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Abstract. We establish combinatorial versions of various classical systolic

inequalities. For a smooth triangulation of a closed smooth manifold, the

minimal number of edges in a homotopically non-trivial loop contained in the
1-skeleton gives an integer called the combinatorial systole. The number of

top-dimensional simplices in the triangulation gives another integer called the

combinatorial volume. We show that a class of smooth manifolds satisfies
a systolic inequality for all Riemannian metrics if and only if it satisfies a

corresponding combinatorial systolic inequality for all smooth triangulations.

Along the way, we show that any closed Riemannian manifold has a smooth
triangulation which “remembers” the geometry of the Riemannian metric, and

conversely, that every smooth triangulation gives rise to Riemannian metrics
which encode the combinatorics of the triangulation. We give a few applica-

tions of these results.

1. Introduction

For a closed Riemannian manifold (M, g), the systole is the minimal length of
a homotopically non-trivial loop, denoted Sysg(M), while the volume of (M, g) is
denoted Volg(M). Systolic inequalities are expressions which relate the systole with
other geometric quantities, typically the volume. In this paper, we are interested
in combinatorial versions of the systolic inequalities.

We view smooth triangulations of a manifold M as a combinatorial model for
M . For such a triangulation (M, T ), we define the combinatorial systole SysT (M)
to be the minimal number of edges for a combinatorial loop in the 1-skeleton of T
which is homotopically non-trivial in M . The discrete volume VolT (M) is just the
number of top-dimensional simplices in the triangulation T . The main goal of this
paper is to establish the following:

Main Theorem. Let M be a class of closed smooth n-manifolds. Then the fol-
lowing two statements are equivalent:

(1) for every Riemannian metric (M, g) on a manifold M ∈M, we have

Sysg(M) ≤ C n

√
Volg(M),

where C is a constant which depends solely on the class M.
(2) for every smooth triangulation (M, T ) of a manifold M ∈M, we have

SysT (M) ≤ C ′ n
√

VolT (M),

where C ′ is a constant which depends solely on the class M.
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In [Gr1] Gromov proved that the class of closed smooth essential Riemannian
manifolds satisfies the above Riemannian systolic inequality. So an immediate con-
sequence is the following.

Corollary. Let M denote the class of closed smooth essential n-manifolds. Then
for every smooth triangulation (M, T ) of a manifold M ∈M, we have

SysT (M) ≤ C n
√

VolT (M),

where C is a constant which depends solely on the dimension n.

In the process of proving our Main Theorem, we establish a number of auxiliary
results which might also be of independent interest. After some preliminaries in
Section 2, we show:

Theorem 1 (Encoding a Riemannian metric). There exists a constant δn depend-
ing solely on the dimension n, with the property that for any closed Riemannian
manifold (M, g), there exists a smooth triangulation T with the property that

supe⊂T {`g(e)}
infσ⊂T { n

√
Volg(σ)}

≤ δn,

where the volume of the top-dimensional simplices σ, and the lengths of the edges
e, are measured in the ambient g-metric.

Roughly speaking, the triangulation T produced in the theorem has no simplices
that are “long and thin” (as measured in the Riemannian metric g). Moreover,
Theorem 1 still holds for a possibly different constant δn,k when considering the

collection of k-dimensional simplices σ (and replacing n
√

Volg(σ) with the kth root
of the k-dimensional volume of σ). Theorem 1 is established in Section 3. The
idea is as follows. In [HW], Whitney proved that every closed smooth manifold Mn

supports a triangulation. The method Whitney used was to first smoothly embed
Mn into R2n+1, then equip the latter with a sufficiently fine cubulation. Then one
perturbs the embedding to be transverse to the (n + 1)-cubes in the cubulation –
the intersection will then give a collection of points. One then uses these points as
the vertex set of a certain piecewise affine (polyhedral) complex in R2n+1. If the
cubulation is chosen fine enough, this complex lies in a small normal neighborhood
of Mn, and one can subdivide to get a simplicial complex, then project down onto
Mn. Whitney then argues that this projection gives a smooth triangulation of M .

One quick remark is that in dimensions ≥ 4, the corresponding statement is
false for topological manifolds (work of Freedman and Casson in dimension = 4
[Fr], and of Manolescu [Ma] in dimensions ≥ 5), see Section 7. Also, the existence
of triangulations of manifolds was known before Whitney. For example, see Cairns
[Cai] and Whitehead [JW].

Now the proof of Theorem 1 also uses Whitney’s procedure, but rather than
starting from a smooth embedding into R2n+1, we want to start with an embedding
that “remembers” the Riemannian structure on (M, g). A natural choice to use is
Nash’s isometric embedding. We then follow through Whitney’s arguments, and
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check that the resulting triangulation has the desired property. This is done in
Section 4.

Theorem 2 (Encoding a triangulation). There exists a constant κn depending
solely on the dimension n, with the property that for any smooth triangulation
(M, T ) of a smooth compact manifold M , and for any ε > 0, there exists a Rie-
mannian metric g on M which satisfies the following:

(1) |Volg(M)− V olT (M)| < ε
(2) If γ is a closed path on M , then there exists a closed edge loop p, freely

homotopic to γ, so that

`T (p) ≤ κn`g(γ).

By an edge loop p we mean a closed simplicial path in the 1-skeleton of T , and
the notation `T (p) denotes the number of edges contained in the image of p. The
idea behind the proof is to put a piecewise Euclidean metric on M , by making each
n-dimensional simplex in the triangulation T isometric to a Euclidean simplex with
all edges of equal length, and of volume equal to one. This metric has singularities
along the codimension two strata, which can be inductively smoothed out. This
gives a metric g satisfying property (1). For property (2), one can easily reduce to
the case that γ is a g-geodesic which is not null-homotopic. From there, we remove
the sections of γ near the codimension 2 skeleton and, in a Lipschitz manner, replace
them with geodesic segments in the singular metric. This results in a loop of roughly
comparable length in the singular metric, and property (2) is easy to establish for
the singular metrics. The details of this argument can be found in Section 5.

In this paper, a triangulation of a manifold M is a simplicial complex T together
with a homeomorphism ι : T →M . If the link of every simplex in T is a piecewise-
linear sphere then we call this triangulation a piecewise-linear triangulation, and
if ι||σ| is smooth for all simplices σ ∈ T then we call T a smooth triangulation.
In the proceeding sentence, for σ an n-simplex, |σ| ⊂ Rn denotes the canonical
n-simplex in Rn. It is known that all smooth triangulations of a smooth manifold
are piecewise-linear, but this containment is strict. And of course the celebrated
Cannon-Edwards double suspension theorem ([Ed] and [Can]) shows that not all
triangulations of a manifold are piecewise-linear. Nevertheless, all three of these
notions agree if the dimension of M is at most three.

In the proof of Theorem 2 we only use the assumption that the triangulation T is
compatible with the smooth structure on M in only one place: when using a smooth
partition of unity to patch together locally defined metrics in the construction of
the Riemannian metric g. We need the metric g to be smooth in order to use
Theorem 2 to prove one implication in our Main Theorem. But if all one requires
is a C0-Riemannian metric satisfying the two statements in Theorem 2, then the
assumption can be weakened to T being a piecewise linear triangulation of M . Our
technique of proof does not extend to continuous triangulations, unfortunately. See
Section 7 for a further discussion. As a final remark about Theorem 2, we observe
that by simply scaling the metric g, one may obtain equality in property (1) above
at the cost of slightly altering the Lipschitz constant κn in property (2).

Using these two theorems, the proof of the Main Theorem is easy.
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Proof of Main Theorem. (⇒) Assume you have a class M of smooth n-manifolds
satisfying condition (1) of the theorem, i.e. satisfying a Riemannian systolic in-
equality. Let T be a smooth triangulation of a manifold M ∈ M lying within the
class, and ε > 0 an arbitrary positive constant. Let g be the Riemannian met-
ric on M whose existence is provided by our Theorem 2, γ the closed g-geodesic
whose length realizes the Riemannian systole of (M, g), and p the edge path freely
homotopic to γ given by Theorem 2. Then we have the sequence of inequalities:

SysT (M) ≤ `T (p) ≤ κn`g(γ) = κn · Sysg(M)

≤ κn · C n

√
Volg(M)

≤ (κn · C) n
√

VolT (M) + ε

Letting ε tend to zero, we see that the classM satisfies condition (2) of the theorem
(i.e. satisfies a combinatorial systolic inequality), with constant C ′ = κn · C.

(⇐) Conversely, let us assume that you have a class M of smooth n-manifolds
satisfying condition (2) of the theorem, i.e. satisfying a combinatorial systolic
inequality. Let g be an arbitrary Riemannian metric on one of the manifolds M ∈
M lying within the class. Let T be the smooth triangulation of M obtained by
applying our Theorem 1. We denote by E the supremum of the g-lengths of edges
in T , and by v the infimum of the volume of top dimensional simplices in T . So by
Theorem 1, we have that E

v1/n
≤ δn. Let p be an edge path in the triangulation T

which realizes the combinatorial systole. Then we have the series of inequalities:

Sysg(M) ≤ `g(p) ≤ E · `T (p) = E · SysT (M)

≤ C ′ · E · n
√

VolT (M) ≤ C ′ · E · n
√

Volg(M)

v
= δnC

′ · n
√

Volg(M)

Thus, we see that the class M satisfies condition (1) of the theorem (i.e. satisfies
a Riemannian systolic inequality), with constant C = δn · C ′. This concludes the
proof of our Main Theorem. �

After the proof of Theorem 2, we discuss some applications of our Main Theo-
rem in Section 6. Our paper concludes with a discussion about some open problems
in Section 7, and an Appendix listing some general topology results due to Whitney
[HW] which are used in Section 4.

