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ADITI KAR, JEAN-FRANÇOIS LAFONT & BENJAMIN

SCHMIDT

ABSTRACT. Almost-isometries are quasi-isometries with multiplica-
tive constant one. Lifting a pair of metrics on a compact space gives
quasi-isometric metrics on the universal cover. Under some additional
hypotheses on the metrics, we show that there is no almost-isometry
between the universal covers. We also show that Riemannian mani-
folds that are almost-isometric have the same volume growth entropy.
We then establish various rigidity results as applications.

1. INTRODUCTION

Quasi-isometries are the natural morphisms in asymptotic geometry. Their defi-
nition involves both an additive constant ≥ 0 and a multiplicative constant ≥ 1.
Bi-Lipschitz maps are quasi-isometries with additive constant equal to zero; we de-
fine almost-isometries as quasi-isometries with multiplicative constant equal to one.
When looking at a general inequality, it is often important that we understand the
equality case. Thus, a natural problem is to identify conditions that force quasi-
isometric spaces to be either bi-Lipschitz equivalent or almost isometric.

For discrete spaces, bi-Lipschitz maps coincide with bijective quasi-isometries.
In [Wh], quasi-isometry classes of maps that contain a bijective quasi-isometry
are characterized for uniformly discrete metric spaces of bounded geometry. In
particular, quasi-isometric finitely generated groups that are nonamenable are bi-
Lipschitz equivalent. In contrast, there exist separated nets in R2 that are quasi-
isometric but not bi-Lipschitz equivalent to Z2 [BK,Mc]. Quasi-isometric finitely
generated groups that are not bi-Lipschitz equivalent first appeared in [Dy]. While
those first examples were not finitely presented, examples of type Fn for each n
appear in [DPT].
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Existing results about almost-isometries primarily concern equivalence classes
of metrics on a fixed space, where two metrics are equivalent when the identity map
is an almost-isometry. For instance, pairs of Zn-equivariant metrics on Rn whose
ratio tends to one as distances tend to infinity are equivalent by [Bu]. Analogous
results hold for metrics periodic under Gromov hyperbolic and Heisenberg groups
[Kr] or under toral relatively hyperbolic groups [Fuj]. The equivalence classes of
left-invariant metrics on non-elementary Gromov hyperbolic groups are studied in
[Fur] where the Marked Length Spectrum (MLS) Rigidity Conjecture is reformulated
as follows.

Given negatively curved Riemannian metrics g0 and g1 on a compact manifold
M , the identity map (M̃, g̃0) → (M̃, g̃1) between the universal Riemannian coverings
is an almost-isometry if and only if (M̃, g̃0) and (M̃, g̃1) are isometric.

In view of the resolution of the MLS Conjecture in dimension two [Cr, Ot],
and its expected validity in higher dimensions, the following question is quite
natural.

Question 1.1. If g0 and g1 are two negatively curved Riemannian metrics on a
compact manifold M , can the Riemannian universal coverings (M̃, g̃0) and (M̃, g̃1)

be almost isometric without being isometric?

In the above question, non-identity and non-equivariant almost-isometries are
allowed (thus generalizing Furman’s reformulation of the MLS conjecture). Our
focus in this paper is to show that under suitable rigidity hypotheses on the metrics
gi, the answer is “no”—though in general, the answer is “yes” (see [LSvL] for some
two-dimensional examples).

Theorem 1.2. Let G be a group acting geometrically on a proper CAT(−1) space
X (distinct from R), and let Y be another proper CAT(−1) space having the geodesic
extension property and connected spaces of directions. Assume the following:

• Y is almost-isometrically rigid.
• The G-action on X is marked length spectrum rigid.

Then, X and Y are almost isometric if and only if there is a coarsely onto isometric
embedding of X into Y .

The rigidity properties required of the space Y and the G-space X are defined
in Section 2. Note that we are not assuming a G-action on Y (in particular, there
is no equivariance assumption on the almost-isometry). As a concrete application
of the methods behind Theorem 1.2, we mention the following.

Corollary 1.3. Let (M,g0) be a closed locally symmetric space modeled on a
quaternionic hyperbolic space, or on the Cayley hyperbolic plane, and let g1 be a
negatively curved Riemannian metric on M . Then, (M̃, g̃0) and (M̃, g̃1) are almost
isometric if and only if (M,g0) and (M,g1) are isometric.

The ideas behind Theorem 1.2 also yield some rigidity results for Fuchsian
buildings (see Corollary 3.9). After discussing some preliminaries in Section 2, we
prove Theorem 1.2 and its corollaries in Section 3.
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In Section 4, we relate the presence of almost-isometries with dynamical in-
variants. Recall that the upper volume entropy of a complete Riemannian manifold
X is defined to be

h+vol(X) := lim sup
r→∞

ln Vol(Bp(r))

r
,

where Bp(r) denotes the ball of radius r centered at a chosen fixed basepoint p.
Similarly, the lower volume entropy is defined to be

h−vol(X) := lim inf
r→∞

ln Vol(Bp(r))

r
.

These quantities are independent of the chosen point p ∈ X, and in the case where
X is a Riemannian cover of a compact manifold, one has that h+vol(X) = h−vol(X)

(see [Ma]); this common value is then called the volume entropy of X, and is
denoted hvol(X). In general, the upper and lower volume entropies can differ,
even for Riemannian covers of finite volume manifolds [Na].

Theorem 1.4. Let M1,M2 be complete Riemannian manifolds having bounded
sectional curvatures. If M1 is almost isometric to M2, then h+vol(M1) = h+vol(M2),
and h−vol(M1) = h−vol(M2). In particular, if the Mi are Riemannian covers of compact
manifolds, then hvol(M1) = hvol(M2).

In fact, the proof of Theorem 1.4 only uses the property that r -balls in Mi
have volume uniformly bounded above and below by positive constants. This
property is a consequence of having bounded sectional curvatures by [Bi, Gün].

Corollary 1.5. Let (M,g) be a Riemannian cover of a compact manifold. If
hvol(M) > 0, then for any positive λ ≠ 1, the manifolds (M,g) and (M,λg) are not
almost-isometric.

For a closed Riemannian manifold (M,g), the volume growth entropy hvol of
its universal covering and the topological entropy htop of its geodesic flow satisfy
hvol ≤ htop [Ma]. Equality holds for metrics without conjugate points [FM],
a class of metrics including the nonpositively curved metrics, but is in general
strictly larger [Gu].

Corollary 1.6. Let g0 and g1 be Riemannian metrics on a closed manifold M .
If the universal coverings (M̃, g̃0) and (M̃, g̃1) are almost isometric, then htop(g0) =
htop(g1).

As a final application of Theorem 1.4, we mention the following result.

Corollary 1.7. LetM be a closed n-manifold equipped with Riemannian metrics
g0 and g1 for which the universal coverings (M̃, g̃0) and (M̃, g̃1) are almost-isometric.
Further, assume that the metrics satisfy any of the following conditions:

(1) n = 2, g0 is a flat metric, and g1 is arbitrary.
(2) n = 2, g0 is a real hyperbolic metric, and g1 satisfies Vol(g0) ≥ Vol(g1).
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(3) n ≥ 3, g0 is a negatively curved locally symmetric metric, and g1 satisfies
Vol(g0) ≥ Vol(g1).

(4) n ≥ 5, g0 is an irreducible, higher rank, nonpositively curved locally symmet-
ric metric, and g1 is conformal to g0 and satisfies Vol(g0) ≥ Vol(g1).

(5) n ≥ 6, g0 is a locally symmetric metric modeled on a product of negatively
curved symmetric spaces of dimension ≥ 3 (suitably normalized ), and g1 is
any metric satisfying Vol(g0) ≥ Vol(g1).

Then, the universal covers (M̃, g̃0) and (M̃, g̃1) are isometric. In particular, (M,g0)

is isometric to (M,g1) by Mostow rigidity in cases (3)–(5).

While the rigidity results Corollary 1.3 and Corollary 1.7(3) both apply to
locally symmetric metrics g0 modeled on quaternionic hyperbolic space or on the
Cayley hyperbolic plane, the former requires the metric g1 to be negatively curved,
while the latter requires g1 to have volume majorized by that of g0.

A discussion of rigidity results for almost-isometries between metric trees
(Theorem 4.3 and Corollary 4.4) appears at the end of Section 4. Section 5 con-
cludes the paper with some remarks and open questions.

2. PRELIMINARIES

Throughout, parentheses are suppressed according to the following notational
convention. Given a function ϕ : X → Y between sets and an element x ∈ X,
the image ϕ(x) ∈ Y is frequently denoted by ϕx. Similarly, if ψ : Y → Z is a
function, the composite function ψ ◦ϕ : X → Z is frequently denoted by ψϕ.

