POWER AND EXPONENTIAL-POWER SERIES
SOLUTIONS OF EVOLUTION EQUATIONS

RODICA D. COSTIN

1. INTRODUCTION

1.1. Brief overview. The theory of partial differential equations when
one, or more variables, is in the complex domain, and approaches a
characteristic variety has only recently started to develop.

In their paper [11], generalized in [12], O. Costin and S. Tanveer
proved existence and uniqueness of solutions with given initial condi-
tions, for quasilinear systems of evolution equations in a large enough
sector of C.

Borel summability of divergent solutions of the heat equation was
proved by Lutz, Miyake, and Schéfke [13], and more generally, Borel
summability of series solutions of linear equations with constant co-
efficients was proved, in a general setting, by Balser (see [1], and the
references therein).

A natural question is to find what formal objects lie beyond formal
power series solutions, and what is their connection to power series.
The present paper contains initial results in this direction.

For ordinary differential equations a comprehensive and general the-
ory of formal solutions (transseries), in a one-to-one correspondence
with true solutions, is presented in the fundamental work of Ecalle
[3]-[5]. The correspondence between transseries and solutions was later
proved under nonresonance assumptions by O. Costin, who constructed
a generalized Borel transform [6], [7]. O. Costin and Kruskal showed
how formal solutions can be used to produce the Stokes constants [9],
[8]. Transseries solutions can be used to find the type and location of
movable arrays of singularities toward the irregular singular point [8],
[10].

Braaksma has recently extended the theory of transseries representa-
tions to nonlinear difference equations [2]. The structure of singularities
of solutions of difference equations has been obtained by Kuik [15].

1.2. General Remarks. The present paper considers a few simple
evolution equations, and examines the formal solutions that can be
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built with exponentials and powers. Some conclusions are mentioned
below.

A main distinction between formal solutions of ordinary, versus par-
tial differential equations is that there is an tremendous freedom in the
formal solutions of a partial differential equation: after each monomial
there is a functional freedom.

Perhaps surprisingly however, there is a maximal order possible for
exponential solutions (for evolution equations of order at least two);
these maximal exponentials are also distinguished in another way: they
generate the terms beyond all orders of divergent power solutions.

For the linear equations examined in this paper, the heat equation
and Airy equation, solutions can be obtained by superposition of sim-
pler solutions (which solve similarity reductions to ordinary equations).
A remarkable fact is that the PDE transseries are also obtained by su-
perpositions of the transseries of the similarity solutions. This provides
robustness to a theory of transseries for solutions of partial differential
equations.

Formal series and exponential series solutions of partial differential
equations are deduced in this paper using standard tools in asymp-
totic analysis; their basic principles were exposed by Kruskal in [14].
Such calculations apply to solutions that do have a (trans)asymptotic
representation, and use the assumption that monomials in this repre-
sentation do preserve their ordering after operations with functions.
In the case of algebraic, ordinary differential or difference equations,
with analyzable coefficients (as is the case of equations arising in ap-
plications), the general solutions seem to be in a one-to-one isomorphic
correspondence with such algebraic representations (transseries) (see
[3] for ordinary differential equations). For partial differential equa-
tions however, due to a rich functional freedom in the set of solutions,
it is clear that only subclasses of solutions can be represented by alge-
braic objects. The steps of specific calculations will be shown in some
detail to uncover that they can be justified for algebraic representa-
tions that have the properties of Ecalle’s transseries: they are based on
monomials, that can be well ordered with respect to the much larger
relation (>>), and for which all operations preserve the ordering.

1.3. Setting. The formal solutions will be derived under the assump-
tion that x s real positive v — 400 and that t varies in a compact
subinterval of (0, +00).
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1.4. Main results. Formal solutions of the heat equation, and their
association to solutions obtained by inverse Laplace transform are stud-
ied in §3.

It is shown that power series are linear combinations (finite, or in-
finite, in the latter case possibly transfinite) of pure series solutions,
in which all freedoms besides the first term are taken to be 0 (3.8);
these series are generically divergent. It is shown that exponential
terms cannot have arbitrary order. In fact, there is a maximal order
of decay. These distinguished exponential series (3.12), together with
the pure power series satisfy the same ordinary differential equations
(3.14), hence it may be inferred that these exponentials are the possible
terms beyond all orders of the pure power series.

