Asymptotics and Borel summability

5.12.2 Embedding of L^1_{ν} in \mathcal{D}'_m

Lemma 5.327 (i) Let $f \in L^1_{\nu_0}$ (cf. Remark 5.324). Then $f \in \mathcal{D}'_{m,\nu}$ for all $\nu > \nu_0$.

(ii) $\mathcal{D}(\mathbb{R}^+\setminus\mathbb{N})\cap L^1_{\nu}(\mathbb{R}^+)$ is dense in $\mathcal{D}'_{m,\nu}$ with respect to the norm $\|\|_{\nu}$. Proof.

Note that if for some ν_0 we have $f \in L^1_{\nu_0}(\mathbb{R}^+)$, then

$$\int_{0}^{p} |f(s)| \mathrm{d}s \le \mathrm{e}^{\nu_{0}p} \int_{0}^{p} |f(s)| \mathrm{e}^{-\nu_{0}s} \mathrm{d}s \le \mathrm{e}^{\nu_{0}p} ||f||_{\nu_{0}}$$
(5.328)

to which, application of \mathcal{P}^{k-1} yields

$$\mathcal{P}^{k}|f| \le \nu_{0}^{-k+1} \mathrm{e}^{\nu_{0}p} \|f\|_{\nu_{0}}$$
(5.329)

Also, $\mathcal{P}\chi_{[n,\infty)}e^{\nu_0 p} \leq \nu_0^{-1}\chi_{[n,\infty)}e^{\nu_0 p}$ so that

$$\mathcal{P}^{m}\chi_{[n,\infty)}e^{\nu_{0}p} \le \nu_{0}^{-m}\chi_{[n,\infty)}e^{\nu_{0}p}$$
(5.330)

so that, by (5.305) (where now F_n and $\chi_{[n,\infty]}F_n$ are in $L^1_{loc}(0, n+1)$) we have for n > 1,

$$|\Delta_n| \le \|f\|_{\nu_0} \mathrm{e}^{\nu_0 p} {\nu_0}^{1-mn} \chi_{[n,n+1]}$$
(5.331)

Let now ν be large enough. We have

$$\sum_{n=2}^{\infty} \nu^{mn} \int_{0}^{\infty} |\Delta_{n}| e^{-\nu p} dp \leq \nu_{0} ||f||_{\nu_{0}} \sum_{n=2}^{\infty} \int_{n}^{n+1} e^{-(\nu-\nu_{0})p} \left(\frac{\nu}{\nu_{0}}\right)^{mn} dp$$
$$\leq \frac{\nu^{2m} e^{-2\nu+2\nu_{0}}}{\nu_{0}^{2m-1} (\nu-\nu_{0}-m\ln(\nu/\nu_{0}))} ||f||_{\nu_{0}} \quad (5.332)$$

For n = 0 we simply have $\|\Delta_0\| \leq \|f\|$, while for n = 1 we write

$$\|\Delta_1\|_{\nu} \le \|1^{*(m-1)} * |f|\|_{\nu} \le \nu^{-m+1} \|f\|_{\nu}$$
(5.333)

Combining the estimates above, the proof of (i) is complete. To show (ii), let $f \in \mathcal{D}'_{m,\nu}$ and let k_{ϵ} be such that $c_m \sum_{i=k_{\epsilon}}^{\infty} \nu^{im} \|\Delta_i\|_{\nu} < \epsilon$. For each $i \leq k_{\epsilon}$ we take a function δ_i in $\mathcal{D}(i, i+1)$ such that $\|\delta_i - \Delta_i\|_{\nu} < \epsilon 2^{-i}$. Then $\|f - \sum_{i=0}^{k_{\epsilon}} \delta_i^{(mi)}\|_{m,\nu} < 2\epsilon$.

The proof of continuity of $f(p) \mapsto pf(p)$: If $f(p) = \sum_{k=0}^{\infty} \Delta_k^{(mk)}$ then $pf = \sum_{k=0}^{\infty} (p\Delta_k)^{(mk)} - \sum_{k=0}^{\infty} mk\mathcal{P}(\Delta_k^{(mk)}) = \sum_{k=0}^{\infty} (p\Delta_k)^{(mk)} - 1*\sum_{k=0}^{\infty} (mk\Delta_k)^{(mk)}$. The rest is obvious from continuity of convolution, the embedding shown above and the definition of the norms.

210