Remark. Our Main Theorem still holds if we instead consider the homological
systole of M . This is clear since Theorem’s 1 and 2 only deal with Lipschitz homo-
topies of paths. But an interesting question is if one can obtain higher dimensional
analogues of both the homotopy and homological systolic inequalities, such as those
discussed by Brunnbauer in [Br].

Remark. Most of Sections 3, 4, and 6 are contained in the Ph. D. Thesis of
Ryan Kowalick [Ko]. Similar results were independently obtained by de Verdière,
Hubard, and de Mesmay [VHM]. Their results are focused on the 2-dimensional
closed surfaces case (and includes other applications), but they include an Appendix
where they discuss analogous results in higher dimensions.
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2. Background material and notation

Suppose X is a metric space, with S, T ⊂ X. We define the distance between S
and T by

dist(S, T ) = inf{d(s, t) : s ∈ S, t ∈ T}
and we note that this definition remains unchanged in the event that either S or T
consists of a single point. Also, we define the r-neighborhood of S in X, denoted
Ur(S) to be

Ur(S) = {x ∈ X : dist(x, S) < r}.
In this paper all manifolds, (Riemannian) metrics, and (simplicial) triangulations

are assumed to be smooth. A triangulated manifold is a tuple (M, T ) where M is
a manifold and T is a triangulation. When there is the possibility of confusion, we
will denote the triangulation of a manifold M by TM instead of T . We also may
abuse notation and use either T or TM to denote M when confusion will not arise.
A filling of a closed triangulated n-dimensional manifold (M, TM ) is a triangulated
(n+ 1)-dimensional manifold (N, TN ) with ∂N = M and TN |∂N = TM .

If T is a simplicial complex, the k-skeleton of T , denoted T (k), will refer to the
subcomplex of T consisting of all simplices of dimension at most k. A facet of
a triangulation is a simplex of maximal dimension. For any triangulation T , the
notation |T | will refer to the number of facets in the triangulation. In the case of
a triangulated manifold, this will be used as a discrete analogue of volume.

The systole of a Riemannian manifold (M, g), denoted Sysg(M), is the length of
the shortest non-contractible loop in M . The homological systole of a Riemannian
manifold (M, g), denoted SysHg (M), is the length of the shortest homologically
nontrivial loop in M .

If p is an edge path in the triangulated manifold (M, T ), the discrete length
of p, denoted `T (p), will be the number of edges in p. The discrete systole of a
triangulated manifold T , denoted SysT (M), will refer to the discrete length of the
shortest non-contractible edge loop in T . The discrete homological systole, denoted
SysHT (M), is defined analogously.

If σ is an n-simplex in Rm, we define its fullness to be

Θ(σ) =
Voln(σ)

(diamσ)n
,

where Voln denotes the n-dimensional Hausdorff volume in Rm. We also note that
the diameter, diamσ, is the length of the longest side in this case.

Tubular neighborhoods and horizontal tangent vectors. Suppose M is an
embedded submanifold of Rm, and let U be a tubular neighborhood of M in Rm.
Then the projection map π∗ : U → M is a Riemannian submersion. So TU ∼=
TUh ⊕ TUv where TUh is canonically isomorphic to the tangent bundle TM of M ,
and similarly for TUv and the normal bundle TN of M in Rm. We will refer to
TUh as the horizontal component of TU and TUv as the vertical component of
TU . So for q ∈ U and w ∈ TqU , we will write w = wh + wv where wh ∈ TqUh and
wv ∈ TqUv. Also note that for any point q ∈ U , the space TqUv is equal to the
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kernel of the derivative of the projection map Dππ∗(q) = ππ∗(q). So if w ∈ TqU and
w = wh + wv, then

(2.1) |wh| = |ππ∗(q)(w)|.
Now, for any p ∈M , the map

Dπ∗
∣∣∣∣
TpUh

: TpUh → TpM

is the identity. Thus for any ε > 0, there is a smaller tubular neighborhood U ′ ⊂ U
so that, for any q ∈ U ′, the map

Dπ∗
∣∣∣∣
TqU ′h

: TqU
′
h → Tπ∗(q)M

has the property that, for any w ∈ TqU ′h,

(2.2)
1√
3/2
|w| ≤ |Dπ∗(w)| ≤

√
3/2|w|.

3. Constructing a triangulation which encodes a Riemannian metric

In this section we prove Theorem 1. Namely, given a smooth Riemannian man-
ifold (M, g), we want to construct a triangulation where the ratio

supe⊂T {`g(e)}
infσ⊂T { n

√
Volg(σ)}

is uniformly bounded above by a constant δn which only depends on the dimension
of M .

We do this by using the following result, which will be proved in Section 4.

Theorem 3. Let M be a compact n-dimensional smooth Riemannian submani-
fold of Rm. Then there is an n-dimensional simplicial complex T ⊂ Rm with the
following properties:

(1) Each simplex of T is a secant simplex of M
(2) T is contained in a tubular neighborhood of M . The projection π∗ from this

neighborhood onto M induces a homeomorphism π∗ : T →M .
(3) If σ is a simplex of T (of any dimension), then its fullness is bounded below

by Θn,m, which depends only on the dimensions of the manifold and the
ambient space.

(4) For any n-simplex σ of T , point q ∈ σ and tangent vector v ∈ Tqσ, we get
that

(3.1) |ππ∗(q)(v)| ≥ 1

2
|v|,

where ππ∗(q) is the orthogonal projection onto the tangent plane Pπ∗(q).
(5) If L is the length of an edge in T , then

(3.2) Cn,mL̄ ≤ L ≤ L̄

for some positive constant L̄ which depends on T but not on L, and positive
constant Cn,m depending only on n and m.
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Let M be an n-dimensional Riemannian manifold. By the Nash Isometric Em-
bedding theorem [Na], M embeds smoothly and isometrically into Rm, where m
depends only on n. Thus we may consider the case where M is a smooth Rie-
mannian submanifold of Rm. Then applying Theorem 3, we get an n-dimensional
simplicial complex T contained in a tubular neighborhood of M so that the tubular
neighborhood projection π∗ induces a homeomorphism from T to M .

We will proceed in two parts. The first part will consist of showing that the
restriction of π∗ to any n-simplex of T is bi-Lipschitz with constants that do not
depend on the given simplex. In the second part we will prove Theorem 1 by using
this fact to relate the geometry of T with the geometry of π∗(T ).

π∗ is bi-Lipschitz on every n-simplex of T . Let σ be an n-simplex of T and
suppose x1, x2 ∈ σ. Let p1 = π∗(x1) and p2 = π∗(x2).

Suppose p is a unit-speed geodesic in σ from x1 to x2. For every t ∈ [0, `(p)],
p′(t) is a tangent vector in σ, so by Theorem 3 and equation (2.1),

(3.3) 1 = |p′(t)| ≥ |p′(t)h| = |ππ∗p(t)(p′(t))| ≥
1

2
|p′(t)| = 1

2
.

Note that, read all the way from left to right, inequality (3.3) is trivial. But various
portions of this inequality will be used throughout this Section.

Now π∗ ◦p is a path on M from p1 to p2, and since M is isometrically embedded
in Rm,

(3.4) dM (p1, p2) ≤ `(π∗ ◦ p).
Combining (2.2) and (3.3), we get that

`(π∗ ◦ p) =

∫ `(p)

0

|Dπ∗p(t)(p
′(t))| dt

=

∫ `(p)

0

|Dπ∗p(t)(p
′(t)h)| dt

≤
√

3/2

∫ `(p)

0

|p′(t)h| dt

≤
√

3/2

∫ `(p)

0

dt

=
√

3/2 · `(p).

Combining the above with (3.4) gives that

(3.5) dM (p1, p2) ≤
√

3/2 · |x1 − x2|.
Now suppose γ is a unit-speed geodesic in M from p1 to p2 so that dM (p1, p2) =

`(γ). Then (π∗)−1 ◦ γ is a piecewise smooth path in T from x1 to x2. We may take
a partition of the interval [0, `(γ)] into

0 = a0 < a1 < a2 < · · · aN = `(γ)

so that for each i, (π∗)−1 ◦ γ([ai, ai+1]) ⊂ σi where σi is an n-simplex of T . Let
γ|[ai,ai+1] = γi and let (π∗)−1 ◦ γ(ai) = bi.

Then (π∗)−1 ◦ γi is a path in σi and for every t ∈ [ai, ai+1], (Dπ∗)−1(γ′i(t)) is a
tangent vector in σi. So for every t ∈ [ai, ai+1], (3.3) gives that

(3.6) |(Dπ∗)−1(γ′i(t))| ≤ 2|[(Dπ∗)−1(γ′i(t))]h|.
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Suppose Dπ∗(v) = w for v ∈ Tpσi. Then w = Dπ∗(vh) and (2.2) gives that

|vh| ≤
√

3/2|w|.

