where $\mathbf{u} \in \mathbb{C}^{m}$, for large $|\mathbf{x}|$ in S. Generically, the constant coefficient operator $\mathcal{P}\left(\partial_{\mathbf{x}}\right)$ in the linearization of $\mathbf{g}(\infty, t, \cdot)$ is diagonalizable. It is then taken to be diagonal, with eigenvalues $\mathcal{P}_{j} . \mathcal{P}$ is subject to the requirement that for all $j \leq m$ and $\mathbf{p} \neq 0$ in \mathbb{C}^{d} with $\left|\arg p_{i}\right| \leq \phi$ we have

$$
\begin{equation*}
\operatorname{Re} \mathcal{P}_{j}^{[n]}(-\mathbf{p})>0 \tag{7.21}
\end{equation*}
$$

where $\mathcal{P}^{[n]}\left(\partial_{\mathbf{x}}\right)$ is the principal symbol of $\mathcal{P}\left(\partial_{\mathbf{x}}\right)$. Then the following holds. (The precise conditions and results are given in [21].)
Theorem 7.22 (large $|\mathbf{x}|$ existence) Under the assumptions above, for any $T>0$ (7.20) has a unique solution \mathbf{u} that for $t \in[0, T]$ is $O\left(|\mathbf{x}|^{-1}\right)$ and analytic in \mathcal{S}.

Determining asymptotic properties of solutions of PDEs is substantially more difficult than the corresponding question for ODEs. Borel-Laplace techniques, however, provide a very efficient way to overcome this difficulty. The paper shows that formal series solutions are actually Borel summable, a fortiori asymptotic, to actual solutions. The restrictions on $\mathbf{g}_{1}, \mathbf{g}_{2}$, and $\mathbf{u}_{\mathbf{I}}$ are simpler in a normalized form, obtained by simple transformations cf. [21], more suitable for our analysis,

$$
\begin{equation*}
\partial_{t} \mathbf{f}+\mathcal{P}\left(\partial_{\mathbf{x}}\right) \mathbf{f}=\sum_{\mathbf{q} \succeq 0}^{\prime} \mathbf{b}_{\mathbf{q}}(\mathbf{x}, t, \mathbf{f}) \prod_{l,|\mathbf{j}|}\left(\partial_{\mathbf{x}}^{\mathbf{j}} f_{l}\right)^{q_{l, \mathbf{j}}}+\mathbf{r}(\mathbf{x}, t) \text { with } \mathbf{f}(\mathbf{x}, 0)=\mathbf{f}_{I}(\mathbf{x}) \tag{7.23}
\end{equation*}
$$

where \sum^{\prime} means the sum over the multiindices \mathbf{q} with

$$
\begin{equation*}
\sum_{l=1}^{m} \sum_{1 \leq|\mathbf{j}| \leq n}|\mathbf{j}| q_{l, \mathbf{j}} \leq n \tag{7.24}
\end{equation*}
$$

Condition 7.25 The functions $\mathbf{b}_{\mathbf{q}, \mathbf{k}}(\mathbf{x}, t)$ and $\mathbf{r}(\mathbf{x}, t)$ are analytic in $\left(x_{1}^{-\frac{1}{N_{1}}}\right.$ $, \ldots, x_{d}^{-\frac{1}{N_{d}}}$) for large $|\mathbf{x}|$ and some $\mathbf{N} \in\left(\mathbb{N}^{+}\right)^{d}$.

Theorem 7.26 If Condition 7.25 and the assumptions of Theorem 7.22 are satisfied, then the unique solution \mathbf{f} found there can be written as

$$
\begin{equation*}
\mathbf{f}(\mathbf{x}, t)=\int_{\mathbb{R}^{+d}} e^{-\mathbf{p} \cdot \mathbf{x}^{\frac{n}{n-1}}} \mathbf{F}_{1^{+}}(\mathbf{p}, t) d \mathbf{p} \tag{7.27}
\end{equation*}
$$

where $\mathbf{F}_{1^{+}}$is (i) analytic at zero in $\left(p_{1}^{\frac{1}{n N_{1}}}, \ldots, p_{d}^{\frac{1}{n N_{d}}}\right)$; (ii) analytic in $\mathbf{p} \neq \mathbf{0}$ in the poly-sector $\left|\arg p_{i}\right|<\frac{n}{n-1} \phi+\frac{\pi}{2(n-1)}, i \leq d$; and (iii) exponentially bounded in the latter poly-sector.

Existence and asymptoticity of the formal power series follow as a corollary, using Watson's lemma.
The analysis has been extended recently to the Navier-Stokes system in \mathbb{R}^{3}; see [26].

