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Historical perspective:

Motivated by the idea that

new functions can be defined as solutions of linear differential equations

(Airy, Bessel, Mathieu, Lamé, Legendre...),

a natural question arose:

Can nonlinear equations define new, “transcendental” functions?
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Fuchs’ intuition: A given equation does define functions if movable singularities

in C of general solution are no worse than poles (no branch points, no essential

singularities).

Such an equation has solutions meromorphic on a (common) Riemann surface.

u′ =
1

2u
gen sol u = (x− C)1/2 movable branch point

u′ =
1

2x1/2
gen sol u = x1/2 + C fixed branch point

The property of a diff.eq. to have general solution without movable singularities

(except, perhaps, poles) is now called “the Painlevé Property”(PP).
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Directions: discovery of Painlevé equations (1893-1910), development of Kowalevski

integrability test (1888).

• Q: Fuchs 1884: find the nonlinear equations with the Painlevé property.

Among first and second order equations

class: F (w′, w, z) = 0, algebraic; w′′ = F (z, w,w′) rational in w, w′, analytic in z

equations with (PP) were classified.

Among them 6 define new functions:

the Painlevé transcendents.
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]
Painlevé transcendents: in many physical applications (critical behavior in stat

mech, in random matrices, reductions of integrable PDEs,...).

4



In another direction:

Sophie Kowalevski linked the idea of absence of movable singularities (other

than poles) to integrability. She developed a method of identifying integrable

cases, and applied it to the equations describing the motion of a rigid body (a top)

rotating about a fixed point. Kowalevski determines parameters for which there

are no movable branch points (in C).

She found 3 cases:

1) Euler, 2) Lagrange, 3) Kowalevski.

In the new case Kowalevski expressed solutions using theta-functions of two

variables. 1888
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The method: of finding parameters for absence of movable branch points

has been refined (Painlevé-Kowalevski test),

generalized to PDEs,

used extensively, and successfully to identify integrable systems.

Kruskal, Ablowitz, Clarkson, Deift, Flaschka, Grammaticos, Newell, Ramani, Segur,

Tabor, Weiss...
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Many aspects of the Painlevé-Kowalevski test remain, however, not completely

understood.

Kruskal:

• Is not clear if all the movable singularities of a given eq. have been determined.

• Movable essential sing are usually not looked for. In fact, this is a very difficult

question.

• Painlevé property is not invariant under coordinate transformations.

E.g. u′ = 1
2u has gen sol u = (x− C)1/2. Set v = u2.

• A general connection to existence of first integrals is not rigorously known.
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Classical problem: For a given DE establish or disprove existence of first

integrals (smooth functions constant on the integral curves).

Important: exact number of first integrals determines the dimension of the set

filled by an integral curve.

Extensive research (theoretical and applications).

Poincaré series: identify (or introduce) a small parameter in equation, assume

first integral analytic, and expand in power series.

Ziglin, extended and generalized by Ramis, Morales: expand eq. around special

solutions. Study first approximation using differential Galois theory: if it does

not have a meromorphic integral, then original DE does not have a meromorphic

integral.

However: this is a restrictive assumption, generic integrals are not meromorphic.
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Kruskal - The Poly-Painlevé Test

Q: When does a diff. eq. have single-valued first integrals?

Will illustrate the concepts on two equations which can be explicitly solved.

Ex 1 : u′(x) = a
x−b has gen sol u(x) = a ln(x− b) + C

A single-valued first integral F (x, u) = Φ(C) satisfies

Φ(C) = Φ(u−a ln(x−b)) = Φ(u−a ln(x−b)−2nπia) = Φ(C−2nπia) for all n ∈ Z

We found the monodromy: how constants change upon analytic continuation along

closed loops.