Quasi-isometries and almost-isometries. This subsection reviews basics
concerning quasi-isometries.

Let (X,dX) and (Y ,dY ) be metric spaces. Given constants K ≥ 1 and C ≥ 0,
a map ϕ : X → Y is (K,C)-quasi-isometric if, for every x1, x2 ∈ X,

(2.1)
1
K
dX(x1, x2)− C ≤ dY (ϕx1,ϕx2) ≤ KdX(x1, x2)+ C.

The map ϕ : X → Y is C-coarsely onto if, for each y ∈ Y , there exists x ∈ X with

(2.2) dY (ϕx,y) ≤ C.

Note that the map ϕ : X → Y is a (K,C)-quasi-isometry when it is both (K,C)-
quasi-isometric and C-coarsely onto. The spaces X and Y are quasi-isometric when
such a quasi-isometry exists. Note that when C = 0, quasi-isometries reduce to
bi-Lipschitz maps.

A coarse inverse to a (K,C)-quasi-isometric map ϕ : X → Y is a (K,C)-quasi-
isometric map ψ : Y → X satisfying

(2.3) dX((ψϕ)x,x) ≤ CdY ((ϕψ)y,y) ≤ C
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for every x ∈ X and for every y ∈ Y . If ϕ : X → Y is (K,C)-quasi-isometric
with a coarse inverse ψ : Y → X, then (2.3) implies (2.2) for both ϕ and ψ so
that they are both (K,C)-quasi-isometries.

Conversely, given a (K,C)-quasi-isometryϕ : X → Y , one uses (2.2) to define
a map ψ : Y → X satisfying

(2.4) dY ((ϕψ)y,y) ≤ C

for each y ∈ Y . The triangle inequality, (2.1), and (2.4) imply that, for each
y1, y2 ∈ Y and x ∈ X,

1
K
dY (y1, y2)− 3C

K
≤ dX(ψy1,ψy2) ≤ KdY (y1, y2)+ 3KC,

dX((ψϕ)x,x) ≤ 2KC.

Therefore, ψ : Y → X is (K,3KC)-quasi-isometric, and if we let C̄ = 3KC, both
ϕ and ψ are (K, C̄)-quasi-isometric and coarse inverses of each other.

Define two maps f , g : X → Y to be equivalent if supx∈X dY (fx,gx) < ∞,
and denote this equivalence relation by f ∼ g. The discussion in the previous
paragraph is summarized by the following: given any quasi-isometry ϕ : X → Y ,
there exists a quasi-isometry ψ : Y → X with the property that ϕψ ∼ IdX and
ψϕ ∼ IdY . Equivalence classes of self-quasi-isometries of X form a group, de-
noted by QI(X). Quasi-isometries ϕ : X → Y between spaces induce isomor-
phisms QI(X) ≅QI(Y).

In the special case when K = 1, we replace everywhere the adjective quasi-
with almost-. In particular, the discussion above yields the following result.

Lemma 2.1. Letϕ : X → Y be a (C/3)-almost-isometry. Then, there exists a C-
almost-isometry ψ : Y → X satisfying dX((ψϕ)x,x) ≤ C and dY ((ϕψ)y,y) ≤
C for every x ∈ X and y ∈ Y .

Since almost-isometries are special cases of quasi-isometries, the ∼ equivalence
relation restricts to an equivalence relation on almost-isometries. Compositions of
almost-isometries are almost-isometries, and by Lemma 2.1, coarse inverses of
almost-isometries are almost-isometries. Therefore, equivalence classes of almost-
isometries form a subgroup AI(X) of QI(X) with a canonical homomorphism
Isom(X) → AI(X). Almost-isometries ϕ : X → Y induce isomorphisms AI(X) ≅
AI(Y).

Example 2.2. If X is a compact metric space, then any two maps have finite
distance, so QI(X) and AI(X) are trivial. In contrast, Isom(X) can be quite non-
trivial. In particular, Isom(X)→ AI(X) need not be injective.

If X = Rn with the Euclidean metric, then Isom(X) = Rn ⋊ O(n) where
O(n) = {A ∈ GL(Rn) | ATA = Id} denotes the orthogonal group and where
(v,A) ∈ Isom(X) acts viaw ֏ Aw+v. The natural homomorphism Isom(X)→
AI(X) has kernel given by the translations Rn and image isomorphic to O(n).
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(Quasi)-isometries of CAT(−1) spaces. This subsection summarizes the ba-
sic theory of isometries, quasi-isometries, and boundary maps of CAT(−1) spaces;
the reader is referred to [BH, Chapter II.6] for more details.

Throughout, X denotes a CAT(−1)metric space that is proper: all metric balls
are compact. A group G acting on X acts geometrically provided the G-action on X
is isometric, proper, free, and co-compact.

(Bounded) isometries. Note that, for I ∈ Isom(X), the displacement func-
tion dI : X → R is defined by dI(x) = d(Ix,x). The isometry I is defined to be a
bounded isometry if dI is a bounded function. The translation length of I, denoted
by τ(I), is defined by τ(I) = infx∈X dI(x). The set of points where dI achieves
its infimum is denoted Min(I). An isometry I is semi-simple if Min(I) ≠ ∅. If G
acts geometrically on X, then every g ∈ G acts via a semi-simple isometry. For a
semi-simple isometry I,

(2.5) τ(I) = lim
n→∞

d(x, Inx)

n
,

where x ∈ X is an arbitrary point [BH, II.6, Exercise 6.6(1)].

Lemma 2.3. Let X be a CAT(−1) space, not isometric to R. Then, X has no
nontrivial bounded isometries.

Proof. Assume that I ∈ Isom(X) is bounded. Then, the displacement func-
tion dI is bounded and convex [BH, II.6, Proposition 6.2(3)], and hence constant.
In particular, Min(I) = X.

If this constant is positive, then Min(I) splits isometrically as a metric product
Y × R, for some convex subset Y ⊂ X [BH, II.6, Theorem 6.8(4)]. Note that Y
cannot consist of a single point (since X is not isometric to R), nor can it have
more than one point (for otherwise, X contains an isometric copy of [0, ε] × R,
and so is not CAT(−1)). Conclude that dI ≡ 0 and that I = IdX . ❐

Corollary 2.4. Let X be a CAT(−1) space, not isometric to R, and let also
g,h ∈ Isom(X). If supx∈X d(gx,hx) < ∞, then g = h. In particular, for such
spaces, the natural map Isom(X)→ AI(X) is injective.

Proof. Apply Lemma 2.3 to gh−1. ❐

Boundary structure of X. The boundary ∂X of X consists of the set of
equivalence classes of geodesic rays in X, where two rays are equivalent if they are
at bounded Hausdorff distance. There is a natural topology on ∂X, where two
geodesic rays based at x0 ∈ X are close provided they stay close for a long period
of time. A quasi-isometry ϕ : X → Y induces a homeomorphismϕ∂ : ∂X → ∂Y .

A pair of maps f , g : X → X are at distance at most L when d(fx,gx) ≤ L
for every x ∈ X. The boundary at infinity detects whether maps are at bounded
distance apart. More precisely, we have the following well-known result.
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Proposition 2.5. Let (X,d) be a complete simply connected CAT(−1) metric
space, having the geodesic extension property, and with the property that the space of
directions at each point is connected. For each K ≥ 1 and C > 0, there exists a constant
L := L(K,C) > 0 with the following property: if F is a (K,C)-quasi-isometry of X
and I is an isometry of X with boundary maps F∂ ≡ I∂ , then F and I are at distance
at most L.

We were unable to locate a proof in the literature, other than in the special
case where (X,d) is a negatively curved Riemannian manifold (which was shown
by Pansu [Pa, Lemma 9.11, p. 39]). For the convenience of the reader, we provide
a proof that closely follows Pansu’s Riemannian argument.

Proof. Without loss of generality, we assume that I = IdX . Let p ∈ X be
an arbitrary point, and consider the geodesic segment η from p to F(p), whose
length we would like to uniformly control. The segment defines a point x− in
the space of directions Sp at the point p. From the geodesic extension property,
we can extend this geodesic beyond p, which defines a second point x+ on Sp.
In terms of the Alexandrov angular metric ∠p on the space of directions Sp (see
[BH, Definition II.3.18, p. 190]), we have that ∠p(x+, x−) = π (as they corre-
spond to a geodesic through p). Since the space of directions Sp is connected,
continuity now implies the existence of a point y− ∈ Sx with the property that
∠p(x+, y−) = π/2 = ∠p(x−, y−). Let γ be a geodesic segment terminating on
p, and representing y−. By the geodesic extension property, we can extend γ to
a bi-infinite geodesic γ̂. The continuation of γ defines a second point y+ ∈ Sp;
again, we have ∠p(y+, y−) = π . We now claim that the point p coincides with
the projection point of F(p) on the geodesic γ̂.

