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a b s t r a c t

Computing intersection cohomology Betti numbers is complicated
by the fact that the usual long exact localization sequences
in Borel–Moore homology do not carry over to the setting of
intersection homology. Nevertheless, about 20 years ago, Richard
Stanley had formulated a remarkable algorithm for computing the
intersection cohomology Betti numbers of toric varieties. During
the last few years, Michel Brion and the first author were able
to extend this to a much larger class of spherical varieties. This
algorithm has been implemented as an interactive script written
for the programming package GAP (using also LiE and polymake)
by the authors. This paper is an exposition of this implementation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We begin with the following elementary example to illustrate why computing intersection
homology is quite difficult (and why, in contrast, computing Borel–Moore homology is often quite
easy).
Let Grass2(C4) denote the Grassmannian of 2-planes in C4. Let Sch2 denote the Schubert variety

defined by {V ∈ Grass2(C4) | dim(V ∩ C2) ≥ 1}. This variety has the following explicit cell
decomposition into complex cells Ci, i = 0, 1, 2, 3, and C ′2 with dim(Ci) = i and dim(C

′

2) = 2:

C0 = {V ∈ Grass2 | dim(V ∩ Ci) = i, i = 1, 2}
C1 = {V ∈ Grass2 | dim(V ∩ Ci) = 1, i = 1, 2, dim(V ∩ C3) = 2}
C2 = {V ∈ Grass2 | dim(V ∩ Ci) = i− 1, i = 2, 3, dim(V ∩ C1) = 0}
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C ′2 = {V ∈ Grass2 | dim(V ∩ Ci) = 1, i = 1, 2, 3}.

C3 = {V ∈ Grass2 | dim(V ∩ C2) = 1, dim(V ∩ C3) = 1, dim(V ∩ C1) = 0}.

Observe that the cells are all complex cells, and therefore of even real dimension. Therefore, the usual
localization sequences in Borel–Moore homology associated with the filtration provided by the above
cell decomposition break up into short exact sequences. Consequently one may read off the Borel–
Moore homology as H0(Sch2;Q) ∼= Q ∼= H6(Sch2;Q), H2(Sch2;Q) ∼= Q and H4(Sch2;Q) ∼= Q ⊕ Q.
The last two isomorphisms follow from the fact there is exactly one 1-cell whereas there are two 2-
cells. In particular, the above computations show the failure of Poincaré dualitywhich, in turn, implies
the Schubert variety Sch2 is singular.
Computing the intersection cohomology of the above Schubert variety is quite involved; it makes

use of a small resolution of singularities given explicitly as a variety of partial flags. (See Beilinson
et al. (1982) and Joshua (1987) for basic results on intersection cohomology.) In this particular case,
we are fortunate in having the existence of such a small resolution, but clearly this is a very special
situation. It should be in this context that one should view the remarkable algorithm conjectured by
Richard Stanley (see Stanley (1987)) that computes the intersection cohomology Betti numbers of all
projective toric varieties. This was proved shortly thereafter by several groups independently: see for
example, Denef and Loeser (1991) and Fieseler (1991).Wemay summarize this result as the following
theorem.

Theorem 1.1. Let X be a complex projective toric variety of dimension d, andwith dense orbit T . Let IPX (t)
(IPX,x(t)) be the Poincaré polynomial for global intersection cohomology (for the stalks of the intersection
cohomology sheaves at x ∈ X, respectively). Then

IPX (t) =
∑
x

(t2 − 1)d−rx IPX,x(t) (1.0.1)

(sum over representatives of T -orbits in X) and

IPX,x(t) = IPSx,x(t) =
{
τ≤dx−1((1− t

2)IPP(Sx)(t)), dx ≥ 2,
1 otherwise. (1.0.2)

Sx is a slice at x to Tx of dimension dx; P(Sx) = (Sx − x)/C∗ is the corresponding link for an attractive
action of the multiplicative group, and τ≤dx−1 denotes the truncation of a polynomial to degrees≤ dx− 1.
(Making use of Poincaré duality one has t2dIPX (1/t) = IPX (t), so one may rewrite the first formula above
as IPX (t) =

∑
x(1 − t

2)d−rx t2dx IPX,x(1/t) where dx = d − rx = the dimension of the slice at x and rx is
the dimension of the stabilizer at x.)

In the late 1990s, Michel Brion and the first author discovered a new technique that extended the
above algorithm of Stanley to a large class of spherical varieties and also provided a more conceptual
framework for understanding the already known results for toric varieties. In Brion and Joshua
(2001), the authors proved that certain orbit stratifications were equivariantly perfect for intersection
cohomology, in the sense that the long exact sequences in equivariant intersection cohomology
associated with this stratification broke up into short exact sequences. This provides new proofs of
the vanishing of odd dimensional intersection cohomology sheaves in many cases. More importantly
it was able to provide a computational tool extending Stanley’s algorithm to a large class of spherical
varieties. In Brion and Joshua (2004), the authors work this out in detail for the family of projective
spherical varieties called projective reductive varieties. The goal of the present paper is to discuss the
implementation of this algorithm for the important subclass of reductive varieties given by projective
group imbeddings (or compactifications of algebraic groups). The implementation is written as a GAP
package (see The GAP Group, 1986), which will call the program LiE (see van Leeuwen et al., 1996) to
compute the purely Lie-theoretic invariants and polymake for questions about convex polytopes. A
key use is made of the observation that the Poincaré polynomial in intersection cohomology for these
varieties can be computed from the combinatorial data given by a polytope and the Lie-theoretic data
associated with the specified algebraic group. (See Theorem 2.3.)
The organization of the paper is as follows. As the title of the paper indicates, we concentrate on the

implementation aspects of the above algorithm. The second section sets up the framework for the rest
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of the paper. We summarize all the necessary background information on reductive varieties there.
We conclude that section with the theorem extending Theorem 1.1 to projective reductive varieties
as proven in Brion and Joshua (2004). The next section is devoted to an algorithmic reformulation of
the above theorem for group imbeddings. There we also discuss several examples and trace the flow
of the algorithm for these examples. We discuss implementation-specific details in the next section.
The final section gives a sample of the traces of the program on the examples considered earlier.