Hence we may take Φ(C) = exp(C/a) , so F (x, u) = exp(u/a)
x−b
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Ex 2 : u′(x) = a1
x−b1

+ a2
x−b2

+ a3
x−b3

gen. sol.

u = a1 ln(x− b1) + a2 ln(x− b2) + a3 ln(x− b3) + C

A single-valued first integral F (x, u) = Φ(C) should satisfy

Φ(C) = Φ(C − 2n1πia1 − 2n2πia2 − 2n3πia3) , n1,2,3 ∈ Z

so Φ(C) = Φ(C+s) for all s ∈ S = {2n1πia1 + 2n2πia2 + 2n3πia3 ; n1,2,3 ∈ Z}

For generic (a1, a2, a3) the set S is dense in C. Hence Φ ≡const: no single-valued

first integrals.

Obstructions to integrability are encoded in the monodromy — branching

properties of solutions . Dense branching  no single-valued first integrals.
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How can one find branching properties?

Study equations in singular regions.

Results: non-integrability analysis, and criteria for

• systems with one regular singular point,

• with several reg sing points, also: obstructions to linearization, classification;

• for polynomial systems; new monodromy groups.

•Irregular singular point: general structure of movable singularities solutions

develop.
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Region with one regular singular point

xu′ = Mu + h(x,u)

u,h ∈ Cn, x ∈ C, M ∈Mn,n(C), h analytic on D = {(x,u); |u| < r′, r′′ < |x| <
r′′′}, having a zero of order 2 at u = 0.

Theorem (RDC, Nonlin.97)

For generic matrices M a complete description of the number of single-valued

independent integrals on D is given. Generically integrals exist on D, and are not

meromorphic.
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Illustrate approach on 1-d: xu′ − µu = h(x, u).

Set u = εU . Eq. becomes xU ′ − µU = εU2h̃(x, εU)

Solutions U(x) = U0(x) + εU1(x) + ε2U2(x) + ...

Then xU ′0 − µU0 = 0 so gen. sol. U0(x) = Cxµ

It is relatively easy to see if this first approximation is integrable.

(i) µ ∈ C \R is the generic case.

Then F0(x, U0) = P(lnU0 − µ lnx) is single-valued if P is doubly periodic, with

periods 2πi, 2πiµ.

Note: First integral is not meromorphic

(singularities accumulate at U0 = 0). There is no meromorphic integral.
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(ii) If µ ∈ Q then F0(x, U0) = Uq0x
−p for µ = p

q .

(iii) No single-valued integrals if µ ∈ R \Q:

Φ(C) = F0(x,Cx
µ) = F0(x,Cx

µe2nπiµ) = Φ
(
Ce2nπiµ

)
∀n ∈ Z. The set {e2nπiµ ; n ∈ Z} is dense in S1; hence F (x, u) ≡const. No

single-valued integrals.

If µ ∈ R \Q no single-valued first integrals.

Conjecture: It is natural to expect that the original, nonlinear equation

xu′ − µu = h(x, u) is nonintegrable as well.

Q: How to prove?
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A1: If one addresses the question of existence of regular integrals, they can be

easily ruled out. Indeed, if there was one, then

F (x, u) = F (x, εU) = F (x, εU0 + ε2U1 + ...)

= F0(x) + εF1(x)U0 + ...

Then F0=const and the first j with Fj 6= 0 would give a first integral Fj(x)U j0 for

the reduced equation.

A similar argument works for F meromorphic.

However: in our case we can not expect meromorphic first integrals (we saw

that first approximation had, generically, nonmeromorphic integrals).
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A2 : Show that the original, nonlinear equation is analytically equivalent to its

linear part.

Normal Form of diff.eq. in an annulus around a regular singular point

(Nonlinearity, 1997)

Theorem Let xu′ = Mu + h(x,u)

u,h ∈ Cn, x ∈ C, M ∈ Mn,n(C), h holomorphic for |u| < r′, r′′ < |x| < r′′′,

having a zero of order 2 at u = 0.

Assume eigenvalues µ1, ..., µn of M satisfy the Diophantine condition:

|
n∑
j=1

kjµj+l−µs| > C(

n∑
j=1

kj+|l|)−νfor all s ∈ {1, ..., n}, l ∈ Z, k ∈ Nn, |k| ≥ 2

Then the system is biholomorphically equivalent to its linear part in D′ ⊂ D.
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The proof has some similarity with the case of periodic coefficients. Steps: 1) Find

equivalence map as a formal power series. 2) Showing convergence. There is a

small denominator problem, overcome by a generalization of Newton’s method.

