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Abstract. Let M be a complete locally compact CAT(0)-space, and X an ultra-
limit of M . For γ ⊂M a k-dimensional flat, let γω be the k-dimensional flat in X
obtained as an ultralimit of γ. In this paper, we identify various conditions on γω

that are sufficient to ensure that γ bounds a (k + 1)-dimensional half-flat.
As applications we obtain (1) constraints on the behavior of quasi-isometries be-

tween locally compact CAT(0)-spaces, (2) constraints on the possible non-positively
curved Riemannian metrics supported by certain manifolds, and (3) a correspon-
dence between metric splittings of a complete, simply connected non-positively
curved Riemannian manifolds, and metric splittings of its asymptotic cones. Fur-
thermore, combining our results with the Ballmann, Burns-Spatzier rigidity theo-
rem and the classic Mostow rigidity, we also obtain (4) a new proof of Gromov’s
rigidity theorem for higher rank locally symmetric spaces.

1. Introduction.

A k-flat in a CAT(0)-space X is defined to be an isometrically embedded copy of
the standard Rk, k ≥ 1. In the case where k = 1, a k-flat is just a geodesic in X.
By a k-dimensional half-flat, k ≥ 1, in a CAT(0) space, we mean an isometric copy
of Rk−1 × R+ (where R+ = [0,∞) is the usual half line). For example, when k = 1,
a half-flat is just a geodesic ray in X. In the study of CAT(0)-spaces, a key role is
played by the presence of flats and half-flats of higher rank, i.e. satisfying k ≥ 2. In
the present paper, our goal is to identify some coarse geometric conditions which are
sufficient to ensure the existence of half-flats in a CAT(0)-space X. We provide three
results towards this goal, as well as an example showing that our results are close to
optimal.

Before stating our main results, let us recall that an asymptotic cone of a metric
space X is a new metric space, which encodes the large-scale geometry of X, when
viewed at an increasing sequence of scales. A precise definition, along with some
basic properties of asymptotic cones, is provided in our Section 2. For a k-flat γω
inside the asymptotic cone X of a CAT(0)-space, we introduce (see Section 3) the
notion of a flattening sequence of maps for γω. These are a sequence of maps from a
k-disk Dk into X, whose images are getting further and further away from γω, and
whose projections onto γω satisfy certain technical conditions. The main point of
such flattening sequences is that we can prove:
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Theorem A (Flattening sequences⇒ half flats). Let M be a locally compact CAT(0)-
space and let X be an asymptotic cone of M . Let γ be a k-flat of M (possibly a
geodesic) and let γω be its limit in X. Suppose that there exists a flattening sequence
of maps for γω. Then the original k-flat γ bounds a (k + 1)-half-flat in M .

The reader will readily see that, in the special case where γω itself bounds a half-
flat, it is very easy to construct a flattening sequence. So an immediate consequence
of Theorem A is:

Theorem B (Half-ultraflat ⇒ half-flat). Let M be a locally compact CAT(0)-space
and let X be an asymptotic cone of M . Let γ be a k-flat of M (possibly a geodesic)
and let γω be its limit in X. If γω bounds a half-flat, then γ itself must bound a
half-flat.

We also provide an example showing that, in the context of locally compact CAT(0)-
spaces, the analogue of Theorem B with “half-flats” replaced by “flats” is false.

In Section 4, we weaken the hypothesis of Theorem B, by replacing a (k + 1)-flat
in the ultralimit by a bi-Lipschitzly embedded (k+ 1)-flat. We compensate for this by
requiring the original flat to satisfy some mild periodicity requirement, and establish:

Theorem C (Bilipschitz half-ultraflat + periodicity⇒ half-flat). Let M be a locally
compact CAT(0)-space and let X be an asymptotic cone of M . Let γ be a k-flat of M
(possibly k = 1) and let γω its limit in X. Suppose that there exists G < Isom(M)
that acts co-compactly on γ.

If there is a bi-Lipschitz embedding Φ : Rk×R+ → X, whose restriction to Rk×{0}
is a homeomorphism onto γω, then γ bounds a (k + 1)-half-flat in M .

In Section 5, we provide various geometrical applications of our main results. These
include:

• constraints on the possible quasi-isometries between certain locally CAT(0)-
spaces.
• restrictions on the possible locally CAT(0)-metrics that are supported by cer-

tain locally CAT(0)-spaces.
• a proof that splittings of simply connected non-positively curved Riemannian

manifolds correspond exactly with metric splittings of their asymptotic cones.
• a new proof of Gromov’s rigidity theorem [BGS]: a closed higher rank locally

symmetric space supports a unique metric of non-positive curvature (up to
homothety).

In January 2008, the authors posted a preliminary version [FrLa] of this work on
the arXiv, which contained special cases of Thereoms A, B, C, under the additional
hypothesis that the flats be 2-dimensional, and the ambient space M was a Rie-
mannian manifold of non-positive sectional curvature (rather than a CAT(0)-space).
Shortly thereafter, Misha Kapovich was kind enough to inform the authors of his
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paper with B. Leeb [KaL], in which (amongst other things) they proved a version of
Theorem C in the special case of 2-dimensional flats, and where the ambient space
M was an arbitrary locally compact CAT(0)-space. Their paper provided the mo-
tivation for us to write the present paper, which includes a generalization to higher
dimensional flats of the result in [KaL, Prop. 3.3].
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2. Background material on asymptotic cones.

In this section, we provide some background on ultralimits and asymptotic cones
of metric spaces. Let us start with some basic reminders on ultrafilters.

Definition. A non-principal ultrafilter on the natural numbers N is a collection U
of subsets of N, satisfying the following four axioms:

(1) if S ∈ U , and S ′ ⊃ S, then S ′ ∈ U ,
(2) if S ⊂ N is a finite subset, then S /∈ U ,
(3) if S, S ′ ∈ U , then S ∩ S ′ ∈ U ,
(4) given any finite partition N = S1 ∪ . . . ∪ Sk into pairwise disjoint sets, there

is a unique Si satisfying Si ∈ U .

Zorn’s Lemma guarantees the existence of non-principal ultrafilters. Now given a
compact Hausdorff space X and a map f : N → X, there is a unique point fω ∈ X
such that every neighborhood U of fω satisfies f−1(U) ∈ U . This point is called
the ω−limit of the sequence {f(i)}; we will occasionally write ω lim{f(i)} := fω. In
particular, if the target space X is the compact space [0,∞], we have that fω is a
well-defined real number (or ∞).