1.1. Notation and conventions

In the rest of this section, we will establish the terminology and conventions that will be adopted
for the rest of the paper. Throughout the paper we will restrict to complex algebraic varieties. We
denote by G a complex linear algebraic group, and by G0 the connected component of the identity in
G. A separated reduced scheme X of finite type over C provided with an action by G will be called a
G-variety; observe that varieties need not be irreducible.
Consider a G-variety X and a point x ∈ X; let Gx be its G-orbit and Gx its isotropy group. A slice to

Gx at x is a locally closed subvariety S of X containing x and satisfying the following two conditions:
(i) there exists a maximal torus Tx of Gx such that S is stable under Tx and (ii) the map G × S → X
sending (g, x) to gx is smooth at (e, x), and the dimension of S is the codimension of Gx in X . Observe
that S always exists since we have restricted to complex algebraic varieties.
Let T denote a torus acting on a variety X with a fixed point x. We say that x is attractive if there exists
a one-parameter subgroup λ : C∗ → T such that, for all y in a Zariski neighborhood of x, we have
limt→0 λ(t)y = x. We say that S is an attractive slice, if x is an attractive fixed point for the action of
Tx on S. (See Brion and Joshua (2001, Appendix (A.1)) for further details on attractive fixed points.)
In this case, the geometric quotient P(Sx) = (Sx − x)/C∗ exists, and we call it the link at x. This is a
projective variety, since Sx is assumed to be affine.

2. Reductive varieties and their intersection cohomology computations

This section serves as a framework for the rest of the paper. We will summarize the key properties
of reductive varieties and group imbeddings from Brion and Joshua (2004).
Let G denote a complex connected reductive group with B, B− opposite Borel subgroups, i.e.,

T = B ∩ B− is a maximal torus of G; let U = Ru(B), U− = Ru(B−) be the unipotent radicals of B,
B−. The character group of T will be denoted byΛ and called the weight lattice; we put

ΛR = Λ⊗Z R. (2.0.1)

W will denote the Weyl group of (G, T ); it acts onΛ and hence onΛR.Φ will denote the root system
of (G, T ), with the subsetΦ+ of positive roots (the roots of (B, T )), andΠ of simple roots.
For any subset I ⊆ Π ,ΦI will denote the corresponding subsystem ofΦ , andWI (resp. PI ⊇ B and

P−I ⊇ B
−) will denote the corresponding parabolic subgroup ofW (opposite parabolic subgroups of G,

respectively). LI = PI ∩ P−I ; this is a Levi subgroup of PI and P
−

I , with root systemΦI and Weyl group
WI . Let ` be the length function ofW , and letW I be the subset of representatives of minimal length
ofW/WI . Then the Poincaré polynomial of G/PI equals

∑
w∈W I t

2`(w).
Next consider the connected reductive group G×G, with Borel subgroup B−×B andmaximal torus

T × T . diag T will denote the diagonal in T × T . An affine G× G-variety X is called reductive (for G) if
it satisfies the following conditions: (i) X is normal, (ii) there exists x ∈ X , fixed by diag T , such that
the orbit (B− × B)x is dense in X and (iii) the isotropy group (G× G)x is connected. Note that the set
of all x ∈ X satisfying (ii) is a unique T × T -orbit: any such point will be called a base point.
The Bruhat decomposition implies thatmultiplication ofG yields an open immersionU−×T×U →

G. Thus the group G, viewed as a G× G-variety via left and right multiplication, is an affine reductive
variety.More generally, all affineG×G-equivariant embeddings ofG, or of quotients ofG by connected
normal subgroups, are reductive varieties for G. One may consult Brion and Joshua (2004, Section 5)
or Alexeev and Brion (2004) for further details on affine reductive varieties.
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Given a complex connected reductive group G as above, next we will consider projective G × G-
reductive varieties as in Alexeev and Brion (2004) and Brion and Joshua (2004, Section 5). We will
recall their definition from Brion and Joshua (2004) presently.
Consider a projective irreducible G × G-variety X equipped with an ample G × G-linearized line

bundle L. Let R =
⊕
∞

n=0 Γ (X, L
⊗n), where Γ (X, L) is the vector space of sections of the line bundle

L → X; this is a graded, finitely generated reduced algebra and defines an affine variety X̃ where
C∗ × G × G acts. Further, the action of C∗ is attractive, and the corresponding link identifies with X .
We say that the pair (X, L) is a linearized projective G× G-variety. Let G̃ = C∗ × G. This is a connected
reductive group with weight lattice Λ̃ = Z×Λ. We may regard X̃ as a G̃× G̃-variety, where C∗ ×C∗
acts via its morphism (t1, t2) 7→ t1t−12 to C∗. Now projective G× G-reductive varietiesmay be defined
as those linearized projective G × G-varieties (X, L) for which the affine cone X̃ is an affine G̃ × G̃-
reductive variety.

Examples 2.1. 1. Take G = T , a complex torus. Then the projective G× G-varieties identify with the
projective toric varieties associated with both T and all quotient tori of T .
2. One can require in addition that the projective reductive varieties contain G as a dense open

orbit: we then obtain compactifications of algebraic groups or group imbeddings considered in De
Concini and Procesi (1983).

Next we recall that projective G× G-reductive varieties are determined combinatorially from certain
polytopes just as in the case of toric varieties. Let σ ⊆ Λ̃R = R× ΛR be the cone associated with X̃ ,
and put δ = σ ∩ (1 × ΛR). Then δ is a lattice polytope in ΛR, and σ is the cone over δ. We require
that δ satisfies the following conditions:
(i) The relative interior δ0 meetsΛ+R . (ii) The distinct translateswδ

0 (w ∈ W ) are disjoint.
A lattice polytope δ ⊂ ΛR satisfying (i) and (ii) is called a W-admissible polytope. These classify

polarized reductive varieties; wewill denote by (Xδ, Lδ) the linearized reductive varietywith polytope
δ. The closure in X of the orbit of base points, equipped with the restriction of L, is the linearized toric
variety with polytope δ. The G × G-orbit closures in Xδ are the Xϕ , where ϕ ⊆ δ is a W -admissible
face, which is defined as follows:

Definition 2.2. A face ϕ is W -admissible if the distinct translates wϕ0, (w ∈ W ) are disjoint and
it satisfies one of the following conditions: (i) its relative interior intersects with the interior of the
positive Weyl chamber or (ii) if it lies in one of the walls of the positive Weyl chamber, then no
translatewϕ (w ∈ W ) satisfies the condition in (i).

For each W -admissible face ϕ of the polytope δ, we let I(ϕ) (J(ϕ)) denote the simple roots so that
reflections in a plane orthogonal to them leaveϕ stable (pointwise fixed, respectively). The description
of the isotropy group (G × G)x as in Brion and Joshua (2004, (5.1.1)) carries over to this projective
setting, withΛσ (in the affine case) being replaced by the latticeΛδ spanned by the differences of any
two elements ofΛ ∩ δ.
As a consequence, the description of orbits as fibered spaces as in Brion and Joshua (2004, (5.1.2))

carries over as well with σ being replaced by δ. Further, projective imbeddings of a quotient of G
by a connected normal subgroup (resp. of G) correspond toW -invariant lattice polytopes (resp. with
non-empty interior).

