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1. Introduction

Gromov introduced the domination relation on closed oriented n-dimensional manifolds [3, pg. 173]. 
Given two closed oriented n-dimensional manifolds M and N , we say M dominates N if there is a map 
f : M → N of degree deg(f) �= 0. In this short note, we add to the known list of obstructions by showing 
the relevance of Thom’s work [23] on the Steenrod problem [8].

Theorem 1.1. Let M0, N0, M ′, and N ′ be closed oriented n-dimensional manifolds, 7 ≤ k ≤ n −3 an integer, 
and having the following properties:
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(a) Assume N0 has a k-dimensional homology class that is not representable by manifolds;
(b) Every k-dimensional homology class of M0 is representable by manifolds;
(c) N ′ has positive simplicial volume;
(d) M ′ is a product of closed oriented manifolds of dimensions ≤ 9, where all factors have positive simplicial 

volume and torsion-free homology in degrees ≤ k.

Then there are infinitely many pairs of positive integers (s, t) with the property that ||M0#sM
′|| ≥

||N0#tN
′||, but nevertheless every continuous map f : M0#sM

′ → N0#tN
′ has deg(f) = 0.

In the theorem, we denote by X#sY the iterated connected sum of X with s copies of Y .
In general, it is a difficult question to determine whether there is a non-zero degree map between two 

manifolds. Obstructions to the existence of a map of non-zero degree have been developed using a variety 
of tools from algebraic topology; we refer to [12] for a recent survey on related results. One of the most 
basic methods comes from comparing the cohomology of M and N . Some known obstructions arising from 
cohomology include: (i) inequalities on the ranks of the (co)homology groups, (ii) injectivity of induced 
homomorphisms in cohomology, (iii) (sub)ring structures of the cohomology ring, and (iv) structure of the 
cohomology ring as a module over the Steenrod algebra; see [7,19,15,14] for various results that involve the 
aforementioned techniques. However, when the cohomology rings of the manifolds are not a priori known, 
such as in Theorem 1.1, then these basic obstructions cannot be directly used.

Another approach to obstructing a non-zero degree map comes from semi-norms on homology, such as the 
simplicial volume ||M ||. Recall that the simplicial volume ||M || is a non-negative real number (introduced 
by Gromov [9]) that roughly measures how efficiently M can be “triangulated over R”. This invariant has 
the so-called functorial property that, if f : M → N is a continuous map, then ||M || ≥ | deg(f)| · ||N ||. 
While the simplicial volume cannot be used by itself to establish Theorem 1.1, it will feature prominently 
in the proof.

In fact, the key idea of our proof is to use the Steenrod problem as a bridge between these two main 
tools – cohomology obstructions, and simplicial volume. This allows us to use both techniques together in a 
situation where neither one individually is strong enough to work.

1.1. Outline

In Section 2 we prove Theorem 1.1 and in Section 3 we give examples of manifolds satisfying the assump-
tions of that theorem. Finally, in Section 4 we discuss alterations of our hypotheses, as well as alternative 
arguments and approaches for parts of our proofs.
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2. Proof of the main theorem

In order to establish Theorem 1.1, we proceed by contradiction. Assuming that there is a non-zero degree 
map f : M0#sM

′ −→ N0#tN
′, we will see that this forces certain constraints on the integers s and t, and 

that there are infinitely many pairs of integers for which these constraints fail to hold. To simplify notation, 
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let us denote by

Ms := M0#sM
′ and Nt := N0#tN

′,

and assume we have a non-zero degree map f : Ms → Nt.
We recall that a degree k homology class x ∈ Hk(X; Z) is representable (by manifolds) if there exists 

a closed oriented k-manifold Y and a map φ : Y → X with the property that φ∗([Y ]) = x, where [Y ] ∈
Hk(Y ; Z) denotes the fundamental class of Y . Thom [23] proved that, when X is an n-manifold, homology 
classes are always representable in degrees 1 ≤ k ≤ 6 and degrees n − 2 ≤ k ≤ n. Thus one can only have 
non-representable classes in degrees 7 ≤ k ≤ n − 3. In view of hypothesis (a), we will henceforth focus 
on a degree k within that range (in particular, n ≥ 10). In the context of connected sums of manifolds 
X = X1# · · ·#Xm, Mayer–Vietoris gives us a splitting

Hk(X;Z) =
m⊕
i=1

Hk(Xi;Z).

Let us denote by ρi : Hk(Xi; Z) → Hk(X; Z) the injective homomorphism induced from the Mayer–Vietoris 
sequence. We will need the following elementary result.

