210 Asymptotics and Borel summability

5.12.2 Embedding of L} in D/,

Lemma 5.327 (i) Let f € L), (cf. Remark 5.324). Then f € D}, , for all

V> 1.
(i) D(RT\N) N L (R*) is dense in D}, , with respect to the norm |||,
Proof.

Note that if for some vy we have f € L}, (RT), then
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to which, application of P*~1 yields
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so that, by (5.305) (where now F), and X
for n > 1,

n,00) P are in Li (0,14 1)) we have
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Let now v be large enough. We have

N . o0 n+1 v mn
Z an/ |Aple™Pdp < v fllv, Z/ e <) w
n=2 0 A

Yo

V2m672u+2u0

[£llvo (5-332)

~ N (v — v — mIn(v/w))

For n = 0 we simply have |Ag|| < ||f||, while for n = 1 we write

1ALy < 17D 5 £l < 7 £l (5.333)

Combining the estimates above, the proof of (i) is complete. To show (ii),
let f € Dy, , and let k. be such that ¢, Y372, v"™||Aj]l, < e. For each

m,v

i < ke we take a function ; in D(i,i + 1) such that ||6; — A, < €27% Then
1 = e 87 s < 26 0
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The proof of continuity of f(p) — pf(p): If f(p) = 1oy Aémk) then pf =
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The rest is obvious from continuity of convolution, the embedding shown
above and the definition of the norms.