2.1. Combinatorial structure in reductive varieties

One also obtains a combinatorial description of slices and links in reductive varieties as in Brion and
Joshua (2004, Section 5). Consider aW -admissible polytope δ ⊂ ΛR, and aW -admissible face ϕ ⊆ δ.
These correspond to a linearized reductive variety (Xδ, Lδ) together with a G × G-orbit O = Oϕ: the
open orbit in Xϕ ⊆ Xδ . We describe the local structure of X along O as follows.
Let x be a base point of O; then (B− × B)x is open in (G× G)x = O. Further, it follows from Brion

and Joshua (2004, (5.1.1)) that the normalizer P of (B−× B)x in G×G equals P−J × PJ , where J = J(ϕ).
Since x is fixed by diag T , the Levi subgroup L of P equals LJ × LJ . In this case it is shown in Alexeev and
Brion (2004, Lemma 2.8) that Ru(P−J )× Ru(PJ)×Σ is an affine open neighborhood of (B

−
× B)x in X
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for a locally closed subvarietyΣ of X . It is also shown in Alexeev and Brion (2004, Lemma 2.8) that the
varietyΣ is an affine reductive variety for LJ ; one readily checks that the correspondingWJ -admissible
cone is generated by the differences λ− µ, where λ ∈ δ and µ ∈ ϕ.
Now Brion and Joshua (2004, (5.1.1)) once again shows Lx = Gϕ × Gϕ , where Gϕ is a connected

reductive subgroup of G, normalized by T ; further, Tϕ is a maximal torus of Gϕ , so that the weight
lattice of Gϕ equals Λ/Λϕ . The set of simple roots of Gϕ is J = J(ϕ), with Weyl groupWJ = CW (ϕ);
the latter will be denoted byWϕ .
By Alexeev and Brion (2004, Lemma 4.1), the slice Sx is an affine reductive variety for Gϕ . Denote

itsWϕ-admissible cone by σ = σϕ; this cone is the image in Λϕ of the cone of Σ . So we may regard
σ as the normal cone to δ along its face ϕ.
To describe the link P(Sx), note first that the closed convex cone σ contains no lines. Thus, wemay

find a linear form f onΛR/Λϕ,R that takes positive values at all non-zero points of σ . Wemay assume
in addition that f takes rational values at all points of Λ/Λϕ , and is invariant under the normalizer
of σ inWϕ . Then by Alexeev and Brion (2004, 3.2, 4.1), f yields a positive Gϕ × Gϕ-invariant grading
of the algebra of regular functions on Sx. In other words, f defines an attractive C∗-action on Sx that
commutes with the action of Gϕ × Gϕ . Now P(Sx) is the reductive variety for Gϕ associated with the
polytope σ ∩ (f = n), where n is a suitable positive integer. We may regard this polytope as the link
of δ along its face ϕ.

2.2. The closure property of the class of group imbeddings

If Xδ is an embedding of a quotient of G by a connected normal subgroup, then the polytope δ is
W -invariant, so that σϕ is invariant underWϕ . Therefore, Sx will be an embedding of a quotient of Gϕ
by a connected normal subgroup. It follows that the class of imbeddings of connected reductive groups
is stable under taking slices and, likewise, links. Therefore, it is possible to restrict to this class of reductive
varieties as is done in the present paper: this also simplifies the algorithm given in the next section.
Weend this sectionby recalling the key theorem fromBrion and Joshua (2004): this is the extension

of Stanley’s algorithm to reductive varieties, and in particular, to group imbeddings.

Theorem 2.3. Let X be a projective reductive G×G-variety; let IPX (t) (IPX,x(t)) be the Poincaré polynomial
for global intersection cohomology (for the stalks of the intersection cohomology sheaves at x ∈ X,
respectively). Then

IPX (t) =
∑
x

(1− t2)(2r−rx)
PG/T (t)2

P(G×G)x/(T×T )x(t)
t2dx IPX,x

(
1
t

)
(2.2.1)

(sum over representatives of G× G-orbits in X), and

IPX,x(t) = IPSx,x(t) =
{
τ≤dx−1((1− t

2)IPP(Sx)(t)), dx ≥ 2,
1 otherwise. (2.2.2)

Here T is a maximal torus of G, of dimension r; (T × T )x is a maximal torus of (G×G)x, of dimension rx; Sx
is a slice at x to (G×G)x, of dimension dx; P(Sx) = (Sx− x)/C∗ is the corresponding link for an attractive
action of the multiplicative group, and τ≤dx−1 denotes the truncation of a polynomial to degrees≤ dx− 1.

Moreover, (1− t2)(2r−rx) PG/T (t)2

P(G×G)x/(T×T )x (t)
= (−1)rxP(G×G)x(t)where (G× G)x denotes the G× G-orbit of x.

3. Extension of Stanley’s algorithm to projective group imbeddings

In this section we will convert the last theorem into an algorithm for computing the intersection
cohomology Betti numbers for all projective reductive varieties using ascending induction on the
dimension of the varieties.Wewill also conclude by considering a few simple examples. For simplicity
we will only consider the case of group imbeddings: according to Brion and Joshua (2004, Section 5)
the correspondingW -admissible polytopes are stable with respect to the action ofW and have non-
empty interiors. (The last condition means that their dimension is the same as the dimension ofΛR.)
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3.1. Step by step algorithm

In what follows all function names are written in typewriter font, while non-literal input
variables are written in italics.

Initial processing
(1) Enter the reductive group. Certain computations are made automatically, including an
enumeration of the positive roots, fundamental roots, Weyl group, Cartan matrix, a basis for the
latticeΛ, etc.

(2) Read in the (W -stable) polytope by giving its vertices in the root lattice. Let r = the dimension
of root lattice. (Observe this is the dimension of the maximal torus T of G.) The dimension of the
corresponding reductive variety is d = dim(G) = 2l(w0) + r where w0 is the longest element of
the Weyl group.
The recursive or iterative part
For eachW -admissible face ϕ of δ one calls the following steps recursively or iteratively until the
polytope in step 5 (namely, δϕ) reduces to a point.