Definition. Let (X, d, ∗) be a pointed metric space, XN the collection of X-valued
sequences, and λ : N→ (0,∞) ⊂ [0,∞] a sequence of real numbers satisfying λω =∞.
Given any pair of points {xi}, {yi} in XN, we define the pseudo-distance dω({xi}, {yi})
between them to be fω, where f : N → [0,∞) is the function f(k) = d(xk, yk)/λ(k).
Observe that this pseudo-distance takes on values in [0,∞].
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Next, note that XN has a distinguished point, corresponding to the constant se-
quence {∗}. Restricting to the subset of XN consisting of sequences {xi} satisfying
dω({xi}, {∗}) <∞, and identifying sequences whose dω distance is zero, one obtains
a genuine pointed metric space (Xω, dω, ∗ω), which is called an asymptotic cone of
the pointed metric space (X, d, ∗).

We will usually denote an asymptotic cone by Cone(X). The reader should keep
in mind that the construction of Cone(X) involves a number of choices (basepoints,
sequence λi, choice of non-principal ultrafilters) and that different choices could give
different (non-homeomorphic) asymptotic cones (see the papers [TV], [KSTT], [OS]).
However, in the special case where X = Rk, all asymptotic cones are isometric to Rk

(i.e. we have independence of all choices).
We will require the following facts concerning asymptotic cones of non-positively

curved spaces:

• if (X, d) is a CAT(0)-space, then Cone(X) is likewise a CAT(0)-space,
• if φ : X → Y is a (C,K)-quasi-isometric map, then φ induces a C-bi-Lipschitz

map φω : Cone(X)→ Cone(Y ),
• if γ ⊂ X is a k-flat, then γω := Cone(γ) ⊂ Cone(X) is likewise a k-flat,
• if {ai}, {bi} ∈ Cone(X) are an arbitrary pair of points, then the ultralimit of

the geodesic segments aibi gives a geodesic segment {ai}{bi} joining {ai} to
{bi}.

Concerning the second point above, we remind the reader that a (C,K)-quasi-isometric
map φ : (X, dX) → (Y, dY ) between metric spaces is a (not necessarily continuous)
map having the property that:

1

C
· dX(p, q)−K ≤ dY (φ(p), φ(q)) ≤ C · dX(p, q) +K.

We also comment that, in the second point above, the asymptotic cones of X, Y ,
have to be taken with the same scaling sequence and the same ultrafilters.

Lemma 2.1 (Translations on asymptotic cone). Let X be a geodesic space, γ ⊂ X a
k-flat, and γω ⊂ Cone(X) the corresponding k-flat in an asymptotic cone Cone(X)
of X. Assume that there exists a subgroup G < Isom(X) with the property that G
leaves γ invariant, and acts cocompactly on γ. Then for any pair of points p, q ∈ γω,
there is an isometry Φ : Cone(X)→ Cone(X) satisfying Φ(p) = q.

Proof. Let {pi}, {qi} ⊂ γ ⊂ X be sequences defining the points p, q respectively.
Since G leaves γ invariant, and acts cocompactly on γ, there exists elements gi ∈ G
with the property that for every index i, we have d(gi(pi), qi) ≤ R.

Now observe that the sequence {gi} of isometries of X defines a self-map (defined
componentwise) of the space XN of sequences of points in X. Let us denote by gω this
self-map, which we now proceed to show induces the desired isometry on Cone(X).
First note that it is immediate that gω preserves the pseudo-distance dω on XN,
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and has the property that dω({gi(pi)}, {qi}) = 0. So to see that gω descends to an
isometry of Cone(X), all we have to establish is that for {xi} a sequence satisfying
dω({xi}, ∗) <∞, the image sequence also satisfies dω({gi(xi)}, ∗) <∞. But we have
the series of equivalences:

dω({xi}, ∗) <∞ ⇐⇒ dω({xi}, {pi}) <∞

⇐⇒ dω({gi(xi)}, {gi(pi)}) <∞
⇐⇒ dω({gi(xi)}, {qi}) <∞
⇐⇒ dω({gi(xi)}, ∗) <∞

where the first and last equivalences come from applying the triangle inequality in the
pseudo-metric space (XN, dω), and the second and third equivalences follow from our
earlier comments. We conclude that the induced isometry gω on the pseudo-metric
space XN of sequences leaves invariant the subset of sequences at finite distance from
the distinguished constant sequence, and hence descends to an isometry of Cone(X).
Finally, it is immediate from the definition of the isometry gω that it will leave γω
invariant, as each gi leaves γ invariant. This concludes the proof.

�

Let us now specialize the previous Lemma to the case of geodesics (i.e. k = 1).
Observe that any element g ∈ Isom(X) as in the previous Lemma gives rise to a
Z-action on X leaving γ invariant. It is worth pointing out that the Lemma does not
state that the Z-action on X induces an R-action on Cone(X). The issue is that for
each r ∈ R, there is indeed a corresponding isometry of Cone(X), but these will not
in general vary continuously with respect to r (as can already be seen in the simple
case where X = H2).

3. Flattening sequences and Half-flats

In this section, we will provide a proof of Theorem A. Our goal is to show how
certain sequences of maps from the disk to the asymptotic cone of a CAT(0)-space
M can be used to construct flats in M . We recall that ω denotes the ultrafilter used
to construct X = Cone(M), that λj denotes the sequence of scaling factors, and
that ∗ denotes both the base-point of M , and the basepoint of X represented by the
constant sequence {∗}.

We are given a k-flat γ ⊂M (possibly a geodesic), and we have the corresponding
k-flat γω ⊂ X in the asymptotic cone X. By abuse of notation, we will use π to
denote both the nearest point projection π : M → γ, as well as the nearest point
projection π : X → γω. We can now make the:

Definition (Flattening sequences). We say that γω has a flattening sequence provided
there exists a sequence of continuous maps (fr)r∈N from the k-disk Dk to X such that

(1) The diameter of fr(Dk) is smaller than one.
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(2) The image of π ◦ fr contains an open neighborhood of the base-point ∗.
(3) The restriction of π ◦ fr to ∂Dk = Sk−1 does not contain ∗, and represents a

non-zero element in the homotopy group πk−1(γω \ {∗}) ∼= Z.
(4) There exists a constant D > 0 with the property that

d(fr(Dk), γω) = inf
x∈Dk

d(fr(x), γω) ≥ D · r.

The sequence of maps (fr)r∈N will be called a flattening sequence for γω.

We now assume that the k-flat γω has a flattening sequence consisting of maps
fr : Dk → X. To establish Theorem A, we need to prove that γ bounds a (k +
1)-dimensional half-flat. In order to do this, we have to construct geodesic rays
emanating from various points on γ.