Complex plane solutions u of the heat equation are then studied in
63.4 using inverse Laplace transform, after proper normalization in the
sense of O. Costin. The power series asymptotic to Laplace integrals
are precisely the corresponding superpositions of pure power series.
Moreover, the corresponding superposition of the distinguished expo-
nentially small terms coincides with the loop integral that encircles all
the singularities of the inverse Laplace transform of u, then generating
all the terms beyond all orders of u (Proposition 1).

In §3.6 it is shown that initial data determines the power series and
boundary data fixes the exponentially small terms as well.

Similar results hold for the Airy equation and are briefly presented
in §4.

A simple first order, nonlinear example is examined in §5. Power
series solutions cannot have arbitrary order, and there is a maximal
power.

2. THE SIMPLEST PARTIAL DIFFERENTIAL EQUATION
Consider the simplest first order evolution equation
(2.1) Up = Uy
Equation (2.1) has the general solution v = ®(z + t) where ® is any
differentiable function. Then its formal solutions are any expressions
in z 4+t and nothing more specific seems to emerge.

3. THE HEAT EQUATION

Consider the simplest second order evolution equation: the heat
equation

(3.2) Up = — Ugy
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The question is to find the formal series solutions that can be written
in terms of powers of x or exponentials of powers of x, in the asymptotic
limit of §1.3. It will shortly appear that the same formal solutions
satisfy another limit, namely for ¢ — +0 and z = O(1).

3.1. Power series solutions. Formal calculation of power series so-
lutions of (3.2) is standard. The main steps are as follows.
Looking for solutions u(z,t) behaving like a power of x, substitute

(3.3) u(z,t) = f(t)a" + Az, t)  withA<a", neC
Then (3.2) becomes

B4 PO+ A= - )0+ A

The usual assumption at this point is that since A < 2" then also
Ay, Ay < ™. This certainly holds if A isin a “good” class of functions
(but is clearly not true in full generality, and an easy counterexample
is A =" sin(1/x)).

Then in (3.4) the term f’(¢) ™ is much larger than all others, and it
must therefore vanish: f(t) = const = ¢,. Then u = ¢,2" + A where

35) A, = in(n e ? 4 }lAm (A < 27)

The main behavior of A contains a functional freedom, since then
A = ®(x)+ d(x,t), where ® is any function satisfying ¢ < 2", ¢, <
2" 2 and § satisfies 6 < ®.

For simplicity (and definiteness) only powers of = are considered here,
so ®(z) = cpa® (where Rk < Rn).

Then u = ¢, 2" + cpa® + 6(z,t) (where § < 2*) and the steps above
are repeated to determine the leading behavior of § (which is the largest
monomial in its asymptotic representation).

It turns out that there is a functional freedom after every monomial
of the series solution u; a simple calculation yields the general form of
a power series solution of (3.2):

n(n —1)

t+cp ol ™2+ ..
1 +cho| X +

(3.6)  u(z,t) ~cpr™ + cpa® + ... + {cn

Equation (3.2) is linear, hence (3.6) is a superposition (finite, or
infinite, in the latter case it can be transfinite)

(3.7) u(z,t) = chﬂn (cp,eC, ScC)

nes
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where 1, are “pure series”: series solutions with leading behavior x"
and where all arbitrary freedoms were chosen zero; a simple calculation
yields

(38) @ = 2" |1+ i n(n—1)(n—2)..(n—2j +1) ( y >g]

‘= j! 422
Note that the series (3.8) is finite if n € N and diverges otherwise.
The series (3.7) is an asymptotic object only if its terms can be

arranged in a decreasing way. For this to be possible the set S must

be well ordered with respect to the relation &: n & k iff 2™ > 2F

(x — o0).

The decomposition (3.7), (3.8) allows to distinguish between the di-
vergence intrinsic to the equation (seen in (3.8)) and possible divergence
due to given data (seen in the behavior of ¢, for n going towards points
of accumulation in S U {+oo}).