(3) For eachW -admissible face ϕ of the polytope δ, compute the sets I(ϕ) ( J(ϕ)) of simple roots so
that reflections in a plane orthogonal to them leaves ϕ stable (pointwise fixed, respectively). The
latticesΛϕ generated by the differences λ− µ, λ,µ in the face ϕ and the quotientΛ/Λϕ will be
considered as appropriate sublattices ofΛ. This is possible because there is no torsion present in
Λ/Λϕ . Compute the Weyl subgroupWϕ generated by the simple roots in J(ϕ).

(4) Compute σϕ = the normal cone to ϕ in δ. Obtain the polytope δϕ = σϕ ∩ (f = c), for some linear
functional that is invariant by the normalizer of the normal cone σϕ inWϕ , positive and rational
on the cone σϕ .

(5) Compute the Poincaré polynomial P(G×G)x(t) = (t2−1)dim(ϕ)
(∑

w∈W I(ϕ) t
2l(w)

)2(∑
w∈WK (ϕ)

t2l(w)
)

where the point x is in the orbit corresponding to ϕ. W I(ϕ) is the set of coset representatives of
minimal length for W/WI(ϕ) where WI(ϕ) denotes the subgroup of W generated by the simple
roots in I(ϕ). Moreover, rx (which is the semi-simple rank of the stabilizer (G× G)x at x) is given
by 2r−dim(Λϕ) and dx = d−(|Φ−ΦJ(ϕ)|+dim(ϕ))whereΦJ(ϕ) is the subroot system generated
by J(ϕ). Substitute this into the formula (2.2.1). ReplaceW byWϕ (by retaining only those roots
that generateWϕ) and the oldΛ byΛ/Λϕ which is represented by a sublattice normal to ϕ. (Here
we retain the ambient lattice Λ as our framework, but record and use the dimension Λ/Λϕ in
subsequent computations.)

(6) Repeat steps 3 through 5 until the polytope in the last step is a point. When the normal polytope
δϕ is a point, the corresponding reductive variety will be also a point, since we are restricting to
only group imbeddings.

Of particular importance for us is themanner inwhich algebraic groups are represented in the package
LiE. Recall that (see Bourbaki (1975)) every complex connected reductive group is the homomorphic
image of a direct product of simple groups and a torus. The above homomorphism has a finite kernel
which is contained in the center. Recall that any simple algebraic group is represented by its Lie type:
if it is classical, it is of type An, Bn, Cn or Dn or of it is exceptional it is of the form E6, E7, E8, F4 or G2.

Proposition 3.1. In Theorem 2.3, it is possible to assume that all the groups G and the various stabilizers
are direct products of simple groups and a torus.

Proof. This is essentially a consequence of the formula proved in Theorem 2.3. First observe that
all the stabilizers are connected. We may assume using ascending on the dimension of the group
imbedding that the proposition is true for all algebraic groups of dimension strictly smaller than the
dimension of G. Next observe that replacing these stabilizers (G×G)x by the corresponding reductive
groups (G × G)x/RU((G × G)x) does not change the cohomology of the corresponding flag variety
(G× G)x/(T × T )x. In a similar way we may take the quotient by the central torus without changing
the flag variety. Next one may take the simply connected cover of these semi-simple groups: then
there will be a surjective homomorphism from these simply connected covers to the original groups
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with finite kernel. It is straightforward to see that the flag varieties associated with these groups
are isomorphic. This essentially follows from the observation that if f : G′ → G is a surjective
homomorphismof (reductive) connected algebraic groupswith finite kernel, then the Borel subgroups
correspond one to one. (It is known that every Borel subgroup in G is the image of a Borel subgroup in
G′. Conversely f −1(B) for any Borel subgroup inGmust be parabolic andmust contain a Borel subgroup
B′ of G′. Since parabolic subgroups are connected it follows readily that f −1(B) = B′.)
Now consider the various summands that appear in the formula in Theorem 2.3. It is clear from

the above observations that the term corresponding to the dense orbit is (1 − t2)rPG/T (t) for which
the above observations apply. For each of the remaining orbits O containing a point x, one has a term

(1 − t2)(2r−rx) PG/T (t)2

P(G×G)x/(T×T )x (t)
t2dx IPX,x( 1t ) as a summand of IPX (t). Now the term IPX,x(t) = IPSx,x(t) =

τ≤dx−1((1− t
2)IPP(Sx)(t)) if dx ≥ 2 and IPX,x(t) = 1 if dx ≤ 1. Since P(Sx), which is the link, is a group

imbedding for a smaller group, we may use ascending induction on the dimension of the algebraic
groups whose imbeddings we are considering to complete the proof. �

The implementation-specific details are discussed in detail in the next section. For the rest of this
section, we will trace the above algorithm for several examples. See the last section for a computation
of the Poincaré polynomials in these examples by our program.

Example 3.2. The most basic example is that of the toric variety P1. P1 turns up as the link in many of
the examples that we consider. In view of these and also to illustrate our techniques we will begin by
considering this example.
Observe that P1 may be viewed as the group imbedding associated with C∗. One has three orbits,

namely the dense orbit∼= C∗ and the two fixed points which wewill denote as 0 and∞. Clearly these
two are W -admissible since W is trivial. Therefore, the tree diagram associated with the algorithm
in 3.1 will be the following:

Therefore, one may compute the Poincaré series for P1 as 1− t2 + 2t2 = 1+ t2.
In the above example and the following ones, the tree diagram drawn will be a simplified one

convenient for discussing the flow of the algorithm. The actual tree constructed by the program will
have several more nodes, needed for the recursive calculation of the Poincaré polynomials.
Next we will consider several non-toric examples beginning with reductive groups of type A1. For

type An the reductive group will be either PGLn+1 or SLn+1. The semi-simple rank of these groups is n,
the weight lattice is of dimension n, and the Weyl groupW identifies with the symmetric group Sn.
Projective group imbeddings of G are given by W -symmetric polytopes in ΛR whose interior meets
the positive Weyl chamberΛ+R . Observe that in this case the Poincaré polynomial PG/B(t) =

∑n
i=0 t

2i.
For the sake of simplicity we will not consider the complication arising from our representation of
vectors as coordinate vectors with respect to the basis of simple roots (and not as the actual vectors.)

