Integrability, Nonintegrability and the Poly-Painlevé Test

Rodica D. Costin

Sept. 2005

Nonlinearity 2003, 1997, preprint, Meth.Appl.An. 1997, Inv.Math. 2001

Talk dedicated to my professor, Martin Kruskal.
Happy birthday!

Historical perspective:

Motivated by the idea that
new functions can be defined as solutions of linear differential equations
(Airy, Bessel, Mathieu, Lamé, Legendre...),
a natural question arose:
Can nonlinear equations define new, "transcendental" functions?

Fuchs' intuition: A given equation does define functions if movable singularities in \mathbb{C} of general solution are no worse than poles (no branch points, no essential singularities).

Such an equation has solutions meromorphic on a (common) Riemann surface.

$$
\begin{array}{cc}
u^{\prime}=\frac{1}{2 u} & \text { gen sol } \quad u=(x-C)^{1 / 2} \\
\text { movable branch point } \\
u^{\prime}=\frac{1}{2 x^{1 / 2}} & \text { gen sol } \quad u=x^{1 / 2}+C
\end{array}
$$

The property of a diff.eq. to have general solution without movable singularities (except, perhaps, poles) is now called "the Painlevé Property" (PP).

Directions: discovery of Painlevé equations (1893-1910), development of Kowalevski integrability test (1888).

- Q: Fuchs 1884: find the nonlinear equations with the Painlevé property.

Among first and second order equations
class: $F\left(w^{\prime}, w, z\right)=0$, algebraic; $w^{\prime \prime}=F\left(z, w, w^{\prime}\right)$ rational in w, w^{\prime}, analytic in z equations with (PP) were classified.

Among them 6 define new functions:
the Painlevé transcendents.

$$
\begin{gathered}
P_{I} w^{\prime \prime}=6 w^{2}+z \quad P_{I I} w^{\prime \prime}=2 w^{3}+z w+a \\
P_{I I I} w^{\prime \prime}=\frac{1}{w}\left(w^{\prime}\right)^{2}-\frac{1}{z} w^{\prime}+\frac{1}{z}\left(a w^{2}+b\right)+c w^{3}+\frac{d}{w} \\
P_{I V} w^{\prime \prime}=\frac{1}{2 w}\left(w^{\prime}\right)^{2}+\frac{3}{2} w^{3}+4 z w^{2}+2\left(z^{2}-a\right) w+\frac{b}{w} \\
P_{V} w^{\prime \prime}=\left(\frac{1}{2 w}+\frac{1}{w-1}\right)\left(w^{\prime}\right)^{2}-\frac{1}{z} w^{\prime}+\frac{(w-1)^{2}}{z^{2}}\left(a w+\frac{b}{w}\right)+c \frac{w}{z}+d \frac{w(w+1)}{w-1} \\
P_{V I} w^{\prime \prime}=\frac{1}{2}\left(\frac{1}{w}+\frac{1}{w-1}+\frac{1}{w-z}\right)\left(w^{\prime}\right)^{2}-\left(\frac{1}{z}+\frac{1}{z-1}+\frac{1}{w-z}\right) w^{\prime} \\
+\frac{w(w-1)(w-z)}{z^{2}(z-1)^{2}}\left[a+\frac{b z}{w^{2}}+c \frac{z-1}{(w-1)^{2}}+d \frac{z(z-1)}{(w-z)^{2}}\right]
\end{gathered}
$$

Painlevé transcendents: in many physical applications (critical behavior in stat mech, in random matrices, reductions of integrable PDEs,...).

In another direction:

Sophie Kowalevski linked the idea of absence of movable singularities (other than poles) to integrability. She developed a method of identifying integrable cases, and applied it to the equations describing the motion of a rigid body (a top) rotating about a fixed point. Kowalevski determines parameters for which there are no movable branch points (in \mathbb{C}).

She found 3 cases:

1) Euler, 2) Lagrange, 3) Kowalevski.