Using the above, we get that, for any t ∈ [ai, ai+1],

(3.7) |[(Dπ∗)−1(γ′i(t))]h| ≤
√

3/2|γ′i(t)|.

Combining (3.6) and (3.7) gives that

|bi − bi+1| ≤ `((π∗)−1 ◦ γ)

=

∫ ai+1−ai

0

|(Dπ∗)−1(γ′i(t))| dt

≤ 2

∫ ai+1−ai

0

|[(Dπ∗)−1(γ′i(t))]h| dt

≤ 2
√

3/2

∫ ai+1−ai

0

|γ′i(t)| dt

≤ 2
√

3/2 · dM (γ(ai), γ(ai+1)).

Since γ is a minimizing geodesic,
∑
dM (γ(ai), γ(ai+1)) = dM (p1, p2). So

(3.8)

|x1 − x2| ≤
N∑
0

|bi − bi+1| ≤ 2
√

3/2

N∑
0

dM (γ(ai), γ(ai+1)) = 2
√

3/2 · dM (p1, p2).

Combining (3.5) and (3.8) gives that, for any x1, x2 ∈ σ,

(3.9)
1

2
√

3/2
· |x1 − x2| ≤ dM (π∗(x1), π∗(x2)) ≤

√
3/2 · |x1 − x2|.

The geometry of π∗(T ). By the previous section, if e is an edge of the complex
T , then

(3.10)
1

2
√

3/2
`(e) ≤ `(π∗(e)) ≤

√
3/2`(e).

Now let σ be an n-simplex of T . It follows from equation (2.2) that

VolM (π∗(σ)) =

∫
π∗(σ)

dV

≥
∫
σ

|Dπ∗|ndV

≥

(
1√
3/2

)n
Voln(σ)(3.11)

Proof of Theorem 1. Let σ ∈ π∗(T ) be the simplex in M for which VolM (σ) is
minimal among all simplices in π∗(T ). Let E be the length of the longest edge in
π∗(T ), and let L be the length of the longest edge in σ. So there exist edges e, l ∈ T
such that E = `(π∗(e)) and L = `(π∗(l)). By equations (3.10) and (3.2) we have
that

E = `(π∗(e)) ≤
√

3/2`(e) ≤
√

3/2L̄ ≤
√

3/2
L

Cn,m
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So,

(3.12) En ≤ (
√

3/2)n
Ln

Cnn,m
.

By (3.9), we have that

(3.13) L ≤
√

3/2 diam
(
(π∗)−1σ

)
.

Using (3.12), (3.11), (3.13), and Theorem 3 (3) we obtain

VolM (σ)

En
≥

(
Cn,m√

3/2

)n
VolM (σ)

Ln

≥
Cnn,m

(
√

3/2)2n

Voln(π∗)−1(σ)

Ln

≥
Cnn,m

(
√

3/2)3n

Voln(π∗)−1(σ)

(diam(π∗)−1σ)n

≥
Cnn,m

(
√

27/8)n
Θn,m.

Since m depends only on n, we have proved Theorem 1, with the value

δn =
(3/2)

3
2

Cn,mΘ
1/n
n,m

.

4. Whitney’s triangulation procedure

The goal of this Section is to convince the reader that Theorem 3 is true. This
result was mentioned at the beginning of the previous Section 3, where it was used
to prove Theorem 1. The proof of this Theorem follows almost directly due to the
work of Whitney in ([HW], Ch. IV Part B, pg. 124-135). Unfortunately, Whitney’s
arguments are very technical and rather difficult to read. So in what follows we
give a high-level sketch of Whitney’s triangulation procedure, and then we prove
Theorem 3 with specific references to all necessary equations in [HW].

We begin by using the smooth Nash isometric embedding theorem [Na] to iso-
metrically embed Mn into Rm, where m is a function of n. Define L0 to be a
cubical subdivision of Rm with cubes of side length h, and let L be the barycentric
subdivision of L0. Whitney recursively constructs a new triangulation of Rm, L∗,
whose (m− n− 1)-skeleton is sufficiently far away from M .

Whitney then defines the simplicial complex K to be the poset of intersections
of simplices of L∗ of dimensions (m− n), . . . ,m with M . For h small, this gives us
a simplicial complex that sits inside a tubular neighborhood of M . Whitney then
proves that the tubular neighborhood projection induces a diffeomorphism of K
onto M .

This last remark is for the reader who attempts to tackle Whitney’s work in
[HW]. On pg. 133 - 134, Whitney defines complexes named Kp, L

∗
p, and Rp. These

are just small regions in either K or L∗ near the point p ∈ M , and their only
purpose is in proving that K is diffeomorphic to M .
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Proof of Theorem 3. Let us first remind the reader that all Lemmas and equations
in this proof reference Whitney’s work in [HW].

Whitney proves that π∗ : K →M is a diffeomorphism (pg. 134-135). Now, using
Lemma 21a on pg. 132, equation (21.2) on pg. 132, and the fact that 4λξ < λξ/α
(since 0 < α << 1, see equations (17.2) on pg. 128 and (21.2) on pg. 132) gives
that the simplicial complex in Rm whose vertices are π∗(v) for each vertex v of
K is still homeomorphic to M via π∗. Call this simplicial complex T . Then every
simplex of T is a secant simplex of M . We have that every simplex of T has fullness
at least Θ1/2 := Θn,m, a number which depends only on n and m (see the proof of
Lemma 21a on pg. 132, between equations (21.3) and (21.4). And Θ1 is defined in
equation (17.3) on pg. 128). This proves parts (1), (2), and (3) of Theorem 3.

Let v ∈ Tqσ for q ∈ σ with σ a simplex of T . Then

|ππ∗(q)(v)| ≥ |v| − |v − ππ∗(q)(v)| ≥ |v| − 1

2
|v| = 1

2
|v|

where the second inequality follows from the last inequality on pg. 132 (beginning
with |u−πpu|). This proves part (4) of the Theorem. Lastly, via the second-to-last
equation on pg. 132 (beginning with |p′i − p′0|) and equation (21.2) on pg. 132, we
have that

βδ

2
=
b

2
≤ length of an edge in T ≤ 2δ + 8λξ ≤ 3δ.

If L̄ = 3δ and Cn,m = β/6, we have that Cn,m depends only on n and m which
proves part (5) of Theorem 3.

Let us note that β, δ, and b are defined on pg. 128-129 in equations (17.3), (17.5),
and (17.6), respectively. The prameters λ and ξ are likewise defined in equations
(17.4) and (17.5). The quantity β depends only on m and h, which in turn both
only depend on n. �

5. Constructing a Riemannian metric which encodes a triangulation

This section is devoted to the proof of Theorem 2. We are given a smooth
triangulated manifold (M, T ), and we would like to put a Riemannian metric on
M whose geometry captures the combinatorics of the triangulation.

The proof is broken down into four parts. In the first part we will use a metric gs
which will, in general, have singularities, to produce a Riemannian metric gδ which
will depend on a parameter δ > 0. The second step of the proof will be to show that
we can choose δ small enough so that |Volgδ(M) − VolT (M)| < ε. Letting g = gδ
completes the proof of property (1). We will then give a constructive method to
homotope a closed gs-polygonal path γ in M to a closed edge loop p in such a way
that

`T (p) ≤ κn`gs(γ).

Finally, we will argue that, once δ is small enough, the above inequality is preserved
when considering closed geodesics in the metric g instead of polygonal paths in the
metric gs, completing the proof of property (2).

Constructing the Riemannian metric gδ from the singular metric gs. Let
us begin by noting that the following construction of gδ is pretty basic, but the
authors are unaware of any references in the literature to such a construction.
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The singular metric gs is defined by simply requiring that every facet of T be
isometric to an equilateral n-simplex in En with volume 1. Thus it is clear that
Volgs(M) = VolT (M). The singular set of gs will be contained in the codimension

two skeleton T (n−2) of T . A simplex σ ∈ T (n−2) will be contained in the singular
set of gs if and only if “too many or too few” facets of T meet at σ. For example,
if n = 2, a vertex v is contained in the singular set of gs if and only if the number
of 2-simplices of T which contain v is different from six.

To construct the Riemannian metric gδ we need to alter gs within small neigh-
borhoods of simplices of T (n−2), and then patch these metrics together using a
smooth partition of unity. Let us first carefully construct this collection of neigh-
borhoods which we will denote Ω. The construction is recursive with n − 1 steps,
in the lth step we construct a collection of neighborhoods Ωl with Ωl−1 ⊂ Ωl for
0 ≤ l ≤ n− 2. Then Ω := Ωn−2.

First choose δ so that 0 < δ < 1
3 , and for each vertex v of T (n−2) insert the open

ball b(v, δ) into Ω0. Note that, since δ < 1
3 , each of these balls will be disjoint1.

Next, let e be an edge of T (n−2). Let ē = e \ U where U is the union of all of
the sets contained in Ω0. Since e contains exactly two vertices, ē is simply the
interior of the edge e with a segment of length δ removed from each end. Let Ω1

consist of all of the sets in Ω0, as well as a set of the form b(ē, k1δ) for each edge
e ∈ T (1), where k1 is a small positive constant. For k1 small enough, b(ē, k1δ) will
have nontrivial intersection with exactly two other members of Ω1, the open δ balls
about the vertices of e.