Example 3.3. We will presently work out in detail the G = PGL2 case considered also in Brion and
Joshua (2004). The weight lattice for PGL2 is one dimensional. We draw this with the positive simple
root α along the positive x-axis. Now the Weyl groupW ∼= Z/2Z acts in the obvious manner. Clearly
the only choice is a polytope with vertices at x = ±k for some non-zero k.
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For convenience, we have represented the polytope as the line segment with faces a = (−2) and
c = (2) (Euclidean coordinates). The simple root α is drawn as the vector with coordinate (1). In our
algorithm, all vectors are represented by their coordinate vectors with respect to the simple roots:
therefore a and c would be denoted as [−2] and [2], respectively. In this case the onlyW -admissible
faces are the entire polytope and the face c. Clearly the face given by the entire polytope corresponds
to the dense orbit. There is only one other orbit, namely the closed orbit corresponding to the face c.
Now the normal polytope to the face c is a, which is the reflection of c in the y-axis. The following is
the tree-diagram for the iterations of the algorithm given in 3.1.

Recall that the normal polytope above corresponds to the link to the corresponding orbit. Observe
that for the face ϕ = c , the set J(ϕ = c) of simple roots that fix c is empty. Therefore, we make the
following observations:
(i) The link associatedwith c , andwhichwe identifiedwith c , is in fact a point. (ii) The Levi subgroup

LJ(ϕ=c) of PGL2 identifies with themaximal torusC∗. Moreover, the torus Tϕ is trivial since its character
group is given by Λ/Λϕ: see Brion and Joshua (2004, pages 476 and 478). Therefore, the stabilizer
corresponding to the closed orbit may be identified with a Borel subgroup of PGL2 × PGL2.
At this point all the data on the right hand side of the formula in Theorem2.3 (2.2.1) are completely

determined. In fact in this case, the reductive variety is none other than P3 provided with the action
of PGL2 × PGL2 where the left-factor (right-factor) acts in the obvious manner on the left (right,
respectively). This is an example of wonderful group compactifications considered in De Concini and
Procesi (1983). There are exactly two orbits for this action, namely the open dense orbit ∼= PGL2 and
the closed orbit isomorphic to P1 × P1. The slice to the closed orbit is an affine space and the link is a
point.

Example 3.4. Next we consider group imbeddings of GL2. The root lattice for GL2 is obtained from the
lattice of PGL2 by extending by an orthogonal component. Here the positive simple root (whichwill be
denoted as α) is again drawn along the positive x-axis so that the positive Weyl chamber is the right
half-plane. As the polytope δ, we take the triangle with vertices at a, b and c.

Of the faces, the one-dimensional faces bc and ac , and the vertices b and c are W -admissible. The
vertex b is fixed by the action of the Weyl group which is to reflect about the y-axis. The following is
the corresponding tree diagram as the algorithm explores the various admissible faces iteratively.
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The structure of the various orbits and their transverse slices in this example have been analyzed in
detail in Brion and Joshua (2004, p. 480); therefore we skip these details here.

Example 3.5. The next example thatwe consider is the groupG = PGL3which is of type A2. Therefore,
the root lattice is two dimensionalwith the simple roots denoted asα andβ .We consider the polytope
given by the following hexagon: the coordinate vector of the point awith respect to the root vectors α
and β is [−2, 0]. The action by theWeyl group determines the remaining vertices so that one obtains
a polytope symmetric with respect to this action.

In this case the admissible faces are bc , cd, c. The vertices b and d lie in the walls of the positive Weyl
chamber and may be obtained from the vertex c by translating by a suitable Weyl group element.
Therefore they are not W -admissible. The tree for the iterated calls of our algorithm is as follows.
(Here np denotes the normal polytope at a face.)

(i) For the face ϕ = cd, the sets J(ϕ), I(ϕ) and K(ϕ) are empty. The normal polytope is a point. (ii)
For the face ϕ = bc , the set J(ϕ) is empty since there are no roots that leave the face bc pointwise
fixed. However, I(ϕ) = K(ϕ) = {α}. (iii) Next we consider the face ϕ = c . Now J(ϕ) = I(ϕ) = K(ϕ)
is empty. The normal polytope is bd.

Example 3.6. Next we consider compactifications of the group SO5. This is of type B2. We consider an
octagon in the root lattice which looks as follows.
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The coordinates given to the vertices are all the components of their coordinate vectors with respect
to the simple roots, with the first root denoting the longer root. In this example, the W -admissible
faces are gf , gh, ha, ab, g , h and a. The normal polytopes to each of the vertices g , h and a are
one dimensional: in the tree below, we have denoted these by 1 − D. These normal polytopes are
not stabilized by any of the given roots so that each of the vertices of these normal polytopes isW -
admissible. We denote vertices of the normal polytope associated with the vertex g by gi, i = 1, 2,
and similarly for the vertices of the normal polytopes corresponding to h and a. Whenever the normal
polytopes are points, we denote these by p.

4. Implementation details

4.1. Input and output

We have chosen to write an outer shell that is entirely in the GAP package; it calls on the package
LiE as necessary to perform various calculations that aremore Lie theoretic and involve the structure
of the weight lattice. The main program also calls on the package polymake to perform certain
computations on polytopes. Certain features of LiE and GAP have dictated the choice of several
aspects of our program: for example, the representation of polytopes is based on how vectors in the
Lie algebra are represented in LiE.
Since the actual simple roots often involve irrational numbers as their Cartesian coordinates,

representing the actual simple roots in the usual Cartesian coordinates would essentially involve
numerical approximations. To avoid this and other related issues, vectors are represented in LiE by
their coordinate vectors with respect to the basis of simple roots. For example, if the group is PGL3 or
SL3, its Lie algebra is of type A2 and the simple roots are α and β , with α along the x-axis and β in
the second quadrant making an angle of 2π/3 radians with α. In this case the vector α + β will be
represented as [1, 1]. The lengths of the simple roots are normalized in LiE somewhat differently
than the standard conventions: for example, for type An, all simple roots have length

√
2 and not 1.

In view of Proposition 3.1, one may assume without loss of generality that the algebraic groups
that we need to consider are all products of simple groups and a torus. Therefore, whenever the given
algebraic group is a product of simple groups (or more generally, semi-simple) any admissible (see
Definition 2.2) polytopewhose vertices lie in the associatedweight lattice is allowed. In the casewhere
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the algebraic group is the product of a central torus and simple groups (or more generally, a central
torus and a semi-simple group), then the weight lattice is extended by taking its product with a lattice
equal to the lattice of characters of the given central torus. In this case any admissible polytope whose
vertices lie in this extended lattice is allowed. Checking forW -admissibility is a rather difficult task
and we discuss below (see 4.2) how this is implemented in our program.
One starts the program by first starting GAP and then by reading the script in using the command:

Read("BJAlgorithm.g");. Next one needs to specify which algebraic group we are considering:
this is done by the command: SetDefaultGroup(groupsymbol);, where groupsymbol is a string
of symbols such as "AnBmCp . . .Tk", following how connected reductive algebraic groups may be
represented in LiE as a product of simple groups and a torus, ignoring the isogeny considered above.
For example, PGL2 will be denoted as "A1" and GL2 will be denoted as "A1T1". Next one enters aW -
symmetric polytope in the root lattice. Any convex polytope is represented by the list of its vertices.
In order to enter the polytope conveniently, we have written a small routine that will take as input a
small list of vertices andwill produce a list of vertices that can be generated from the given ones using
the Weyl group action. This is called GenPolytope: this will produce aW -symmetric polytope as a
list of its vertices. At this point, all of the necessary global variables are set in order to compute IPX (t)
corresponding to this group and polytope. The functionIP_X (with no input arguments) accomplishes
this computation and stores the result in the global variable polynomial.