Each such ray will be constructed as a limit of a sequence of longer and longer
geodesic segments, originating from a fixed point on γ, and terminating at a sequence
of suitably chosen points in the space M . In order to select this suitable sequence of
points in M , we start by noting that each of the maps fr : Dk → X in our flattening
sequence can be obtained as an ultralimit of a sequence of maps fr,j : Dk → M (see
for instance Kapovich [Ka]). The desired collection of points will be carefully chosen
to lie on the image of some of the maps fr,j. The precise selection process is contained
in the following:

Assertion: Let us be given an arbitrary finite (m+1)-tuple of points {P 0, . . . , Pm} ⊂
γ. Then for each r ∈ N, we can choose indices jr ∈ N, and (m + 1)-tuples of points
{x0

r,jr , . . . , x
m
r,jr} ⊂ fr,jr

(
Int(Dk)

)
⊂M with the property that:

(1) For each r, and 0 ≤ i ≤ m, we have that π(xir,jr) = P i.
(2) For any i, i′

d(xir,jr , x
i′
r,jr)

λjr
< 2.

(3) For any i

d(P i, xir,jr)

r · λjr
> D/2.

We temporarily delay the proof of the Assertion, and focus on explaining how our
Theorem A can be deduced from this statement. We first recall some terminology: we
say that two half-rays η1 and η2 bound a flat strip, provided there exists an isometric
embedding of R+× [0, a] (for some a > 0) into M , with the property that η1 coincides
with R+ × {0} and η2 coincides with R+ × {a}. For a fixed ray η, we will denote
by Par(η) ⊂ M the union of all geodesic rays in M which, together with η, jointly
bound a flat strip. Our first step is to use the Assertion to show:
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Claim 1: Given any finite set of points {P 0, . . . , Pm} ⊂ γ, there exist a collection
of geodesic rays {η0, . . . , ηm}, satisfying:

• for each s, we have that ηi originates at X i, and satisfies π(ηi) = P i.
• each pair of geodesic rays ηi, ηj jointly bound a flat strip.

Proof (Claim 1). This can be seen as follows: first, apply the Assertion to the finite
set of points, obtaining a sequence of (m+ 1)-tuples of points {x0

r,jr , . . . , x
m
r,jr} ⊂M .

Now for each i, consider the sequence of geodesic segments ηir, which joins the point
X i to the point xir,jr . Since M is locally compact, we can extract a subsequence which
simultaneously converges for all the 0 ≤ i ≤ m. We define the limiting geodesic rays
to be our ηi. So to complete the proof of the Claim, we just need to verify that
these ηi have the desired property. By construction, we know that each of the ηir are
geodesic segments originating at P i, which immediately gives us the corresponding
property for ηi. Likewise, we have that each of the geodesic segments ηir project to
the point P i, which yields the same statement for ηi. Note that this implies that, for
any t > 0, ηi is the minimal length path from ηi(t) to γ. In particular, the angle (in
the CAT(0) sense, see [BrHa]) of ηi with γ must be ≥ π/2.

So we now need to establish the second property: that ηi and ηj jointly bound
a flat strip. Let us set d = d(P i, P j); we start by showing that for t ≥ 0, we
have d

(
ηi(t), ηj(t)

)
= d. Since the geodesic rays are limits of the geodesic segments,

this is equivalent to showing limr→∞ d
(
ηir(t), η

j
r(t)

)
= d. From condition (1) in the

Assertion, and the fact that the projection map is distance non-increasing, we obtain
the inequality:

lim
r→∞

d
(
ηir(t), η

j
r(t)

)
≥ lim

r→∞
d
(
ηir(0), ηjr(0)

)
= d(P i, P j) = d

For the reverse inequality, we need to estimate from above the distance between ηir(t)
and ηjr(t). To do this, we first truncate the longer of the two geodesic segments ηir
and ηjr to have length equal to the smaller one. We will denote by η̄ir, η̄

j
r the new pair

of equal length geodesics, and let L denote their common length. Since we are trying
to estimate from above the distance between the points η̄ir(t) and η̄jr(t), convexity of
the distance function in CAT(0)-spaces yields:

d
(
η̄ir(t), η̄

j
r(t)

)
≤

(
1− t

L

)
· d

(
η̄ir(0), η̄jr(0)

)
+
t

L
d
(
η̄ir(L), η̄jr(L)

)
But from condition (3) in the Assertion, we have that L > r · λjr · D/2. Fur-

thermore, from condition (2) in the Assertion, and an application of the triangle
inequality, we obtain that d

(
η̄ir(L), η̄jr(L)

)
< 4λjr + d. Substituting these expressions

(along with d
(
η̄ir(0), η̄jr(0)

)
= d) into our inequality, and simplifying, we get:

d
(
η̄ir(t), η̄

j
r(t)

)
≤ d+ 4t · λjr

L
< d+ 4t · λjr

rλjr ·D/2
= d+

8t

D · r
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where we recall that d, t,D are constants. Now taking the limit as r →∞, we obtain
that limr→∞ d

(
η̄ir(t), η̄

j
r(t)

)
≤ d, as desired.

This verifies that the two geodesic rays ηi, ηj remain at a constant distance apart, in
the sense that d

(
ηi(t), ηj(t)

)
is a constant function of t. Furthermore, from our earlier

discussion, we have that the geodesics segment joining P i = ηi(0) to P j = ηj(0) forms
an angle ≥ π/2 with each of the geodesic rays ηi, ηj, and hence both these angles
must actually be = π/2. But in a CAT(0) space, this forces the geodesics ηi and ηj

to bound a flat strip (see the proof of the flat strip theorem [BrHa, pg. 182]). This
concludes the proof of Claim 1. �

So we now know that any finite set of points {P 0, . . . , Pm} ⊂ γ are common
endpoints of geodesic rays that pairwise bound a flat strip. But ultimately, we want
to show that every point on γ is an endpoint of a parallel geodesic ray. Our next step
is to establish:

Claim 2: Given any compact set K ⊂ γ, we can find an isometric embedding of
K × [0,∞) ↪→M with the property that K × {0} maps to K.

Proof (Claim 2). Recall that, for a geodesic η, the set Par(η) is the union of all
geodesic rays which, together with η, bound a flat strip. From the proof of the
product region theorem in CAT(0)-spaces (see for example [BrHa]), one has that
Par(η) forms a convex subset of M , which splits as a metric product B × [0,∞).
Here B ⊂ M is a convex subset, and consists of the collection of all the basepoints
of the parallel geodesic rays.

Now, since K ⊂ γ is compact, we can find a finite set of points {P 0, . . . , Pm} ⊂
γ whose convex hull contains K. Applying Claim 1, we have that there exist a
corresponding collection of geodesic rays {η0, . . . , ηm}, with each ηi originating from
P i, and which pairwise bound a flat strip. Considering the set Par(η0), we have that
Par(η0) is isometric to B × [0,∞), where B is the collection of basepoints. But we
know that {P 0, . . . , Pm} ⊂ B, so their convex hull is likewise contained in B, forcing
K ⊂ B. We conclude that there is an isometric copy of K × [0,∞) embedded inside
the convex subset Par(η) ⊂M . This completes the proof of Claim 2. �

Finally, let us take a sequence of compact sets Ki ⊂ γ exhausting the flat γ (for
instance, take Ki to be the radius i metric ball centered at ∗). From Claim 2, we
have a corresponding sequence of isometrically embedded copies of Ki× [0,∞) ↪→M ,
where each Ki×{0} maps to the corresponding compact Ki. From local compactness,
we can extract a convergent subsequence, whose limit will be the desired half-flat
bounding γ. So to complete the proof of Theorem A, we are left with verifying the
Assertion.