Defining the remaining collection of Ωl recursively, let σ ∈ T (n−2) be an l-
dimensional simplex. Let σ̄ = σ\U where U is the union of all of the sets contained
in Ωl−1. Insert the open neighborhood b(σ̄, klδ) into Ωl where kl < kl−1 is a small
positive constant. Also, let Ωl−1 ⊂ Ωl. For kl small enough, b(σ̄, klδ) will have
nontrivial intersection with exactly the members of Ωl corresponding to the faces
of σ. Letting Ω := Ωn−2 completes the construction.

Let O =
⋃
U∈Ω U and let U = b(M \ O, kn−1δ) be the open neighborhood of

radius kn−1δ (for some small positive constant kn−1 < kn−2) about the closed set
M \ O. For kn−1 small enough, U will not meet any faces of T with codimension
greater than or equal to two.

The collection Ω ∪ {U} forms an open cover of M . Since we are assuming that
the smooth structure on M is compatible with the triangulation T , we may define
smooth PL coordinates within each neighborhood of Ω. Within U , we can define
smooth PL coordinates interior to each n-simplex of T . Let {φi} be a smooth
partition of unity subordinate to Ω ∪ {U}.

Interior to each open set U ∈ Ω we will define a smooth metric gU . Then the
resulting Riemannian metric gδ will be defined by

gδ = φUgs +
∑
U∈Ω

φUgU .

Let U ∈ Ω be arbitrary. By our construction of Ω, U corresponds to some l-
dimensional simplex σ. We define the metric gU to simply be the pullback of the
Euclidean metric under the smooth charts about σ constructed above. We will
express this metric in generalized cylindrical coordinates about σ (which, if l = 0,

1If σ is an equilateral simplex with volume 1, then its edge lengths are an increasing function
of its dimension n, hence the edge lengths will always be ≥ 2

4√3
> 1.
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would just be generalized spherical coordinates). More specifically, if we denote the
coordinates by x1, . . . , xl, r, θ1, ..., θn−l−1, then

gU =

l∑
i=1

dx2
i + dr2 + r2dθ2

1 +

n−l−1∑
i=2

r2 sin2(θ1)... sin2(θi−1)dθ2
i

where the last sum is void if l = n− 2, and where the domains for the coordinates
are:

−∞ < xi <∞ 0 ≤ r <∞ 0 ≤ θj ≤ π (j 6= n− l − 1) 0 ≤ θn−l−1 < 2π

Choosing δ so that |Volgδ(M)−VolT (M)| < ε. To avoid overcomplicating this
proof we will proceed as follows. The simplest case where n = 2 will be carried out
in full detail. We then move on to the case where n = 3 and work out in full detail
the part that differs from the n = 2 case. The n = 3 case captures the general
behavior of the problem, and so it will be easy to explain from here how the result
follows for general n.

Case n = 2: In this case, T (n−2) is just the vertex set of T and thus Ω is a collection
of pairwise disjoint subsets2 of M . Let v ∈ T (n−2) be a vertex with corresponding
open set V ∈ Ω. The metric gδ differs from gs only in such neighborhoods V , and
in V the metric gδ has the form

gδ = φV gV + φUgs.

Recall that we expressed gV in polar coordinates. i.e., gV = dr2 + r2dθ2 where
0 ≤ r < δ and 0 ≤ θ < 2π. We can locally express gs in Cartesian coordinates
by gs = dx2

1 + dx2
2. To compute |Volgs(V ) − Volgδ(V )|, we need to convert gs to

polar coordinates within V . This is done as in any multivariable calculus course
by setting x1 = r̄ cos(θ̄) and x2 = r̄ sin(θ̄). But notice that the domains for these
parameters are 0 ≤ r̄ < δ and 0 ≤ θ̄ < π

3 tv where tv is the number of facets (in this

case, triangles) containing v. We then obtain that 0 ≤ 6
tv
θ̄ < 2π, and so r̄ = r and

θ̄ = tv
6 θ. Substituting these values and computing the differentials yields

gs = dr2 +

(
tv
6

)2

r2dθ2

and thus

gδ = φV gV + φUgs = dr2 +

(
φV +

(
tv
6

)2

φU

)
r2dθ2.

2This is one of the two main differences between the n = 2 and the higher dimensional cases.
The other difference is that the triangulation automatically has high regularity. Vertex links are

always S1 (hence the triangulation is PL), and points are always smoothly embedded in M .
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We then compute the change in volume, |Volgδ(V )−Volgs(V )|, to equal

=

∣∣∣∣∣∣
∫ 2π

0

∫ δ

0

√√√√(φV +

(
tv
6

)2

φU

)
r2drdθ −

∫ 2π

0

∫ δ

0

tv
6
rdrdθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 2π

0

∫ δ

0


√√√√(φV +

(
tv
6

)2

φU

)
− tv

6

 rdrdθ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
√

1 +

(
tv
6

)2

− tv
6

∣∣∣∣∣∣
∫ 2π

0

∫ δ

0

rdrdθ

=

∣∣∣∣∣∣
√

1 +

(
tv
6

)2

− tv
6

∣∣∣∣∣∣πδ2

which approaches 0 as δ approaches 0. Since M is compact there are only finitely
many vertices, completing the proof when n = 2.

Case n = 3: When n = 3, T (n−2) is now the 1-skeleton of T . So the neighborhoods
in Ω are no longer disjoint. Let v be a vertex of T and let e be an edge containing
v. Denote their corresponding neighborhoods in Ω by Uv and Ue, respectively. The
same argument as in the 2-dimensional case applies to the regions of M where only
Uv or Ue intersects U . What we need to show is that δ can be chosen small enough
so that |Volgδ(W )−VolT (W )| < ε with W = U ∩Uv∩Ue. In what follows we adapt
the notation gv := gUv and ge := gUe .

In W , gv is written in spherical coordinates gv = (drv)2 + (rv)2(dθv1)2 + (rv)2

sin2(θv1)(dθv2)2 (where the v is emphasized in the coordinates to distinguish from
the coordinates of ge). The domains of the parameters depend on δ and k1, but we
will not get too caught up in those details here. To compute Volgδ(W ) we convert
both gU and ge to spherical coordinates. In exactly the same way as when n = 2
we have that gU = (drv)2 + C2

v (rv)2(dθv1)2 + C2
e (rv)2 sin2(θ1)(dθv2)2 where Cv and

Ce are positive constants that depend on the number of facets of T that contain v
and e, respectively.3

We need to convert ge into spherical coordinates within W . Recall that ge is
written in cylindrical coordinates within Ue, i.e. ge = dx2

1 + (dre)2 + (re)2(dθe1)2.
Notice that by an orthogonal transformation within Uv, we may align the axis
orthogonal to θv2 with the edge e (see Figure 1). With this choice of coordinates
we see that θv2 = θe1. The domains for these two parameters may differ, but we can
get an overestimate for the volume of W by integrating over the larger of the two
domains. Also notice that

x1 = rv cos(Cvθ
v
1)

re = rv sin(Cvθ
v
1)

where the constant Cv is the same constant as in gU and is due to the change in
the domain of θv1 between gδ and gs, exactly as in the 2-dimensional case where
the constant was tv

6 . Computing the differential then yields that ge = (drv)2 +

3In fact, just as in the 2-dimensional case, Ce = te
6

where te is the number of facets which
contain e. To compute Cv , one needs to compute the solid angle ϕ subtended by the three edges

emanating from v. Then Cv = 2π
ϕtv

, where tv is the number of tetrahedra containing v.
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C2
v (rv)2(dθv1)2 + (rv)2 sin2(θv1)(dθv2)2. Thus the difference in volume, |Volgδ(W ) −

Volgs(W )|, equals

=

∣∣∣∣∫∫∫
W

√
(φv + φe + φUC2

v ) (φv + φeC2
e + φUC2

v )(rv)2 sin(θv1)dV

−
∫∫∫

W

CvCe(r
v)2 sin(θv1)dV

∣∣∣∣
≤
∣∣∣√(1 + 1 + C2

v ) (1 + C2
e + C2

v )− CvCe
∣∣∣ ∫∫∫

W

(rv)2 sin(θv1)dV

=
∣∣∣√(1 + 1 + C2

v ) (1 + C2
e + C2

v )− CvCe
∣∣∣Volgv (W ).

It is clear that Volgv (W ) goes to 0 as either δ or k1 approaches 0 (recall that k1

was introduced in the construction of Ω). This completes the proof when n = 3.