In the new case Kowalevski expressed solutions using theta-functions of two variables. 1888

The method: of finding parameters for absence of movable branch points has been refined (Painlevé-Kowalevski test),
generalized to PDEs,
used extensively, and successfully to identify integrable systems.

Kruskal, Ablowitz, Clarkson, Deift, Flaschka, Grammaticos, Newell, Ramani, Segur, Tabor, Weiss...

Many aspects of the Painlevé-Kowalevski test remain, however, not completely understood.

Kruskal:

- Is not clear if all the movable singularities of a given eq. have been determined.
- Movable essential sing are usually not looked for. In fact, this is a very difficult question.
- Painlevé property is not invariant under coordinate transformations. E.g. $u^{\prime}=\frac{1}{2 u}$ has gen sol $u=(x-C)^{1 / 2}$. Set $v=u^{2}$.
- A general connection to existence of first integrals is not rigorously known.

Classical problem: For a given DE establish or disprove existence of first integrals (smooth functions constant on the integral curves).

Important: exact number of first integrals determines the dimension of the set filled by an integral curve.

Extensive research (theoretical and applications).
Poincaré series: identify (or introduce) a small parameter in equation, assume first integral analytic, and expand in power series.

Ziglin, extended and generalized by Ramis, Morales: expand eq. around special solutions. Study first approximation using differential Galois theory: if it does not have a meromorphic integral, then original DE does not have a meromorphic integral.

However: this is a restrictive assumption, generic integrals are not meromorphic.

Kruskal - The Poly-Painlevé Test
Q: When does a diff. eq. have single-valued first integrals?
Will illustrate the concepts on two equations which can be explicitly solved.
Ex 1: $\quad u^{\prime}(x)=\frac{a}{x-b} \quad$ has gen sol $\quad u(x)=a \ln (x-b)+C$
A single-valued first integral $F(x, u)=\Phi(C)$ satisfies
$\Phi(C)=\Phi(u-a \ln (x-b))=\Phi(u-a \ln (x-b)-2 n \pi i a)=\Phi(C-2 n \pi i a) \quad$ for all $n \in \mathbb{Z}$

We found the monodromy: how constants change upon analytic continuation along closed loops.

Hence we may take $\Phi(C)=\exp (C / a)$, so $F(x, u)=\frac{\exp (u / a)}{x-b}$

Ex 2: $\quad u^{\prime}(x)=\frac{a_{1}}{x-b_{1}}+\frac{a_{2}}{x-b_{2}}+\frac{a_{3}}{x-b_{3}}$ gen. sol.

$$
u=a_{1} \ln \left(x-b_{1}\right)+a_{2} \ln \left(x-b_{2}\right)+a_{3} \ln \left(x-b_{3}\right)+C
$$

A single-valued first integral $F(x, u)=\Phi(C)$ should satisfy

$$
\Phi(C)=\Phi\left(C-2 n_{1} \pi i a_{1}-2 n_{2} \pi i a_{2}-2 n_{3} \pi i a_{3}\right), n_{1,2,3} \in \mathbf{Z}
$$

so $\Phi(C)=\Phi(C+s)$ for all $s \in \mathcal{S}=\left\{2 n_{1} \pi i a_{1}+2 n_{2} \pi i a_{2}+2 n_{3} \pi i a_{3} ; n_{1,2,3} \in \mathbf{Z}\right\}$
For generic $\left(a_{1}, a_{2}, a_{3}\right)$ the set \mathcal{S} is dense in \mathbf{C}. Hence $\Phi \equiv$ const: no single-valued first integrals.

Obstructions to integrability are encoded in the monodromy - branching properties of solutions. Dense branching \rightsquigarrow no single-valued first integrals.

How can one find branching properties?
Study equations in singular regions.
Results: non-integrability analysis, and criteria for

- systems with one regular singular point,
- with several reg sing points, also: obstructions to linearization, classification;
- for polynomial systems; new monodromy groups.
- Irregular singular point: general structure of movable singularities solutions develop.