Proof (Assertion). Let us recall the framework: we have a finite collection of points
{P 0, . . . , Pm} ⊂ γ, and for each r ∈ N, a collection of maps fr,j : Dk → M having
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the property that ω lim fr,j = fr : Dk → X. We want to find, for each index r,
a corresponding index jr and set of points {x0

r,jr , . . . , x
m
r,jr} ⊂ fr,jr

(
Int(Dk)

)
. The

chosen set of points should have the property that (1) for each i, π(xir,jr) = P i, (2)

for any i, i′, d(xir,jr , x
i′
r,jr) < 2λjr , and (3) for any i, d(P i, xir,jr) > r · λjr ·D/2.

Our approach is as follows: fixing r, we define three subsets of N by setting

• J1 to be the set of indices j for which {P 0, . . . , Pm} ⊂ π ◦ fr,j
(
Int(Dk)

)
,

• J2 to be the set of indices where diam
(
fr,j(Dk)

)
< 2λj, and

• J3 to be the set of indices where d
(
γ, fr,j(Dk)

)
> r · λj ·D/2.

Now assuming we could show that each of these three sets are in ω, property (3) of
ultrafilters (closure under finite intersections) implies that J1 ∩ J2 ∩ J3 ∈ ω. Finally,
every set in ω is infinite (property (2) of ultrafilters), and in particular non-empty,
allowing us to find an index jr ∈ J1 ∩ J2 ∩ J3. For this index jr, we can choose
arbitrary points xir,jr ∈ fr,jr

(
Int(Dk)

)
satisfying π(xir,jr) = P i (such points exist since

jr ∈ J1). And from jr ∈ J2 ∩ J3, it immediately follows that the tuple of points
{x0

r,jr , . . . , x
m
r,jr} ⊂ fr,jr

(
Int(Dk)

)
has the desired properties.

Step 1: The set J2 lies in the ultrafilter ω.

To see this, we recall that property (1) in the definition of a flattening sequence
requires diam

(
fr(Dk)

)
≤ 1. Since we know that fr = ω lim fr,j, the definition of dis-

tances in the ultralimit tells us that the set of indices j for which diam
(
fr,j(Dk)

)
/λj <

2 lies in the ultrafilter. This verifies Step 1.

Step 2: The set J3 lies in the ultrafilter ω.

For this, we argue similarly. Recall that property (4) in the definition of a flattening
sequence requires the existence of aD > 0 so that d(fr(Dk), γω) = infx∈Dk d(fr(x), γω) ≥
D · r. Since fr is the ultralimit of the maps fr,j, the definition of distances in the
ultralimit tells us that the set of indices j for which d(fr,j(Dk), γ)/λj ≥ rD/2 lies in
the ultrafilter. This verifies Step 2.

Step 3: The set J1 lies in the ultrafilter ω.

This last step is much more involved than the first two. Let us fix one of the points
P i, and consider the restriction fr,j|∂Dk : Sk−1 → M , composed with the projection
π : M → γ. We have three distinct possibilities:

(1) P i lies in the image of π ◦ fr,j|∂Dk , or
(2) π

(
fr,j(∂D

k)
)
⊂ γ − {P i}, and

[
π ◦ fr,j|∂Dk

]
= 0 in πk−1(γ − {P i}), or

(3) π
(
fr,j(∂D

k)
)
⊂ γ − {P i}, and

[
π ◦ fr,j|∂Dk

]
6= 0 in πk−1(γ − {P i}).

This gives us a partition N = I i1∪I i2∪I i3 into three disjoint sets, according to which of
these three properties holds for the index j. From property (4) of ultrafilters, we have
that exactly one of these three sets must lie in ω. If we could show that I i3 ∈ ω, then
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property (3) of ultrafilters would force I0
3 ∩ . . .∩Ik3 ∈ ω. Since we have a containment

I0
3 ∩ . . . ∩ Ik3 ⊂ J1, property (1) of ultrafilters would give us that J1 ∈ ω.

So to conclude the proof of Step 3 (and hence, of the Assertion), we are left with
showing that I i1 /∈ ω and that I i2 /∈ ω. We will argue both of these by contradiction.
Supposing that I i1 ∈ ω, we would have that the set of indices for which d(P i, π ◦
fr,j|∂Dk)/λj = 0 is contained in ω. So the point represented by the constant sequence
{P i} = {∗} ∈ γω lies on the set:

ω lim
(
π ◦ fr,j|∂Dk

)
= π

(
ω lim fr,j|∂Dk

)
= π ◦ fr|∂Dk

But this contradicts property (3) in the definition of flattening sequence.
Similarly, to see that I i2 /∈ ω, we again argue by contradiction. So let us assume

that I i2 ∈ ω. Note that the indices in I i2 are those for which the map π ◦ fr,j|∂Dk :
Sk−1 → γ − {P i} is homotopically trivial. Let us define real numbers

aj = inf
x∈∂Dk

d
(
P i, π ◦ fr,j(x)

)
,

bj = sup
x∈∂Dk

d
(
P i, π ◦ fr,j(x)

)
and consider the set Aj := {x ∈ γ | aj ≤ d(x, Pi) ≤ bj}. The inclusion Aj ↪→ γ−{P i}
is a homotopy equivalence, and the map π ◦fr,j|∂Dk has image lying inside Aj. Hence
for indices j ∈ I i2, we have that [π ◦ fr,j|∂Dk ] = 0 ∈ πk−1(Aj), and we can construct a
map Fj : Dk → Aj ⊂ γ − {P i} with the property that Fj|∂Dk = π ◦ fr,j|∂Dk .

Now for each ε > 0, we can further partition the set I i2 = I i2(ε) ∪ Ī i2(ε) by defining
I i2(ε) to be the set of indices where the inequality aj < ελj holds, and Ī i2(ε) the set of
indices where aj ≥ ελj. From property (4) of ultrafilters, we have that precisely one
of the sets I i2(ε), Ī

i
2(ε) is contained in ω. We now have two possibilities:

• either we have that I i2(ε) ∈ ω for every ε > 0, or
• there exists some ε > 0, for which Ī i2(ε) ∈ ω.