To see this, recall that in a CAT(−1) space, there is uniqueness of the projec-
tion point ρ(q) of a point q onto a closed convex subset C. Moreover, the point
ρ(q) is characterized by the following property: the angle at ρ(q) between the
geodesic segment from ρ(q) to q and any other geodesic segment originating at
ρ(q) in the set C is at least π/2 (see, e.g., [BH, Proposition II.2.4, p. 176]). We
apply this criterion to the convex set γ̂, and the point F(p). Locally near p, there
are precisely two geodesics segments in γ̂, corresponding to the pair of directions
y+, y− ∈ Sp. We already know that ∠p(y−, x−) = π/2, so it suffices to verify
that ∠p(y+, x−) ≥ π/2. But this is clear, for otherwise the triangle inequality
would force a contradiction:

π = ∠p(y+, y−) ≤ ∠p(y+, x−)+∠p(x−, y−) < π2 + π
2
.

Thus, p is indeed the closest point to F(p) on the geodesic γ̂.
Now, apply the map F to obtain the (K,C)-quasi-geodesic F ◦ γ̂. From the

stability theorem for quasi-geodesics (see [BH, Theorem III.H.1.7, p. 401]), there
is a uniform constant L := L(K,C), depending only on the constants K,C for the
quasi-geodesic, with the property that F ◦ γ̂ is at Hausdorff distance ≤ L from
the geodesic with same endpoints on ∂X, which is γ̂. It follows that the point
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F(p) ∈ F ◦ γ̂ is at distance ≤ L from γ̂. But from the discussion in the previous
paragraph, this implies d(p, F(p)) ≤ L, as desired. ❐

In fact, there is some additional metric structure on ∂X: fixing a basepoint
x ∈ X; define the visual metric

d∂X(p, q) = e−(p|q)x ,

where p,q ∈ ∂X, and (p|q)x denotes the Gromov product of the pair of points
with respect to the basepoint x (see [Bo1, Section 2.5] for details). While the
metric d∂X depends on the choice of basepoint x, changing basepoints gives bi-
Lipschitz equivalent metrics, and hence the bi-Lipschitz class of the metric d∂X is
well defined.

Fixing such metrics on ∂X, ∂Y , the behavior of a quasi-isometryϕ : X → Y is
closely related to the metric properties of the induced map ϕ∂ : ∂X → ∂Y . Most
relevant for our purposes is work of Bonk and Schramm, who showed that if ϕ
is an almost-isometry, then ϕ∂ is a bi-Lipschitz map [BS, proof of Theorem 6.5];
that is, there is a constant λ > 1 with the property that, for all x,y ∈ ∂X, we have

λ−1 · d∂X(x,y) ≤ d∂Y (ϕ∂(x),ϕ∂(y)) ≤ λ · d∂X(x,y).

Conversely, if ϕ∂ is a bi-Lipschitz map, then ϕ is at bounded distance from an
almost-isometry [BS, Theorems 7.4 and 8.2]. In particular, boundary maps in-
duce an isomorphism AI(X) ≅ BiLip(∂X).

Rigidity statements. In the statement of our Main Theorem, our hypotheses
involve some rigidity statements concerning the spaces X, Y . We define these
rigidity statements in this subsection for the convenience of the reader.

Definition 2.6. A metric space Y is quasi-isometrically rigid (QI-rigid) if each
quasi-isometry of Y is at bounded distance from an isometry of Y . In other
words, the canonical homomorphism Isom(Y) → QI(Y) is surjective. A met-
ric space is almost-isometrically rigid (AI-rigid) if every almost-isometry of Y is at
bounded distance from an isometry. In other words, the canonical homomor-
phism Isom(Y) → AI(Y) is surjective.

A celebrated result of Pansu [Pa] shows that the quaternionic hyperbolic space
HnH (of real dimension 4n) and the Cayley hyperbolic planeH2

O
(of real dimension

16) are both QI-rigid (and hence AI-rigid). In contrast, we have the following
result.

Lemma 2.7. For any n ≥ 2, real hyperbolic space HnR is not AI-rigid. In other
words, there exist almost-isometries ϕ : HnR → HnR that are not at bounded distance
from any isometry.

Proof. From the discussion in the previous section, one can think of this en-
tirely at the level of the metric structure on the boundary at infinity. Choosing
the disk model for HnR and the basepoint x to be the origin, the metric d∂HnR
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on ∂HnR = Sn−1 is conformal to the standard (round) metric on the sphere—in
fact, d∂HnR (p, q) is half the (Euclidean) length of the (Euclidean) segment join-
ing p to q (see [Bo1, Example 2.5.9]). Recalling that almost-isometries induce
bi-Lipschitz maps [BS, Theorem 6.5], while isometries induce conformal maps
[Bo1, Corollaire 2.6.3], the lemma follows immediately from the fact that there
exist bi-Lipschitz maps ϕ∂ : Sn−1 → Sn−1 that are not conformal. ❐

Similarly, one can show that the complex hyperbolic spaceHnC (of real dimen-
sion 2n) is not AI-rigid. Let us mention a few further examples.

Example 2.8. Consider R with the standard metric. From the discussion in
Example 2.2, we have that the image of Isom(R) inside QI(R) is a copy of Z2

(with non-trivial element represented by the map σ defined via σ(x) = −x).
For any λ > 0, the map µλ : x ֏ λx is a quasi-isometry, and if λ ≠ λ

′
, then

µλ 6∼ µλ′ . Thus, QI(R) has cardinality at least as large as the continuum, and the
map Isom(R)→ QI(R) is far from being surjective.

On the other hand, assume ϕ : R → R is a C-almost-isometry. Up to com-
posing with σ , we may assume that ϕ preserves the two ends of R, and up to
composing with a translation, we may assume ϕ(0) = 0. Let us estimate the
distance from ϕx to x for a generic x ∈ R. First, if x > 0 is sufficiently large,
we have that ϕx > 0 (since ϕ preserves the ends of R), and since ϕ is a C-
almost-isometry, |ϕx−x| = | |ϕx−ϕ0|−|x−0| | ≤ C. An identical argument
shows that if x < 0 is sufficiently negative, then |ϕx − x| ≤ C. This leaves an
R-neighborhood B of the fixed point 0 (for some R). But for x ∈ B, we know
that ϕx has distance at most R + C from the origin, so the triangle inequality
gives |x −ϕx| ≤ 2R + C. It follows that supx∈R(ϕx,x) ≤ 2R + C, and hence
ϕ ∼ IdR. This shows that every almost-isometry of R lies at finite distance from
an isometry. Hence, R is an example of an AI-rigid space that is not QI-rigid.

Example 2.9. As a somewhat more sophisticated example, consider now the
case of R2 with a flat metric. We claim that R2 is an AI-rigid space, that is, that
every self almost-isometry is at bounded distance from an isometry. To see this, we
start with F ∈ AI(R2) arbitrary, and try to find a standard form almost-isometry
at bounded distance from F . Note that, by composing with a translation, we may
assume F(0) = 0, and at the cost of a bounded perturbation, we can also assume
that F is continuous. We will find it convenient to work in polar coordinates
(r , θ).

Since F(0) = 0, we see that F maps the circle r = R into the annular region
R−C ≤ r ≤ R+C. Performing a radial projection of the image onto the circle of
radius R results in a new map at bounded distance from F (hence, a new almost-
isometry), which has the additional property that F maps each circle about the
origin to itself. So without loss of generality, we may assume that F has the form
F(r , θ) = (r , f (r , θ)) for some continuous function f ; we let α : R+ → R denote
the function α(r) := f (r ,0). Now consider the points (r ,0) on the ray θ = 0,
and observe that each of these gets sent to a point (r ,α(r)). On the circle S(R)
of radius r = R centered at the origin, the map ϕ is at bounded distance from
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the rotation by an angle α(R)—moreover, the distance between the two maps is
bounded independently of the radius R. It follows that the map F is at bounded
distance from the map (r , θ) ֏ (r , θ +α(r)).

Next, let us focus on properties of the map α. The ray θ = 0 maps under
the almost-isometry F to the path (r ,α(r)). We now estimate the angle ρ(s, t)
(s < t) from the origin between the points (s,α(s)) and (t,α(t))—which is
obviously α(t)−α(s)—via the law of cosines:

cos(ρ(s, t)) := s
2 + t2 − ‖(t,α(t))− (s,α(s))‖2

2st
.