Case n > 3: Once n > 3 we must deal with intersections of three or more sets in Ω.
But we always change coordinates to those of the simplex of least dimension, just
as we did above when changing all coordinates to those of Uv. Then since we are
using the same coordinates in each chart, we need only consider the intersection of
two neighborhoods (one of which being that lowest dimensional simplex). Denote
these simplices by σ and τ with dim(σ)=j, dim(τ)=l, j < l. Let Uσ and Uτ denote
their corresponding neighborhoods in Ω, and denote their corresponding metrics
by gσ and gτ . All we need to show is that we can change the coordinates in τ to
coordinates in σ in such a way so that each component of the metric gτ only differs
from the corresponding component of gσ by a constant. Notice that if j > 0 then
we can project out the coordinates corresponding to the simplex σ in both Uσ and
Uτ . So we may assume that j = 0, σ is a vertex, and thus the coordinates in Uσ

v e

Ue

Uv

U
gU = dx2

1 + dx2
2 + dx2

3

ge = (dxe)2 + (dre)2 + (re)2(dθe)2

gv = (drv)2 + (rv)2(dθv1)2 + (rv)2 sin2(θv1)(dθv2)2

xe

reθeθv2

θv1

rv

x1

x2

x3

W

Figure 1. The regionW is shaded in green, and the three different
coordinate charts are written in gray. Notice that, by an orthogonal
change of coordinates within Uv, we have aligned the respective
axes so that θe = θv2 .
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are generalized spherical coordinates

gσ = dρ2 + ρ2dθ2
1 +

n−1∑
i=2

ρ2 sin2(θ1)... sin2(θi−1)dθ2
i

where 0 ≤ ρ < ∞, 0 ≤ θi ≤ π for 1 ≤ i ≤ n − 2, and 0 ≤ θn−1 < 2π. In Uτ the
metric is written in generalized cylindrical coordinates by

gτ =

l∑
i=1

dx2
i + dr2 + r2dθ̄1

2
+

n−l−1∑
i=2

r2 sin2(θ̄1)... sin2(θ̄i−1)dθ̄i
2

where 0 ≤ r <∞, 0 ≤ θ̄i ≤ π for 1 ≤ i ≤ n− l − 2, and 0 ≤ θ̄n−l−1 < 2π.
Exactly as in the n = 3 case, we can rotate the coordinates in Uσ so that

θi+l = θ̄i for 1 ≤ i ≤ n− l− 1. That still leaves (n− 1)− (n− l− 1) = l directions
in which the coordinates in Uσ can be rotated. Each of the parameters θ1, . . . , θl
in Uσ measures an angle from a fixed positive axis. We also rotate the coordinates
in Uσ so that the (positive) axis associated with θi corresponds to the coordinate
xi in Uτ . We then have that xi = ρ cos(Ciθi) where the constant Ci arises from
converting the domains of the associated variables in exactly the same way as the
2-dimensional case. By projecting out ρ along each of the dimensions x1, ..., xl
we can write r as the product r = ρ sin(C1θ1)... sin(Clθl). Thus, this change in
coordinates only differs from the standard (Euclidean) change in coordinates by
(possibly) multiplying each variable by a constant factor, and thus the coordinates
of the corresponding metric only differ by a constant.

Remark. In the construction of the metrics gδ, our metrics are changed by stretch-
ing or compressing in the radial directions about each simplex – with the amount
of distortion determined by the combinatorics of the link of the simplex. It follows
that there exists a constant CT (depending solely on the triangulation T ) with the
property that the identity map from (M, gs) to (M, gδ) is CT -Lipschitz.

Lipschitz homotopies of closed paths to closed edge loops. For now on in
this Section we refer to gδ as simply g. First, note that Theorem 2 (2) is trivial for
any constant if the closed path is null-homotopic. Also, using the Birkhoff curve
shortening process, a description of which can be found in [Kl], we can homotope
any closed path η to a closed geodesic γ in such a way that `g(γ) ≤ `g(η). If we
can then find an edge path p satisfying Theorem 2 (2) with respect to γ, then

`d(p) ≤ κn`g(γ) ≤ κn`g(η)

where `d(p) denotes the discrete length of p (so, the length of p with respect to
T ). So we may reduce to the case that γ is a closed g-geodesic which is not null-
homotopic.

The following Lemma and Corollary handle the case when γ is a gs-geodesic.

Lemma 4. Let ∆ be a Euclidean equilateral n-simplex with volume 1, and let α be
a straight line segment whose endpoints lie on the boundary of ∆. Then α can be
homotoped, rel. endpoints, to a path α(1) ⊆ ∂∆ such that

`(α(1)) ≤ Cn`(α)

where the constant Cn depends only on n.
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Proof. First, at the cost of a very slight perturbation, we may assume that α misses
the barycenter B of the n-simplex ∆. Now, consider radial projection from B to
∂∆. Note that this map is not Lipschitz – a small segment near the barycenter will
get stretched out to a long segment on the boundary. But it is C ′-Lipschitz if one
restricts to segments that are at least some fixed (uniform) distance D away from
the barycenter. Finally, if one considers the segments that pass closer than D to
the barycenter, their lengths are uniformly bounded below, while the length of their
projected images are uniformly bounded above. So again, their is some constant
C ′′ so that `(α(1)) ≤ C ′′`(α). Letting Cn := max{C ′, C ′′} completes the proof. �

Let κ′′ := Cn ·Cn−1 · . . . ·C2. Define a gs-polygonal path to be a path which is a
gs-geodesic (i.e., a straight line) when restricted to any simplex of T . Also, define
the support of any path to be the collection of facets that it intersects. Recursively
applying Lemma 4 proves:

Corollary 5. Let α be a closed gs-polygonal path in (M, T ). Then there exists an
edge path p, freely homotopic to α and with the supp(α) ⊂ supp(p), such that

(5.1) en`d(p) ≤ κ′′`gs(α)

where en is the length of an edge of an equilateral n-simplex with volume 1.

Proof. Let α be a gs-polygonal path. We inductively apply Lemma 4 to push our
path from the k-skeleton to the (k − 1)-skeleton. At each stage, we replace a path
that is straight in each k-simplex by a path lying in the (k − 1)-skeleton, and has
the property that it is at most Ck times the original length. The path in the (k−1)-
skeleton may no longer be straight on each (k− 1)-simplex, but one can straighten
it on each of the simplices – this only decreases the length of p which does not effect
inequality (5.1) – and then reapply the Lemma. Note that points of α within any
simplex stay within the boundary of that simplex throughout this procedure. So
the support only grows throughout this process. Finally, we end up with a loop p in
the 1-skeleton, homotopic to the original loop, and satisfying inequality (5.1). �

This Corollary proves Theorem 2 (2) for geodesics in the metric gs instead of g.
Intuitively, for δ > 0 very small, geodesics should not differ much in the metrics g
and gs. But this takes a little work to show directly. So in what follows we take
an arbitrary g-geodesic and reduce to the case of a gs-polygonal path. The reader
who believes that such a reduction is possible may skip ahead to Section 6.

Note that en ≥ 1 for all n ≥ 1, and therefore the above Corollary gives that
`d(p) ≤ κ′′`gs(α). Define κ′ := 3κ′′. Then, using the notation of the above Corol-
lary, we have that

(5.2) `d(p) ≤ en`d(p) < 3en`d(p) ≤ κ′`gs(α).

The following Lemma allows us to apply the preceeding Corollary to closed g-
geodesics which do not intersect any simplex of T “too many times”.

Lemma 6. Let γ denote a closed g-polygonal path in (M, T ), and let K > 0 be
some fixed constant. Suppose that:

(1) γ is not null-homotopic



COMBINATORIAL SYSTOLIC INEQUALITIES 17

(2) For all σ ∈ T , γ ∩ σ consists of at most K g-geodesic segments (counted
independently in the event that γ has self-intersections).

Then there exists a closed gs-polygonal path α, freely homotopic to γ, such that

1

2
`gs(α) ≤ `g(γ)

In Lemma 6 a g-polygonal path is a path which is a g-geodesic when restricted
to any simplex of T .

Proof. Let γ be a closed g-polygonal path. If γ does not intersect the δ-neighborhood
of T (n−2) then γ is a polygonal path in the gs metric and we are done. So assume
that γ intersects the δ-neighborhood of T (n−2), denoted bδ. Let β1, . . . , βk denote
the connected components of γ ∩ bδ.

Consider one of these components βi. Let τ1, . . . , τl denote the simplices of T
with codimension 2 or greater for which βi intersects the corresponding warped
neighborhood Uτi .

Recall that, when defining the metric g, we altered the gs metric about the kiδ
neighborhood of each i-dimensional face (and i ≤ n− 2). Then, via a compactness
argument, we can systematically choose k1, . . . , kn−2 small enough so that bg(x, 2δ)\
bδ is non-empty for each point x in the (n−2)-skeleton of T . The point here is that
we can choose the region O in which we are altering the gs-metric small enough
so that the open 2δ ball about any point of M , measured in the g-metric, contains
points outside of O.

Now, we want to remove the interior of βi and replace it with a gs-polygonal
path, denoted αi, between its endpoints which stays within a 4δ neighborhood of
βi. We can always find such a path αi so that

(5.3) `gs(αi) ≤ `g(βi) + 8δ|Ti|
where Ti denotes the collection of all simplices of T which contain any of τ1, . . . , τl.
To see this, just subdivide βi where it intersects different simplices of T . Sequen-
tially approximate each of these points by a point outside of bδ at a distance of at
most 4δ away (whose existence is guaranteed by the preceding paragraph), and then
connect each of these points by a gs-polygonal path. Note that we could always
find a point outside of bδ at a distance of 2δ away, but we use 4δ above to ensure
that we can choose points that can be connected by a gs-polygonal path outside
of bδ. Please see Figure 2 for a sketch of how αi is obtained from βi. Equation
(5.3) then follows from repeated application of the triangle inequality. Note that
inequality (5.3) is a very crude estimate. In general, one would not need anywhere
near |Ti| polygonal pieces in any such approximation.

Now consider the polygonal path, denoted by α, obtained by replacing each βi
with its corresponding polygonal approximation αi. Then one sees immediately
that

(5.4) `gs(α) ≤ `g(γ) + 8δ

k∑
i=1

|Ti|.