In the first case, we again obtain that the point represented by the constant sequence
{P i} = {∗} ∈ γω lies on the set ω lim

(
π ◦ fr,j|∂Dk

)
= π ◦ fr|∂Dk , which contradicts

property (3) in the definition of flattening sequence.
In the second case, we can try to take the ultralimit of the collection of maps

Fj : Dk → γ. The upper bound on the distance between Fj and P i ensures that the
Fj escape to infinity slowly enough for the ultralimit to be defined. More precisely,
from the fact that the maps π◦fr,j|∂Dk have as ultralimit π◦fr|∂Dk , we must have that
ω lim{bj/λj} <∞, which in turn implies that the ultralimit Fω : Dk → γω exists. On
the other hand, the lower bound on the distance between Fj and P i ensures that the
ultralimit Fω does not pass through the constant sequence {P i}. More precisely, for
the ε > 0 satisfying Ī i2(ε) ∈ ω, and for any index set j ∈ Ī i2(ε), we have that

d
(
Fj(Dk), P i

)
/λj ≥ d(Aj, P

i)/λj = aj/λj ≥ ε.
10



Since this holds for a set of indices in the ultrafilter, we immediately deduce the
corresponding property for the ultralimit: d

(
Fω(Dk), {P i}

)
≥ ε. In particular, Fω :

Dk → γω has image lying in the complement of the point corresponding to the
constant sequence {P i} = {∗}, and restricts to the map π ◦ fr|∂Dk on the boundary
Sk−1 = ∂Dk. This tells us that [π ◦ fr|∂Dk ] = 0 ∈ πk−1(γω \ {∗}), which contradicts
property (3) in the definition of a flattening sequence. This concludes the verification
of Step 3, and hence completes the proof of the Assertion. �

Having established the Assertion, we have now concluded the proof of Theorem A.
From the definition of a flattening sequence, it is obvious that these exist whenever
γω bounds a half-flat in X. As a result, we see that Theorem B follows immediately
from Theorem A.

Finally, let us conclude this section by providing a family of cautionary examples.
These will be locally compact CAT(0)-spaces Xk, each containing a geodesic γ, with
the property that for a suitable choice of scales, γω is contained inside a k-dimensional
flat, but the individual Xk do not contain any flats of dimension > 1. In particular,
these examples show that the analogue of Theorem B with “half-flats” replaced by
“flats” is false.

Example: Let us fix a k ≥ 2, and for n ∈ N, define the spaces Cn := [−n3, n3]k ⊂ Rk.
Each Cn is isometric to the standard k-dimensional cube with side lengths 2n3; we let
ln ⊂ Cn be the geodesic segment of length 2n3 joining the two points (±n3, 0, . . . , 0)
inside Cn. Now consider the closed upper half space R×R≥0 := {(x, y) | y ≥ 0} with
the standard flat metric, and for n ∈ N, let us denote by l̄n the segment of length
2n3 joining the pair of points (±n3, n) inside R × R≥0. We now form the space Xk

by gluing together all the Cn to R × R≥0. More precisely, we isometrically identify
each ln with the corresponding l̄n.

Observe that this space Xk, with the natural induced metric, is a locally compact
CAT(0)-space. Furthermore, it is clear that Xk does not contain any flats of dimen-
sion > 1. Now consider the ultralimit X obtained by fixing the origin as the sequence
of basepoints, and setting λ(i) = i2 to be the sequence of scales. Let us consider the
geodesic γ ⊂ Xk given by the x-axis in the R×R≥0 portion of M . We claim that the
corresponding geodesic γω ⊂ ω limXk is contained inside a k-flat in ω limXk. Indeed,
this follows readily from the following two observations

• since the distance from l̄n to the γ grows linearly, while the scaling factor λ
grows quadratically, every point P ∈ γω can be represented by a sequence
{pn} with the additional property that pn ∈ Cn, and
• since the size of the cubes Cn grows cubically, while the scaling factor λ

grows quadratically, the subset Cω ⊂ ω limXk consisting of all points having
a representative sequence of the form {ci} (with each ci ∈ Ci) is isometric to
the standard Rk.

11



This concludes our family of locally CAT(0) examples.

4. From bi-Lipschitz half-ultraflats to half-flats

In this section we prove Theorem C, allowing us to deduce the presence of half-flats
in M from the presence of bi-Lipschitz half-flats in the ultralimit X along with a mild
periodicity condition.

The context is the following: we have a locally compact CAT(0)-space M (for
instance, the universal cover of a non-positively curved Riemannian manifold) and
an asymptotic cone X of M . We have a k-flat γ in M , and its limit γω in X.
Moreover, we are supposing that there exists G < Isom(M) that acts co-compactly
on γ. We are assuming that there is a bi-Lipschitz embedding φ : Rk × R≥0 → X,
whose restriction to Rk × {0} maps onto γω, and we want to show that γ bounds a
(k + 1)-dimensional half-flat in M . In view of our Theorem A, it is sufficient to find
a flattening sequence for γω.

Let C be the bi-Lipschitz constant of φ, and let us make the simplifying assumption
that the restriction of φ to the set Rk × {0} is actually an isometry onto γω; we
will use this isometry to identify γω with Rk × {0}. For r ∈ R, let us denote by
Lr = Rk×{r} ⊂ Rk×R≥0 the horizontal flat at height r. We will use ρ to denote the
obvious projection map ρ : Lr → L0. To make our various expressions more readable,
we use d to denote distance in X (as opposed to dω), and the norm notation to denote
distance inside Rk × R≥0.

We now define, for each r ∈ [0,∞) a map

ψr : Lr → L0

as follows: given p ∈ Lr, we have φ(p) ∈ X. Since γω ⊂ X is a flat inside the CAT(0)
space X, there is a well defined, distance non-increasing, projection map π : X → γω,
which sends any given point in X to the (unique) closest point on γω. Hence, given
p ∈ Lr, we have the composite map π ◦φ : Lr → γω. But recall that, by hypothesis, φ
maps L0 homeomorphically to γω. We can now set ψr : Lr → L0 to be the composite
map

ψr = φ−1 ◦ π ◦ φ

We now show that ψr is at finite distance from the projection map ρ : Lr → L0.
We first observe that for arbitrary x ∈ Lr, we have that the distance from x to L0

is exactly r, and hence from the bi-Lipschitz estimate, we have

d(φ(x), γω) = d(φ(x), φ(L0)) ≤ Cr

Since π is the nearest point projection onto γω, this implies that d
(
φ(x), (π◦φ)(x)

)
≤

Cr. Since (π ◦ φ)(x) = φ(ψr(x)), we can again use the bi-Lipschitz estimate to
12



conclude that:

Cr ≥ d
(
φ(x), (π ◦ φ)(x)

)
= d(φ(x), φ(ψr(x)) ≥ 1

C
· ||x− ψr(x)||

Which gives us the estimate ||x− ψr(x)|| ≤ C2r. This implies that ψ is at bounded
distance from the projection map ρ. Since the latter is a homeomorphism onto
L0
∼= Rk, it follows that ψr is surjective.