It is interesting to note that ¢ appears only in the form of powers
(even if no assumptions on t were made). Also, the series (3.7) is
asymptotic in the another limit as well: ¢ — 40, and x varying in a
compact subinterval of R.

3.2. Exponential series. Distinguished exponentials. Unlike the
case of the first order equation (2.1), where any exponential growth of
solutions was possible, for the heat equation (and seemingly, for most
other second or higher order equations) it turns out that there is a
maximal order of increase (for representations in a “good class”).

Formal calculation of exponential series solutions is the WKB method,
whose main steps are outlined below together with necessary assump-
tions.

With the substitution u = exp(W) (where |W| > 1) equation (3.2)
becomes

1

1
W, = W2+ W

The term W, can be neglected in a first approximation, since W, <
W2, (Indeed, otherwise W,,/W2 is much larger, or of order 1 which
by integration gives that W has at most logarithmic order, so u does
not have exponential growth.)

For the dominant order of W one needs then to solve W, ~ W2,
which gives

(3.10) W, = —2z + &(W,)

where ® is an arbitrary function.
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It turns out that solutions W of (3.10) belonging to a “good” class
have the maximal order of growth z2. Indeed, if W, is much larger
than, or of the same order as ®(W,) then (3.10) implies that W, is of
order z. Otherwise ®(W,) must have order x, hence W, < x. Thus
W, has at most order x, so W has at most order .

Note that these considerations hold for functions W in a class for
which the relation > is conserved under operations in = (W(-,t) is
analyzable).

Looking for the specific form of a maximal W, substitute W =
f(t)z? + o(2?) in (3.9), which gives W = —2= 4 o(a?).

Since the heat equation is invariant under translations in ¢, take
7 =0, and find the distinguished exponential

2
(3.11) Winaw = —5”7 + o(2?)

Other solutions of (3.10) have the form W = ca"+o(2") with Rn < 2
and c € C.
There is a functional freedom after each monomial in the expansion
of W, and this freedom is an arbitrary function of $:
2

W:—x7+c1>(%>+...

An interesting case is ®1(z) = 2£z (with £ € C). Taking all other
freedoms to be 0 we get the exact solution

x? x (@—6)2

1 1 1o
W = t—|—2§t £t 2lnt ,80  u =1 ze
and the freedom ®; corresponds to invariance of (3.2) under transla-
tions in x.

Another special freedom is ®y(z) = (—n — 1)Inz (with n € C).
Again taking all other freedoms 0 one gets the formal solutions
(3.12)

Uy = e‘gt_% <£> o [1 +i (n+1)(n+ 2)(” +3)...(n+2j) <_i>]]

| 2
t = 7! 4x

Note that the series (3.12) is finite if n € Z_ and diverges otherwise.

3.3. Similarity solutions and transseries. In this section it is shown
that the exponentially small terms following a series solution (3.8) are
precisely (3.12). Indeed, it will be shown that the series (3.8) and
(3.12) solve the same differential equation (for fixed n); based on ex-
isting results in the theory of transseries representations for solutions
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of ordinary differential equations it follows then that if (3.8) diverges,
then (3.12) must constitute the terms beyond all orders of that series.

3.3.1. Transseries. Noting that the formal solutions (3.8), (3.12) are
powers of ¢ multiplying series in %, denote

(3.13) un(z,t) = t"2 g, (?)

which transforms (3.2) into the ordinary differential equation

310 O+ (s+5) /@ -a =0 . a=T

—~

Equations (3.14) are usually called similarity reductions of (3.2) and
their solutions (3.13) are similarity solutions.
Transseries solutions of (3.14) are of course, linear combinations of
two independent solutions, which have the form
nt

(3.15)  gn(2) = C122 (14 0(1)) + Coe 22" (14 0(1)) (2 — +00)

Then formal, as well as actual, solutions of the heat equation are ob-
tained from (3.13) and (3.14), (3.15): they are

(3.16) A,z" (1 +0 (%)) YBT3 (%) o (1 +0 (%))

The series multiplying the constant A, is (3.8), and B, is followed by
(3.12).

3.3.2. Representations using inverse Laplace transform.

Assumption: For simplicity only negative integer powers will be
considered in the following: n € Z_.