Due to assumption (2) we have that

(5.5)

k∑
i=1

|Ti| ≤ µK||T ||
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where ||T || denotes the total number of simplices contained in T , and µ denotes the
maximal degree of any simplex of T (i.e., µ = max{||St(σ)|| : σ ∈ T } where St(σ)
denotes the closed star of the simplex σ).

Now, choose

(5.6) δ <
1

16µK||T ||
sysgs(M)

where sysgs(M) denotes the systole of M with respect to the metric gs.
Combining inequalities (5.4), (5.5), and (5.6) yields:

`g(γ) ≥ `gs(α)− 8δ

k∑
i=1

|Ti|

≥ `gs(α)− 8δµK||T ||

≥ `gs(α)− 1

2
sysgs(M)

≥ 1

2
`gs(α)

and where, for the last inequality, it is necessary that α is not null-homotopic. �

We can now complete the proof of Theorem 2 with κn = 2κ′ for g-geodesics
which satisfy the conditions of Lemma 6. Let γ be such a g-geodesic. Let α be the
gs-polygonal path guaranteed by Lemma 6, and let p be the edge path from the
Corollary corresponding to α. Then

`d(p) ≤ κ′`gs(α) ≤ 2κ′`g(γ) = κn`g(γ).

In order to complete the proof of Theorem 2, we need to fix some K > 0 and
reduce to the case of g-polygonal paths which intersect each simplex of T at most
K times.

In order to define K, let us first define

(5.7) D :=
en
κ′

=⇒ en = Dκ′

where en and κ′ are as in equation (5.2). Note that D depends only on n.
We now define K as follows. Cover the (n−2)-skeleton T (n−2) of T with a finite

number of open 1
8D-balls (in the gs metric). Then extend this cover to an open cover

of T (n−1) by open 1
8D-balls; denote by {p1, . . . , pN} the points where these balls

are centered. K is then the maximal number of open sets in this covering required
to cover the boundary of any simplex of T . Note that, since the Riemannian
manifold (M, g) converges to the geodesic metric space (M, gs) in the Gromov-
Hausdorff sense (as δ approaches 0), we can choose δ > 0 sufficiently small so that
the collection of g-metric open 1

8D-balls, centered at the same collection of points

{p1, . . . , pN}, also forms a cover of T (n−1) – call this open cover U . Also note that
there is no ambiguity with equation (5.6), as K is fixed and then we choose δ.

Remark. Let U, V ∈ U be such that U ∩ V 6= ∅. Then by the above construction,
diamg(U ∪ V ) ≤ 1

2D. Let σ ∈ T be a simplex that intersects both U and V . Let
x, y ∈ σ ∩ U ∩ V , and let γ be a g-geodesic joining x and y (so, in particular,
`g(γ) ≤ 1

2D). A priori, γ could weave in and out of σ. But by choosing δ small
enough, we can ensure that any such points x and y can be connected by a path of
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bδ

βi

αi

Figure 2. Schematic picture for how the gs-polygonal path αi is
obtained from the g-polygonal path βi in the proof of Lemma 6.
Note that these “wedges” are not actual simplices, but one can add
appropriate triangles to the above picture and subdivide the paths
accordingly.

length less than D which is a geodesic of g|σ. Note that this may not be an actual
g-geodesic.

Proof of Theorem 2. Let γ denote a closed g-polygonal path, and let K be as above.
Suppose that γ is not null-homotopic, but does not satisfy condition (2) of Lemma
6. Let us assume that σ ∈ T is the only simplex for which γ ∩ σ consists of more
than K connected components, and that γ ∩σ has exactly K+ 1 components. The
procedure described below can be iterated (see Step 4 below) to deal with multiple
simplices and/or for a greater intersection number with any simplex.

Fix a base point and orientation of S1. Using this orientation, each component
of γ∩σ has an “entrance point” xi and an “exit point” yi. Let x1, . . . , xK+1 denote
the K + 1 entrance points, and let y1, . . . , yK+1 denote the K + 1 exit points. By
the definition of K, there must exist two entrance points xi and xj such that

(5.8) dg(xi, xj) < D
Eqn(5.7)

=⇒ κ′dg(xi, xj) < en

Let yi and yj denote the corresponding exit points, and assume that i < j.
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Remove the segments (xi, yi) and (xj , yj) from γ, and insert g-geodesics (xi, yj)
and (xj , yi) interior to σ. Note that these newly inserted paths are geodesics of
g|σ, not necessarily of g. By the above Remark, we know that these two segments
have length less than D. Denote the closed g-polygonal path containing (xi, yj) by
γ1, and the other by γ2. We may assume that neither path is null-homotopic, for
otherwise we could have homotoped the original path interior to σ and reduced the
number of components of γ ∩ σ. So by Lemma 6, the Corollary, and equation (5.2)
there exist closed edge paths p1 and p2 freely homotopic to γ1 and γ2 such that

(5.9) 3en`d(p1) ≤ κ′`g(γ1) and 3en`d(p2) ≤ κ′`g(γ2).

Now under the free homotopy of γ1 into the edge path p1, the points xi, yj find
themselves lying on the 1-skeleton of σ. Let vi and wj be the vertices of σ which
are closest to the image of xi, yj respectively. Similarly, the free homotopy of γ2

into the edge path p2 moves xj , yi into the 1-skeleton of σ, and we let vj , wi be
the vertices of σ closest to these image points. By possibly shortening the paths if
necessary, we may assume that the edge viwj ∈ p1 and the edge vjwi ∈ p2. Note
that it is entirely possible that one (or both) of these edges is degenerate.

We want to simultaneously

• use p1 and p2 to construct a closed path p that is freely homotopic to γ.
• Reconstruct γ from γ1 and γ2.
• Preserve the key inequality `d(p) ≤ κ′`g(γ).
• Do all of this in a manner which can be iterated.

We will do this in four steps. In steps 2 and 3, we will need to assume that the
edges viwj , vjwi are non-degenerate. However, in step 4, we will explain how to
allow for degenerate edges.

Step 1: Append edges viwi and vjwj between p1 and p2.

Let p′′ := p1 ∪ p2 ∪ viwi ∪ vjwj , and let γ′′ := γ1 ∪ γ2 (see Figure 3 below for
a schematic illustration). It is important to note that p′′ is no longer a path. The
image of p′′ is (essentially) three closed loops which are glued together along the
edges viwj and vjwi. We will still talk about the “length” of p′′ even though we
should probably use something like “one-dimensional Hausdorff measure”. And we
will still use the notation `d(p

′′) for this measure. Similar considerations will also

p′′

vj

wivi

wj

p1 p2

γ′′

yj

xi

γ1

xj

yi

γ2

Figure 3. Schematic picture for Step 1. In red is what was added
in this step, and in blue is what will be deleted in Step 2. Note
that this picture is just to keep track of what is going on. It is not
geometrically accurate, as xi is metrically close to xj in the proof.
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apply in Steps 2 and 3. But the point is that at the end of this procedure, we will
again have a closed path.

Now let us check that the analogue of the key inequality still holds. This is a
consequence of the following series of inequalities:

2en`d(p
′′) ≤ 2en(`d(p1) + `d(p2) + 2)

= 2en(`d(p1) + 1) + 2en(`d(p2) + 1)

≤ 2en

(
`d(p1) +

1

3
`d(p1)

)
+ 2en

(
`d(p2) +

1

3
`d(p2)

)
< 3en`d(p1) + 3en`d(p2)

≤ κ′`g(γ1) + κ′`g(γ2)

= κ′`g(γ
′′).

The second inequality holds because both p1 and p2 are not null-homotopic, so
must consist of at least three edges. The last inequality is due to the “3” present in
equation (5.9). Note that, in the event that one of the edges viwi, vjwj is degenerate,
this series of inequalities still holds (the only effect is that the first inequality in the
chain becomes strict).

Step 2: Insert (xi, yi) and remove (xj , yi) from γ′′, and remove the edge
viwj from p′′.

Let p′ and γ′ denote the new sets created from the above procedures (see Figure
4 below). Notice that, by the triangle inequality and equation (5.8) we get

dg(xj , yi) ≤ dg(xi, yi) + dg(xi, xj)

(5.10) =⇒ −D ≤ −dg(xi, xj) ≤ dg(xi, yi)− dg(xj , yi).
Then by equations (5.10) and (5.7) we obtain

(5.11) 2en`d(p
′) = 2en`d(p

′′)− 2en

κ′`(γ′) = κ′[`(γ′′) + dg(xi, yi)− dg(xj , yi)] ≥ κ′[`(γ′′)−D] = κ′`(γ′′)− en
and so

(5.12) 2en`d(p
′) = 2en`d(p

′′)− 2en ≤ κ′`g(γ′′)− en ≤ κ′`g(γ′).
Notice that here, it is important that the edge viwj is non-degenerate. If it were

degenerate, equation (5.11) would not hold, and thus neither would (5.12).

p′

vj

wivi

wj

p1 p2

γ′

yj

xi

γ1

xj

yi

γ2

Figure 4. Schematic picture for Step 2. Again, what is new is in
red, and what will be removed in Step 3 is in blue.
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Step 3: Insert (xj , yj) and remove (xi, yj) from γ′, and remove the edge
vjwi from p′.