Region with one regular singular point

$$
x \mathbf{u}^{\prime}=M \mathbf{u}+\mathbf{h}(x, \mathbf{u})
$$

$\mathbf{u}, \mathbf{h} \in \mathbb{C}^{n}, x \in \mathbb{C}, M \in \mathcal{M}_{n, n}(\mathbb{C}), \mathbf{h}$ analytic on $D=\left\{(x, \mathbf{u}) ;|\mathbf{u}|<r^{\prime}, r^{\prime \prime}<|x|<\right.$ $\left.r^{\prime \prime \prime}\right\}$, having a zero of order 2 at $\mathbf{u}=0$.

Theorem (RDC, Nonlin.97)
For generic matrices M a complete description of the number of single-valued independent integrals on D is given. Generically integrals exist on D, and are not meromorphic.

Illustrate approach on 1-d: $x u^{\prime}-\mu u=h(x, u)$.
Set $u=\epsilon U$. Eq. becomes $x U^{\prime}-\mu U=\epsilon U^{2} \tilde{h}(x, \epsilon U)$
Solutions $U(x)=U_{0}(x)+\epsilon U_{1}(x)+\epsilon^{2} U_{2}(x)+\ldots$
Then $x U_{0}^{\prime}-\mu U_{0}=0 \quad$ so gen. sol. $\quad U_{0}(x)=C x^{\mu}$
It is relatively easy to see if this first approximation is integrable.
(i) $\mu \in \mathbf{C} \backslash \mathbf{R}$ is the generic case.

Then $F_{0}\left(x, U_{0}\right)=\mathcal{P}\left(\ln U_{0}-\mu \ln x\right)$ is single-valued if \mathcal{P} is doubly periodic, with periods $2 \pi i, 2 \pi i \mu$.

Note: First integral is not meromorphic (singularities accumulate at $U_{0}=0$). There is no meromorphic integral.
(ii) If $\mu \in \mathbf{Q}$ then $F_{0}\left(x, U_{0}\right)=U_{0}^{q} x^{-p}$ for $\mu=\frac{p}{q}$.
(iii) No single-valued integrals if $\mu \in \mathbf{R} \backslash \mathbf{Q}$:

$$
\Phi(C)=F_{0}\left(x, C x^{\mu}\right)=F_{0}\left(x, C x^{\mu} e^{2 n \pi i \mu}\right)=\Phi\left(C e^{2 n \pi i \mu}\right)
$$

$\forall n \in \mathbf{Z}$. The set $\left\{e^{2 n \pi i \mu} ; n \in \mathbf{Z}\right\}$ is dense in S^{1}; hence $F(x, u) \equiv$ const. No single-valued integrals.

If $\mu \in \mathbf{R} \backslash \mathbf{Q}$ no single-valued first integrals.
Conjecture: It is natural to expect that the original, nonlinear equation $x u^{\prime}-\mu u=h(x, u)$ is nonintegrable as well.

Q: How to prove?
\mathbf{A}_{1} : If one addresses the question of existence of regular integrals, they can be easily ruled out. Indeed, if there was one, then

$$
\begin{aligned}
F(x, u)= & F(x, \epsilon U)=F\left(x, \epsilon U_{0}+\epsilon^{2} U_{1}+\ldots\right) \\
& =F_{0}(x)+\epsilon F_{1}(x) U_{0}+\ldots
\end{aligned}
$$

Then $F_{0}=$ const and the first j with $F_{j} \neq 0$ would give a first integral $F_{j}(x) U_{0}^{j}$ for the reduced equation.

A similar argument works for F meromorphic.
However: in our case we can not expect meromorphic first integrals (we saw that first approximation had, generically, nonmeromorphic integrals).
\mathbf{A}_{2} : Show that the original, nonlinear equation is analytically equivalent to its linear part.