4.1.1. The initial processing
The reductive group is entered via the command SetDefaultGroup using the classification

scheme in LiE. Certain information about the group is then generated and the results stored in global
variables. Among the initial computations are:

1. The list of positive roots, obtained from LiE via the GAP command Liepos_roots, as well as a
fundamental system of roots.

2. An enumeration of theWeyl group as ordered lists of simple roots. The current version of LiE does
not have a function that does this directly. Instead, we obtain all the group elements generated
by the fundamental roots. Each potential new group element is put into canonical form by
Liecanonical and added to the list if not already present. This process terminates whenever
the size of the list equals the previously computed size of the Weyl group (from LieW_order.
As a by-product, the length of each non-identity group element is exactly the length of the list of
generators representing that element.

3. A list of matrices representing the actions of group elements on vectors in the weight lattice.
4. The Cartan matrix of the group (for use in computing inner products), obtained from LiE via the

LieCartan command.
5. A basis for the latticeΛ, which is a direct sum of the weight lattice corresponding to the group and
a free lattice of rank equal to the toral dimension.

Since we need to compute the Poincaré series, PGx/Bx(t) for the various stabilizer subgroups Gx
appearing in (2.2.2), we have written a routine that takes any subgroup W ′ of the Weyl group W
of the group G and computes the Poincaré polynomial PW ′(t) =

∑
w′∈W ′ t

2`(w′). This is handled by
WeylSubgroup(x), where x is a (possibly empty) subset of the set of simple roots. (Here, `(w) is
the length of the Weyl wordw).

4.1.2. The recursive part
Here the main effort is in analyzing the given polytope, constructing admissible normal polytopes,

δϕ , associated with various W -admissible faces ϕ and also constructing the corresponding smaller
weight lattices associated with the groups Gx.

4.2. Algorithm for deciding on W-admissibility

First, we have written a routine that takes each face and tests if it is W-admissible in the
sense of Definition 2.2. This is handled by the following function: W_admissible(V , ρ), where
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V is the polytope (as a list of its vertices) and ρ is the list of simple roots for which we are
testing ‘‘ρ-admissibility’’, that is, W -admissibility when W is generated by the roots in ρ. The
function iterates over the simple components of the original group. Let ρr be the subset of ρ
corresponding to the roots belonging to the rth simple component. Then for each such ρr , determine
the position of V with respect to the positive ρr -chamber. This is done via the auxiliary function
W_admissible_simple(V , ρr). If V intersects the positive ρr -chamber, W_admissible_simple
returns the integer 2. If V lies entirely within the ρr -chamber, the function returns 1, and in all other
situations, the function returns 0. Now, after having iterated through all simple component groups,
we have a list of integers in {0, 1, 2}. If the list contains a 0, then V is not W -admissible; hence
W_admissible will return false. If the list consists entirely of 2’s, then V is W -admissible, and
true is returned. In all other cases, the polytope lies in a chamber wall. This case can be quite subtle,
and further tests are necessary.
If the list consists entirely of 1’s, then V lies in the chamber walls corresponding to all simple

components, and so is not considered W -admissible unless no translate of V by a non-trivial group
element intersects the positiveρ-chamber. In order to test this condition, the function iterates through
all non-identity group elements w generated by ρ and tests the resulting polytope, wV ′, using the
function W_admissible_simple(V ′, ρ). The name of the function is a little deceiving, as it works
the samewhether the list of roots come froma simple component or a composite ofmany components.
If this function returns 2, then we know that V ′ intersects the positive ρ-chamber, so that the original
V is notW -admissible; return false. On the other hand, if no such V ′ intersects the positive chamber,
return true.
Now, if there is a mixture of 1’s and 2’s, then V is W -admissible unless some translate of V

by a group element intersects the positive ρ-chamber. Therefore, the function iterates through
all non-identity group elements generated by ρ and tests the resulting polytope, V ′, using
W_admissible_simple(V ′, ρ). If this function returns 2, then we do not consider V to be W -
admissible; hence return false.
Presently, the function W_admissible_simple(V , ρ)will be described. This functionmakes the

following two quick checks before proceeding further:
Quick check 0: If V or ρ is empty, return 2. (That is, in this case, V is ρ-admissible by default.)
Quick check 1: If the latticeΛR is one dimensional, we can check ρ-admissibility of the polytope V

by verifying that at least one point of V lies to the right of 0 — in which case, return 2. If no points lie
to the right of 0, but there is at least one point to the left of 0, return 0. The degenerate case of a single
point lying at 0 causes the function to return 1.
Next consider the (rational) vector space, ΛR, spanned by the generators of the lattice. Let the

vectors in ρ be considered part of a basis ofΛR, and fill outΛR with additional vectors orthogonal to
those of ρ. Write the points of the polytope V as position vectors in terms of the basis forΛR. Call this
new polytope V0.
Quick check 2: If V0 is a single point, simply check the ρ-components of the vector for that point. If

all are positive, then V0 lives in the positive ρ-chamber; return 2. If all of the ρ-components are non-
negative, with at least one 0, then V0 lives in a chamber wall; return 1. Otherwise, there is a negative
component; return 0.
Quick check 3: Check whether any point of V0 lies in the positive ρ-chamber (by checking the ρ-

coordinates as above). If there is such a point, return 2. Otherwise, further tests are necessary.
If the polytope has not been decided by any of the quick checks, we proceed to invoke the nowwell

known program called polymake (see Polymake (1997)). Convert the points (i.e. list of vertices) in V0
into a polymake-style polytope. Use polymake functions to obtain the inequalities and equations
that define the polytope. Create an intersection of this polytope with the non-negative ρ-chamber by
appending the inequalities vi ≥ 0 for all ρ-coordinates vi. Use polymake to determine first whether
the intersection polytope exists (polymake_FEASIBLE). If not, return 0. If so, find the dimension of
the intersection polytope (polymake_DIM). If this dimension is strictly less, then at best a proper face
of V lies in the ρ-chamber wall, so return 0. Next, test whether V lies entirely in a chamber wall by
intersecting with the walls and determining the dimension of the resulting polytope. If there is a wall
for which the intersection has the same dimension as V , then V lives entirely within the wall; return
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1. Finally, if none of the preceding tests have returned a value, then we know that V must intersect
the positive ρ-chamber non-trivially, and hence we return 2.
The above algorithm decides W -admissibility, since if the polytope is not handled by any of the

quick checks, it passes to a question of dimensionality of the intersection polytope defined above.