But since the map F is a K-almost isometry, we have the estimate

t − s −K ≤ ‖(t,α(t))− (s,α(s))‖ ≤ t − s +K,

which upon substitution gives the estimate

1− K
2 + 2K(t − s)

2st
≤ cos(ρ(s, t)) ≤ 1− K

2 − 2K(t − s)
2st

.

These bounds tend to 1 as s < t both tend to infinity. Moreover, for any ε > 0,
we can find an s0 with the property that, for any t > s0, the lower bound is at least
1− ε. This implies that α(r) has a limit. Let α∞ denote the limit limr→∞α(r),
and observe that, at the cost of composing with a rotation by −α∞, we may as
well assume that limr→∞α(r) = 0. We have thus reduced the problem to the
following special case: let F : (r , θ) ֏ (r , θ + α(r)) be a K-almost-isometry,
where α : R+ → R is a continuous map with limr→∞α(r) = 0. We need to show
that this map F is at bounded distance from the identity map—it is sufficient to
prove that, for r sufficiently large, α(r) ≤ K′/r (for some constant K′).

Consider the pair of points (r1,0) and (r2, θ) on the plane, and their image
under the K-almost-isometry. The distance between the two pairs of points is
easily calculated from the law of cosines, and the K-almost-isometry condition
gives the following estimate:

∣∣∣
√
r 2

1 + r 2
2 − 2r1r2 cos(θ +∆α(r1, r2))−

√
r 2

1 + r 2
2 − 2r1r2 cos(θ)

∣∣∣ ≤ K,

which can be rewritten as

∣∣∣∣∣

√
1− 2r1r2

r 2
1 + r 2

2

cos(θ +∆α(r1, r2))−
√

1− 2r1r2

r 2
1 + r 2

2

cos(θ)

∣∣∣∣∣ ≤
K√

r 2
1 + r 2

2

,

where ∆α is the difference function that is associated with α, that is, ∆α(s, t) =
α(t)− α(s). Now, fix a 0 < λ < 1, and specialize the above equation to the case
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where r2 = r and r1 = λr (r will be taken to tend to infinity), and θ is a fixed
constant chosen so that sin(θ) ≠ 0. We obtain

∣∣∣∣∣∣

√
1− 2λ

1+ λ2
cos(θ +ϕ(r))−

√
1− 2λ

1+ λ2
cos(θ)

∣∣∣∣∣∣
≤ K

r
√

1+ λ2

where ϕ(r) := ∆α(λr , r) = α(r) − α(λr) tends to 0 as r → ∞. Using the
sum-angle formula for cosine, and a Taylor approximation for the terms involving
ϕ(r), we can rewrite the left-hand side as

∣∣∣∣∣∣

√
1− 2λ

1+ λ2
cos(θ)+ϕ(r)2λ sin(θ)

1+ λ2
+ o(ϕ(r)) −

√
1− 2λ

1+ λ2
cos(θ)

∣∣∣∣∣∣
.

Recalling that λ,θ are fixed, whileϕ(r)→ 0 as r →∞, we can use a Taylor expan-
sion for the function g(x) = √a+ x ≈ √a+x/2√a+ o(x). After substituting,
the left-hand side further reduces, and we obtain

∣∣∣∣∣ϕ(r)
(

λ sin(θ)

(1+ λ2)
√

1− 2λ cos(θ)(1 + λ2)−1

)
+ o(ϕ(r))

∣∣∣∣∣ ≤
K

r
√

1+ λ2
,

which gives us the asymptotic estimate |ϕ(r)| ≤ K′′/r (for r sufficiently large),
where K′′ is a constant satisfying

K′′ > K

√
1+ λ2 − 2λ cos(θ)

λ sin(θ)
.

Finally, recalling that ϕ(r) := α(r) − α(λr), that lims→∞α(s) = 0, and that
0 < λ < 1, we can use a telescoping sum to obtain the estimate

|α(r)| = lim
s→∞ |α(s)− α(r)| ≤

∞∑

i=0

|α(λ−i−1r)−α(λ−ir)|

≤
∞∑

i=0

K′′

λ−ir
= K′′

r(1− λ) .

Since K′′, λ are fixed constants, this gives the desired asymptotic estimate on the
rotation function α(r), completing the argument.

Example 2.10. Consider H2
R with the standard hyperbolic metric of constant

curvature −1. Taking a compact set K ⊂ H2
R, perturb the metric slightly in the

compact set K, and call the resulting Riemannian manifold X. If the perturbation
is small enough, X will be negatively curved, and one can arrange for Isom(X) to
be trivial.
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Let ϕ : H2
R → X be the identity map, and note that ϕ is an almost-isometry

from H2
R → X (though there are no isometries from H2

R to X). It follows that
AI(X) ≅ AI(H2

R), and we know from Lemma 2.3 that the map Isom(H2
R) ֓

AI(H2
R) is injective. Hence, the group AI(X) contains a copy of PSL(2,R), and

the map Isom(X)→ AI(X) fails to be surjective.

Definition 2.11. A complete CAT(−1) space X equipped with a geometric
G-action ρ : G → Isom(X) is marked length spectrum rigid (MLS-rigid) provided
that, anytime we are given a complete CAT(−1) space Y equipped with a geo-
metric G-action i : G → Isom(Y), and the translation lengths satisfy τ(ρ(g)) =
τ(i(g)) for each g ∈ G, there then exists a (ρ, i)-equivariant isometric embed-
ding X ֓ Y .

Remark 2.12. When considering the MLS-rigidity question, one can also
formulate versions where, rather than allowing an arbitrary CAT(−1) space Y , one
restricts to a certain subclass F of CAT(−1) spaces. In this case, we say that X is
MLS-rigid within the classF . For instance, ifX is a negatively curved Riemannian
manifold, it is reasonable to focus on the case where Y is also a negatively curved
Riemannian manifold. In this case, the conclusion forces the embedding to be
surjective, and hence the equivariant embedding is automatically an isometry from
X to Y . This is the context of the classical MLS conjecture.

3. PROOF OF THEOREM 1.2 AND APPLICATIONS

Throughout this section, we assume that X and Y satisfy the hypotheses of The-
orem 1.2. Let us briefly sketch out the main steps of the proof. First, we use the
almost-isometry between X and Y to transfer the isometric G-action on X to an
almost-isometricG-action on Y . Using the property that Y is almost-isometrically
rigid, one can straighten the almost-isometricG-action on Y to a genuine isometric
G-action on Y . We then verify that this new isometric action on Y is also geomet-
ric. Such a construction of a geometric G-action on Y is likely well known—we
include the details for the convenience of the reader. Now with respect to this new
action on Y , one can construct an equivariant almost-isometry between X and Y .
It is easy to check that these two actions have the same translation lengths, so from
the marked length rigidity of X, we obtain the isometric embedding X ֓ Y . We
now give the details of the proof.

Pushing forward the action. As X and Y are almost-isometric, there exists
a (C/3)-almost-isometry ϕ : X → Y . In particular, ϕ is a C-almost-isometry. By
Lemma 2.1, there exists a C-almost-isometry coarse inverse ψ : Y → X satisfying

dX((ψϕ)x,x) ≤ C, dY ((ϕψ)y,y) ≤ C,

for every x ∈ X and y ∈ Y .
Recall here that G < Isom(X) acts properly discontinuously, freely, and co-

compactly on X. For g ∈ G, define the map ḡ : Y → Y by ḡ = ϕgψ. In other
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words, ḡ is chosen to make the following diagram commute:

Y
ψ

//

ḡ

��

X

g

��

Y X.ϕ
oo

Lemma 3.1. For each g ∈ G, ḡ is a 3C-almost-isometry of Y .

Proof. Let y1, y2 ∈ Y . We verify

dY (ḡy1, ḡy2) = dY ((ϕgψ)y1, (ϕgψ)y2) ≤ dX(gψy1, gψy2)+ C
= dX(ψy1,ψy2)+ C ≤ dY (y1, y2)+ 2C.

A symmetric argument shows that dY (ḡy1, ḡy2) ≥ dY (y1, y2)− 2C, giving
us that

dY (y1, y2)− 3C ≤ dY (ḡ(y1), ḡ(y2)) ≤ dY (y1, y2)+ 3C.

It remains to show that ḡ is 3C-coarsely onto. For y ∈ Y , we let y ′ = g−1y =
ϕg−1ψy . Then,

dY (ḡy
′, y)

= dY ((ϕgψ)(ϕg−1ψy),y)

≤ dX(ψϕgψϕg−1ψy,ψy)+ C
≤ dX((ψϕ)(gψϕg−1ψy),gψϕg−1ψy)+ dX(gψϕg−1ψy,ψy)+ C
≤ dX(gψϕg−1ψy,ψy)+ 2C

= dX((ψϕ)(g−1ψy),g−1ψy)+ 2C

≤ 3C.

