3.9e Spontaneous singularities: The Painlevés equation P_{I}

In nonlinear differential equations, the solutions may be singular at points x where the equation is regular. For example, the equation

$$
y^{\prime}=y^{2}+1
$$

has a one parameter family of solutions $y(x)=\tan (x+C)$; each solution has infinitely many poles. Since the location of these poles depends on C, thus on the solution itself, these singularities are called movable or spontaneous.

Let us analyze local singularities of the Painlevé equation P_{I},

$$
\begin{equation*}
y^{\prime \prime}=y^{2}+x \tag{3.164}
\end{equation*}
$$

We look at the local behavior of a solution that blows up, and will find solutions that are meromorphic but not analytic. In a neighborhood of a point where y is large, keeping only the largest terms in the equation (dominant balance) we get $y^{\prime \prime}=y^{2}$ which can be integrated explicitly in terms of elliptic functions and its solutions have double poles. Alternatively, we may search for a power-like behavior

$$
y \sim A\left(x-x_{0}\right)^{p}
$$

where $p<0$ obtaining, to leading order, the equation $A p(p-1)\left(x-x_{0}\right)^{p-2}=$ $A^{2}\left(x-x_{0}\right)^{2 p}$ which gives $p=-2$ and $A=6$ (the solution $A=0$ is inconsistent with our assumption). Let's look for a power series solution, starting with $6\left(x-x_{0}\right)^{-2}: y=6\left(x-x_{0}\right)^{-2}+c_{-1}\left(x-x_{0}\right)^{-1}+c_{0}+\cdots$. We get: $c_{-1}=$ $0, c_{0}=0, c_{1}=0, c_{2}=-x_{0} / 10, c_{3}=-1 / 6$ and c_{4} is undetermined, thus free. Choosing a c_{4}, all others are uniquely determined. To show that there indeed is a convergent such power series solution, we follow the remarks in $\S 3.8 \mathrm{~b}$. Substituting $y(x)=6\left(x-x_{0}\right)^{-2}+\delta(x)$ where for consistency we should have $\delta(x)=o\left(\left(x-x_{0}\right)^{-2}\right)$ and taking $x=x_{0}+z$ we get the equation

$$
\begin{equation*}
\delta^{\prime \prime}=\frac{12}{z^{2}} \delta+z+x_{0}+\delta^{2} \tag{3.165}
\end{equation*}
$$

Note now that our assumption $\delta=o\left(z^{-2}\right)$ makes $\delta^{2} /\left(\delta / z^{2}\right)=z^{2} \delta=o(1)$ and thus the nonlinear term in (3.165) is relatively small. Thus, to leading order, the new equation is linear. This is a general phenomenon: taking out more and more terms out of the local expansion, the correction becomes less and less important, and the equation is better and better approximated by a linear equation. It is then natural to separate out the large terms from the small terms and write a fixed point equation for the solution based on this separation. We write (3.165) in the form

$$
\begin{equation*}
\delta^{\prime \prime}-\frac{12}{z^{2}} \delta=z+x_{0}+\delta^{2} \tag{3.166}
\end{equation*}
$$

and integrate as if the right side was known. This leads to an equivalent integral equation. Since all unknown terms on the right side are chosen to