Note: The set of all Diophantine M has full measure.

Consequences:

For such matrices, study of nonlinear case reduces to the study of the linear

equation (done in the paper).

Generically: equations do have first integrals in D, and they are not meromorphic.

Q: What about wider regions, containing several regular singular points?
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Several regular singular points

u′ = Au+ f(x, u) A = 1
xµ1+ 1

x−1µ2, f = u2f̃(x,u)
x(x−1) , x ∈ D ⊃ {0; 1} , |u| < r

Valid in more dimensions (at least for special classes of matrices µ1,2).

Theorem Obstructions to analytic linearization: (RDC, preprint)

Assume <µ1,2 > 0. For any f(x, u) there exists a unique φ(u), analytic at u = 0,

so that eq. with f − φ is analytically equivalent to the linear part.

Note Obstructions to integrability of Hamiltonian systems: conjectured by

Gallavotti, proved by Ehrenpreis.

Theorem Analytic classification (RDC, preprint)

Assume <µ1,2 > 0. For any f(x, u) there exists a unique ψ(u) so that

u′ = Au+ f(x, u) is analytically equivalent to w′ = Aw + ψ(w)
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u′ = Au+ f(x, u) , with A = 1
xµ1 + 1

x−1µ2

Study the integrability properties:

If the system is not analytically linearizable then:

Theorem (RDC, Kruskal, Nonlinearity, 2003)

For generic µ1, µ2 (precise conditions given) solutions have dense branching:

no single-valued integrals exist.

Among integrable cases, first integrals are not meromorphic (generically).

19



For the proof we introduce a nonlinear monodromy group generated by germs of

analytic functions G =< γ0, γ1 >

(γj is the monodromy map at the singular point x = j)

Note Nonlinear Galois groups were recently proposed by Malgrange. (Monodromy

and Galois groups are classically defined for linear equations, and are sometimes

connected.)

Need {γ(C); γ ∈ G} . It turns out that noncommutativity of G is source of generic

density.
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One surprising ingredient: uniform asymptotic behavior of iterations of analytic

maps. Denote repeated composition by γ◦n ≡ γ ◦ γ ◦ ... ◦ γ (n times).

Lemma Let γ be a germ of analytic function γ(z) = z+ωq−1zq+1 +O(zq+2),

ω 6= 0, q ≥ 1. We have uniform convergence near z = 0:

n1/qγ◦n
(
zn−1/q

)
→ z

(1− ωzq)1/q

Note Generically q = 1; limit group is a Möbius group.

Conclusions:

Obstructions to integrability (by single-valued functions, not necessarily

meromorphic) are encoded in special limiting groups, generically Möbius.

When single-valued first integrals exist, they are not meromorphic (generically).

21



Polynomial systems

Ex. Henon-Heiles system (RDC, Meth.Appl.An.)

H = 1
2

(
p21 + p22

)
+ aq21q2 + b

3q
3
2

Chaotic sol found numerically. Extensive research. Meromorphic integrals found for

a/b = 0, 1, 12,
1
6; conjectured more integrable cases exist. Ramis found conditions

for absence of meromorphic integrals.

Equations: q̈1 = −2aq1q2 , q̈2 = −aq21 − bq22

Eliminate t and use H =const. to reduce order. Look near special solutions. First

approximation:
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(x3 − 1)u′′ + 3
2x

2u′ − λxu = 0

linear, second order, Fuchsian equation:

four singular points in C ∪∞, all regular.

Branching properties encoded in monodromy group.
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Monodromy groups were previously known for Fuchsian equations with ≤ 3

singularities. For 3 singularities:

• order 2: hypergeometric equations (celebrated classical result, Riemann)

• order≥ 3: for hypergeometric function iFn−1

(recent: Beukers, Heckman, Inv.Math. 1989)

Not known for eq. with ≥ 4 singularities.