The first inequality comes from ψ being a C-almost-isometry, the second is the
triangle inequality, and the third and fourth both come from ψϕ ∼ IdX . This
completes the proof of the lemma. ❐

As Y is AI-rigid, Lemma 3.1 and Proposition 2.5 yield a constant L > 0 such
that for each g ∈ G, there is a unique isometry i(g) ∈ Isom(Y) satisfying

dY (ḡy, i(g)y) ≤ L

for every y ∈ Y . It is important to note that the constant L is independent of the
choice of element g (this is used in the proof of Lemma 3.4). This defines a map
i : G → Isom(Y).
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Lemma 3.2. The map i : G → Isom(Y) is a homomorphism.

Proof. Let g1, g2 ∈ G; then, we want to compare the elements i(g1g2) and
i(g1)i(g2) inside Isom(Y). By Corollary 2.4 (since Y ≠ R, as the space of direc-
tions of Y is connected), it suffices to show that i(g1g2) ∼ i(g1)i(g2). Thus, we
need to estimate the effect of these two isometries on a generic element y ∈ Y . As
a preliminary estimate, we have

dY (g1g2y,g1 g2y) = dY ((ϕg1g2ψ)y, (ϕg1ψ)(ϕg2ψ)y)

≤ dX(g1(g2ψy),g1(ψϕg2ψy))+ C
= dX(g2ψy, (ψϕ)(g2ψy))+ C ≤ 2C.

The first inequality uses that ϕ is a C-almost-isometry, while the second uses that
ψϕ ∼ IdX . Using this, we can now estimate:

dY (i(g1g2)y, i(g1)i(g2)y)

≤ dY (i(g1g2)y, (g1g2)y)+ dY (g1g2y, i(g1)i(g2)y)

≤ dY (g1g2y, i(g1)i(g2)y)+ L
≤ dY (g1g2y,g1 g2y)+ dY (g1 g2y, i(g1)i(g2)y)+ L
≤ dY (g1 g2y, i(g1)i(g2)y)+ 2C + L
≤ dY (g1(g2y), i(g1)(g2y))+ dY (i(g1)g2y, i(g1)i(g2)y)+ 2C + L
≤ dY (i(g1)g2y, i(g1)i(g2)y)+ 2C + 2L

= dY (g2y, i(g2)y)+ 2C + 2L ≤ 2C + 3L.

Since this estimate holds for arbitrary y ∈ Y , we conclude i(g1g2) ∼ i(g1)i(g2).
Applying Corollary 2.4, this gives us

i(g1g2) = i(g1)i(g2),

establishing the lemma. ❐

Verifying the new action is geometric. Now that we have constructed a
homomorphism i : G → Isom(Y), our next step is to show that this G-action on
Y is geometric.

Lemma 3.3. The homomorphism i : G → Isom(Y) is injective.

Proof. Let g ∈ G, and assume that i(g) = IdY . By Lemma 2.3, it suffices to
show that g ∼ IdX , so we need to estimate how far g moves a generic element
x ∈ X. First, observe that for each y ∈ Y ,

dY (ḡy,y) = dY (ḡy, i(g)y) ≤ L.
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We can now estimate how far g moves elements of the form ψy :

dX(g(ψy),ψy) ≤ dY (ϕ(gψy),ϕ(ψy)) + C = dY (ḡy,ϕψy)+ C
≤ dY (ḡy,y)+ dY (y, (ϕψ)y)+ C ≤ L+ 2C.

Now, for a generic x ∈ X, we have that ϕx ∈ Y , so we can estimate

dX(gx,x) ≤ dX(gx,g(ψϕ)x) + dX(g(ψϕ)x,x)
= dX(x, (ψϕ)x)+ dX(g(ψϕ)x,x)
≤ dX(g(ψϕ)x,x) + C
≤ dX(g(ψϕ)x, (ψϕ)x) + dX((ψϕ)x,x)+ C
≤ L+ 2C + C + C.

This shows g ∼ IdX , so by Lemma 2.3 (and using the hypothesis that X ≠ R), we
conclude g = IdX , as claimed. ❐

Lemma 3.4. The G-action on Y is proper.

Proof. We argue here by contradiction. If the above is false, then there exist a
dY -metric ball BY ⊂ Y and an infinite sequence of distinct elements i(gj) ∈ i(G)
with

i(gj)BY ∩ BY ≠∅
for each index j. For each index j, choose yj , kj ∈ BY such that i(gj)yj = kj .
Let D = diam(BY ).

We consider the closed dX-metric ball

BX = {x ∈ X | dX(x,ψy0) ≤ L+ 2D + 5C}.

Since the G action on X is proper, we obtain a contradiction by showing that
gj(ψyj) ∈ gjBX ∩ BX for each index j. First, note that for each j,

dY (i(gj)yj , yj) = dY (kj , yj) ≤ D.

Next, we estimate how far each gj displaces the corresponding ψyj :

dX(gj(ψyj),ψyj) ≤ dY (ϕ(gjψyj),ϕ(ψyj))+ C
= dY (gjyj ,ϕψyj)+ C
≤ dY (gjyj , yj)+ dY (yj , (ϕψ)yj)+ C
≤ dY (gjyj , yj)+ 2C

≤ dY (gjyj , i(gj)yj)+ dY (i(gj)yj , yj)+ 2C

≤ L+D + 2C.
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We can now show ψyj ∈ BX for each j, since

dX(ψy0,ψyj) ≤ dY (ϕ(ψy0),ϕ(ψyj))+ C
≤ dY ((ϕψ)y0, y0)+ dY (y0,ϕψyj)+ C
≤ dY (y0,ϕψyj)+ 2C

≤ dY (y0, yj)+ dY (yj , (ϕψ)yj)+ 2C

≤ D + 3C.

Combining the above two inequalities, we obtain that gj(ψyj) ∈ BX , since

dX(gj(ψyj),ψy0) ≤ dX(gj(ψyj),ψyj))+ dX(ψyj ,ψy0)

≤ (L+D + 2C)+ (D + 3C).

We conclude that
gj(ψyj) ∈ gjBX ∩ BX

for each index j as claimed above. This yields the desired contradiction, and
completes the proof of the lemma. ❐

Corollary 3.5. The G-action on Y is free.

Proof. If this is not the case, then there exists a nonidentity element g ∈ G
and a point y ∈ Y with i(g)y = y . Note that G is torsion-free (as the G-action
on X is free), and i is injective by Lemma 3.3, so i(g) ∈ Isom(Y) also has infi-
nite order. This gives infinitely many elements fixing the point y , contradicting
Lemma 3.4. ❐

Lemma 3.6. The G-action on Y is co-compact.

Proof. Since Y is a proper metric space, it suffices to prove there is a closed
dY -metric ball BY such that the i(G)-translates of BY cover Y . As the G-action on
X is co-compact, and X is a proper metric space, there exists x0 ∈ X and R > 0
such that the G-translates of the closed dX-metric ball

BX = {x ∈ X | dX(x,x0) ≤ R}

cover M . Let
BY = {y ∈ Y | dY (y,ϕx0) ≤ R + 3C + L}.

Fix y ∈ Y . As the G-translates of BX cover X, there exists g ∈ G such that
ψy ∈ gBX , or equivalently, dX(gx0,ψy) ≤ R. We conclude the proof by
showing that

dY (i(g)(ϕx0),y) ≤ R + 3C + L,
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or equivalently that y ∈ i(g)BY . Indeed, we can estimate

dY (i(g)(ϕx0),y) ≤ dY (i(g)(ϕx0), ḡ(ϕx0))+ dY (ḡϕx0, y)

≤ dY (ḡϕx0, y)+ L = dY ((ϕgψ)ϕx0, y)+ L
≤ dX(ψ(ϕgψϕx0),ψ(y))+ C + L
≤ dX((ψϕ)(gψϕx0), gψϕx0)+ dX(gψϕx0,ψy)+C+L
≤ dX(g(ψϕx0),ψy)+ 2C + L
= dX(ψϕx0, g

−1(ψy))+ 2C + L
≤ dX((ψϕ)x0, x0)+ dX(x0, g

−1ψy)+ 2C + L
≤ dX(x0, g

−1ψy)+ 3C + L
= dX(gx0,ψy)+ 3C + L ≤ R + 3C + L. ❐

Combining Lemma 3.4, Corollary 3.5, and Lemma 3.6, we see that the G-
action on Y given by i : G → Isom(Y) is geometric.

