$$
1 / h\left(\xi_{s}\right)=\frac{(A-109 / 10)^{2}}{12^{3} x^{2}}+O\left(1 / x^{3}\right)
$$

whence $A=109 / 10$ (because $1 / h$ is analytic at ξ_{s}) and we have

$$
\begin{equation*}
\xi_{s}=12+\frac{109}{10 x}+O\left(x^{-2}\right) \tag{6.70}
\end{equation*}
$$

FIGURE 6.4: Poles of (4.85) for $C=-12(\diamond)$ and $C=12(+)$, calculated via (6.70). The light circles are on the second line of poles.

Given a solution h, the onstant C in (6.13) for which (6.67) holds can be calculated from asymptotic information in any direction above the real line by near least term truncation, namely

$$
\begin{equation*}
C=\lim _{\substack{x \rightarrow \infty \\ \arg (x)=\phi}} \exp (x) x^{1 / 2}\left(h(x)-\sum_{k \leq|x|} \frac{\tilde{h}_{0, k}}{x^{k}}\right) \tag{6.71}
\end{equation*}
$$

(this is a particular case of much more general formulas [19] where $\sum_{k>0} \tilde{h}_{0, k} x^{-k}$ is the common asymptotic series of all solutions of (4.85) which are small in \mathbb{H}.