Lemma 2.1. For a connect sum X = X1# · · ·#Xm of closed n-manifolds, and 7 ≤ k ≤ n − 3, the following 
two statements are equivalent:

(1) every homology class α ∈ Hk(X; Z) is representable;
(2) for every i, every homology class β ∈ Hk(Xi; Z) is representable.

Proof. To see that (1) implies (2), let β ∈ Hk(Xi; Z) be a homology class in one of the summands. Then 
via the Mayer–Vietoris splitting, we can consider the homology class (−1)i+1ρi(β) ∈ Hk(X; Z). From (1), 
we can represent this homology class, so there is a map from a closed oriented k-manifold φ : Y k → X with 
(−1)i+1ρi(β) = φ∗([Y ]). Let qi : X → Xi be the map that collapses all the other summands to points. Then 
it is easy to see that the composite (qi)∗ ◦ (−1)i+1ρi is the identity map on Hk(Xi; Z). So by taking the 
composite qi ◦ φ : Y → X → Xi, we obtain a continuous map from a closed oriented k-manifold having the 
property that

(qi ◦ φ)∗([Y ]) = (qi)∗ (φ∗([Y ])) = (qi)∗
(
(−1)i+1ρi(β)

)
= β.

Since β and i were arbitrary, this establishes (2).
To see that (2) implies (1), let α ∈ Hk(X; Z) be an arbitrary homology class. Using the Mayer–Vietoris 

splitting, we can write α =
∑

i ρi(αi), where each αi ∈ Hk(Xi; Z). From (2), we have for each i a closed 
oriented k-manifold Yi and a map φi : Yi → Xi having the property that (φi)∗([Yi]) = αi. We can homotope 
the maps φi to be transverse to the finite collection of points where we take the connect sums, and since 
k < n, this just means that each φi has image in the complement of the neighborhoods where the connect 
sum is taken. We thus obtain a map 

∐
φi :

∐m
i=1 Yi → X1# · · ·#Xm, well-defined up to homotopy (since 

k < n − 1), from the disjoint union of the Yi into X. By construction, it immediately follows that

(
∐

φi)∗

([
m∐
i=1

Yi

])
=

∑
i

ρi ((φi)∗([Yi])) =
∑
i

ρi(αi) = α,

which completes the proof. �
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An immediate consequence of Lemma 2.1 is that, in view of hypothesis (a), every Nt has some non-
representable degree k homology class. We would now like to consider the corresponding question for the 
source manifolds Ms. There is the following elementary

Lemma 2.2. For a product X = X1 × · · · ×Xm of closed manifolds and a given integer k, assume that for 
every factor Xi we have

(1) every homology class α ∈ Hj(Xi; Z), j ≤ k, is representable, and
(2) the homology groups Hj(Xi; Z) are torsion-free for j ≤ k.

Then every homology class α ∈ Hj(X; Z) is representable.

Proof. It is sufficient to show that an additive basis for the homology Hj(X; Z) (j ≤ k) is representable. 
Note that from hypothesis (2), a simple induction shows there is no Tor term in the Künneth formula for 
Hj(X; Z). Thus Hj(X; Z) is generated by cohomology classes of the form α1⊗· · ·⊗αm, where αi ∈ Hji(Xi; Z)
and j =

∑
ji. Note that each ji ≤ j ≤ k, so from hypothesis (1), we have closed oriented manifolds Yi with 

dim(Yi) = ji, and a map φi : Yi → Xi satisfying (φi)∗([Yi]) = αi. Then forming the product map

m∏
i=1

φi :
m∏
i=1

Yi →
m∏
i=1

Xi = X,

we have that

(
m∏
i=1

φi)∗

([
m∏
i=1

Yi

])
=

m⊗
i=1

((φi)∗([Yi])) = α1 ⊗ . . .⊗ αm = α.

This completes the proof of the lemma. �
Remark 2.3. As we shall see in Section 4.1, Lemma 2.2 does not hold if we remove the torsion-free assump-
tion (2).

Now from hypotheses (b) and (d), it follows that for all of the Ms, every degree k homology class is 
representable. Indeed, Thom showed that for manifolds of dimension ≤ 9, every homology class is repre-
sentable. Applying Lemma 2.2, we see M ′ has every homology class representable. Lemma 2.1 then tells us 
that every degree k homology class of Ms is representable.

