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1. Rapid course in special relativity: Key ideas: Principle of relativity [T-W
3.1-3.3 (1.3)]; inertial (free float) frames [MTW Fig 1.7; T-W 2.2, 2.3, 2.4
(1.2, 1.4)]; Isotropy of space [T-W (1.3)]1.

2. Key ideas: Invariance of the interval [T-W 3.6, 3.7, 3.8 (1.5)].

3. Euclidean geometry vs. Lorentz geometry [T-W 5.2, 5.3 (1.1, 1.6)]; Lorentz
transformations [T-W L.3, L.4, L.5, L.6]

4. Important mathematical properties of a Lorentz transformation. Causal
classification of events [T-W 6.1, 6.2, 6.3 (1.7)].

5. Spacetime as a vector space; four velocity; four acceleration; wave propa-
gation four vector. [Box 1.3, 2.4; Sect. 2.1-2.3 in MTW].

6. Significance and utility of the projection invariant; worldline of an accel-
erated observer [MTW Ch 6].

7. One parameter family; Instantaneous Lorentz frames along a given world-
line. Fermi-Walker transport [MTW Ch. 6].

8. Fermi-Walker transport and curvilinear spacetime coordinates [MTW Ch.
6].

9. Covectors and Vectors: Definition of a linear function; the dual vector
space; bracket notation; construction of linear functions; basis for dual
space; no natural isomorphism between vector space and its dual; basis
covectors = coordinate functions..[MTW 2.5 - 2.7, 9.1 - 9.5]

10. Bilinear functional; metric on a vector space; natural isomorphism be-
tween vectors and duals; basis representation of a metric; lowering the
indices on the components of a vector; reciprocal vector basis; correspon-
dence between reciprocal basis vectors and basis covectors; covariant vs.
contravariant components of a vector.

11. Metric as an isomorphism between the vector space and its dual space;
representation of the metric relative to a given basis; vector components
related to those of its image in V ∗; reciprocal basis. [ MTW §2.4, Box 8.4,
§13.2.]

1[TW 3.1, 3.2, 3.3, (1.3)] means sections 3.1, 3.2, 3.3 in the 2nd (NEW!) Edition of E.
Taylor and J.A. Wheeler, SPACETIME PHYSICS (1992). The (1.3) refers to section 1.3 in
the original (1st) Edition
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12. Tensors as multilinear maps; components of a tensor relative to a chosen
basis; tensor product; tensor product basis; space of tensors; constructing
new tensors by “lowering” indeces, by contraction.

13. Examples of tensors of various rank; the Levi-Civita tensor; exterior prod-
uct [MTW 3.5, 4.1-4.2]. Flux tensor in Euclidean space; Flux tube struc-
ture; particle (or charge) worldline density tensor. [Read MTW Box 4.2,
Fig. 4.2-4.5, Box 4.4].

14. Particle (or charge) worldline density tensor; Symplectic inner product
[MTW, Box 4.5]; Euclidean basis vs. symplectic basis [V. Arnold §41].

15. Euclidean rotation vs. Lorentz rotation vs. symplectic transformation [V.
Arnold §42]; “Raising” and “lowering” of indices, contraction. Coordinate
charts, atlas, manifold; coordinate representative of a function [MTW Ch.
9; Singer & Thorpe 97-99]; Example: Minkowski spacetime with a Rindler
atlas.

16. Example of coordinate charts: Minkowski spacetime with Rindler charts,
coordinate functions. Tangent vector [Singer & Thorpe §5.1; Hicks Ch. 1;
MTW Ch. 9].

17. Tangent vector; transforming its components; vector as a derivation [Singer
& Thorpe §5.1; Hicks Ch. 1].

18. Vector field, differential 1-form [MTW 2.5, 9.1] [MTW 2.5, 9.1-9.5]; tan-
gent to a curve; integral curves; [Singer & Thorpe §5.1; Hicks Ch. 1].

19. The Rotation Group SO(3) as a manifold with three independent nowhere
zero vector fields [MTW Problem 9.13].

20. Integral curve of a vector field [Singer & Thorpe pp. 125-126]. Commuta-
tor of two vector fields [MTW Box 8.4 E, Box 9.2; §9.6; Singer & Thorpe
p. 127]. The differential (one form) of a function [MTW §9.4; T. Apostol:
Math.’l Analysis pp. 103-107].

21. Differential 1-form as the linear approximation of a function [MTW §9.4];
Differential p-forms: antisymmetric tensor field of rank

(
0
p

)
; exterior prod-

uct of two forms; exterior derivative of a p-form [MTW §4.1, §14.5, Ex.
14.5].

22. Parallel transport between tangent spaces [MTW Box 10.2, 10.3]; covari-
ant differential of a vector [MTW §14.5]; covariant derivative [MTW §10.3].

23. Parallel transport in the Euclidean plane.

24. Commutator of O.N. polar basis vectors; covariant derivative of a general
vector and a general covector [MTW §10.4]. Commutator vs. covariant
derivative; pointwise linearity of a tensor map [MTW Box 10.3B]; parallel
vector field [MTW Box 10.2], the torsion tensor [MTW §14.5 pp. 353-354].
[Note MTW always assume zero torsion.]
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25. Cartan’s 1st Structural equation; Stoke’s Theorem: its infinitesimal ver-
sion [MTW §14.5]; Riemann Curvature: Parallel transport around a closed
loop [MTW §11.14]. Cartan’s 2nd Structural Equation [MTW §14.5]; com-
ponents of Riemann relative to a coordinate basis [MTW §11.3].

26. Jacobi’s equation of geodesic deviation [MTW §11.3, Box 11.4].

27. Summary: Cartan’s derivation of his two structure equations [MTW §14.5];
compatibility between mietric and parallel transport [MTW §13.3, §14.5];
Christoffel symbols; geodesic on a two sphere; coordinate components vs.
orthonormal components of a vector and a covector.

28. Metric induced symmetries of the curvature tensor [MTW §11.6, 14.5].

29. Curvature from a metric: the Cartan-Misner procedure [MTW Box 14.5].
Example: the 2-sphere. Ricci tensor; Curvature Invariant.

30. Metric on a three-sphere; the metric for a Robertson-Walker universe; cur-
vature inside spherical star in free-fall collapse; its Einstein tensor [MTW
Box 14.5].
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