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Abstract. A new summation method is introduced to convert a rel-
atively wide family of Taylor series and infinite sums into integrals.

Global behavior such as analytic continuation, position of singu-
larities, asymptotics for large values of the variable and asymptotic
location of zeros thereby follow, through the integral representations,
from the Taylor coefficients at a point, say zero.

The method can be viewed in some sense as the inverse of Cauchy’s
formula.

It can work in one or several complex variables.
There is a duality between the global analytic structure of the re-

constructed function and the properties of the coefficients as a func-
tion of their index.

Borel summability of a class of divergent series follow as a byprod-
uct.
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1. Introduction

Finding the global behavior of an analytic function in terms of its
Taylor coefficients is a notoriously difficult problem. In fact, there
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cannot exist a general solution to this problem, since undecidable
questions can be quite readily formulated in such terms.

Obviously too, mere estimates on the coefficients do not provide
enough information for global description. But constructive, detailed
knowledge of the coefficients does. Simple examples are

f1(z) =
∞∑

n=1

zn

√
n

, f2(z) =
∞∑

n=1

zn

nπ + lnn
,

f3(z) =
∞∑

n=1

zn

nn+1
, f4 =

∞∑
n=1

nnzn (1.1)

(Certainly, as presented, f4 does not define a function; the question
for f4 is whether the series is Borel summable.)

Coefficients with a different type of growth, say e
√

n can be ac-
commodated too, as seen below.

The example f1 is the classical polylog(1/2, z) but f2, f3 or f4 sat-
isfy no obvious relation from which analytic control can be otherwise
gained. Yet they are particularly simple, in that the coefficients have
an explicit formula. Integral representations however can be obtained
in the much more general case when f (n)(0) is analyzable (cf. §1.3)
in n (1). Solutions to very general differential or partial differential
equations, difference equations are known to be analyzable, and this
class of functions is closed under many operations occurring in anal-
ysis. In fact, analyzable functions are obtained by an isomorphism
from transseries, which are indeed constructed as the closure of se-
ries under a wide class of operations [3].

In particular it will follow from the results below that

f1(z) =
z√
π

∫ ∞

0

dt

(1 + t)
√

ln(1 + t)(t− (z − 1))
(1.2)

On the first Riemann sheet f1 has only one singularity, at z = 1, of
logarithmic type, and f1 = O(z−1) for large z. General Riemann sur-
face information and monodromy follow straightforwardly (cf. (2.18)).
A similar complex analytic structure is shared by f2, which has one
singularity at z = 1 where it is analytic in ln(1− z) and (1− z); the
singularity structure is that of the function

φ(z) =
∮ ∞

0

e−u ln(z−1)

(−u)π + ln(−u)
du (1.3)

(1) After developing these methods, it has been brought to our attention that
a duality between resurgent functions and resurgent Taylor coefficients has been

noted in an unpublished manuscript by Écalle.



Global analytic reconstruction 3

where the notation
∮∞
0 is explained after (2.12) below. An explicit

formula for the singular structure can be obtained in all cases, and
their is a duality between the properties of the coefficients and the
global structure, for instance monodromy, of the reconstructed func-
tion.

The function f3 is entire; questions answered regard say the be-
havior for large negative z or the asymptotic location of zeros. It will
follow that f3 can be written as

f3(z) = e−1

∫ ∞

0
(1 + u)−1G(ln(1 + u))

[
exp

(
ze−1

1 + u

)
− 1

]
du (1.4)

where G(p) = s′2(1 + p)− s′1(1 + p) and s1,2 are two branches of the
functional inverse of s− ln s, cf. §3. Detailed behaviour for large z can
be obtained from (1.4) by standard asymptotics methods; in partic-
ular, for large negative z, f3 behaves like a constant plus z−1/2e−z/e

times a factorially divergent series (whose terms can be calculated).
It is often convenient to work with a series given in terms of the

coefficients, even when an underlying generating problem exists [20,
14].

A reconstruction procedure was known in the context of nonlin-
ear ODEs for which information about location of singularities of
solutions can be “read” in their transseries representations [13].

As it will be clear from the proofs, the method and results would
apply, with minor adaptations to functions of several complex vari-
ables.