Since ψr is a surjective, Lipschitz map, its differential exists almost everywhere and
it is almost everywhere non-degenerate (see for example [We, Chapter 3]). It follows
that we can find a k-disk Dr in Lr, of diameter smaller than 1/C, and a point pr in
ψr(Dr) such that ψr(∂Dr) is homotopically non trivial in L0 \ pr. By Lemma 2.1, we
can find an isometry gr of X, that leaves γω invariant, and satisfies gr(φ(pr)) = ∗.

Now we define the maps fr : Dk ∼= Dr → X via the composition

fr = gr ◦ φ|Dr .

and observe that we have π ◦ fr = gr ◦ φ ◦ ψr. Moreover, since the diameter of Dk is
smaller than 1/C, the diameter of fr(Dk) is smaller than one. Finally, it is clear that
our choices for Dk implies that fr satisfies all the conditions for being a flattening
sequence for γ. Invoking Theorem A completes the proof of Theorem C in the special
case where φ|Rk×{0} maps Rk × {0} isometrically onto γω.

Finally, it is easy to see that the general case can be deduced from this special
case. Indeed, given our arbitrary bi-Lipschitz embedding φ : Rk × R≥0 → X, let
φ0 : Rk×{0} → γω be the restriction to Rk×{0}. We are assuming φ0 is onto, hence

is a homeomorphism. Now consider the reparametrized map φ̂ : Rk × R≥0 → X
obtained by taking the composition:

Rk × R≥0

φ−1
0 ×Id // Rk × R≥0

φ // X

As a composition of bi-Lipschitz maps, φ̂ is bi-Lipschitz, and by construction, we see
that φ̂ maps Rk × {0} isometrically onto γω. This reduces the general case to the
special case we discussed above, completing the proof of Theorem C. �

5. Some applications

Finally, let us discuss some consequences of our main results. As a first applica-
tion, we obtain some constraints on the behavior of a quasi-isometry between locally
compact CAT(0)-spaces.

Corollary 5.1 (Constraints on quasi-isometries). Let M̃1, M̃2 be two locally compact
CAT(0)-spaces, and assume that φ : M̃1 → M̃2 is a quasi-isometry. Let γ ⊂ M̃1 be
a k-flat, γω ⊂ X1 := Cone(M̃1) the corresponding k-flat in the asymptotic cone, and
assume that there exists a bi-Lipschitz (k+ 1)-dimensional half-flat F ⊂ X1 bounding
the k-flat γω ⊂ X1. Then we have the following dichotomy:
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(1) Non-periodicity: every k-flat η at bounded distance from φ(γ) has the property
that η/StabG(η) is non-compact, where G = Isom(M̃2), or

(2) Bounding: every k-flat η at bounded distance from φ(γ) bounds a (k + 1)-
dimensional half-flat.

Proof. This follows immediately from our Theorem C. Assume that the first pos-
sibility does not occur, i.e. there exists a k-flat η at bounded distance from φ(γ)
with the property that StabG(η) ⊂ G = Isom(M̃2) acts cocompactly on η. Now
recall that the quasi-isometry φ : M̃1 → M̃2 induces a bi-Lipschitz homeomorphism
φω : Cone(M̃1)→ Cone(M̃2). Since η ⊂ M̃2 was a k-flat at finite distance from φ(γ),
we have the containment:

φω(γω) ⊆ ηω ⊂ Cone(M̃2).

Since φω(γω) is a bi-Lipschitz copy of Rk inside the k-flat ηω, we conclude that φ(γω) =
ηω. But recall that we assumed that γω was contained inside a bi-Lipschitz flat
γω ⊂ F ⊂ Cone(M̃1), and hence we see that ηω ⊂ φω(F ) is likewise contained inside
a bi-Lipschitz flat. Since the hypotheses of Theorem C are satisfied, we conclude that
η must bound a (k + 1)-dimensional half-flat, concluding the proof of Corollary 5.1.

�

The statement of our first corollary might seem somewhat complicated. We now
proceed to isolate a special case of most interest:

Corollary 5.2 (Constraints on perturbations of metrics). Assume that (M, g0) is
a closed Riemannian manifold of non-positive sectional curvature, and assume that
Nk ↪→ M is an isometrically embedded compact flat k-manifold with image γ0. Let
γ̃0 ⊂ M̃ be the k-flat obtained by taking a connected lift of γ0, and assume that γ̃0

bounds a (k + 1)-dimensional half-flat F0.
Then if (M, g) is any other Riemannian metric on M with non-positive sectional

curvature, and γ ⊂M is an isometrically embedded flat k-manifold (in the g-metric)
freely homotopic to γ0, then the lift γ̃ ⊂ (M̃, g̃) must also bound a (k+1)-dimensional
half-flat F .

We can think of Corollary 5.2 as a “non-periodic” version of the Flat Torus theorem.
Indeed, in the case where F is π1(M)-periodic, the Flat Torus theorem applied to
(M, g) implies that γ̃ is likewise contained in a periodic flat.

Proof. Since M is compact, the identity map provides a quasi-isometry φ : (M̃, g̃0)→
(M̃, g̃). The half-flat F0 containing γ̃0 gives rise to a flat (F0)ω ⊂ Cone(M̃, g̃0)
containing (γ̃0)ω. In particular, we can apply the previous Corollary 5.1.

Next note that, since γ0, γ are freely homotopic to each other, there is a lift γ̃ of
γ which is at finite distance (in the g-metric) from the given γ̃0 ⊂ (M̃, g̃). Indeed,
taking the free homotopy H : Nk × [0, 1] → M between H0 = γ0 and H1 = γ, we
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can then take a lift H̃ : Rk × [0, 1]→ M̃ satisfying the initial condition H̃0 = γ̃0 (the
given lift of γ0). The time one map H̃1 : Rk → M̃ will be a lift of H1 = γ, hence a
k-flat in (M̃, g̃). Furthermore, the distance (in the g-metric) between γ̃0 and γ̃ will
clearly be bounded above by the supremum of the g-lengths of the (compact) family
of maps Hp : [0, 1]→ (M, g), p ∈ Nk, defined by Hp(t) = H(p, t).

Now observe that by construction, the γ̃ ⊂ (M̃, g̃) from the previous paragraph
has StabG(γ̃) acting cocompactly on γ̃, where G = Isom(M̃, g̃). Hence the first
possibility in the conclusion of Corollary 5.1 cannot occur, and we conclude that γ̃
must bound a (k + 1)-dimensional half-flat F , as desired. This concludes the proof
of Corollary 5.2.

