
Borel summability in differential equations 201

where
(

l
j

)

=
∏n

i=1

(

li
ji

)
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With mi = 1 − ⌊Re βi⌋ we obtain for yk
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There are clearly finitely many terms in tk(y). To find a (not too unreal-
istic) upper bound for this number of terms, we compare with
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stands for the same as
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(5.284)

Remark 5.285 Equation (5.282) can be written in the form (5.91).

Proof. The fact that only predecessors of k are involved in t(y0, ·) and
the homogeneity property of t(y0, ·) follow immediately by combining the
conditions

∑

imp = k and imp ≻ 0.

The formal inverse Laplace transform of (5.283) is then
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with
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(as before, “·” means usual multiplication) and
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5.11c Appendix: Formal diagonalization

Consider again the equation

y′ = f0(x) − Λ̂y +
1

x
Ây + g(x,y) (5.289)