1.1. Evaluating series.

There are many other questions amenable to this method. For in-
stance, we get that

lim
z→−1+

∞∑
n=1

e
√

nzn = − 1
4
√

π

∫
C1

e1/pdp

p−3/2(ep + 1)
(1.5)

where C1 starts along R+, loops clockwise once around the origin and
ends up at +∞. There is also a practical side to (1.5): while the sum
is numerically unwieldy, the integral can be evaluated accurately by
standard means. Likewise, we get

∞∑
n=0

ei
√

n

na
=

2a−1/2

√
π

∫
C

dp
e

1
8p U(2a + 1/2; −i√

2p
)

pa−1(ep + 1)
(1.6)

for a > 1/2 (convergence of the sum follows, e.g. by comparing it
to an integral and estimating the remainder). Here C is a contour
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starting along R−, encircling the origin clockwise and ending up at
+∞, and U is the parabolic cylinder function [1]. These sums are
obtained in §2.1.

1.2. Global description from local expansions

A first class of problems is finding the location and type of singu-
larities in C and the behaviour for large values of the variable of
functions given by series with finite radius of convergence, such as
those in (1.1).

The second class of problems amenable to the techniques presented
concerns the behaviour at infinity (growth, decay, asymptotic location
of zeros etc.) of entire functions presented as Taylor series, such as f3

above.
The third type of class of problems is to determine Borel summa-

bility of series with zero radius of convergence such as

f̃4 =
∞∑

n=0

nn+1zn (1.7)

in which the coefficients of the series are analyzable ((1.7) is Borel
summable).

1.3. Transseries and analyzable functions

In the early 1980’s, Écalle discovered and extensively studied a broad
class of functions, analyzable functions, closed under algebraic op-
erations, composition, function inversion, differentiation, integration
and solution of suitably restricted differential equations [2,3,4,5].
They are described as generalized sums of “transseries”, the clo-
sure of power series under the same operations. The latter objects
are surprisingly easy to describe; roughly, they are ordinal length,
asymptotic expansions involving powers, iterated exponentials and
logs, with at most power-of-factorially growing coefficients.

In view of the closure of analyzable functions to a wide class of
operations, reconstructing functions from series with arbitrary ana-
lyzable coefficients would make the reconstruction likely applicable to
series occurring in problems involving any combination of these many
operations.

This paper deals with analyzable coefficients having finitely many
singularities after a suitable EB transform. The methods however are
open to substantial extension. In particular, we allow for general sin-
gularities, while analyzable and resurgent functions have singularities
of a controlled type [3].
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1.4. Classical and generalized Borel summation

A series f̃ =
∑∞

n=1 cnx−n is Borel summable if its Borel transform,
i.e. the formal inverse Laplace transform (2) converges to a function F
analytic in a neighborhood of R+, and F grows at most exponentially
at infinity. The Laplace transform of F is by definition the Borel sum
of f̃ . Since Borel summation is formally the identity, it is an extended
isomorphism between functions and series, much as convergent Taylor
series associate to their sums.

However expansions occurring in applications are often not classi-
cally Borel summable, sometimes for the relatively manageable reason
that the expansions are not simple integer power series, or often, more
seriously, because F is singular on R+, as is the case of

∑
n!x−n−1

where F = (1− p)−1, or because F grows superexponentially.
To address the latter difficulties, Écalle defined averaging and co-

hesive continuation to replace analytic continuation, and acceleration
to deal with superexponential growth [2,3,4,5].

We call Écalle’s technique Écalle-Borel (EB) summability and “EB
transform” the inverse of EB summation. While it is an open, im-
precisely formulated, and in fact conceptually challenging question,
whether EB summable series are closed under all operations needed in
analysis, general results have been proved for ODEs, difference equa-
tions, PDEs, KAM resonant expansions and other classes of problems
[8,12,7,19,20]. EB summability seems for now quite general.

A function is analyzable if it is an EB transform of a transseries.
This transseries is then unique [3]. Then the EB transform is the map-
ping that associates this unique transseries to the function. Simple
examples of such transseries are

fn =
1√
n

; fn =
1
n

∞∑
j=1

(−1)n lnj n

njπ
;

fn =
∞∑

j=1

(−1)jj!
nj

+ 2−n−1
∞∑

j=0

(−1)jΓ (j − 1/2)√
π

(1.8)

The first two are convergent and correspond to the first two series in
(1.1); the last one is divergent but Borel summable.

