### 6.6 Further examples



FIGURE 6.3: Singularities on the boundary of $S_{t}$ for (5.52). The gray region lies in the projection on $\mathbb{C}$ of the Riemann surface where (6.29) holds. The short dotted line is a generic cut delimiting a first Riemann sheet.

## 6.6a The Painlevé equation $P_{I}$

Proposition 6.62 below shows, in (i), how the constant $C$ beyond all orders is associated to a truncated solution $y(z)$ of $\mathrm{P}_{\mathrm{I}}$ for $\arg (z)=\pi$ (formula (6.63)) and gives the position of one array of poles $z_{n}$ of the solution associated to $C$ (formula (6.64)), and in (ii) provides uniform asymptotic expansion to all orders of this solution in a sector centered on $\arg (z)=\pi$ and one array of poles (except for small neighborhoods of these poles) in formula (6.66). Here, the rearranged transseries is $\tilde{y}=-\sqrt{-z / 6} \sum_{k=0}^{\infty} \xi^{k} \tilde{y}_{k}\left(z^{-5 / 2}\right)$, cf. [24]; the normalized variable is $x=x(z)=(-24 z)^{5 / 4} / 30$ and now $\xi=x^{-1 / 2} e^{-x}$.

Proposition 6.62 (i) Let $y$ be a solution of (4.81) such that $y(z) \sim \sqrt{-z / 6}$ for large $z$ with $\arg (z)=\pi$. For any $\phi \in\left(\pi, \pi+\frac{2}{5} \pi\right)$ the following limit

