Exercise 2.5 Assume f is entire, $|f(z)| \leq C_{1} e^{|a z|}$ in \mathbb{C} and $|f(z)| \leq C e^{-|z|}$ in a sector of opening more than π. Show that f is identically zero. (A similar statement holds under much weaker assumptions; see Exercise 2.29.)

2.2 Laplace and inverse Laplace transforms

Let $F \in L^{1}\left(\mathbb{R}^{+}\right)$(meaning that $|F|$ is integrable on $[0, \infty)$). Then the Laplace transform

$$
\begin{equation*}
(\mathcal{L} F)(x):=\int_{0}^{\infty} e^{-p x} F(p) d p \tag{2.6}
\end{equation*}
$$

is analytic in \mathbb{H} and continuous in $\overline{\mathbb{H}}$. Note that the substitution allows us to work in space of functions with the property that $F(p) e^{-|\alpha| p}$ is in L^{1}, correspondingly replacing x by $x-|\alpha|$.
Proposition 2.7 If $F \in L^{1}\left(\mathbb{R}^{+}\right)$, then
(i) $\mathcal{L} F$ is analytic in \mathbb{H} and continuous on the imaginary axis $\partial \mathbb{H}$.
(ii) $\mathcal{L}\{F\}(x) \rightarrow 0$ as $x \rightarrow \infty$ along any ray $\{x: \arg (x)=\theta\}$ if $|\theta| \leq \pi / 2$.

Proof. (i) Continuity and analyticity are preserved by integration against a finite measure $(F(p) d p)$. Equivalently, these properties follow by dominated convergence ${ }^{2}$, as $\epsilon \rightarrow 0$, of $\int_{0}^{\infty} e^{-i s p}\left(e^{-i p \epsilon}-1\right) F(p) d p$ and of $\int_{0}^{\infty} e^{-x p}\left(e^{-p \epsilon}-\right.$ 1) $\epsilon^{-1} F(p) d p$, respectively, the last integral for $\operatorname{Re}(x)>0$.

If $|\theta|<\pi / 2$, (ii) follows easily from dominated convergence; for $|\theta|=\pi / 2$ it follows from the Riemann-Lebesgue lemma; see Proposition 3.55.

Remark 2.8 Extending F on \mathbb{R}^{-}by zero and using the continuity in x proved in Proposition 2.7, we have $\mathcal{L}\{F\}(i t)=\int_{-\infty}^{\infty} e^{-i p t} F(p) \mathrm{d} p=\hat{\mathcal{F}} F(t)$. In this sense, the Laplace transform can be identified with the (analytic continuation of) the Fourier transform, restricted to functions vanishing on a half-line.

First inversion formula

Let \mathcal{H} denote the space of analytic functions in \mathbb{H}.
Proposition 2.9 (i) $\mathcal{L}: L^{1}\left(\mathbb{R}^{+}\right) \mapsto \mathcal{H}$ and $\|\mathcal{L} F\|_{\infty} \leq\|F\|_{1}$.
(ii) $\mathcal{L}: L^{1} \mapsto \mathcal{L}\left(L^{1}\right)$ is invertible, and the inverse is given by

$$
\begin{equation*}
F(x)=\hat{\mathcal{F}}^{-1}\{\mathcal{L} F(i t)\}(x) \tag{2.10}
\end{equation*}
$$

for $x \in \mathbb{R}^{+}$where $\hat{\mathcal{F}}$ is the Fourier transform (in distributions if $\mathcal{L} F \notin L^{1}$).
${ }^{2}$ See e.g. [52]. Essentially, if the functions $\left|f_{n}\right| \in L^{1}$ are bounded uniformly in n by $g \in L^{1}$ and they converge pointwise (except possibly on a set of measure zero), then $\lim f_{n} \in L^{1}$ and $\lim \int f_{n}=\int \lim f_{n}$.