An equivariant almost-isometry. LetΩ ⊂ X be a strict fundamental domain
for the G-action on X. In other words, Ω consists of a single point from each G-
orbit in X. Then, for each x ∈ X, there exist unique g ∈ G and ω ∈ Ω with
gω = x.

Define Φ : X → Y by Φ(x) = Φ(gω) := i(g)ϕω. By construction, Φ is
equivariant with respect to the G and i(G) actions on X and Y , respectively.

Lemma 3.7. The (G, i(G))-equivariant map Φ : X → Y is a (5C+2L)-almost-
isometry.

Proof. Let x ∈ X. There are unique g ∈ G and ω ∈ Ω such that x = gω.
Then,

dY (ϕx,Φx) = dY (ϕgω,Φgω) = dY (ϕgω, i(g)ϕω)
≤ dY (ϕgω, ḡϕω)+ dY (ḡ(ϕω), i(g)(ϕω))
≤ dY (ϕgω, ḡϕω)+ L = dY (ϕgω, (ϕgψ)ϕω)+ L
≤ dX(gω,gψϕω)+ C + L
= dX(ω, (ψϕ)ω)+ C + L ≤ 2C + L.

It follows that, for x1, x2 ∈ X,

dY (Φx1,Φx2) ≤ dY (Φx1,ϕx1)+ dY (ϕx1,ϕx2)+ dY (ϕx2,Φx2)

≤ dY (ϕx1,ϕx2)+ 4C + 2L ≤ dX(x1, x2)+ 5C + 2L.

A similar argument gives the estimate

dX(x1, x2) ≤ dY (Φx1,Φx2)+ 5C + 2L.
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The previous two inequalities show that Φ is a (5C + 2L)-almost-isometric map.
It remains to show that Φ is (5C + 2L)-coarsely onto. Let y ∈ Y . Then, ψy ∈ X
and

dY (Φ(ψy),y) ≤ dY (Φ(ψy),ϕ(ψy))+ dY (ϕψy,y)
≤ 2C + L+ C,

concluding the proof. ❐

Comparing the marked length spectrum. To summarize, we have con-
structed a new G-action on Y , given by i : G → Isom(Y), which we have shown to
be geometric. We have also constructed an equivariant almost-isometry Φ from X

to Y . We now compare the translation lengths for the G-actions on X and Y . Let
C̄ = 5C + 2L, the almost-isometry constant for the equivariant almost-isometry
Φ : X → Y .

Lemma 3.8. For every g ∈ G, we have τ(g) = τ(i(g)).
Proof. By formula (2.5), for any x ∈ X we have

τ(g) = lim
n→∞

dX(x, g
nx)

n
≥ lim
n→∞

dY (Φx,Φgnx)− C̄
n

= lim
n→∞

dY (Φx, i(g)nΦx)
n

= τ(i(g)).

An identical argument, using a coarse inverse to Φ, gives the reverse inequality. ❐

Concluding the proof. We now have isometric G-actions on X and Y . We
have shown that the action on Y is geometric, and that the two actions have the
same translation lengths. Since X, by hypothesis, is marked length spectrum rigid,
we conclude that there is an equivariant isometric embedding ψ : X → Y . Finally,
to see that ψ is coarsely onto, note that ∂ψ ≡ ∂Φ (as both these maps are at finite
distance from the same orbit map), soψ and Φ are at bounded distance apart. The
first part of the proof of Lemma 3.7 shows Φ and ϕ are also at bounded distance
apart, and hence ψ and ϕ are at bounded distance apart. Since ϕ is coarsely
onto, it immediately follows that ψ is coarsely onto. This completes the proof of
Theorem 1.2.

Application—locally symmetric manifolds. In this subsection, we prove
Corollary 1.3, dealing with quaternionic hyperbolic space HnH and the Cayley hy-
perbolic plane H2

O.

Proof of Corollary 1.3. Pansu [Pa] has shown that HnH and H2
O are QI-rigid,

and hence AI-rigid. Combining work of Hamenstadt [Ha] and Besson-Courtois-
Gallot [BCG], we also know that uniform lattices in the semi-simple Lie groups
Sp(n,1) and F4,−20 are marked length spectrum rigid within the class of actions
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on negatively curved manifolds of the same dimension as the corresponding sym-
metric space.

Following the notation in our Theorem 1.2, we let Y = (M̃, g̃0) denote
the symmetric space, and X = (M̃, g̃1) the universal cover with the exotic met-
ric. Proceeding as in the Main Theorem, we assume there is an almost-isometry
ϕ : X → Y . One then uses AI-rigidity of the symmetric space Y to construct
a new geometric G-action on Y , so that that the two G-actions have the same
marked length spectrum (Lemma 3.8). Finally, we apply marked length rigidity
for the G-action on the symmetric space Y (rather than on the symmetric space
X) to obtain a coarsely onto isometric embedding of Y into X. Since X, Y are
complete Riemannian manifolds of the same dimension, such a map provides an
isometry between X and Y . Thus, X is also a symmetric space, and so (M,g1)
had to also be locally symmetric, as claimed. ❐

Application—Fuchsian buildings. We start by quickly recalling some of
the terminology concerning Fuchsian buildings, which were first introduced by
Bourdon [Bo2]. These are two-dimensional polyhedral complexes that satisfy a
number of axioms. First, we start with a compact convex hyperbolic polygon
R ⊂ H2

R, with each angle of the form π/mi for some mi associated with the
vertex (mi ∈ N, mi ≥ 2). Reflection in the geodesics extending the sides of R
generates a Coxeter groupW , and the orbit of R underW gives a tessellation ofH2

R.
Cyclically labeling the vertices of R by the integers {1}, . . . , {k} (so that the ith

vertex has angle π/mi), and the corresponding edges by {1,2}, {2,3}, . . . , {k,1},
one can apply the W action to obtain a W -invariant labeling of the tessellation of
H2
R; this labeled polyhedral 2-complex will be denoted AR, and called the model

apartment.
A polygonal 2-complex X is called a two-dimensional hyperbolic building if

it contains a vertex labeling by the integers {1, . . . , k}, along with a distinguished
collection of subcomplexesA called the apartments. The individual polygons in X
will be called chambers. The complex is required to have the following properties:

• Each apartment A ∈ A is isomorphic, as a labeled polygonal complex, to
the model apartment AR.

• Given any two chambers in X, one can find an apartment A ∈ A that
contains the two chambers,

• Given any two apartments A1, A2 ∈ A that share a chamber, there is an
isomorphism of labeled 2-complexes ϕ : A1 → A2 that fixes A1 ∩A2.

If in addition each edge labeled {i, i+ 1} has a fixed number qi of incident poly-
gons, then X is called a Fuchsian building. For a Fuchsian building, the combina-
torial axioms force some additional structure on the links of vertices: these graphs
must be generalized m-gons in the sense of Tits. Work of Feit and Higman [FH]
then implies that eachmi must lie in the set {2,3,4,6,8}. Note that making each
polygon in X isometric to R via the label-preserving map produces a CAT(−1)
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metric on X. However, a given polygonal 2-complex might have several metriza-
tions as a Fuchsian building: these correspond to varying the hyperbolic metric
on R while preserving the angles at the vertices. Any such variation induces a
new CAT(−1) metric on X. The hyperbolic polygon R is called normal if it has
an inscribed circle that touches all its sides—if we fix the angles of a polygon to
be {π/m1, . . . , π/mk}, there is a unique normal hyperbolic polygon with those
given vertex angles. We can now state a rigidity result for Fuchsian buildings.

Corollary 3.9. LetG be a group acting freely and cocompactly on a combinatorial
Fuchsian building X. Let d0 be the metric on X/Γ where each chamber is the normal
hyperbolic polygon, and let d1 be a locally CAT(−1) metric, where each polygon has
a Riemannian metric of curvature ≤ 1 with geodesic sides. Then, the universal covers
(X, d̃0) and (X, d̃1) are almost-isometric if and only if they are isometric, in which
case the isometry can be chosen to be equivariant with respect to the G-actions, and
hence (X/Γ , d0) is isometric to (X/Γ , d1).