The first two operations will return our original path γ, and the second will
provide a closed edge path p. The path p is freely homotopic to γ since all of our
operations occurred within the closed simplex σ. By the triangle inequality, we
have that

dg(xi, yj) ≤ dg(xj , yj) + dg(xi, xj)

and the exact same argument as for equation (5.12) proves that

(5.13) `d(p) < 2en`d(p) ≤ κ′`(γ)

Again, in this step, one needs the edge vjwi to be non-degenerate.

Step 4: A few remarks to ensure that this process iterates.

The “3” in equation (5.2) means that, at each vertex of both p1 and p2, we can
append two edges to obtain new sets p′1 and p′2 which still satisfy that `d(p

′
1) ≤

κ′`g(γ1) and `d(p
′
2) ≤ κ′`g(γ2)

The reason that we need this multiple of three is because any of the vertices vi,
vj , wi, and/or wj could be the same. As already mentioned in Steps 2 and 3, the
proofs for inequalities (5.12) and (5.13) do not hold without inequality (5.11). But
for this inequality to hold, we must have an edge to delete. This edge may not
exist if vi = wj and/or vj = wi, and so we may need an additional edge built in for
these steps as sort of an “extraneous edge” that we can delete in order to preserve
inequality (5.11).

Since the “3” in equation (5.2) is multiplicative, we can glue in these two ad-
ditional edges at every vertex. Thus, we always have these edges available to us
wherever we cut γ into two closed curves γ1 and γ2.

�

6. Filling triangulated surfaces

Recall that, given a closed triangulated n-dimensional manifold (M, TM ), a filling
of M is a triangulated (n + 1)-dimensional manifold (N, TN ) with ∂N = M and
TN |∂N = TM . In this definition, one also requires that the homeomorphism from
|TN | to N restricts to the homeomorphism from |TM | to M along its boundary.
Sometimes we refer to a filling of (M, TM ) as an extension to a triangulation of
(N, TN ). A basic question is the following. Given a triangulated manifold (M, TM ),
does such a filling exist and, if so, can you bound |TN |, the number of facets of
such a filling? Theorem 2 leads to the following two solutions to this question in
the case when n = 2.

Theorem 7. Let (M, TM ) be a triangulated surface of genus ≤ g. Then there exists
a filling (N, TN ) satisfying that

|TN | ≤ Cg|TM |,

where Cg depends only on g, and not on the particular surface or triangulation.
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Theorem 8. Let (M, TM ) be a triangulated surface. Then there exists (N, TN ), a
filling of M , so that

|TN | ≤ C|TM | (log |TM |)2
,

where C does not depend on the particular surface or triangulation.

Remark. For all of Section 6, g will refer to the genus of the surface, not a Rie-
mannian metric.

The proofs of both of these theorems are very similar. We first combine Theorem
2 with results of Gromov in [Gr1] and [Gr2] to bound the discrete systole of (M, TM )
by a factor of the combinatorial volume of (M, TM ). Then the main idea is to apply
a “cut-and-cone” procedure. We begin this procedure by cutting the surface along a
short homologically nontrivial edge loop. This will yield a surface of smaller genus
with two boundary components. We then cone off the boundary components to
get a surface of genus one less than the original surface (See Figure 5). We iterate
this procedure until the surface is a 2-sphere, in which case we perform a modified
coning-off procedure to get a triangulated 3-ball. By gluing the 3-ball along all of
the cuts in the reverse order, we obtain a triangulated 3-manifold with the desired
properties.

Remark. The argument for our proofs “builds” the bounding 3-manifold from the
triangulation on Σ. One might wonder whether this is really necessary. Indeed,
if one takes the genus g handlebody Hg embedded in R3, any triangulation of the
boundary surface Σg can be extended in to a triangulation of Hg. The following
Lemma shows that Hg is in general not the best filling for Σg.

Lemma 9. One can construct a sequence of triangulations Ti of the boundary Σg
with a fixed number of triangles |Ti| ≤ 24g, and with the property that any extension

to a triangulation T̂i of Hg satisfies |T̂i| → ∞.

Proof. For simplicity we restrict to g = 1. The higher genus cases are completely
analogous. When g = 1, Hg

∼= D2 × S1.
Given an arbitrary triangulation φ : L→ D2×S1, where L is a simplicial complex

and φ a homeomorphism, we associate an invariant ||φ|| in the following manner.
Consider embedded curves in the 1-skeleton of the boundary ∂L. There are only
finitely many such curves, hence these represent finitely many elements α1, . . . , αk ∈
H1(L). Under the homeomorphism, they map to finitely many elements in H1(D2×
S1) ∼= Z, and we can define ||φ|| to be max{|φ∗(αi)|}. Now note that, while this
invariant seems to be defined via the map φ, it in fact only depends on the simplicial
complex L. Indeed, any homeomorphism from L to D2×S1 induces an isomorphism
from Z ∼= H1(L)→ H1(D2 × S1) ∼= Z. There are only two such isomorphisms, and
the absolute value of the image is independent of which of these isomorphisms one
uses.

Now by way of contradiction, assume there is a universal upper bound |T̂i| ≤ K.
Then there are finitely many simplicial complexes one can form with at most K
complexes, call them L1, . . . , Lk. Thus for any corresponding triangulation φ : Li →
D2 × S1 one sees that there is an absolute bound on the element in H1(D2 × S1)
represented by an embedded curve in the 1-skeleton of the boundary.
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But starting with a fixed triangulation of Σg ∼= S1 × S1, one can compose
the homeomorphism with powers of a Dehn twist along a curve β ⊂ S1 × S1

which represents the generator in H1(D2 × S1). Note that this Dehn twist is a
homeomorphism of S1 × S1 that does not extend to a homeomorphism of D2 × S1.
This forms a sequence of triangulations of S1 × S1, each of which uses the same
number of triangles. It is easy to see that this sequence of triangulations will
contain embedded curves in their 1-skeletons representing arbitrarily large elements
in H1(D2×S1). It follows that, while every triangulation of S1×S1 in this sequence
can be extended to a triangulation of D2 × S1, doing so will require a larger and
larger number of tetrahedra, completing the proof. �

Of course, what is underlying the previous example is the fact that the natural
homomorphism MCG(Hg) → MCG(Σg) has infinite index (where MCG denotes
the mapping class group – the group of homotopy classes of homeomorphisms of the
manifold). A similar argument can be used to give higher dimensional examples.
Lemma 9 shows that the choice of a good filling 3-manifold must depend on the
initial triangulation of Σg.

Remark. Some variations of our notion of filling function have previously been
considered in the literature. For example, Hass, Snoeying, and W. Thurston [HST]
have considered unknotted polygonal curves in R3, and studied the minimal number
of triangles in a PL spanning disk for the curve. They give an exponential lower
bound for the corresponding filling function, with an upper bound subsequently
obtained by Hass, Lagarias, and W. Thurston [HLT]. The corresponding question
for knotted polygonal curves bounding PL surfaces was considered by Hass and
Lagarias [HL]. In a somewhat different direction, Costantino and D. Thurston
[CT] considered a similar question for 3-manifolds – but did not require the optimal
triangulation on the filling 4-manifold to restrict to the original triangulation on
the 3-manifold.

Discrete analogues of Riemannian systolic inequalities. We first need the
following Lemma. This Lemma follows directly from Theorem 2 and uses all of the
same notation as this Theorem, except that the Riemannian metric will now be
denoted by h:

Lemma 10. Let (M, T ) be a closed triangulated n-dimensional manifold and let
P1, . . . , PN be free-homotopy-invariant properties a loop in M can satisfy. Suppose
that, for each ε > 0, there is a closed geodesic γε on the Riemannian manifold (M,h)
(where h is the metric from Theorem 2) so that γε satisfies properties P1, . . . , PN
and

(6.1) `h(γε) ≤ C
√

Volh(M).

Then there is an edge loop p on M so that p satisfies properties P1, . . . , PN and

(6.2) `T (p) ≤ κnC
√

VolT (M).
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Corollary 11. Let (M, T ) be a triangulated surface with infinite fundamental
group. Then the systole is bounded by

SysT (M) ≤ 2√
3
κ2

√
VolT (M).

This Corollary follows from Lemma 10 and Corollary 5.2.B [Gr1].

Corollary 12. Let (M, T ) be a triangulated surface of genus g > 0. Then the
homological systole is bounded by

SysHT (M) ≤ Kg
log g
√
g

√
VolT (M).

where Kg depends only on the genus g and not on M or T .

The above Corollary follows from Lemma 10 and Theorem 2.C [Gr2].

The cut-and-cone procedure. Suppose that (M, T ) is a triangulated surface
with genus g ≥ 2. The g = 0, 1 cases will be dealt with individually later. In order
to simplify notation, we will use |T | to denote VolT (M), the number of triangles
in the triangulation T . Set (M(0), T(0)) := (M, T ). By Corollary 12, there exists a
homologically nontrivial edge loop p so that

(6.3) `T (p) ≤ K log g
√
g

√
|T |.

By reducing the loop p, if necessary, we may assume that p is simple and still satisfies
equation (6.3). Cutting M along p yields a connected surface of genus g − 1 with
two boundary components. We then cone off the two boundary components to
obtain a triangulated surface (M(1), T(1)) with genus g − 1. Note that

|T(1)| ≤ |T |+ 2`T (p) ≤ |T |+ 2K
log g
√
g

√
|T | ≤

(√
|T |+K

log g
√
g

)2

.