Next, we claim that if f : Ms → Nt has non-zero degree, then | deg(f)| ≥ 2. To see this, let us assume 
| deg(f)| = 1 and argue by contradiction. Since f has degree one, we know that f∗ : Hk(Ms; Z) → Hk(Nt; Z)
is surjective. So pick a class y ∈ Hk(Ms; Z) with the property that f∗(y) = x, where x is the non-representable 
class (recall that such class exists by assumption (a) and Lemma 2.1). Then since every class in Ms is 
representable, there is a closed oriented k-manifold Y and a map φ : Y → Ms with φ∗([Y ]) = y. Composing 
with f , we obtain a map f ◦ φ : Y → Nt, and

(f ◦ φ)∗([Y ]) = f∗ (φ∗([Y ])) = f∗(y) = x,

which contradicts the fact that x was non-representable. Thus we see that the Steenrod problem yields a 
lower bound on the degree of our hypothetical map.

Finally, to complete the proof, let us make use of the simplicial volume to obtain an incompatible 
inequality. Recall that, for manifolds of dimension > 2, the simplicial volume is additive under connected 
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sums. From our discussion above, if f is a non-zero degree map, then | deg(f)| ≥ 2. Noting that our manifolds 
have dimension n ≥ 10, we obtain

2 ≤ |deg(f)| ≤ ||M0#sM
′||

||N0#tN ′|| = ||M0|| + s||M ′||
||N0|| + t||N ′||

Solving, we see that t has to satisfy the linear upper bound

t ≤ s

(
||M ′||
2||N ′||

)
+

(
||M0|| − 2||N0||

2||N ′||

)
.

Note that, by hypothesis (c), we have ||N ′|| > 0, so the expression above is indeed well defined. On the 
other hand, the condition ||Ms|| ≥ ||Nt|| translates to the inequality

t ≤ s

(
||M ′||
||N ′||

)
+

(
||M0|| − ||N0||

||N ′||

)
.

We conclude that, as long as the integer t satisfies the inequality

s

(
||M ′||
2||N ′||

)
+

(
||M0|| − 2||N0||

2||N ′||

)
< t ≤ s

(
||M ′||
||N ′||

)
+

(
||M0|| − ||N0||

||N ′||

)

there are no non-zero degree maps f : Ms → Nt, even though ||Ms|| ≥ ||Nt||. By hypothesis (d), the 
simplicial volume of the factors of M ′ is positive, and since positivity of simplicial volume is inherited by 
products [9], we conclude that ||M ′|| > 0. Thus the linear bounds above both have (different) positive slopes. 
Comparing these slopes, it immediately follows that there are infinitely many pairs of positive integers s, t
which satisfy the inequality above, concluding the proof of Theorem 1.1.

3. Examples

In this section we give examples of manifolds that fulfill the hypotheses of Theorem 1.1.

3.1. Examples of N0, N ′

Concerning N0, Thom’s work [23] already featured examples of spaces with some non-representable 
homology class. For instance, he shows that one can take the product of two 7-dimensional Lens spaces 
L(7, 3) ×L(7, 3), resulting in a closed 14-dimensional manifold containing an explicit 7-dimensional homology 
class which is not representable (see [23, pgs. 62–63]). Another explicit example can be found in a paper 
of Bohr–Hanke–Kotschick, who consider the 10-dimensional compact Lie group Sp(2), and give an explicit 
7-dimensional homology class which is not representable (see [1, pgs. 484–485]). Taking products with 
spheres yields higher dimensional examples with not representable classes.

If the reader so desires, one can even arrange for N0 to be aspherical. Indeed, one can apply the hyper-
bolization technique of Charney–Davis [4] to an n-manifold X with a not representable homology class. The 
resulting n-manifold h(X) will be aspherical, and it is easy to check that it will also have a not representable 
homology class. Iterating this, one can obtain infinitely many distinct n-manifolds, all of which have a not 
representable homology class. The cohomology rings of these manifolds are hard to explicitly compute.

Manifolds N ′ are much easier to produce. Indeed, examples of manifolds with non-zero simplicial volume 
include

• closed aspherical manifolds with non-cyclic hyperbolic fundamental groups [17,18,10], such as closed 
negatively curved manifolds [13], and
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• closed locally symmetric manifolds of non-compact type [2,16].

Moreover, if X is any n-manifold, then applying the Charney–Davis hyperbolization produces an h(X) with 
the property that ||h(X)|| > 0. Taking products and connected sums preserves the positivity of simplicial 
volume, giving rise to many possibilities for N ′.