(x3 − 1)u′′ + 3
2x

2u′ − λxu = 0

Monodromy group found (RDC, Meth.Appl.An., 1997).
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Consequences:

There exists one real-analytic invariant function, providing a non-meromorphic

integral, real-valued (for generic parameters).

Differential Galois methods results show no meromorphic integral exists. (Theorem:

for Fuchsian equations: differential Galois group=closure of monodromy group in

Zariski topology.)
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Generalization (limits of polyn. systems higher degree yield):

(xn − 1)d
2U
dx2

+ n
2x

n−1dU
dx + µxn−2U = 0 (n ≥ 3)

Theorem a) Monodromy group is generated by

Xj = M−jAM j, (j = 0, 1.., n− 1), A = diag(1,−1)

M =

[
eil(cos l − i cos p) 1

e2il(cos2 l + cos2 p− 1) eil(cos l + i cos p)

]

l = π(1− 1
n), p = π

n

[
((n− 2)2 − µ)1/2 + (n+ − n−)

]
, n+ + n− = n− 2

b) If
√

n−2
4 − µ 6∈ Q the invariant function is |c1(x, u, u′)|2 + τµ|c2(x, u, u′)|2

where τµ ∈ R, c1,2 =
φ′1,2
W u−φ1,2W u′ ,where φ1,2 fundamental system, W = [φ1, φ2].
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Conclusions and further directions

• Existence or, nonexistence, of first integrals for DE can be established in a

general and rigorous setting.

• First integrals, when they exist, are generically not meromorphic.

• We will apply these new ideas in other systems of importance and look forward

to some (pleasant) surprises.
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Irregular singular points:

Structure of movable singularities

(R.D.C, O. Costin, Invent. Math. 2001)

Fundamental Q: Find position, distribution and type of singularities of solutions.

We show general results for nonlinear analytic differential systems (genericity)

in a region of C near an irregular singular point of the system.

We show: the regular distribution of movable (spontaneous) singularities

observed in many examples is in fact generic.

We introduce: practical methods to predict the position and type of the

singularities.

Systems y′ = f(x−1,y), regularity and genericity assumptions to make x =∞
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a rank 1 irregular singular point.

Consider the solutions with y(x)→ 0 for x→∞ in a sector.
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After a standard normalization of the system:

y′ =
(
Λ + 1

xA
)
y + g(x) + f(x−1,y)

Theorem (i) Exists unique asymptotic expansion

y(x) ∼
∑∞
m=0 x

−mFm(Cξ(x)) (|x| → ∞ in D)

where ξ = e−λ1xxα1

Functions Fm are analytic at ξ = 0 and F′0(0) = e1.

(ii) Singularities of y(x): assume F0 has an isolated singularity at ξs. Then

y(x) is singular at the points in the nearly periodic array
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xn = 2nπi+ α1 ln(2nπi)− ln ξs + lnC + o(1) (n ∈ N)

Singularities xn of y :: same type as singularities ξs of F0.
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Theorem If the differential equation satisfies some estimates (is weakly nonlinear)

then generically the array of singularities are square root branch points.

Remark: F0(ξ) satisfies much simpler ODE, which can often be explicitly calculated.

The proofs rely on methods of exponential asymptotics; are delicate.

An example: Painlevé equation PI
d2y
dz2

= 6y2 + z

Near arg z = 4π/5: normalization, expansion yields

ξ2F ′′0 + ξF0 = F0 +
1

2
F 2
0 , elliptic equation

Since F0(ξ) = ξ + O(ξ2), then F0 is a degenerate elliptic function: F0(ξ) =
ξ

(ξ/12−1)2
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Then solutions of PI have arrays of poles, whose positions can be found using the

formula, then work back through normalization substitutions.
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Conclusions and further directions

• Existence or, nonexistence, of first integrals for DE can be established in a

general and rigorous setting.

• First integrals, when they exist, are generically not meromorphic.

• We will apply these new ideas in other systems of importance and look forward

to some (pleasant) surprises.
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