Suppose, inductively, that we have triangulated surfaces4

T = T(0), T(1), . . . , T(n)

where n ≤ g− 1, T(i) is obtained from T(i−1) by the above cut-and-cone procedure,
and we have

|T(i)| ≤

√|T |+K

g∑
k=g−(i−1)

log k√
k

2

.

If n < g − 1, then T(n) has genus g − n ≥ 2, so by Corollary 12, there exists a
homologically nontrivial edge loop p(n) so that

`T(n)

(
p(n)

)
≤ K log(g − n)√

g − n

√
|T(n)|.

4Note that, in what follows, we are abusing notation and using T(i) to denote both the surface

and the triangulation.
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Figure 5. An example of the cut-and-cone procedure.

We may cut T(n) along this path and cone off the boundaries to get a triangulated
surface T(n+1) with genus one less than the genus of T(n) so that

|T(n+1)| ≤ |T(n)|+ 2K
log(g − n)√

g − n

√
|T(n)|

≤

√|T |+K

g∑
k=g−(n−1)

log k√
k

2

+ 2K
log(g − n)√

g − n

√|T |+K

g∑
k=g−(n−1)

log k√
k


≤

√|T |+K

g∑
k=g−n

log k√
k

2

.

If n = g− 1, then T(n) = T(g−1) is a torus and we may apply Corollary 11 to get
a noncontractible edge loop p so that

(6.4) `Tg−1
(p) ≤ 2√

3
κ2

√
|T(g−1)|.
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Cutting and coning along p gives us a triangulated 2-sphere T(g) such that

|T(g)| = |T(g−1)|+ 2`Tg−1(p)

≤ |T(g−1)|+ 2

(
2√
3
κ2

)√
|T(g−1)|

≤

(√
|T |+K

g∑
k=2

log k√
k

)2

+
4√
3
κ2

(√
|T |+K

g∑
k=2

log k√
k

)

≤ 5κ2

(√
|T |+K

g∑
k=2

log k√
k

)2

.

If n = g, then T(n) = T(g) is a 2-sphere. We need to perform a special coning off
of T(g). The reason for this is to ensure that, when we glue the surface back together
to get our 3-dimensional filling (N, TN ), we obtain a legitimate simplicial complex
decomposition for N . If we would just cone off T(g), then various tetrahedra could
intersect at both the cone point and in their opposite face.

The procedure for the modified coning of the 2-sphere is as follows. For each
simplex σ of T(g), we will triangulate the prism σ × I, where I is the unit interval,
in the same manner as used by Hatcher in ([Ha], pg 112-113). Suppose the vertices
of σ × {1} are {v0, v1, v2}, where the indices represent some fixed ordering of the
vertices. Let the corresponding vertices of σ × {0} be {w0, w1, w2}. Then the
simplices 〈v0v1v2w2〉, 〈v0v1w1w2〉, and 〈v0w0w1w2〉 triangulate σ × I, and if we do
this for each simplex of T(g), adjacent simplices will have consistent triangulations.
Finally we cone off T(g) × {0} to get a triangulated 3-ball B3 which has two layers:
the center, which is a coned off copy of T(g), and the exterior shell, which is our
triangulated T(g) × I. Note that

|B3| = 4|T(g)| ≤ 20κ2

(√
|T |+K

g∑
k=2

log k√
k

)2

.

By gluing together B3 along the cuts in the reverse order, we obtain a triangu-
lated 3-manifold (N, T ′) which is a filling of (M, T ) and

|T ′| ≤ 20κ2

(√
|T |+K

g∑
k=2

log k√
k

)2

= 20κ2

(√
|T |+K

7∑
k=2

log k√
k

+K

g∑
k=8

log k√
k

)2

≤ 20κ2

(√
|T |+ C ′ +

∫ g

7

log x√
x
dx

)2

≤ 20κ2

(√
|T |+ C ′ + 2

√
g log g

)2

.

Proofs of theorems.

Proof of Theorem 7. Suppose (M, TM ) is a triangulated surface of genus at most
g. After performing the above cut-and-cone procedure we obtain (N, TN ), a filling
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of M , so that

|TN | ≤ 20κ2

(√
|TM |+ C ′ + 2

√
g log g

)2

≤ 20κ2

(√
|TM |+ C ′g

)2

≤ Cg|TM |
for a suitable constant Cg. �

Proof of Theroem 8. Suppose (M, TM ) is a triangulated surface of genus g. After
performing the above cut-and-cone procedure we obtain (N, TN ), a filling of M , so
that

(6.5) |TN | ≤ 20κ2

(√
|TM |+ C ′ + 2

√
g log g

)2

.

Since M is closed, the number of edges in TM is (3/2)|TM |. Thus if |v(TM )| is
the number of vertices of TM , we know that the Euler characteristic χ(TM ) satisfies

2− 2g = χ(TM ) = |v(TM )| − |TM |
2

.

Solving for g then gives that

(6.6) g =
−|v(TM )|

2
+
|TM |

4
+ 1 ≤ |TM |

4
.

Combining (6.5) and (6.6), we can conclude that

|TN | ≤ 20κ2

(√
|TM |+ C ′ + 2

√
g log g

)2

≤ 20κ2

(√
|TM | (1 + log |TM |) + C ′′

)2

= 20κ2

(
|TM | (1 + log |TM |)2

+ 2C ′′
√
|TM |(1 + log |TM |) + (C ′′)

2
)

≤ C|TM | (log |TM |)2

for some suitable C. �

7. Concluding remarks

Our results suggest a variety of directions for further work. Firstly, note that
throughout our paper we restrict ourselves to smooth triangulations. This restric-
tion appears (and is used) in both implications of our Main Theorem. In our The-
orem 1, we make use of Whitney’s triangulation process, which produces smooth
triangulations. In the proof of our Theorem 2, smoothness of the triangulation
is used to produce nice local coordinates near the various faces. Note however
that, even restricting to smooth manifolds, one can find many non-smooth trian-
gulations. Indeed, for a smooth triangulation, it follows that the image of every
simplex is smoothly embedded, and hence has link homeomorphic to a sphere of
the appropriate codimension. On the other hand, the celebrated Cannon-Edwards
double suspension theorem (see [Ed] and [Can]) states that, if one starts with an
arbitrary n-dimensional homology sphere H (i.e. a connected n-manifold whose in-
tegral homology vanishes in all degrees 6= 0, n), the double suspension Σ2H = H∗S1

is homeomorphic to Sn+2. Triangulating both H and the S1, we get an induced
triangulation of the join Σ2H = H ∗ S1, and hence a triangulation of Sn+2. But
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in this triangulation, the edges in the S1 have links homeomorphic to H. As a
result, any homeomorphism Σ2H → Sn+2 must take the suspension curve S1 to a
non-smooth curve in S5. This yields a triangulation of Sn+2 which is not smooth
(in fact, not even PL).

Question: If we have a class of smooth manifolds for which the systolic inequality
holds for all smooth triangulations, does the systolic inequality still hold (possibly
with a different constant) for all triangulations? How about for PL-triangulations?

For a Riemannian manifold, we construct smooth triangulations whose simplices
are “metrically nice” (as seen by the Riemannian metric). In the realm of Rie-
mannian geometry, perhaps the most important notion is that of curvature. It
is reasonable to ask whether one can produce smooth triangulations which also
respect the curvature of the underlying metric.

Question: If M is a closed negatively curved manifold, does M support a piecewise
Euclidean, locally CAT(0) metric?

The CAT(0) condition is a metric version of non-positive curvature. In the
special case where M is (real) hyperbolic, this question has an affirmative answer,
by work of Charney, Davis, and Moussong [CDM]. Note that, if one replaces the
“negatively curved” by “non-positively curved”, then there are counterexamples
(due to Davis, Okun, and Zheng [DOZ]).

In Corollary 1 we used the direction (1) ⇒ (2) of our Main Theorem to prove
that a specific class of triangulated manifolds satisfied the combinatorial systolic
inequality. So the following question is very natural:

Question: Can one directly establish the combinatorial systolic inequality for some
classes of manifolds?

Via the implication (2) ⇒ (1) in the Main Theorem, this would imply corre-
sponding Riemannian systolic inequalities. Finally, we can ask for improvements
on the filling function for triangulated surfaces:

Question: Does the filling function for triangulated surfaces satisfy a linear bound,
with constant independent of the genus?

In our Theorem 7, we showed that for each fixed genus g, one has a linear filling
function (but with a constant that depends on the genus). If we try to get a
genus independent estimate, our Theorem 8 gives a slightly worse bound, with an
additional log squared factor. It is unclear whether or not we should expect an
affirmative answer to the last question. Of course, the question of finding a good
filling is also of interest in higher dimension.

Question: If M is a manifold which bounds, what can one say about the filling
function for M? For instance, for closed 3-manifolds, can one compute the (optimal)
filling function? Could these filling functions be used to distinguish the topology
of the 3-manifold?
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If one just tries to minimize the numbers of simplices over all possible triangu-
lations, then Costantino and D. Thurston [CT] have some estimates on the corre-
sponding filling function (note that they do not require the optimal triangulation
on the 4-manifold to restrict to the given triangulation on the 3-manifold).
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