3.2. Examples of M0, M ′

Concerning M0, we need to identify manifolds with all degree k homology classes representable by man-
ifolds. It is easier to seek manifolds with all homology classes (of any degree) representable by manifolds – 
call this property (R). There are a few basic examples and constructions that one can use. First of all, tori 
always have property (R). Also, it follows from work of Thom [23] that any closed manifold of dimension 
≤ 9 has property (R).

In addition, one can use Lemma 2.2 to produce higher dimensional examples with property (R). In order 
to do this, one needs low dimensional examples which also have torsion-free homology groups (see our 
condition (d) for M ′). In general, it seems difficult to produce negatively curved manifolds with no torsion 
in their homology groups. Examples are known in dimension n = 3, where one can use Dehn surgery to 
construct infinitely many closed hyperbolic 3-manifolds which are (integral) homology 3-spheres (see [22, 
pgs. 341–342]). This was extended to dimension n = 4 by Ratcliffe–Tschantz [22], who constructed infinitely 
many aspherical homology 4-spheres. Taking products of surfaces with these 3- and 4-dimensional examples, 
our Lemma 2.2 yields examples in all higher dimensions. The authors do not know of any non-product 
examples in dimensions ≥ 5.

Concerning M ′, one wants to additionally ensure that the factors have positive simplicial volume. This is 
immediate for surfaces and for the hyperbolic 3-manifolds. While the 4-dimensional examples of Ratcliffe–
Tschantz are no longer hyperbolic, they still have positive simplicial volume. Indeed, these manifolds are 
obtained by doing Dehn surgery on a collection of linked 2-tori in the 4-sphere. Work of Osin [21] and 
Groves–Manning [11] implies that the resulting manifold is hyperbolic relative to a collection of Z2 sub-
groups. An argument of Connell–Wang then implies that the comparison map from bounded cohomology to 
ordinary cohomology is surjective in degrees ≥ 3 (see [5, Remark 1.3]). This forces the Ratcliffe–Tschantz 
examples to have positive simplicial volume. Thus any product of such manifolds would produce a valid M ′.

4. Concluding remarks

We finish our discussion with a few remarks on the hypotheses of our main result, as well as with a 
homotopy theoretic viewpoint of parts of its proof.

4.1. On the product lemma

We note that part of the difficulty in finding examples of M0, M ′ for our main theorem is linked with 
the “torsion-free homology” hypothesis in our product Lemma 2.2. We note however that Lemma 2.2 is 
false if one removes hypothesis (2): Thom’s example discussed above provides a counterexample. In Thom’s 
example, M := L(7, 3) × L(7, 3) is a product of 7-dimensional manifolds, so both factors have property 
(R). Nevertheless, Thom shows the product M does not have property (R), as there is an explicit class in 
H7(M ; Z) which is non-representable. This is directly linked to the fact that, in the Künneth formula for the 
homology of M , the Tor term is non-zero (due to torsion in the homology of L(7, 3)). Thus the collection 
of homology classes that are “obviously” representable only form a finite index subgroup (of index 9) inside 
H7(M ; Z).
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4.2. The range of slopes

Given any class x ∈ Hk(Nt; Z), Poincaré duality implies that, if f : Ms → Nt has non-zero degree, then 
there exists y ∈ Hk(Ms; Z) such that f∗(y) = deg(f) ·x. Since every class in Ms is representable by manifolds, 
we conclude as in the proof of Theorem 1.1 that deg(f) · x is representable. Thus, if the class x in item 
(a) has the property that the multiples x, 2 · x, ..., (d − 1) · x are not representable, then this immediately 
yields the lower bound | deg(f)| ≥ d. Repeating the last calculation of the proof of our main theorem, which 
involves the simplicial volume, we conclude that as long as t satisfies the inequality

s

(
||M ′||
d||N ′||

)
+
(
||M0|| − d||N0||

d||N ′||

)
< t ≤ s

(
||M ′||
||N ′||

)
+

(
||M0|| − ||N0||

||N ′||

)
,

there are no maps f : Ms → Nt of non-zero degree, even though ‖Ms‖ ≥ ‖Nt‖. Therefore, the integer d on 
the left-hand side of the above inequality which reflects the minimum number for which d ·x is representable 
by manifolds, determines the range where we can find pairs (s, t) satisfying Theorem 1.1.

