where $\binom{\mathbf{1}}{j}=\prod_{i=1}^{n}\binom{l_{i}}{j_{i}},(\mathbf{v})_{m}$ means the component m of \mathbf{v}, and $\sum_{\left(\mathbf{i}_{m p}: \mathbf{k}\right)}$ stands for the sum over all vectors $\mathbf{i}_{m p} \in \mathbb{N}^{n}$, with $p \leq j_{m}, m \leq n$, so that $\mathbf{i}_{m p} \succ 0$ and $\sum_{m=1}^{n} \sum_{p=1}^{j_{m}} \mathbf{i}_{m p}=\mathbf{k}$. We use the convention $\prod_{\emptyset}=1, \sum_{\emptyset}=0$. With $m_{i}=1-\left\lfloor\operatorname{Re} \beta_{i}\right\rfloor$ we obtain for $\mathbf{y}_{\mathbf{k}}$

$$
\begin{equation*}
\mathbf{y}_{\mathbf{k}}^{\prime}+\left(\hat{\Lambda}-\mathbf{k} \cdot \boldsymbol{\lambda} \hat{I}+x^{-1}(\hat{B}+\mathbf{k} \cdot \mathbf{m})\right) \mathbf{y}_{\mathbf{k}}+\sum_{|\mathbf{j}|=1} \mathbf{d}_{\mathbf{j}}(x)\left(\mathbf{y}_{\mathbf{k}}\right)^{\mathbf{j}}=\mathbf{t}_{\mathbf{k}}(\mathbf{y}) \tag{5.283}
\end{equation*}
$$

There are clearly finitely many terms in $\mathbf{t}_{\mathbf{k}}(\mathbf{y})$. To find a (not too unrealistic) upper bound for this number of terms, we compare with $\sum_{\left(\mathbf{i}_{m p}\right)^{\prime}}$ which stands for the same as $\sum_{\left(\mathbf{i}_{m p}\right)}$ except with $\mathbf{i} \geq 0$ instead of $\mathbf{i} \succ 0$. Noting that $\binom{k+s-1}{s-1}=\sum_{a_{1}+\ldots+a_{s}=k} 1$ is the number of ways k can be written as a sum of s integers, we have

$$
\begin{equation*}
\sum_{\left(\mathbf{i}_{m p}\right)} 1 \leq \sum_{\left(\mathbf{i}_{\left.m_{p}\right)^{\prime}}\right.} 1=\prod_{l=1}^{n_{1}} \sum_{\left(\mathbf{i}_{m p}\right)_{l}} 1=\prod_{l=1}^{n_{1}}\binom{k_{l}+|\mathbf{j}|-1}{|\mathbf{j}|-1} \leq\binom{|\mathbf{k}|+|\mathbf{j}|-1}{|\mathbf{j}|-1}^{n_{1}} \tag{5.284}
\end{equation*}
$$

Remark 5.285 Equation (5.282) can be written in the form (5.91).
Proof. The fact that only predecessors of \mathbf{k} are involved in $\mathbf{t}\left(\mathbf{y}_{0}, \cdot\right)$ and the homogeneity property of $\mathbf{t}\left(\mathbf{y}_{0}, \cdot\right)$ follow immediately by combining the conditions $\sum \mathbf{i}_{m p}=\mathbf{k}$ and $\mathbf{i}_{m p} \succ 0$.
The formal inverse Laplace transform of (5.283) is then

$$
\begin{equation*}
(-p+\hat{\Lambda}-\mathbf{k} \cdot \boldsymbol{\lambda}) \mathbf{Y}_{\mathbf{k}}+(\hat{B}+\mathbf{k} \cdot \mathbf{m}) \mathcal{P} \mathbf{Y}_{\mathbf{k}}+\sum_{|\mathbf{j}|=1} \mathbf{D}_{\mathbf{j}} *\left(\mathbf{Y}_{\mathbf{k}}\right)^{\mathbf{j}}=\mathbf{T}_{\mathbf{k}}(\mathbf{Y}) \tag{5.286}
\end{equation*}
$$

with
$\mathbf{T}_{\mathbf{k}}(\mathbf{Y})=\mathbf{T}\left(\mathbf{Y}_{0},\left\{\mathbf{Y}_{\mathbf{k}^{\prime}}\right\}_{0 \prec \mathbf{k}^{\prime} \prec \mathbf{k}}\right)=\sum_{\mathbf{j} \leq k ;|\mathbf{j}|>1}\left(\mathbf{g}_{0, \mathbf{j}} \cdot+\mathbf{D}_{\mathbf{j}} *\right) \sum_{\left(\mathbf{i}_{m p} ; \mathbf{k}\right)} \prod_{m=1}^{n_{1}} \prod_{p=1}^{j_{m}}\left(\mathbf{Y}_{\mathbf{i}_{m_{p}}}\right)_{m}$
(as before, "." means usual multiplication) and

$$
\begin{equation*}
\mathbf{D}_{\mathbf{j}}=\sum_{\mathbf{l} \geq \mathbf{j}}\binom{\mathbf{l}}{\mathbf{j}} \mathbf{G}_{\mathbf{l}} * \mathbf{Y}_{0}^{*(\mathbf{l}-\mathbf{j})}+\sum_{\mathrm{l} \geq \mathbf{j} ; \mid 1 \geq 2}\binom{\mathbf{l}}{\mathbf{j}} \mathbf{g}_{0, \mathrm{l}} \mathbf{Y}_{0}^{*(\mathbf{l}-\mathbf{j})} \tag{5.288}
\end{equation*}
$$

5.11c Appendix: Formal diagonalization

Consider again the equation

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}_{0}(x)-\hat{\Lambda} \mathbf{y}+\frac{1}{x} \hat{A} \mathbf{y}+\mathbf{g}(x, \mathbf{y}) \tag{5.289}
\end{equation*}
$$