Positive values of n correspond to solutions of the heat equation that
do not decrease to 0; they can also be studied using inverse Laplace
transform after subtracting the increasing terms in the expansions (see
[7], [10], [11]). Noninteger values of n make the inverse Laplace trans-
form branched at the origin, but no major differences exist otherwise
in using the Borel space techniques [7].

Transseries (3.15) are obtained using generalized inverse Laplace
transform [4], [7] in the following way. The substitution

(3.17) g@@zﬂww@@
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(where ¢ is a path starting at p = 0, going to co in the right-half plane)
transforms (3.14) to'

y (3 _n _
p(p—1)G +(§p—§—1>G—O

whose solution is
(3.18) Gp)=Cp i '(1-p)it (CeQ)

Since n was assumed negative, G(p) is integrable at p = 0, and is
singular at p = 1.

The integral (3.17) depends on the path of integration ¢ only relative
to its homotopy class in the right half-plane minus the point p = 1;
therefore ¢ can be assumed to be either d* = ¢’R, or d~ = e ¥R,
(where 6 is any number in (0, 7)).

A solution of (3.14) whose transseries is a power series with no ex-
ponentially small terms is the balanced average [4], [7], [6]

1 1 )
9P (z) = 5 9(zdY) + Sg(zd)

and a solution whose transseries is exponentially small is

1 1 _
gi(z) = ég(z;dﬂ - §g(z;d )

(which amounts to integration in (3.17) on a loop around p = 1).
Stating these facts in terms of solutions of the heat equation, using
(3.13), (3.14), (3.15) consider the solutions of (3.2)

(3.19) U (2, t;d%) = "2 /di e PP (1= p) T dp
and define
(3.20) ulP(z,t) = %u(x,t;aﬁ) + %u(x,t; d”)
(3.21) uld(z,t) = %u(x,t;dJr) - éu(x,t; d”)
Then
(3.22) uPl(a,t) ~ T (—g) i

(see §6.1 for details); the transseries of u! has no exponentially small
terms.

Tt must be assumed that G is such that the integral (3.17) exists and, when
integrating by parts, the boundary values vanish.
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Also
™ 4

(3.23) uld(z,t) ~ Up,

)

)1
~

(see §6.2 for details).

3.4. Solutions of the heat equation by inverse Laplace trans-
form. Solutions of linear, or nonlinear partial differential equations
have been studied using inverse Laplace transform methods by O.
Costin and S. Tanveer [11], [12].

Looking for solutions of (3.2) which go to 0 for x — +o00 using inverse
Laplace transform, first normalize the equation by substituting y = 22

(324) u(x> t) = U(y, t) y Y= a?
and (3.2) becomes

1
(3.25) Uy = YUy + 3 U

which after inverse Laplace transform gives
3
¢V + 5 gV =V

with the general solution

(3.26) Vig,t) = (1—tq) 2 F (f’m)

where F'is arbitrary.
This gives solutions of the heat equation in the form

(3.27) up(z,t;0) = /e_qg"’2 (1—tq) %2 F (ﬁ) dq

¢
where / is a path starting at ¢ = 0, which for ¢ in a specified interval
lies in the right-half plane and avoids the singularities of the integrand.

3.4.1. Assumptions on F. At this point a discussion is required on the
assumptions on the arbitrary function F' that are needed, or useful.

First of all, formula (3.27) defines a solution of (3.2) if the integral
exists and can be differentiated with respect to ¢ and .

Also, formula (3.27) defines uniquely, by Borel summation, a function
up if F(¢) is analytic at ¢ = 0 (or, at least has a convergent Frobenius
series).

It should be noted that the path of integration ¢ in (3.27) will have
to vary with ¢, since the singularities of the integrand do vary. But
the value of the integral (3.27) should not depend on small variations
of ¢ (otherwise up may not solve (3.2)). Then F' must be assumed
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mostly analytic, in an appropriate sense which assures that when ¢ is
varied, the path of integration can be accordingly varied in a domain of
analyticity of the integrand, so that the value of the integral is locally
constant in t.