4.3. Using mapping degree sets and other semi-norms

In hypotheses (c) and (d) of Theorem 1.1, the manifolds N ′ and M ′ have positive simplicial volume. For 
M ′ this is due to positivity of simplicial volume being preserved under products. Also, both Ms and Nt

have positive simplicial volume because of the additivity of the simplicial volume under taking connected 
sums (recall that their dimension is n ≥ 10). It would be interesting to replace N ′ and M ′ with manifolds 
whose simplicial volume is zero, but which have another non-vanishing semi-norm ν so that ν(Ms) ≥ ν(Nt)
but Ms does not dominate Nt. One major difficulty is that not many examples of ν seems to be known 
with well-understood behavior under taking products or connected sums. Furthermore, in order to apply 
Theorem 1.1, one would need all assumptions of item (d) to be satisfied (or just find a single M ′ with every 
degree k homology class representable). It is natural to believe that (non virtually trivial) circle bundles 
over negatively curved manifolds, certain hypertori bundles over locally symmetric manifolds of non-compact 
type, and products of such spaces are good candidates for such new N ′ and M ′. Indeed, for many of those 
manifolds it is known that they can be dominated by another manifold with only finitely many different 
degrees, see [20,6,19].

4.4. Homotopy theoretic viewpoint

We used the representable versus non-representable classes to argue that the induced map f∗ on integral 
homology could not be surjective, and hence gave the lower bound | deg(f)| ≥ 2. We now indicate how 
Thom’s work on the Steenrod problem [23] gives a homotopical viewpoint on that portion of our proof.

Thom showed that x ∈ Hk(X; Z) is representable if and only if the Poincaré dual PD(x) ∈ Hn−k(X; Z)
can be realized as a pullback PD(x) = ψ∗(τ), where ψ : X → MSO(n − k) is a continuous map, and 
τ ∈ MSO(n − k) is the Thom class in the Thom space MSO(n − k). Of course, from the homotopical 
viewpoint, we can also view the Thom class as a map

τ : MSO(n− k) → K(Z, n− k),

well-defined up to homotopy. Post-composing with τ then induces, for any space X, a map

[X,MSO(n− k)]
τ◦−

[X,K(Z, n− k)].
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The target space is just Hn−k(X; Z), and stating that a manifold X has every degree k homology class 
representable is equivalent to stating that the map above is surjective, i.e. that every map g : X → K(Z, n −k)
factors, up to homotopy, through τ : MSO(n − k) → K(Z, n − k),

MSO(n− k)

τ

X

g̃

g
K(Z, n− k)

With this in hand, we can interpret the inequality | deg(f)| ≥ 2 in our proof homotopically as follows. 
If | deg(f)| = 1, then the induced map f∗ on cohomology is injective. We can now consider the following 
commutative diagram

[Nt,MSO(n− k)]

τ◦−

[Ms,MSO(n− k)]

τ◦−

PT

[Nt,K(Z, n− k)]
−◦f

[Ms,K(Z, n− k)]

Indeed, Thom’s work, our hypotheses (b) and (d), and Lemmas 2.1, 2.2 allows us to see that the right 
hand vertical map is surjective. On the other hand, our hypothesis (a) and Lemma 2.1 implies that the 
left hand vertical map is not surjective. Finally, the existence of the top map, which is guaranteed from 
the Pontrjagin–Thom construction, along with commutativity of the diagram, yields a contradiction. Thus, 
from this viewpoint, our argument is making use of whether or not maps to the classifying space K(Z, n −k)
can factor through MSO(n −k). It is tempting to wonder if one could similarly obtain lower bounds on the 
degree by considering whether or not maps factor through other canonical spaces.

4.5. Relation with Steenrod powers

In both of the examples of N0 mentioned in Section 3.1, the non-representability of the homology class 
is detected via a suitable Steenrod power. It is natural to ask whether our main theorem could also be 
established purely by considering the cohomology structure as a module over the Steenrod algebra (by 
arguments similar to those in [15]). This is closely related to the problem of understanding the homotopy 
type of the spaces MSO(n − k), which generally seems to be a difficult problem.

In contrast, it is worth noting that the unoriented version of Steenrod’s problem, corresponding to maps 
into MO(n −k), is indeed completely detectable in terms of Steenrod squares (see [23, Section 6, pgs. 36–43]). 
From the homotopy theoretic viewpoint, the key difference is that MO(r) has the 2r-homotopy type of a 
product of Eilenberg–MacLane spaces, i.e. the first 2r stages of the Postnikov tower are just an iterated 
product. In contrast, the Postnikov tower for MSO(n − k) has non-trivial fiber bundles appearing at early 
stages. This opens up the possibility of having some higher cohomology operations appearing as obstructions 
(see [14] for an illustration of these sorts of phenomena).
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