202 Asymptotics and Borel summability

If $\hat{\Lambda}$ is diagonalizable, then it can be easily diagonalized in (5.289) by the substitution $\mathbf{y} = \hat{C} \mathbf{y}^{[1]}$, where $\hat{C}^{-1} \hat{\Lambda} \hat{C}$ is diagonal.

So we can assume that $\hat{\Lambda}$ is already diagonal. Now, a transformation of the form $\mathbf{y} = (I + x^{-1}\hat{V})\mathbf{y}^{[1]}$ brings (5.289), up to terms of order \mathbf{y}/x^2 , to an equation of the type

$$
\mathbf{y}' = \mathbf{f}_0(x) - \hat{\Lambda}\mathbf{y} + \frac{1}{x} \left(\hat{A} + \hat{V}\hat{\Lambda} - \hat{\Lambda}\hat{V} \right) \mathbf{y} + \mathbf{g}(x, \mathbf{y}) \tag{5.290}
$$

Now we regard the map

 $\hat{\hat{\Lambda}} \hat{V} := \mapsto \hat{V} \hat{\Lambda} - \hat{\Lambda} \hat{V}$

as a linear map on the space of matrices \hat{V} , or, which is the same, on \mathbb{C}^{2n} . The equation

$$
\hat{\hat{\Lambda}}\hat{V} = \hat{X} \tag{5.291}
$$

has a solution if \hat{X} is not in the kernel of $\hat{\hat{A}}$, which by definition, consists in all matrices such that $\hat{\Lambda}\hat{Y}=0$, or, in other words, all matrices which commute with $\hat{\Lambda}$. Since the eigenvalues of $\hat{\Lambda}$ are distinct, it is easy to check that $\hat{\Lambda}\hat{Y}=0$ implies \hat{Y} is diagonal. So, we can change the *off-diagonal* elements of \hat{A} at will, in particular we can choose them to be zero. By further transformations $\mathbf{y} = (I + x^{-j}\hat{V})\mathbf{y}^{[1]}, j = 2...m$, we can diagonalize the coefficients of $x^{-2}y, ..., x^{-m}y.$

So, we can assume all coefficients of $x^{-j}y$ up to any fixed m are diagonal. To show that we can actually assume the coefficients of $x^{-j}y$, $j = 2...m$, to be zero it is then enough to show that this is possible for a scalar equation

$$
y' = f_0(x) - \Lambda y + \frac{1}{x}Ay + (A_2x^{-2} + \dots + A_mx^{-m})y + \mathbf{g}(x, y) \tag{5.292}
$$

As usual, by subtracting terms, we can assume $f_0(x) = O(x^{-M})$ for any choice of M , so for the purpose of this argument, we can see that we can safely assume f_0 is absent.

$$
y' = -\Lambda y + \frac{1}{x}Ay + (A_2x^{-2} + \dots + A_mx^{-m})y + \mathbf{g}(x, y) \tag{5.293}
$$

Now, by substituting $y = (1 + c_1/x + c_2/x^2 + \cdots + c_m/x^m)y^{[1]}$ for suitable c_i , the new coefficients $A_j^{[1]}$ vanish (check!).

$*5.12$ Appendix: The C^* -algebra of staircase distribu- $\mathrm{tions},\, \mathcal{D}'_{m,\nu}$

Let $\mathcal D$ be the space of test functions (compactly supported C^{∞} functions on $(0, \infty)$ and $\mathcal{D}(0, x)$ be the test functions on $(0, x)$.