EB summation consists, in the simplest cases, in replacing the
series in the transseries by their Borel sum. In a first stage one takes
the Borel transform in n (cf. §1.4) of each component series. In (1.8)

(2)
∞X

n=1

cn
1

2πi

Z 1+i∞

1−i∞
epxx−ndx =

∞X
n=0

cnpn−1

(n− 1)!
= F (p)
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Fig. 1. Singularities of f , cuts, direction of integration and Cauchy contour de-
formation.

the Borel transforms are correspondingly,

F (p) =
1

√
pπ

, F1(p),
[

1
1 + p

,
√

p + 1
]

(1.9)

and F1 given in (2.27). The last pair represents the separate EB
transforms of the two series in the last example in (1.8).

The EB sum of these transseries are, with (LF )(p) =
∫∞
0 e−pnF (p)dp

the usual Laplace transform,

fn = L 1
√

pπ
=

1√
n

; fn = LF1; L 1
1 + p

+ 2−n−1L
√

1 + p

= enEi(−n) + 2−n−1

(
1
n

+
√

πenerfc(
√

n)
n3/2

)
(1.10)

2. (i) Series with finite radius of convergence

Let M be the functions analytic at zero, algebraically bounded at
infinity and which have finitely many, possibly branched, singulari-
ties in C. We choose to make cuts from zj to infinity which do not
intersect.
M would be a proper subclass of resurgent functions [2] if the

singularities are of the form described in Note 23 (b).

Note 21 (Generalizations) 1. It will be seen from the proofs that
it is sufficient to have at most that algebraic growth in some sector,
or with slight modifications, at most exponential growth.

2. Also, one can allow for infinitely many singularities, if some esti-
mates for their strength is available. Écalle averaging would allow
for singularities on the line of summation.
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3. Exponential growth of Fj (see below) can also be accommodated,
provided a sufficient number of initial terms of the series are left
out.

4. Several complex variables can be treated very similarly, as it will
become clear.

5. Other types of decay/growth of coefficients can be accommodated,
cf. §2.1
Some further generalizations are transparent, but to simplify the
notation and proofs we will not pursue them.

Note 22 By taking sufficiently many derivatives we can assume that
f ∈M′ = {f ∈M : f = O(z−1−ε) as z →∞}.

Consider a series with finite radius of convergence

f =
∞∑

n=0

fnzn (2.11)

In the following, if g is analytic on R+ and has a singularity at zero
we denote by ∮ ∞

0
g(s)ds (2.12)

the integral of g around R+, traversed towards +∞ on the upper side.
While providing integral formulas, in terms of functions with known

singularities, which are often rather explicit, the following result can
also be interpreted as a duality of resurgence.

Theorem 21 (i) Assume that fn have Borel sum-like representa-
tions of the form

fn =
N∑

j=1

a−n
j

∮ ∞

0
e−npFj(p)ds (2.13)

(2.13) where Fj are analytic and bounded on R+ and singular at zero.
Then, f is given by

f(z) = f(0) + z

∮ ∞

0

N∑
j=1

Fj(ln(1 + s))ds

(1 + s)(saj + aj − z)
(2.14)

(ii) Furthermore, f ∈ M and the singularities, located at aj and are
of the same type as the singularities of Fj(ln(1 + s)).
(iii) Conversely, let f ∈M′, with singularities at {a1, ..., aN}:

f(z) =
∞∑

n=0

fnzn; |z| < r (2.15)
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Then fn have Borel sum-like representations of the form

fn =
1

2πi

N∑
j=1

a−n
j

∮ ∞

0
e−npδajF (aje

s)ds (2.16)

where δajF (aje
s) is the difference between the values of F on the left

of and right the cut from aj to ∞.

The behaviour at aj and at ∞ will follow from the proof.

Note 23 (a) The singularities presented are on the first Riemann
sheet. A more global information requires like information on Fj .

(b) Classically Borel summable series. The integral representa-
tions in (2.13) would be true Borel sums if F (p) = (2πi)−1 ln p H(p)
with H analytic at zero, as it can be easily checked.