In addition, considering functions F' in a more regular class, more in-
formation on up can be obtained using analytic methods. For example,
restricting the considerations to solutions uy which are (1) analytic for
x in a sector containing R, (possibly excepting a discrete set of points),
and (2) are defined for all t > ¢y then F'(({) would be assumed (a) ana-
lytic in the complex plane less two half-lines S¢, = {¢ € R || > (o},
and (b) the increase of F' at points on S, should allow integrals (3.27)
to converge (see §6.3 for details).

3.4.2. Asymptotic and transasymptotic expansions.
The asymptotic power series of the solution up in (3.27) is found in
a straightforward way, using Watson’s Lemma (which amounts to a for-

mal integration, term by term, of the Taylor series of (1—tq)~3/2 F <L>

1-tq
at ¢ =0).

As a natural generalization of the techniques used for ordinary dif-
ferential equations, it is to be expected that exponentially small terms
of up are generated by taking linear combinations of ug(z,t;¢) on dif-
ferent paths ¢. For linear equations the study of exponentially small
series is easier, and easier to put to test.

3.5. Superpositions of similarity solutions and transseries.

3.5.1. Similarity solutions. For F({) = ("™ (with ®m > —1) formula
(3.27) has the form (3.19) for n = —2m — 2, hence

(328) Uem = U—2m—2

3.5.2. Finite superpositions of similarity solutions. For F(() a polyno-
mial:

F(¢) =) Ful"
m=0

(3.27) is a finite superposition of (3.19):

M
(3.29) up =Y Ft_om_
m=0

and the transseries of up is obtained by a direct summation and re-
arrangement of the transseries of u_s,, o, m = 0..M.
Similar results hold if F(¢) a polynomial in (/2.
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3.5.3. Infinite superpositions of similarity solutions.
Since the function F' of (3.27) is assumed analytic at ¢ = 0, it has a
convergent Taylor series expansion

(3.30) F(Q) =) Ful"
m>0
A natural question is to investigate what formal objects are obtained
by the corresponding superposition of the transseries of u_s,, o, m > 0.
Consider then the formal objects obtained by replacing u@mﬂ and
u[_e]2m_2 with their formal series (3.22), (3.8), respectively (3.23), (3.12):

(3.31) ip =Y  Ful(m+ 1)t om o
m=0
~ o ) ~
(3.32) Up =Y Fp———l_gm
PR O

The power series U can be rearranged to become asymptotic (mean-
ing that the terms are decreasing), and this is clearly the power series
asymptotics of up (by Watson’s Lemma).

The exponential series 4y cannot be immediately rearranged in an
asymptotic way (since the powers of x multiply the same exponential
term and have no upper bound).

However, Gy is an analytic function which sums all the exponentially
small terms:

Proposition 1. Let F' have a convergent Taylor series (3.30) at the
origin. Let up be defined by (3.32).
Then there exists tg > 0 and ¢ > 0 such that

~ 1 2 _ q
3.33 1 t) = - 7 (1 —tq) 3PP —— ) d
639) =g [ e () g

for allt > 1.
The integral (3.27) is on the loop which encircles all the singularities
of the integrand.

To be more specific, ty and ¢ are any positive constants for which
F(¢) is analytic on the disk |¢ + %| < 1. Such constants always exist
since F' was assumed analytic at ( = 0; for example if F' is analytic on
|C| < 7 then one can take ¢, > 1/r. In particular, ¢, can be chosen 0 if
F is analytic on the half-plane ¢ < 0.

The proof of Proposition 1 is given in §6.4.
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3.5.4. Fxample 1. If F is entire then the only singularity of the inte-
grand in (3.27) is ¢ = 1/t, which is an essential singularity. The paths
of integration ¢ can be taken to be rays d* as in (3.19).

To examine the transseries of solutions on a simple example in this
class consider

F(()=e™  (a>0)
For this I’ the exponential series @ can be calculated explicitly (either
from (3.33), or, directly from (6.52)), yielding

(3.34)

~ 1 1 ) s—a)2 ota)2
fir = gu(sd?) - gu(sd) = YT (e—‘ a2 _ e—”ﬁ)

Note that the loop integral (3.34) contains more than one type of
exponential terms, in spite of the fact that there is only one singularity.