Normal Form of diff.eq. in an annulus around a regular singular point (Nonlinearity, 1997)

Theorem Let $x \mathbf{u}^{\prime}=M \mathbf{u}+\mathbf{h}(x, \mathbf{u})$
$\mathbf{u}, \mathbf{h} \in \mathbb{C}^{n}, x \in \mathbb{C}, M \in \mathcal{M}_{n, n}(\mathbb{C}), \mathbf{h}$ holomorphic for $|\mathbf{u}|<r^{\prime}, r^{\prime \prime}<|x|<r^{\prime \prime \prime}$, having a zero of order 2 at $\mathbf{u}=0$.

Assume eigenvalues μ_{1}, \ldots, μ_{n} of M satisfy the Diophantine condition:

$$
\left|\sum_{j=1}^{n} k_{j} \mu_{j}+l-\mu_{s}\right|>C\left(\sum_{j=1}^{n} k_{j}+|l|\right)^{-\nu} \text { for all } s \in\{1, \ldots, n\}, l \in \mathbf{Z}, \mathbf{k} \in \mathbf{N}^{n},|\mathbf{k}| \geq 2
$$

Then the system is biholomorphically equivalent to its linear part in $D^{\prime} \subset D$.

The proof has some similarity with the case of periodic coefficients. Steps: 1) Find equivalence map as a formal power series. 2) Showing convergence. There is a small denominator problem, overcome by a generalization of Newton's method.

Note: The set of all Diophantine M has full measure.

Consequences:

For such matrices, study of nonlinear case reduces to the study of the linear equation (done in the paper).

Generically: equations do have first integrals in D, and they are not meromorphic.
Q: What about wider regions, containing several regular singular points?

Several regular singular points
$u^{\prime}=\mathcal{A} u+f(x, u) \mathcal{A}=\frac{1}{x} \mu_{1}+\frac{1}{x-1} \mu_{2}, \quad f=\frac{u^{2} \tilde{f}(x, u)}{x(x-1)}, x \in D \supset\{0 ; 1\},|u|<r$
Valid in more dimensions (at least for special classes of matrices $\mu_{1,2}$).
Theorem Obstructions to analytic linearization: (RDC, preprint)
Assume $\Re \mu_{1,2}>0$. For any $f(x, u)$ there exists a unique $\phi(u)$, analytic at $u=0$, so that eq. with $f-\phi$ is analytically equivalent to the linear part.

Note Obstructions to integrability of Hamiltonian systems: conjectured by Gallavotti, proved by Ehrenpreis.

Theorem Analytic classification (RDC, preprint)
Assume $\Re \mu_{1,2}>0$. For any $f(x, u)$ there exists a unique $\psi(u)$ so that $u^{\prime}=\mathcal{A} u+f(x, u)$ is analytically equivalent to $w^{\prime}=\mathcal{A} w+\psi(w)$

$$
u^{\prime}=\mathcal{A} u+f(x, u) \quad \text {, with } \quad \mathcal{A}=\frac{1}{x} \mu_{1}+\frac{1}{x-1} \mu_{2}
$$

Study the integrability properties:
If the system is not analytically linearizable then:
(RDC, Kruskal, Nonlinearity, 2003)
For generic μ_{1}, μ_{2} (precise conditions given) solutions have dense branching: no single-valued integrals exist.

Among integrable cases, first integrals are not meromorphic (generically).

For the proof we introduce a nonlinear monodromy group generated by germs of analytic functions $G=<\gamma_{0}, \gamma_{1}>$
(γ_{j} is the monodromy map at the singular point $x=j$)
Note Nonlinear Galois groups were recently proposed by Malgrange. (Monodromy and Galois groups are classically defined for linear equations, and are sometimes connected.)

Need $\{\gamma(C) ; \gamma \in G\}$. It turns out that noncommutativity of G is source of generic density.

One surprising ingredient: uniform asymptotic behavior of iterations of analytic maps. Denote repeated composition by $\gamma^{\circ n} \equiv \gamma \circ \gamma \circ \ldots \circ \gamma$ (n times).