(c) EB Borel summable series. More generally, fn are EB
summable if Fj are analytic at 0 in pβj ln pαj , j = 1, ..., N with
Re(βj) > 0. If such is the case, the singularity of Fj at zero is of
the same type as that of Fj(ln(1 + p)) since ln(1 + p) is analytic at
zero. Strictly speaking, duality of resurgence only applies to these
cases.

If F has an exponential or worse type singularity at zero, the
representation is not a generalized Borel sum in any sense. Écalle
acceleration might bring it to the simpler case above. But we allow
for any singularities since the result goes through.

(d) Equation (1.2) follows straightforwardly from (2.14). To obtain
analytic information it suffices to take first say, the imaginary part
of z sufficiently large. We rewrite (1.2) in the form

f1(z) =
z√
π2

∮ ∞

0

dt

(1 + t)
√

ln(1 + t)(t− (z − 1))
(2.17)

and expand the contour of integration in (2.17) up, down and to the
left by 2π − ε, to the boundary of a strip. Say the new integral is I2.
Then, upon bringing z inside the contour we collect a residue

1√
π

1√
ln z

(2.18)

Now z can be moved around 0 or −1, on curves staying inside the
strip and I2 remains analytic. The monodromy around 0 and 1 is thus
solely contained in the term (2.18). This analysis can be extended to
general polylogs, and more detailed information can be obtained. This
will be the subject of a different paper.
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Proof of Theorem 21 If f ∈ M′ we write the Taylor coefficients
in the form

fn =
1

2πi

∮
dsf(s)
sn+1

(2.19)

where the contour of integration is a small circle of radius r around the
origin. We attempt to increase r without bound. In the process, the
contour will hang around the singularities of f as shown in Figure 1.
The integrals converge by the decay assumptions and the contribution
of the arcs at large r vanish.

In the opposite direction, we let z be sufficiently small, and such that
zaj /∈ R for all j. We choose the contour in such close enough to
zero so that |zaje

−p| < α < 1 all along the contour. By dominated
convergence we have

∞∑
n=1

fnzn =
N∑

j=1

∮ ∞

0

∞∑
n=1

zna−n
j e−npFj(p)ds

=
N∑

j=1

∮ ∞

0

za−1
j e−p

1− za−1
j e−p

Fj(p)dp =
N∑

j=1

z

∮ ∞

0

Fj(ln(1 + s))ds

(1 + s)(saj + aj − z)

(2.20)

as stated. Now the integral can be analytically continued in z. The
nature of the singularities of f is examined in §2.2

2.1. Other growth rates; examples of special sums

Other growth rates can be accommodated, for instance by analytic
continuation. We have for positive γ,

e−γ
√

n =
γ

2
√

π

∫ ∞

0
p−3/2e

− γ2

4p e−npdp (2.21)

which can be analytically continued in γ. We note first that the con-
tour cannot be, for this function, detached from zero. Instead, we
keep one endpoint at infinity and, near the origin, simultaneously
rotate γ and p to maintain −γ/p real and negative. We get

e
√

n = − 1
4
√

π

∫
C1

p−3/2e
1
4p e−npdp (2.22)

where C1 is described in the introduction, and (1.5) follows. Eq. (1.6)
is obtained in a similar way.

Obviously, if the behavior of the coefficients is of the form Anfn

where fn satisfies the conditions in the paper, one simply changes the
independent variable to z′ = Az.
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2.2. Singularity formula. Duality.

The problem of the type of singularities of the resummed series re-
duces to finding the singularity type of a Hilbert-transform-like inte-
gral of the form

g(t) =
∮ ∞

0

G(s)
s− t

ds (2.23)

The singularity of g at t = 0 is the same as the singularity of G at
s = 0 as follows from a simple calculation.

Lemma 24 (Analytic structure at t = 0.) For small t we have∮ ∞

0

G(s)
s− t

ds = 2πiG(t) + G2(t) (2.24)

where G2(t) is analytic for small t.

Proof. We take t, |t| = ε small, outside the contour of integration.
Around s = 0 we deform the contour into a circle of radius 2ε in the
process collecting a residue

2πiG(t) (2.25)

The new integral is manifestly analytic for |t| < ε.