3.5.5. Example 2. If F' is a rational function, then it can be written as
a polynomial plus a sum of poles. Polynomials were considered already
in §3.5.2. Consider next the case of a simple pole

1

(3.3)) FO ==

(a>0)

SO
1
F — nn -
() =D a¢"  for || <
n>0
Loop integrals
For F' given by (3.35) formula (3.27) is

B 1 — tq)fl/Q
3.36 up(z,t; 0 :/e oo L2177
(3.36) antit) = [ T dg
and the integrand is singular at ¢; = t%a and ¢ = % There are four

paths of integration ¢ avoiding ¢; and ¢s.

Denote by d?? (o; = =£) the paths in the right half-plane start-
ing at ¢ = 0, avoiding ¢; from above (respectively, below) if o; = +
(respectively, —). Elementary calculations give
(3.37)

[e,1]

up(z, t;d ) — up(z, t;d 1) = 2mia 2 (t + a) " 2e e = 20l (2, 1)
and
(3.38)  wp(x,t;d™) —up(z,t;d") =up(z, t;d™") —up(x, t;d” ")

22

o0 a:c2
= —2ia’%(a + t)’%e’T / e "Hatn s’%(l +5) tds = 2u£§’2](x, t)
0
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22\/7_T15%33_1e_§
a

~ —

Main loop integral
On the other hand, direct superposition of the exponentially small
terms (see (3.33)) give, using (3.37), (3.38),

A 1 1
i = qur(e, 607 = Sup(e, td7) = u ol @, )

3.6. Relations between initial data and transseries representa-
tions. The structure of transseries solutions makes visible the type of
initial, or boundary data that specifies uniquely a solution with a given
class. Indeed, consider similarity solutions with n < 0; their transseries
have the form (3.16), and it is intuitive that looking at the limit t — 40
the small exponential term must vanish, thus fixing A,, while in the
limit x — 40 the constant B,, becomes visible, since the exponential is
no longer beyond all orders. This means that conditions on solutions
given at * = 0+ and at ¢t = 0+ specifies uniquely a solution. Remarks
2 and 3 state these properties.

Remark 2. The initial condition determines the dominant power se-
ries. Indeed:
(i) The similarity solutions satisfy

: e _2 n
(3.39) tgr&un(x,t7d ) = F( 2) x
for x >0 and n < 0; therefore
im ol _ _2> n im ol _
tl_l?r(gr ull(z,t) =T < 5) " tl_lfor}i_ ud(z,t) =0

(i1) More generally, if F(C) is entire, then

t—0+

lim up(z,t;l) = / e F (q)dq
0
and the function F' is determined by the initial condition at t = 0.

The proof follows immediately from (3.19) and (3.27).

Further Remarks.

The general case, when F' is not entire, is very interesting and rich
in consequences, for both finding an initial time when specifying an
initial condition determines F' uniquely, and for the study of backwards
evolution (in the sense of analytic continuation for ¢ less than the initial
time). These issues however will not be pursued here.
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Remark 3. Ifn is not an even integer, boundary conditions determine
the exponentially small terms. Indeed:

3

(3.40) lim w,(z,t;d¥) = T2 Mt”/2
. IR

D=

fort >0 andn < 0.

Formula (3.40) follows by substituting p/(1 — p) = r in (3.19) for
x = 0 and using a formula for an Eulerian integral of the first kind
[16].

Remark 4. The existence of a maximal order of increase of ex-
ponential terms implies that a solution asymptotic to a given power
series in a sector large enough is unique. This type of property insures
uniqueness also in the general results of O. Costin and S. Tanveer in
[11], [12].

For the heat equation, since the largest possible exponent is of order
22 (see (3.11)) then the requirement that a solution be asymptotic to
a power series on a sector larger than argx € [0, 7/4] implies unique-
ness of the solution. (Intuitively, exponential terms are not small after
continuation in = beyond | arg x| > 7/4.)