Lemma Let γ be a germ of analytic function $\quad \gamma(z)=z+\omega q^{-1} z^{q+1}+O\left(z^{q+2}\right)$, $\omega \neq 0, q \geq 1$. We have uniform convergence near $z=0$:

$$
n^{1 / q} \gamma^{\circ n}\left(z n^{-1 / q}\right) \rightarrow \frac{z}{\left(1-\omega z^{q}\right)^{1 / q}}
$$

Note Generically $q=1$; limit group is a Möbius group.

Conclusions:

Obstructions to integrability (by single-valued functions, not necessarily meromorphic) are encoded in special limiting groups, generically Möbius.

When single-valued first integrals exist, they are not meromorphic (generically).

Polynomial systems

Ex. Henon-Heiles system (RDC, Meth.Appl.An.)

$$
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+a q_{1}^{2} q_{2}+\frac{b}{3} q_{2}^{3}
$$

Chaotic sol found numerically. Extensive research. Meromorphic integrals found for $a / b=0,1, \frac{1}{2}, \frac{1}{6}$; conjectured more integrable cases exist. Ramis found conditions for absence of meromorphic integrals.

Equations: $\quad \ddot{q}_{1}=-2 a q_{1} q_{2} \quad, \quad \ddot{q}_{2}=-a q_{1}^{2}-b q_{2}^{2}$
Eliminate t and use $H=$ const. to reduce order. Look near special solutions. First approximation:

$$
\left(x^{3}-1\right) u^{\prime \prime}+\frac{3}{2} x^{2} u^{\prime}-\lambda x u=0
$$

linear, second order, Fuchsian equation:
four singular points in $\mathbb{C} \cup \infty$, all regular.
Branching properties encoded in monodromy group.

Monodromy groups were previously known for Fuchsian equations with ≤ 3 singularities. For 3 singularities:

- order 2: hypergeometric equations (celebrated classical result, Riemann)
- order ≥ 3 : for hypergeometric function ${ }_{i} F_{n-1}$
(recent: Beukers, Heckman, Inv.Math. 1989)
Not known for eq. with ≥ 4 singularities.

$$
\left(x^{3}-1\right) u^{\prime \prime}+\frac{3}{2} x^{2} u^{\prime}-\lambda x u=0
$$

Monodromy group found (RDC, Meth.Appl.An., 1997).

Consequences:

There exists one real-analytic invariant function, providing a non-meromorphic integral, real-valued (for generic parameters).

Differential Galois methods results show no meromorphic integral exists. (Theorem: for Fuchsian equations: differential Galois group=closure of monodromy group in Zariski topology.)

Generalization (limits of polyn. systems higher degree yield):

$$
\left(x^{n}-1\right) \frac{d^{2} U}{d x^{2}}+\frac{n}{2} x^{n-1} \frac{d U}{d x}+\mu x^{n-2} U=0 \quad(n \geq 3)
$$

Theorem
a) Monodromy group is generated by
$X_{j}=M^{-j} A M^{j}, \quad(j=0,1 . ., n-1), A=\operatorname{diag}(1,-1)$

$$
M=\left[\begin{array}{cc}
e^{i l}(\cos l-i \cos p) & 1 \\
e^{2 i l}\left(\cos ^{2} l+\cos ^{2} p-1\right) & e^{i l}(\cos l+i \cos p)
\end{array}\right]
$$

$l=\pi\left(1-\frac{1}{n}\right), p=\frac{\pi}{n}\left[\left((n-2)^{2}-\mu\right)^{1 / 2}+\left(n_{+}-n_{-}\right)\right], n_{+}+n_{-}=n-2$
b) If $\sqrt{\frac{n-2}{4}-\mu} \notin \mathbb{Q}$ the invariant function is $\left|c_{1}\left(x, u, u^{\prime}\right)\right|^{2}+\tau_{\mu}\left|c_{2}\left(x, u, u^{\prime}\right)\right|^{2}$ where $\tau_{\mu} \in \mathbb{R}, c_{1,2}=\frac{\phi_{1,2}^{\prime}}{W} u-\frac{\phi_{1,2}}{W} u^{\prime}$, where $\phi_{1,2}$ fundamental system, $W=\left[\phi_{1}, \phi_{2}\right]$.