�

Next we recall some terminology from differential geometry: for M a complete,
simply connected, Riemannian manifold of non-positive sectional curvature, the rank
of a geodesic γ ⊂ X is the dimension rk(γ) of the vector space of parallel Jacobi fields
along γ. Note that the unit tangent vector field is always parallel, hence the rank of
a geodesic is always ≥ 1; a geodesic is said to have higher rank provided rk(γ) ≥ 2.
A geodesic γ that bounds a 2-dimensional half-flat automatically has rk(γ) ≥ 2, as
the unit normal vector field within the half-flat will be a parallel Jacobi field along γ.
Finally, the manifold M is said to have higher rank provided every geodesic γ ⊂ M
satisfies rk(γ) ≥ 2. The celebrated rank-rigidity theorem, established independently
by Ballmann [Ba2] and Burns-Spatzier [BuSp], states that if M has higher rank
then either (1) M is isometric to an irreducible, higher-rank symmetric space of non-
compact type, or (2) M is reducible, and splits isometrically as a product M1 ×M2

of lower dimensional manifolds of non-positive sectional curvature. Our next two
applications will exploit the combination of our main results with the rank-rigidity
theorem to deduce some information concerning manifolds of non-positive sectional
curvature.

Now recall that the classic de Rham theorem [dR] states that any simply connnected,
complete Riemannian manifold admits a decomposition as a metric product M̃ =
Rk×M1× . . .×Mk, where Rk is a Euclidean space equipped with the standard met-
ric, and each Mi is metrically irreducible (and not R or a point). Furthermore, this
decomposition is unique up to permutation of the factors. This result was recently
generalized by Foertsch-Lytchak [FoLy] to cover finite dimensional geodesic metric
spaces (such as ultralimits of Riemannian manifolds). Our next corollary shows that,
in the presence of non-positive Riemannian curvature, there is a strong relationship
between splittings of M̃ and splittings of Cone(M̃).

Corollary 5.3 (Asymptotic cones detect splittings). Let M be a closed Riemann-
ian manifold of non-positive curvature, M̃ the universal cover of M with induced
Riemannian metric, and X = Cone(M̃) an arbitrary asymptotic cone of M̃ . If
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M̃ = Rk ×M1 × . . . ×Mn is the de Rham splitting of M̃ into irreducible factors,
and X = Rl ×X1 × . . .×Xm is the Foertsch-Lytchak splitting of X into irreducible
factors, then k = l, n = m, and up to a relabeling of the index set, we have that each
Xi = Cone(Mi).

Proof. Let us first assume that M̃ is irreducible (i.e. k=0, n=1), and show that
X = Cone(M̃) is also irreducible (i.e. l=0, m=1). By way of contradiction, let us
assume that X splits as a metric product, and observe that this clearly implies that
every geodesic γ ⊂ X is contained inside a flat. In particular, from our Theorem
A, we see that every geodesic inside M̃ must bound a 2-dimensional half-flat, and
hence must have higher rank. Applying the Ballmann, Burns-Spatzier rank rigidity
result, and recalling that M̃ was irreducible, we conclude that M̃ is in fact an ir-
reducible higher rank symmetric space. But now Kleiner-Leeb have shown that for
such spaces, the asymptotic cone is irreducible (see [KlL, Section 6]), giving us the
desired contradiction.

Let us now proceed to the general case: from the metric splitting of M̃ , we get
a corresponding metric splitting Cone(M̃) = Rk × Y1 × . . . × Yn, where each Yi =
Cone(Mi). Since each Mi is irreducible, the previous paragraph tells us that each
Yi is likewise irreducible. So we now have two product decompositions of Cone(M̃)
into irreducible factors. So assuming that each Yi is distinct from a point and is
not isometric to R, we could appeal to the uniqueness portion of Foertsch-Lytchak
[FoLy, Theorem 1.1] to conclude that, up to relabeling of the index set, each Xi =
Yi = Cone(Mi), and that the Euclidean factors have to have the same dimension
k = l.

To conclude the proof of our Corollary, we establish that if M is a simply connected,
complete, Riemannian manifold of non-positive sectional curvature, and dim(M) ≥ 2,
then Cone(M) is distinct from a point or R. First, recall that taking an arbitrary
geodesic γ ⊂ M (which we may assume passes through the basepoint ∗ ∈ M), we
get a corresponding geodesic γω ⊂ Cone(M), i.e. an isometric embedding of R into
Cone(M). In particular, we see that dim(Cone(M)) > 0. To see that Cone(M) is
distinct from R, it is enough to establish the existence of three points p1, p2, p3 ∈
Cone(M) such that for each index j we have:

(1) dω(pj, pj+2) 6= dω(pj, pj+1) + dω(pj+1, pj+2)

But this is easy to do: take p1, p2 to be the two distinct points on the geodesic γω at
distance one from the basepoint ∗ ∈ Cone(M), so that dω(p1, p2) = 2. Observe that
one can represent the points p1, p2 via the sequences of points {xi}, {yi} along γ hav-
ing the property that ∗ ∈ xiyi, and d(xi, ∗) = λi = d(∗, yi), where λi is the sequence
of scales used in forming the asymptotic cone Cone(M). Now since dim(M) ≥ 2, we
can find another geodesic η through the basepoint ∗ ∈ M , with the property that
η ⊥ γ. Taking the sequence {zi} to lie on η, and satisfy d(zi, ∗) = λi, it is easy to see
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that this sequence defines a third point p3 ∈ Cone(M) satisfying dω(p3, ∗) = 1. From
the triangle inequality, we immediately have that dω(p1, p3) ≤ 2 and dω(p2, p3) ≤ 2.
On the other hand, since the Riemannian manifold M has non-positive sectional
curvature, we can apply Toponogov’s theorem to each of the triangles {∗, xi, zi}:
since we have a right angle at the vertex ∗, and we have d(∗, xi) = d(∗, zi) = λi,
Toponogov tells us that d(xi, zi) ≥

√
2 · λi. Passing to the asymptotic cone, this

gives the lower bound d(p1, p3) ≥
√

2, and an identical argument gives the estimate
d(p2, p3) ≥

√
2. It is now easy to verify that the three points p1, p2, p3 satisfy (11),

and hence Cone(M) 6= R, as desired. This concludes the proof of Corollary 5.3.

�

Before stating our next result, we recall that the celebrated rank rigidity theorem of
Ballmann, Burns-Spatzier was motivated by Gromov’s well-known rigidity theorem,
the proof of which appears in the book [BGS]. Our next corollary shows how in
fact Gromov’s rigidity theorem can now be directly deduced from the rank rigidity
theorem. This is our last:

Corollary 5.4 (Gromov’s higher rank rigidity [BGS]). Let M∗ be a compact locally
symmetric space of R-rank ≥ 2, with universal cover M̃∗ irreducible, and let M be a
compact Riemannian manifold with sectional curvature K ≤ 0. If π1(M) ∼= π1(M

∗),
then M is isometric to M∗, provided V ol(M) = V ol(M∗).

