrability as well as (5.262) follow from (5.265), (5.268) and Remark 5.140.

By (5.118) and (5.265),

$$
\psi^{b a}=\psi^{+}+\sum_{k=1}^{\infty} \frac{1}{2^{k}}\left(\psi_{k}^{+} \mathcal{H}\right) \circ \tau_{-k}
$$

so that

$$
\begin{align*}
& \left(\psi^{b a} * \psi^{b a}\right)(p)=\left(\psi^{+}(p)+\sum_{k=1}^{\infty} \frac{1}{2^{k}}\left(\mathcal{H}(p-k) \psi^{+}(p-k)\right)^{* 2}=\right. \\
& \left(\psi^{+} * \psi^{+}\right)(p)+\sum_{k=1}^{\infty} \frac{1}{2^{k}} \sum_{m=0}^{k}\left(\mathcal{H} \psi_{m}^{+}\right)(p-k) *\left(\mathcal{H} \psi_{k-m}^{+}\right)(p-k+m)=\left(\psi^{* 2}\right)^{b a} \tag{5.271}
\end{align*}
$$

where we used (5.270) (see also the note on p. 197).
To finish the proof of Theorem 5.120, note that on any finite interval the sum in (5.118) has only a finite number of terms and by (5.271) balanced averaging commutes with any finite sum of the type

$$
\begin{equation*}
\sum_{k_{1}, \ldots, k_{n}} c_{k_{1}, \ldots, k_{n}} f_{k_{1}} * \ldots * f_{k_{n}} \tag{5.272}
\end{equation*}
$$

and then, by continuity, with any sum of the form (5.272), with a finite or infinite number of terms, provided it converges in $L_{\text {loc }}^{1}$. Averaging thus commutes with all the operations involved in the equations (5.222). By uniqueness therefore, if $\mathbf{Y}_{0}=\mathbf{Y}^{b a}$ then $\mathbf{Y}_{k}=\mathbf{Y}_{k}^{b a}$ for all k. Preservation of reality is immediate since (5.89), (5.92) are real if (5.51) is real, therefore $\mathbf{Y}_{0}^{b a}$ is realvalued on $\mathbb{R}^{+} \backslash \mathbb{N}$ (since it is real-valued on $[0,1) \cup(1,2)$) and so are, inductively, all \mathbf{Y}_{k}.

5.11 Appendix

5.11a $A C(f * g)$ versus $A C(f) * A C(g)$

Typically, the analytic continuation along curve in \mathcal{W}_{1} which is not homotopic to a straight line does not commute with convolution.