4.3. Algorithm for constructing the normal cone

Next, for each W -admissible face, we have another routine that finds a set of generators for the
associated normal cone, and from it the corresponding normal polytope. We first discuss the algorithm
for determining the normal cone of a W -admissible face ϕ in a polytope δ. Recall that both δ and ϕ
will be given as a list of vertices. Let v0 denote the first vertex in the list for ϕ. Now we will let Vϕ
denote the span of the vectors {vi − v0 | i > 0, vi ∈ ϕ}. Next we find the orthogonal complement of
Vϕ in the ambient spaceΛR. Let this subspace be denoted as V0. Here the orthogonality is determined
by the inner product defined on the root vectors. Next project all the vectors wi − v0 onto V0 where
wi ∈ δ − ϕ. Note that if the face ϕ is a point, then the normal cone consists of all vectors wj − v0,
wj 6= v0. Finally, we return the list of vectors obtained as the above projections along with the chosen
vertex v0. The next step is the construction of the normal polytope.

4.4. Algorithm for computing the normal polytope

The function that performs this is called as follows: NormalPolytope(δ, ϕ, R) where δ is the
given polytope given as a list of its vertices, ϕ is a W -admissible face given as a list of its vertices
and R is a subset of roots acting on δ. Let Rϕ denote the subset of roots that fix the face ϕ pointwise,
and let RP denote the subset of roots in Rϕ that stabilize the normal cone. Next we need to find a
hyperplane that is stable with respect to the Weyl subgroup corresponding to RP and intersecting all
normal cone vectors. The hyperplane is determined by its normal vector v, and it suffices to make
sure that 〈wi, v〉 > 0 for all vectors wi in a generating set for the normal cone. As wi varies over the
generating vectors of the normal cone, this provides a system of inequalities. We further assume that
the entries of v are all bounded in [−1, 1]. The resulting set of inequalities is solved usingpolymake to
obtain a vector v that satisfies the above conditions. Finally onemakes this vector invariant under the
action of the Weyl subgroup corresponding to RP by averaging over all its translates by the elements
of the sameWeyl subgroup. The normal polytope is the intersection of the normal cone with the above
hyperplane. The above function returns the normal polytope and the set of roots RP .

4.5. The main algorithm

The main algorithm is a recursive implementation of the algorithm discussed above in 3.1. This is
implemented as the function IP_X(). It first produces a list ofW -admissible faces. It examines one
face at a time and the recursion proceeds by replacing the given polytope by the normal polytope
associated with a fixed face: when the normal polytope turns out to be a point, it terminates the
recursive call and starts examining anotherW -admissible face.When all theW -admissible faces have
been explored the algorithm terminates and returns the value of the Poincaré polynomial computed.
The global variable treewill contain the resulting tree that is constructed as the algorithm proceeds.
One may examine the nodes of the tree to determine various intermediate values. For example, it
stores the value of the face and the corresponding normal polytope constructed above.

4.6. Scope of the program and its limitations

We have successfully used the program on groups that are tori (up to dimension 4, so far) and on
groups of type A1, A1A1, (A1)3, (A1)4, A1T1, A1T2, A2, A2A1, A2A2, A2T1, A3, B2, B2A1, B2A2, B2T1, B3, C3 and
G2. In the toric case, the current tree constructed is exponential in the dimension of the toric variety.
For fairly simple toric varieties of dimension 4, the current tree constructed has nodes close to 1000.
This is not surprising, since one way to effectively prune the tree is to make use of the Weyl group
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action. Therefore, in the absence of such Weyl group actions, the tree tends to be large. Despite the
tree-pruning effect of the use of W -admissibility, some of the Poincaré polynomials that have been
generated for (non-toric) projective reductive varieties are of degrees 20–30.
One limitation of the present program is the exponential tree growth in the toric case. This could

be improved by avoiding duplicate computations. Another issue that we have run into is with groups
with a relatively large number of roots: for example, we have run into problems for groups of type
An and Bn, with n ≥ 4. These are essentially limitations in resources (running time, memory, etc.),
and there may be ways to expand our range of effective computation by using parallel computing or
storage of previous calculations in tables.

4.7. The script and examples

The files necessary to run the algorithm along with many examples that we have worked out
are available as a tar file: http://www.math.ohio-state.edu/∼joshua/pub.html/BJA-1-21-08.tar. This
includes rpm files of GAP, LiE and polymake that one may install on any i386-PC running Linux. These
examples are grouped based on the Lie type of the algebraic group. The programs LiE and polymake
must be installed (in addition to GAP). Furthermore, a ‘‘liegap’’ interface is required: for this, the files
‘‘lie.g’’ and ‘‘liegap.g’’ included in the above tar file must be read in at the start of the GAP session.
We have automated this, so that these files are automatically read in first when the main program
‘‘BJAlgorithm.g’’ is read into GAP.

4.8. Installation and running the program

We have successfully installed GAP, LiE and polymake on a PC running Enterprise Linux (or
CenTos) 5.1. (One may consult the respective home-pages of these packages for advice on such
installations. Alternatively, one may simply install the rpm files of these packages that we have
included in the first tar file. These should work on any i386 machine running Linux: we had our
program installed on such amachine running Enterprise Linux/Centos 5.1.) Once these packages have
been installed, all one needs to do is create a directory where the file BJAlgorithm.etc.tar will be
untarred. Now one may read in each of the examples included in the file of examples or one may
work out new examples.

4.9. Auxiliary functions of independent interest

In the course of building a program to compute the Poincaré polynomials, we have also written
several routines that may be of independent interest. We recall here a few of them.

1. GenPolytope(L);— This function produces a list of vertices that form aW -symmetric polytope
in the given weight lattice. Here L is a small list of a few vertices.

2. W_admissible(V, rho); — This function returns true if the polytope V is rho-admissible,
where rho is a list of simple roots.

3. Find_W_adm_faces(V, rho); — This function generates all the rho-admissible faces of the
given polytope, V.

4. tree;— This variable stores the tree that has been constructed by the program for computing the
Poincaré polynomial.