Conclusions and further directions

- Existence or, nonexistence, of first integrals for DE can be established in a general and rigorous setting.
- First integrals, when they exist, are generically not meromorphic.
- We will apply these new ideas in other systems of importance and look forward to some (pleasant) surprises.

Irregular singular points:
Structure of movable singularities
(R.D.C, O. Costin, Invent. Math. 2001)

Fundamental Q: Find position, distribution and type of singularities of solutions.
We show general results for nonlinear analytic differential systems (genericity) in a region of \mathbb{C} near an irregular singular point of the system.

We show: the regular distribution of movable (spontaneous) singularities observed in many examples is in fact generic.

We introduce: practical methods to predict the position and type of the singularities.

Systems $\mathbf{y}^{\prime}=\mathbf{f}\left(x^{-1}, \mathbf{y}\right)$, regularity and genericity assumptions to make $x=\infty$
a rank 1 irregular singular point.
Consider the solutions with $\mathbf{y}(x) \rightarrow 0$ for $x \rightarrow \infty$ in a sector.

After a standard normalization of the system:

$$
\mathbf{y}^{\prime}=\left(\Lambda+\frac{1}{x} A\right) \mathbf{y}+\mathbf{g}(x)+\mathbf{f}\left(x^{-1}, \mathbf{y}\right)
$$

Theorem (i) Exists unique asymptotic expansion
$\mathbf{y}(x) \sim \sum_{m=0}^{\infty} x^{-m} \mathbf{F}_{m}(C \xi(x)) \quad(|x| \rightarrow \infty$ in $\mathcal{D})$
where $\xi=e^{-\lambda_{1} x} x^{\alpha_{1}}$
Functions \mathbf{F}_{m} are analytic at $\xi=0$ and $\mathbf{F}_{0}^{\prime}(0)=\mathbf{e}_{1}$.
(ii) Singularities of $\mathbf{y}(x)$: assume $\mathbf{F}_{\mathbf{0}}$ has an isolated singularity at ξ_{s}.

Then $\mathbf{y}(x)$ is singular at the points in the nearly periodic array

$$
x_{n}=2 n \pi i+\alpha_{1} \ln (2 n \pi i)-\ln \xi_{s}+\ln C+o(1) \quad(n \in \mathbb{N})
$$

Singularities x_{n} of $y::$ same type as singularities ξ_{s} of F_{0}.

Theorem If the differential equation satisfies some estimates (is weakly nonlinear) then generically the array of singularities are square root branch points.

Remark: $F_{0}(\xi)$ satisfies much simpler ODE, which can often be explicitly calculated.
The proofs rely on methods of exponential asymptotics; are delicate.
An example: Painlevé equation $P_{I} \quad \frac{d^{2} y}{d z^{2}}=6 y^{2}+z$
Near $\arg z=4 \pi / 5$: normalization, expansion yields

$$
\xi^{2} F_{0}^{\prime \prime}+\xi F_{0}=F_{0}+\frac{1}{2} F_{0}^{2} \quad, \text { elliptic equation }
$$

Since $F_{0}(\xi)=\xi+O\left(\xi^{2}\right)$, then F_{0} is a degenerate elliptic function: $F_{0}(\xi)=$ $\frac{\xi}{(\xi / 12-1)^{2}}$

Then solutions of P_{I} have arrays of poles, whose positions can be found using the formula, then work back through normalization substitutions.

Conclusions and further directions

- Existence or, nonexistence, of first integrals for DE can be established in a general and rigorous setting.
- First integrals, when they exist, are generically not meromorphic.
- We will apply these new ideas in other systems of importance and look forward to some (pleasant) surprises.