Note 25 In the particular case of Borel summable series, leading to
expressions of the form

∫∞
0 (p − t)−1H(p)dp with p analytic at zero,

either by converting them to the form (2πi)−1
∮∞
0 (p−t)−1H(p) ln p dp

or simply writing near zero H(p) = H(t)+(H(p)−H(t)) we see that
the behaviour for small t is of the form H(t) ln t+h(t) with h analytic.

Example: For the function f2 in the introduction, the inverse Laplace
transform is

1
2πi

∫ 1+i∞

1−i∞

exp

xπ + lnx
dx (2.26)

where the contour can be bent backwards, to hang around R−. Then,
with the change of variable x = −u (2.26) becomes

F1(p) =
∮ ∞

0

e−up

(−u)π + ln(−u)
du (2.27)

for which the singularity, at one, according to (2.25) is (1.3).
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3. (ii) Entire functions

We restrict the analysis to entire functions of exponential order one,
with complete information on the Taylor coefficients. Such functions
include of course the exponential itself, or expressions such as f3. It
is useful to start with f3 as an example. The analysis is brought to
the case in §2.2 by first taking a Laplace transform. Note that∫ ∞

0
e−xzf(z)dz =

1
x

∞∑
n=0

n!
nn+1xn

(3.28)

The study of entire functions of exponential order one likely involves
the factorial, and then a Borel summed representation of the Stirling
formula is needed.

3.1. The Gamma function and Borel summed Stirling formula

We have

n! =
∫ ∞

0
tne−tdt = nn+1

∫ ∞

0
e−n(s−ln s)ds

= nn+1

∫ 1

0
e−n(s−ln s)ds + nn+1

∫ ∞

1
e−n(s−ln s)ds (3.29)

On (0, 1) and (1,∞) separately, the function s − ln(s) is monotonic
and we may write, after inverting s − ln(s) = t on the two intervals
to get s1,2 = s1,2(t),

n! = nn+1

∫ ∞

1
e−nt(s′2(t)− s′1(t))dt = nn+1e−n

∫ ∞

0
e−npG(p)dp

(3.30)
where G(p) = s′2(1 + p) − s′1(1 + p). From the definition it follows
that G is bounded at infinity and p−1/2G is analytic in p1/2 at p = 0.
Using now (3.30) and Theorem 21 in (3.28) we get∫ ∞

0
e−xzf(z)dz =

1
x2

∫ ∞

0

G(ln(1 + t))
(te + (e− x−1))(t + 1)

dt (3.31)

Upon taking the inverse Laplace transform we obtain (1.4).

More generally we obtain from Theorem 21, in the same way as
above, the following.
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Theorem 31 Assume that the entire function f is given by

f(z) =
∞∑

n=1

fnzn

n!
(3.32)

with fn as in Theorem 21. Then,

f(z) =
∮ ∞

0

N∑
j=1

[(
e

z
s+aj − 1

) Fj(ln(1 + s))
(1 + s)

]
ds (3.33)

As in the simple example, the behavior at infinity follows from the
integral representation by classical means.

4. (iii) Borel summation

Theorem 41 Consider the formal power series

f̃(z) =
∞∑

n=1

fnn!zn+1 (4.34)

with coefficients fn as in Theorem 21. Then the series is (generalized)
Borel summable to∫ ∞

0
dpe−p/zp

N∑
j=1

∮ ∞

0

Fj(ln(1 + s))
(1 + s)(ajs + aj − p)

ds

= −
N∑

j=1

∮ ∞

0

Fj(ln(1 + s))
1 + s

(
z − aj(s + 1)e−

aj(s+1)

z Ei
(

aj(s + 1)
z

))
ds

(4.35)

The proof proceeds as in the previous sections, taking now a Borel
transform in z−1 followed by a Laplace transform.

4.1. Appendix: Borel summed version of 1/n!

We can use the following representation [1]

1
Γ (n)

= − ie−πiz

2π

∮ ∞

0
s−ze−sds = − ie−πizz−z

2π

∮ ∞

0
s−ze−zsds

(4.36)
with our convention of contour integration. From here, one can pro-
ceed as in §3.1.
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