Proof. Since both M and M∗ are compact with isomorphic fundamental groups, the
Milnor-Švarc theorem gives us quasi-isometries:

M̃∗ ' π1(M
∗) ' π1(M) ' M̃

which induce a bi-Lipschitz homeomorphism φ : Cone(M̃∗) → Cone(M̃). Now in
order to apply the rank rigidity theorem, we need to establish that every geodesic in
M̃ has rank ≥ 2.

We first observe that the proof of Corollary 5.2 extends almost verbatim to the
present setting. Indeed, in Corollary 5.2, we used the identity map to induce a
bi-Lipschitz homeomorphism between the asymptotic cones, and then appealed to
Corollary 5.1. The sole difference in our present context is that, rather than using
the identity map, we use the quasi-isometry between M̃ and M̃∗ induced by the
isomorphism π1(M) ∼= π1(M

∗). This in turn induces a bi-Lipschitz homeomorphism
between asymptotic cones (see Section 2). The reader can easily verify that the rest
of the argument in Corollary 5.2 extends to our present setting, establishing that
every lift to M̃ of a periodic geodesic in M has rank ≥ 2.

So we now move to the general case, and explain why every geodesic in M̃ has
higher rank. To see this, assume by way of contradiction that there is a geodesic
η ⊂ M̃ with rk(η) = 1. Note that the geodesic η cannot bound a half-plane. But
once we have the existence of such an η, we can appeal to results of Ballmann [Ba1,
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Theorem 2.13], which imply that η can be approximated (uniformly on compacts)
by lifts of periodic geodesics in M ; let {γ̃i} → η be such an approximating sequence.
Since each γ̃i has rk(γ̃i) ≥ 2, it supports a parallel Jacobi field Ji, which can be taken
to satisfy ||Ji|| ≡ 1 and 〈Ji, γ̃′i〉 ≡ 0. Now we see that:

• the limiting vector field J defined along η exists, due to the control on ||Ji||,
• the vector field J along η is a parallel Jacobi field, since both the “parallel”

and “Jacobi” condition can be encoded by differential equations with smooth
coefficients, solutions to which will vary continuously with respect to initial
conditions, and
• J will have unit length and will be orthogonal to η′, from the corresponding

condition on the Ji.

But this contradicts our assumption that rk(η) = 1. So we conclude that every
geodesic η ⊂ M̃ must satisy rk(η) ≥ 2, as desired.

From the rank rigidity theorem, we now obtain that M̃ either splits as a product,
or is isometric to an irreducible higher rank symmetric space. Since the asymptotic
cone of the irreducible higher rank symmetric space is topologically irreducible (see
[KlL, Section 6]), and Cone(M̃) is homeomorphic to Cone(M̃∗), we have that M̃
cannot split as a product. Finally, we see that π1(M) ∼= π1(M

∗) acts cocompactly,
isometrically on two irreducible higher rank symmetric spaces M̃ and M̃∗. By Mostow
rigidity [Mo], we have that the quotient spaces are, after suitably rescaling, isometric.
This completes our proof of Gromov’s higher rank rigidity theorem.

�

Finally, let us conclude our paper with a few comments on this last corollary.

Remarks: (1) The actual statement of Gromov’s theorem in [BGS, pg. (i)] does not
assume M̃∗ to be irreducible, but rather M∗ to be irreducible (i.e. there is no finite
cover of M∗ that splits isometrically as a product). This leaves the possibility that
the universal cover M̃∗ splits isometrically as a product, but no finite cover of M∗

splits isometrically as a product. However, in this specific case, the desired result was
already proved by Eberlein (see [Eb]). And in fact, in the original proof of Gromov’s
rigidity theorem, the very first step (see [BGS, pg. 154]) consists of appealing to
Eberlein’s result to reduce to the case where M̃∗ is irreducible.
(2) In the course of writing this paper, the authors learnt of the existence of another
proof of Gromov’s rigidity result, which bears some similarity to our reasoning. As
the reader has surmised from the proof of Corollary 5.4, the key is to somehow show
that M also has to have higher rank. But a sophisticated result of Ballmann-Eberlein
[BaEb] establishes that the rank of a non-positively curved Riemannian manifold M
can in fact be detected directly from algebraic properties of π1(M), and hence the
property of having “higher rank” is in fact algebraic (see also the recent preprint
of Bestvina-Fujiwara [BeFu]). The main advantage of our approach is that one can
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deduce Gromov’s rigidity result directly from rank rigidity, and indeed, that one can
geometrically “see” that the property of having higher rank is preserved.
(3) We point out that various other mathematicians have obtained results extend-
ing Gromov’s theorem (and which do not seem tractable using our methods). A
variation considered by Davis-Okun-Zheng ([DOZ], requires M̃∗ to be reducible and
M∗ to be irreducible (the same hypothesis as in Eberlein’s rigidity result). However,
Davis-Okun-Zheng allow the metric on M to be locally CAT(0) (rather than Rie-
mannian non-positively curved), and are still able to conclude that M is isometric
(after rescaling) to M∗. The optimal result in this direction is due to Leeb [L], giving
a characterization of certain higher rank symmetric spaces and Euclidean buildings
within the broadest possible class of metric spaces, the Hadamard spaces (complete
geodesic spaces for which the distance function between pairs of geodesics is always
convex). It is worth mentioning that Leeb’s result relies heavily on the viewpoint
developed in the Kleiner-Leeb paper [KlL].
(4) We note that our method of proof can also be used to establish a non-compact,
finite volume analogue of the previous corollary. Three of the key ingredients go-
ing into our proof were (i) Ballmann’s result on the density of periodic geodesics in
the tangent bundle, (ii) Ballmann-Burns-Spatzier’s rank rigidity theorem, and (iii)
Mostow’s strong rigidity theorem. A finite volume version of (i) was obtained by
Croke-Eberlein-Kleiner (see [CEK, Appendix]), under the assumption that the fun-
damental group is finitely generated. A finite volume version of (ii) was obtained by
Eberlein-Heber (see [EbH]). The finite volume versions of Mostow’s strong rigidity
were obtained by Prasad in the Q-rank one case [Pr] and Margulis in the Q-rank
≥ 2 case [Ma] (see also [R]). One technicality in the non-compact case is that iso-
morphisms of fundamental groups no longer induce quasi-isometries of the universal
cover. In particular, it is no longer sufficient to just assume π1(M) ∼= π1(M

∗), but
rather one needs a homotopy equivalence f : M →M∗ with the property that f lifts
to a quasi-isometry f̃ : M̃ → M̃∗. We leave the details to the interested reader.
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