Proof. The argument for this is similar to the proof of Corollary 1.3. Let

ϕ : (X, d̃0) → (X, d̃1) be the almost-isometry between the universal covers. For

the Fuchsian building (X, d̃0), Xie [Xi] has established QI-rigidity (and hence AI-

rigidity). It is important here that, for the d̃0-metric, all polygons are normal—
otherwise QI-rigidity does not hold. Using the AI-rigidity, we can construct a new

geometric Γ -action on (X, d̃0). The Γ -actions on (X, d̃0) and (X, d̃1) now have
the same marked length spectrum (see Lemma 3.8). But Constantine and Lafont

[CL] have established that the metric d̃0 is marked length spectrum rigid within

the class of metrics described in the statement of our corollary (thus including d̃1).
This establishes the corollary. ❐

4. AIS AND VOLUME GROWTH

In this section, we establish Theorem 1.4. We start by reminding the reader
of a standard packing/covering argument, which allows us to reinterpret volume
growth entropy in terms of quantities we can estimate.

Lemma 4.1. Let M be a Riemannian cover of a compact manifold. Fix a base-
point p ∈ M , a parameter s > 0, and define the counting function N(s, r) to be the
minimal cardinality of a covering of Bp(r) by balls of radius s. Then, for any choice
of s, we have that

hvol(M) = lim
r→∞

ln(N(s, r))
r

.

Proof. Let Vs < ∞ be the maximal volume of a ball of radius s, and vs > 0
be the minimal volume of a ball of radius s/2 (so, clearly, vs < Vs). A maximal
packing of Bp(r) by disjoint balls of radius s/2 induces a covering of Bp(r) by
balls of radius s with the same centers. We thus obtain the following bounds:

Vol(Bp(r))

Vs
≤ N(s, r) ≤ Vol(Bp(r))

vs
.
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Since both Vs , vs are fixed real numbers, taking the log and the limit as r → ∞
yields the lemma. ❐

Now with Lemma 4.1 in hand, the proof is straightforward. We will use the
almost-isometry to relate the counting function N1(s, r) for the manifold M1 to
the counting function N2(s

′, r ′) for the manifold M2.
Letϕ : M1 → M2 be the C-almost-isometry. Choose a basepoint p ∈ M1, and

let q = ϕ(p) be the basepoint in M2. Consider the counting function N1(1, r )
for the manifold M1. For a given r , let {p1, . . . , pN} (where N := N1(1, r )) be
the centers of the balls of radius 1 for the minimal covering of Bp(r), and let
qi := ϕ(pi) be the corresponding image points in M2.

The covering of Bp(r) by the set of balls {Bpi(1)}Ni=1 maps over to a covering
{ϕ(Bpi(1))}Ni=1 of the setϕ(Bp(r)). Sinceϕ is an almost-isometry with additive
constant C, we have for each i that

ϕ(Bpi(1)) ⊆ Bqi(1+ C),

and hence we also have a covering {Bqi(1+C)}Ni=1 of the setϕ(Bp(r)) by metric
balls centered at {q1, . . . , qN}.

Next, we note that the C-neighborhood of the set ϕ(Bp(r)) contains the set
Bq(r − 2C). Indeed, we know that ϕ(M1) is C-dense in M2, so given an arbitary
point x ∈ Bq(r − 2C), we can find a point y ∈ M1 with the property that
d2(ϕy,x) < C. Now assume y lies outside of Bp(r). Then, d1(y,p) > r ,
which would imply

d2(ϕy,q) = d2(ϕy,ϕp) ≥ d1(y,p)− C > r − C.

Since d2(ϕy,x) < C, the triangle inequality forces d2(x, q) > r − 2C, a contra-
diction. Thus, we must have y ∈ Bp(r).

Since the C-neighborhood of ϕ(Bp(r)) contains the set Bq(r − 2C), and we
have a covering {Bqi(1+ C)}Ni=1 of the set ϕ(Bp(r)) by metric balls, we obtain a
corresponding covering {Bqi(1+ 2C)}Ni=1 of the set Bq(r − 2C) by balls of radius
1+ 2C. This implies that

N1(1, r ) ≥ N2(1+ 2C, r − 2C).

Taking the log and the limit as r → ∞, and taking into account Lemma 4.1, we
obtain the pair of inequalities

h+vol(M1) ≥ h+vol(M2), h−vol(M1) ≥ h−vol(M2).

Applying the same argument to a coarse inverse almost-isometry yields the pair of
reverse inequalities, completing the proof of Theorem 1.4.
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Remark 4.2. In the special case where the Mi both have metrics of bounded
negative sectional curvature, and support compact quotients, one can give an al-
ternate proof of Theorem 1.4 by exploiting the metric structures on the bound-
aries at infinity. Indeed, fixing a basepoint p ∈ M1 and corresponding basepoint
q := ϕ(p), one can construct metrics on the boundaries at infinity ∂∞M1 and
∂∞M2. It follows then from work of Bonk and Schramm that the almost-isometry
ϕ : M1 → M2 induces a bi-Lipschitz homeomorphism ϕ∞ : ∂∞M1 → ∂∞M2

(see [BS, proof of Theorem 6.5]). In particular, the two boundaries have iden-
tical Hausdorff dimension. But Otal and Peigné [OP] have shown that for such
manifolds, the Hausdorff dimension of the boundary at infinity coincides with
the topological entropy of the geodesic flow on the compact quotient of the Mi
(which by Manning [Ma] coincides with the volume growth entropy of the Mi).

Application—rigidity results. We now give a proof of Corollary 1.7.

Proof. We deal with each of the various cases separately.

Case (1). The manifold M is finitely covered by the 2-torus T 2. Lifting the
metrics g0, g1 to this finite cover, we see that it is enough to deal with the case
where M = T 2. Then, the metrics g̃0, g̃1 can be viewed as a pair of Z2-invariant
metrics on R2. Associated with these two periodic metrics, we have a pair of
Banach norms on R2 defined via

‖v‖i := lim
r→∞

di(0, rv)
r

,

where di is the distance function associated with the metric gi. Burago [Bu]
showed that the identity map on R2 provides an almost-isometry from the Banach
norm to the original periodic metric; that is, there is a constant C with the property
that, for all vectors v,w ∈ Rn, we have

∣∣‖v −w‖i − di(v,w)
∣∣ < C.

We note there is an alternate way to view the Banach norm: consider the pointed
space (R2,0) with the sequence of metrics given by di/n (n ∈ N), and take
the ultralimit. The resulting pointed space, the asymptotic cone, is topologically
(R2,0), equipped with the corresponding Banach norm (regardless of the choice
of ultrafilter). We denote by Fi the unit ball, centered at 0, in the Banach norm
‖ · ‖i.

Now assume we have an almost-isometry ϕ : (R2, d0) → (R2, d1). Then,
passing to the asymptotic cones, we obtain an isometry

ϕ̂ : (R2,‖ · ‖0)→ (R2,‖ · ‖1)

fixing 0, and sending the unit ball F0 to the unit ball F1. Since the geodesics in
any Banach norm are straight lines, the map ϕ̂ is a linear map. Now, for the flat
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metric g̃0, we know that the associated Banach norm is a Euclidean norm (i.e.,
the unit ball F0 is an ellipsoid). Since ϕ̂ is linear, we have that ϕ̂(F0) = F1 is also
an ellipsoid, and hence that ‖ · ‖1 is a (smooth) Euclidean norm.

By Bangert’s [Ba, Theorem 5.3], the periodic minimal geodesics of (T 2, g1) in
any nontrivial free homotopy class of T 2 foliate T 2. By Innami [In] (or [Ba, proof
of Theorem 6.1]), the metric g1 must also be flat.

Cases (2)–(4). By our Theorem 1.4, we have hvol(g̃0) = hvol(g̃1), which imme-
diately implies that hvol(g̃0) · Vol(g0) ≥ hvol(g̃1) · Vol(g1). Locally symmetric
metrics uniquely minimize the functional hvol(−)n · Vol(−) in case (2) by Katok
[Ka], in case (3) by Besson, Courtois, and Gallot [BCG], and in the conformal
class in case (4) by Knieper [Kn]. In each of these cases, we conclude that g̃1 = λg̃0

for some 0 < λ < ∞. Corollary 1.5 implies λ = 1, completing the proof of Cases
(2)–(4).

Case (5). Let us briefly specify the metric g0—for this metric, the individual
negatively curved symmetric spaces factors are scaled as in [CF, Section 2]. Con-
nell and Farb have now shown that the metric g0 is the unique minimizer for
the volume growth entropy on the space of locally symmetric metrics on M . In
[CF, Theorem A], they then proceed to show that g0 is the unique minimizer
of the functional hvol(−)n · Vol(−) on the space of all metrics on M . The same
argument as in cases (2)–(4) gives the desired conclusion. ❐

Application—the case of metric trees. While we have primarily focused on
Riemannian manifolds, some of our results hold in greater generality. For instance,
the proof of Theorem 1.4 did not make any particular use of the fact that our
metric was Riemannian. In fact, the very same proof yields the following more
general result. For (X,d) a metric space of Hausdorff dimension s, denote by H s

the s-dimensional Hausdorff measure, and define the upper/lower exponential
volume growth rate to be

h+(X,d) := lim sup
r→∞

ln(H s(Bp(r)))

r

h−(X,d) := lim inf
r→∞

ln(H s(Bp(r)))

r
,

where Bp(r) is the metric ball of radius r centered at a fixed basepoint p ∈ X
(these are independent of the choice of basepoint). In the case where we have
h+(X,d) = h−(X,d), we denote the common value by h(X,d), which we call
the exponential volume growth rate of X. The proof of Theorem 1.4 in fact
establishes the following result.