4. THE AIRY EQUATION

Consider the simplest third order evolution equation: the Airy Equa-
tion

4
(4.41) Uy = 77 Upzr

4.1. Formal solutions. Consider power series and exponential-power
series solutions of the Airy equation (4.41) in the limit of §1.3.
The considerations on the structure of formal solutions are very sim-
ilar to the case of the heat equation, and are not repeated here.
Power solutions are superpositions of

(4.42) @, = 2" HZn(n—l)(n—Q)---(n—3j+1)( 4t )J]

T 3
= J! 27x

The series (4.42) terminates if n € N and diverges otherwise.
The largest order of increase of solutions are the exponentials of x
the distinguished exponentials are

3/2.
Y

L 3/2
eil 173




SERIES SOLUTIONS OF SOME PDES 15

and there are exponential-power series solutions of the form

n 1
. a8 [ 32\ 752
(443) Un;:t = ¢ t1/2 m X
| 1202 4 480 4 41 ¢ Lo 5oy 865, 55 921 1
i | =n"+ =+ —n"+—=n+-—=| —
+ 72 22\ 72" Tt T3 T 36" T 10368 ) 48

The series (4.42) and (4.43) are formal solutions of similarity reduc-
tion equations: substituting

W (132 23/2
u:t3g m , z:m

equation (4.41) becomes the ordinary differential equation
(4.44) ZZg"’—i—zg”—i—<Z2——)g'——zg:

which, for each n, links the series 1, to the exponential series ﬁn;i.
Inverse Laplace transform of (4.44) gives

(% + g +p2) G(p) + %p(p2 +1)G(p) = % /Op rG(r)dr

with solution a combination of hypergeometric functions of the form
(4.45)

573 n 2n 1-n2—-m1 n
AsF (= =, =+ =, —p* |+Bp "3 ,F —— = —p?
21(67672+37 p>+ b 21( 3 y 3 72 37 p
for appropriate constants A, B (see §6.5.3 for the definition of 5 F7).
Next, considering solutions of the Airy equation which go to 0 as
x — +00, they can be expressed by inverse Laplace transform after the

proper normalization %2 = y. Substituting u(x,t) = v(y,t) equation
(4.41) becomes

Y 1 1
(446) Vs — Evyyy - §Uyy + @Uy =0

which after inverse Laplace transform v(y,t) = [,e %V (q,t)dq gives

q
(4.47) Vi+ ¢V + 1quq _ L rV (r,t)dr
2 18 Jo
As in the case of the heat equation, solutions of (4.47) can be ex-
pressed as superpositions of similarity solutions; in fact, for n a negative
integer (not a multiple of 3) formulas (4.45) can be written in terms of
elementary functions.
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5. A NONLINEAR EXAMPLE
Consider the simple first order, nonlinear evolution equation
(5.48) u + uzu =0
whose general solution is given implicitly by
(5.49) tu=2+® (u)

where ® is an arbitrary function.

Consider the formal solutions of (5.48) in the limit of §1.3.

A simple analysis shows that the maximal order of a power series
solution is x: u = 7 4 o(7); other series solutions may start with any
lower power: u = cx" + ... (with Rn < 1).

Let us focus on the distinguished power series. Then substitute

w=" + v (where v is assumed much smaller than x), which yields

1
(5.50) v + %vx + TU= UV

Since v < x, then v, < 1 (if v is in a good class), therefore the
linear part of (5.50) contains the largest terms, which by solving gives
v o~ %CD (%) (with ® < 1). Successive perturbations give, iteratively,
the series solution

1 1 1 1
5l ~ D+ DD+ — PP+ —PP?
(5.51) v ; + ” + " ( + 5 )

1
+ <<I>’3<I> +

t4 3q)//q)/q)2 + 1@///@3) +

2 6
which can be viewed as a “nonlinearization” of the formal and actual
solutions %Cb of the linear part, generalizing the same phenomenon seen
for ordinary differential equations.

Exponential terms can be included in the function ® (which is the
same as in (5.49)); so there are clearly no distinguished exponentials.