5. Size(tree);— This is a particularly useful command, as it gives the number of nodes in the tree
constructed above.

5. A few sample sessions

The default session
Example 5.1. gap> Read("BJAlgorithm.g");
Loading LiE and polymake modules...
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Default Group is A1
Weyl group order = 2
Semisimple rank = 1
Toral dimension = 0
Lattice dimension = 1
Root vectors:
[ 1 ]
Dimension of spherical imbedding = 3

Polytope cleared.
Please input a polytope using ’SetPolytope’ or ’GenPolytope’
Please set the default group using:

SetDefaultGroup(<groupname>)

Create a W-symmetric polytope by first creating a small list
of vertices <L> and then calling GenPolytope(<L>) or SetPolytope(<L>)
The global variable <polytope> will have the updated list of vertices

For a list of available routines, call: BJ_Functions()
For a list of global variables, call: BJ_Variables()

Imbedding of SO5
Example 5.2. gap> Read("b2_ex.g");

Default Group is B2
Weyl group order = 8
Semisimple rank = 2
Toral dimension = 0
Lattice dimension = 2
Root vectors:
[ 1, 0 ]
[ 0, 1 ]
Dimension of spherical imbedding = 10

Polytope cleared.
Please input a polytope using ’SetPolytope’ or ’GenPolytope’

Octagon generated by [[2,1]] over B2: B2_P1()
Octagon generated by [[1,3]] over B2: B2_P2()

gap> B2_P2();
Example: Octagon Over B2

polytope updated: [ [ -2, -3 ], [ -2, -1 ], [ -1, -3 ], [ -1, 1 ], [ 1, -1 ],
[ 1, 3 ], [ 2, 1 ], [ 2, 3 ] ]

Calculating IP_X...
t^20+4*t^18+12*t^16+24*t^14+35*t^12+40*t^10+35*t^8+24*t^6+12*t^4+4*t^2+1
[ [ 1, 0, 4, 0, 12, 0, 24, 0, 35, 0, 40, 0, 35, 0, 24, 0, 12, 0, 4, 0, 1 ], 0

]
gap>Size(tree);
17

A sample of other higher dimensional examples

Example 5.3. gap> Read("b2a1_ex.g");

Default Group is B2A1
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. . . (Some output is skipped here.)

Dimension of spherical imbedding = 13

Polytope cleared.
Please input a polytope using ’SetPolytope’ or ’GenPolytope’

Polytope generated by [[2,1,0],[0,0,1]] over B2A1: B2A1_P1()
Octagonal Prism generated by [[2,1,1]] over B2A1: B2A1_P2()

gap> B2A1_P2();
Example: Octagonal Prism over B2A1

polytope updated:

. . . (Some output is skipped here.)

Calculating IP_X...
t^26+5*t^24+17*t^22+41*t^20+75*t^18+111*t^16+134*t^14+134*t^12+111*t^10

+75*t^8\
+41*t^6+17*t^4+5*t^2+1
[ [ 1, 0, 5, 0, 17, 0, 41, 0, 75, 0, 111, 0, 134, 0, 134, 0, 111, 0, 75, 0,

41, 0, 17, 0, 5, 0, 1 ], 0 ]
gap>Size(tree);
85

Example 5.4. gap> Read("g2_ex.g");

Default Group is G2

. . . (Some output is skipped here.)

Dimension of spherical imbedding = 14

Polytope cleared.
Please input a polytope using ’SetPolytope’ or ’GenPolytope’

Dodecagon generated by [[1,2]] over G2: G2_P1()
gap> G2_P1();

Example: Dodecagon Over G2
polytope updated:

. . . (Some output is skipped here.)

Calculating IP_X...
t^28+6*t^26+20*t^24+40*t^22+60*t^20+80*t^18+99*t^16+108*t^14+99*t^12

+80*t^10+6\
0*t^8+40*t^6+20*t^4+6*t^2+1
[ [ 1, 0, 6, 0, 20, 0, 40, 0, 60, 0, 80, 0, 99, 0, 108, 0, 99, 0, 80, 0, 60,

0, 40, 0, 20, 0, 6, 0, 1 ], 0 ]
gap>Size(tree);
27

Example 5.5. gap> Read("a3_ex.g");

Default Group is A3

. . . (Some output is skipped here.)

Dimension of spherical imbedding = 15

Polytope cleared.
Please input a polytope using ’SetPolytope’ or ’GenPolytope’

Please cite this article in press as: Joshua, R., Van Ault, S., Implementation of Stanley’s algorithm for projective group
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Polytope generated by [[2,0,1]] over A3: A3_P1()
Polytope generated by [[7,1,2]] over A3: A3_P2()

gap> A3_P1();
Example: 14-face polytope over A3

polytope updated:

. . . (Some output is skipped here.)

Calculating IP_X...
t^30+6*t^28+25*t^26+74*t^24+163*t^22+284*t^20+405*t^18+482*t^16+482*t^14

+405*t\
^12+284*t^10+163*t^8+74*t^6+25*t^4+6*t^2+1
[ [ 1, 0, 6, 0, 25, 0, 74, 0, 163, 0, 284, 0, 405, 0, 482, 0, 482, 0, 405, 0,

284, 0, 163, 0, 74, 0, 25, 0, 6, 0, 1 ], 0 ]
gap> Size(tree);
132

Example 5.6. gap> Read("c3_ex.g");
Default Group is C3

. . . (Some output is skipped here.)

Dimension of spherical imbedding = 21

Polytope cleared.
Please input a polytope using ’SetPolytope’ or ’GenPolytope’

Polytope generated by [[5,3,1]] over C3: C3_P1()
gap> C3_P1();

Example: over C3
polytope updated:

. . . (Some output is skipped here.)

Calculating IP_X...
t^42+13*t^40+66*t^38+210*t^36+503*t^34+983*t^32+1649*t^30+2441*t^28

+3240*t^26+3900\
*t^24+4274*t^22+4274*t^20+3900*t^18+3240*t^16+2441*t^14+1649*t^12

+983*t^10+503*t^8\
+210*t^6+66*t^4+13*t^2+1
[ [ 1, 0, 13, 0, 66, 0, 210, 0, 503, 0, 983, 0, 1649, 0, 2441, 0, 3240, 0, 3900,

0, 4274, 0, 4274, 0, 3900, 0, 3240, 0, 2441, 0, 1649, 0, 983, 0, 503, 0,
210, 0, 66, 0, 13, 0, 1 ], 0 ]

gap> Size(tree);
377
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