Theorem 4.3. Let (X,d1), (X,d2) be a pair of metric spaces of Hausdorff di-
mension s, and assume that there are two-sided bounds on the s-dimensional Haus-
dorff measure of balls of any given radius. Then, if (X,d1) is almost isometric to
(X,d2), we must have h+(X,d1) = h+(X,d2), and h−(X,d1) = h−(X,d2).
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For an easy example illustrating this more general setting, consider the setting

of connected metric graphs. The one-dimensional Hausdorff measure of a d̃-ball
of radius r in the graph will then be the sum of the edge lengths of the (portions
of ) edges inside the ball. If one imposes a lower bound on the length of edges, and
an upper bound on the degree of vertices, this easily leads to two-sided bounds
on the one-dimensional Hausdorff measure of balls of any given radius. Thus,
Theorem 4.3 applies to this class of metric spaces.

Let us give an application of this: consider a finite combinatorial graph X,
with the property that each vertex has degree ≥ 3. The universal cover of X
is then a combinatorial tree T . One can metrize X in many different ways, by
assigning lengths to each edge, and making each edge isometric to an interval of
the corresponding length. We let M(X) be the space of such metrics. Any such

metric d lifts to give a π1(X)-invariant metric d̃ on the tree T , with lower bounds
on the edge lengths and upper bounds on the degree of vertices. In this special

case, one has that h+(T , d̃) = h−(T , d̃), and we will denote the common value by

hvol(d). Then, Theorem 4.3 tells us that, for d0, d1 ∈M(X) arbitrary, if (T , d̃0)

is almost-isometric to (T , d̃1), then hvol(d0) = hvol(d1).
We now view hvol as a function on the spaceM(X), an open cone inside some

large Rn (where n is the number of edges in X). It is easy to see, from the scaling
property of Hausdorff dimension, that

hvol(α · d) = 1
α
hvol(d).

As such, it is reasonable to impose a normalizing condition (for example, letting
M1(X) ⊂ M(X) be the subspace of metrics whose sum of lengths is = 1). The
behavior of hvol on the subspace M1(X) was studied by Lim in her thesis, and
she showed [Li] there is a unique metric d0 that minimizes hvol—moreover, she
gave an explicit computation of this metric in terms of the degrees at the various
vertices of X. Some related work was done by Kapovich and Nagnibeda [KN]
and by Rivin [Ri]. In conjunction with Lim’s result, our Theorem 4.3 implies the
following result.

Corollary 4.4. Let X be a combinatorial graph, d0 the metric produced by Lim,
and d1 ∈ M1(X) any metric on X distinct from d0. Then, (T , d̃0) and (T , d̃1) are
not almost isometric.

Remark 4.5. The reader will undoubtedly wonder as to whether some similar
result holds for the Fuchsian buildings discussed in Section 3. While Theorem 4.3
applies to Fuchsian buildings (of course, using two-dimensional Hausdorff mea-
sure, and appropriate constraints on the metrics), the behavior of the functional
hvol on the corresponding moduli space of metrics is much more mysterious. In
particular, (local) minimizers of the functional are not known, and indeed unique-
ness of such a minimizer is not known (see Ledrappier and Lim [LL] for some
work on this question).
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5. CONCLUDING REMARKS

Much of the work in this paper was motivated by the following question.

Question 5.1. Let M be an aspherical manifold with universal cover M̃. Can
one find a pair of Riemannian metrics g,h on M , whose lifts to the universal cover
(M̃, g̃), (M̃, h̃) are almost isometric but not isometric?

Our results in this paper give a number of examples (see Corollaries 1.3, 1.6,
1.7) of pairs of metrics on compact manifolds whose lifts to the universal cover
are quasi-isometric, but not almost isometric. Thus, any QI between the universal
covers must have multiplicative constant greater than 1. One can ask whether
there is a “gap” in the multiplicative constant. We suspect such gaps do not exist
in general.

Question 5.2. Can one find an aspherical manifoldM and a pair of Riemannian
metrics g,h, with the property that the universal covers are (Ci, Ki)-quasi-isometric
via a sequence of maps fi, where Ci → 1, but are not almost-isometric?

In the special case where M is a higher genus surface, and the metrics under
consideration are negatively curved, one has complete answers to both of the above
questions (see [LSvL]).

In a different direction, we saw in our Theorem 1.4 that the rate of expo-
nential growth is an almost-isometry invariant (though it is not a quasi-isometry
invariant). At the other extreme, universal covers of infra-nil manifolds, equipped
with the lift of a metric, are known to have polynomial growth. More precisely,
Vol(B(r)) ∼ C(g) · rk where the integer k ∈ N depends only on M , but the
constant C(g) depends on the chosen metric g on M . One can ask the following
question.

Question 5.3. Let M be an infra-nil manifold, and g,h a pair of Riemannian
metrics on M . Denote by C(g), C(h) ∈ (0,∞) the coefficient for the polynomial
growth rate of balls in M̃ . If (M̃, g̃) is almost isometric to (M̃, h̃), does it follow that
C(g) = C(h)?

It is easy to see that the estimates appearing in our proof of Theorem 1.4 are
too crude to deal with the coefficient of polynomial growth. In the special case
where (M,g) is a flat surface, we have an affirmative answer to Question 5.3: our
Corollary 1.7 implies that h must also be flat, from which it is immediate that
C(g) = C(h). Observe that the exponential volume growth rate can alternatively
be interpreted as either an isoperimetric profile, or a filling invariant (in the sense
of Brady and Farb [BF]). One could also ask whether one can use these alternate
viewpoints to define some new almost-isometry invariants.

We have focused on almost-isometric metrics on the universal cover of a fixed
topological manifold M . We could also ask similar questions for a pair of closed
smooth manifolds (Nn, g), (Mm, h) where n ≤m. For instance, can one find an
almost-isometric embedding (Ñ, g̃) → (M̃, h̃) that is not at finite distance from
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an isometric embedding? In the case where the universal covers are isometric to ir-
reducible (Euclidean) buildings, or to irreducible non-positively curved symmetric
spaces of equal rank r > 1, recent work of Fisher and Whyte establishes that ev-
ery almost-isometric embedding is at finite Hausdorff distance from an isometric
embedding (see [FW, Corollary 1.8]).

Finally, while our purpose in this paper was mostly the study of spaces up to
almost-isometry, one can ask similar questions at the level of finitely generated
groups. One says that a pair of finitely generated groups G,H are almost isometric
provided he can find finite symmetric generating sets S ⊂ G, T ⊂ H so that the
corresponding metrics spaces (G,dS) and (H,dT) are almost isometric. A basic
problem here is to resolve the following problem.

Question 5.4. Let G, H be a pair of quasi-isometric groups. Must they be almost
isometric?

For instance, it is easy to see that commensurable groups are almost isome-
tric. In general, one suspects that the answer should be “no,” though again ex-
amples seem elusive. The corresponding question for bi-Lipschitz equivalence
was answered in the negative by Dymarz [Dy]. One aspect which seems to make
the almost-isometric question harder than the corresponding bi-Lipschitz ques-
tion lies in the fact that distinct word metrics on a fixed finitely generated group
G are not a priori almost isometric to each other, whereas they are always bi-
Lipschitz equivalent. This means that understanding groups up to AI involves
understanding all word metrics. For instance, let us specialize to the case where
the groups G,H have exponential growth. Then, by varying the possible gener-
ating sets for G,H, and looking at the corresponding exponential volume growth
rate, we obtain the growth spectra Spec(G),Spec(H) ⊂ (0,∞). An affirmative an-
swer to 5.4 would imply, by Theorem 4.3, that when G,H are quasi-isometric,
Spec(G)∩ Spec(H) ≠∅, a result that seems unlikely to be true in full generality.
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[OP] J. P. OTAL AND M. PEIGNÉ, Principe variationnel et groupes kleiniens, Duke Math. J. 125

(2004), no. 1, 15–44 (French, with English and French summaries). http://dx.doi.org/10.

1215/S0012-7094-04-12512-6. MR2097356 (2005h:37053).
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