6. APPENDIX

6.1. Appendix 1. From (3.17), (3.18) and Watson’s Lemma we have

+o0
g(z;d") =/ e‘pzp‘g‘l(l—p)g‘ide/ e P p et ldp
d+ 0

which yields (3.22).
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6.2. Appendix 2. From (3.17), (3.18) we have

1 _py D n_1
92 = 5 [ r it a-piiap
L

n
2

=e “z 2"

N

(Cp + O(z))

where
™

Cn—§/&)e (—r) dr——r(l__n)

2

[N

where the last equality follows by Hankel’s formula for I'-functions [16].

6.3. Appendix 3. (i)Assuming the integrand of (3.27) is analytic along
¢ = e“R,, it follows that F'(¢) must be analytic on the path ( =
q/(1 —tq), (¢ € eR,) which is the arc A;4 of the circle centered at
—1/(2t) + icosf/(2tsinf) passing through the origin and the point
—1/t which lies in the upper half-plane for § > 0, respectively in the
lower half-plane for 6 < 0.

(ii) Assuming in addition that the solution up is defined for all ¢ > ¢
(for some ¢, > 0) it follows that F' is analytic in the region bounded
by A, ¢ and the z-axis (possible excluding a finite number of singular
points).

(iii) Assuming (i) and (ii) for all 8 € (0,6y] (possibly excepting a
discrete set of points), this entails that F is analytic in the outer region
bounded by Ay g, and the z-axis (possible excluding a finite number of
singular points).

6.4. Appendix 4. Each term Gi_9m_o is a finite sum and it will be
shown that the series converges if for all t > ¢, > 0 if F(¢) is analytic
on the disk |¢ + %\ <1

In view of §3.5.1 we need to consider }_ -, qu[fgm,? By (3.23),
(3.12) the superposition of the corresponding formal series is

Z F —2m—2
m>0
which is a series of finite sums (by (3.12))

Fnpin T3 t jzoj!(2m—2j+1)! 42

m>0
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and using the duplication formula for I'-function (see (6.53))

\/— 2 1 I 2x Zm+l m m)! t \""
= et 2 m | — S
At SR (T) Y ar (i)

m>0

This series cannot be reordered in an asymptotic way. It will however
be shown that it converges absolutely for ¢ large enough.

Doing for the moment a formal calculation, the change of the order
of summation gives

N 2xz 2r+ ( > ZF —t)"

m>r

and with the notation: ®,(7) = LF®(7) it follows

L _a? s r! 422\ " 1
= 2\/EZ€ ti2x E m (t_2> q)r(_¥>
r>0

1 2\ 1
*%r &, (1
and using (6.55)
1 12 1 etioo ’1‘2 1
e ¢
(6.52) = e Tt zZ/c_m e 5’”** 7 d§ 0p(—-)
r>0
1 22 c+ioc0 1
:§€‘ ttQ/C' et2£ Z?dﬁ@ ——)

—00 r>0

c+ioco

where substituting & = ¢(1 — tq) gives

1 [erie 3 q t—c
== (1 —tg) 2 F d = ——
2/0/_4 e (1 —tq) 2 (1_tq) ¢ (=)

100
1 1

2 2
Clearly the series converge absolutely, justifying thus the calcula-

tion above, if the Taylor series of F' at the point —%, F (1 — l) =

¢ 1
> >0 €1T o, (— ) converges absolutely, for all £ on the line of integration
c+ 1R, Wthh follows if F' is analytic on the disk centered at —% and
radius exceeding % This holds for all t > ¢, if the positive numbers
¢ and ty are such that F(¢) is analytic on the disk | + %| < 1 (such
a to and ¢ always exist since F' was assumed analytic at ¢ = 0). In
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particular, the series converges absolutely for all ¢ > 0 if F' is analytic
on the half-plane ¢ < 0.

6.5. Appendix 5: Some formulae.
6.5.1. Duplication formula for the T'-function: [16]

1
3)

6.5.2. Laplace and Inverse Laplace transformations.

(6.53) VD (22) = 22710 (2)D (2 +

> r
(6.54) / e Ppntdp = @ (n>1)
0 £
and conversely,
(6.55) LY R S (¢ > 0)
. — —dy = c
2mi c—100 yn Y F(n)

6.5.3. The extended hypergeometrz’c function o F}.

L(n;+k) T(d) 2"
o Fi(ny,ng, d ;H T(ny) (d+k)y
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