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Background

Asymptotics Is a well-recogniz ed tool for linear/nonlinear
equations

Asymptotics involve smallness/lar geness of parameter s or
independent variable(s)

Most work to date involve formal expansions

Borel analysis seeks to rigor ously establish correspondence
between (usuall y diver gent) formal expansions and actual
solutions. This includes exponentiall y small terms, as well as
singularities of solutions to diff erential systems

Pioneering work by Euler, Borel, Stokes, Dingle, Berry, Kruskal,
Ecalle,...



Small t expansion for evolution PDEs

Initial Value Problem:

us = Nu] , u(x,0) = uo(x)

u(x,t) = ug(x) + tuq (x) + t2uz(xz) + ..,
where uq(z) = Nuo)(x), uz = ; {Nu[ulNTu]} (),..

Such expansions generally diver gent; illustrated for heat

equation in Ovidiu Costin’ s talk. In that case the expansion can
be Borel-summed to an actual solution:

1 (e o)
u(z,t) = %/O e_p/tU(w,p)dp

Upp — Ugz = 0 ; where U(x, p) is the Borel — Transform of u



Small t Expansion-II

Note: 1/t not always correct choice for Borel-Transf orm
For instance , for Kuramato-Sivishinsky equation

Ut + Uge + UUL + Uggpee = 0 ’ u(ma 0) — ’Ll,()(m),
correct variable is T = t—1/3 for Borel-T ransf orm:
T4

Writing u(x,T) = uo(x) + v(x,T) and Borel-Transforming in T

1
5 [pv]pppp + Vea + Vaezze + o Vz + V’U,Ow +V=xV, = R(ZB)

Fourth-order in both p and x; Cauchy-Kowalewski ideas may be

applied. Solution wu(z,t) = uo(x) + [, V(z,p)e Pt *dp



Borel Summability of Navier-Stokes for ¢ small

vi—Av = =PI, [v;v], v(x,0) = vo,where P is the Hodge Projectia

Introduce Norm ||.||.,s SO that

lvoll s, = sup (1 4 |k[)# |80 (k)|
kERS3

Theorem (O. Costin, S.T, 2006):
If ||vo||s+pu,8 < o0 where 3 > 0and ¢ > 3, then there exists
v =7 (||vol|34.,8) sothatif Re % > -, solution to Navier-Stokes equation

exist with ||v (., t)|| 4,3 finite. More over,
v(x,t) = vo(x) + tv1(x) + / e P/tU (z, p)dp
0

where U (z, p) is analytic for p € {0} U R and exponentially bounded on RT.
Further,for0 < t << 1, v(x,t) ~ vo(x) + tvy(x) + ...



Modified Harry-Dym

I_I3
H,+ H, - H3H,., — - =0, H(z,0) = 271/2

Asymptotic condition: H(z,t) ~ 2z~ 1/2 as |z| — oo, with

arg z ¢ (——ﬂ', 371')

Problem relevant in viscous fing ering and dendritic crystal
growth in the small surface tension limit

Sectoriall y uniqgue analytic solution guaranteed for any t when
|z — t| >> t by general theory (O. Costin & S.T (CPAM, 2000)).

Seek to find singularities of H(z,t) for z € C



MHdym: ¢ << 1 expansion and scales

I_I3
H,+ H, - H3H,., — - =0, H(z,0) = 271/2

Asymptotics for 0 < t << 1,y =z —t >> t2/9:

g — /3 1 15\ /195 3 25875
B8 =yt gyerm T ays )T 32y Vays2 T 128102 )

For y = z — t = O(t/°), H(z,1) = t/°G(t=/(z — 1),¢7/°)

7 2 G T 3
ETGT_gnGTI_E_I_EG — GGy =0

Expansion G(n,7) = > .-, T°Gg(n) convergent for = small for
n € D, where D encir cles a singularity ns of Gg



Domain D of T-series convergence

//Arg n =419 -5

“Argn=2m9 -




Leading order similarity ODE for G

Leading order G satisfies the nonlinear ODE:

Go 2
?0 + 5nGh + GoGy' = 0

with requirement Go(n) ~n~1/2as |n| — oo, n € D.

Transf ormation Go(n) = n~/2 [1 + g(n®/4)] reduces it to a
normal form due to O.Costin (Duke J. '98)

,,,+1,,+(11+32 1 ),_40(1+g)
g ¢? 8162 ' 729(1+g)2 )7 ~ 243 \¢3 " g3
With small changes, O.Costin & R. Costin (Inventiones, 2001)
analysis holds: a denumerab le set of singularities approaching

relevant anti-Stokes lines



lllustration of ideas behind Costin-Costin results
/ 1 2
y+y=5+ty , y—=>0x— +00
Xr

a

>3 =+ ... With exponential corrections

Primary series: y ~ =, +

xr2 3 €T

1 a a
y ~ {_ 4 20 ..}+Ce—‘”{1+ LT ..}+Cze—2ac {.}+...

As argz — £ 7, there is domain R, where e~ ** >> 2 for which

1
y~ {Ce™™ +C% *ags + ..+ {Ce  arn + C%e arz + .}

1 —x
+§ {14+ Ce ®az1+..} + .

suggests y = F(Ce™*,z) = Fy(Ce™®) + 1 F;(Ce™®)... Plugging

in get —xF§ + Fo — F§ = 0, solution Fo(x) = 135,



Singularity results for MHDYM for G(n, 1)

Straddling the sector argn € (—5m, &m), there exists

singularities for Ieadlng order Gg, where

1
Go(n) ~ e¥™/3 (’7) (n — 7,)?/3. 7, approaches n, for large

|7s|, where n, is determined from

14
2\;_ 9/4 4 Z 3 logn,S = —2+log4 — 2nimw + log C

forn € Z
For the full equation G(n,7) = > 7, T*Gk(n) converges in D.

Theorem (O. Costin, ST, CPDE, 05) For a singularity s of Gg, as 7 — o+,

G (1, 7) (and hence H (z, 1)) is singular near m, to leading order of the same

type, (77 — 773)2/3



Domain D of T-series convergence

//Arg n =419 -5

“Argn=2m9 -




Equations for G(n)

Recall G satisfies:

G 2 7 T 3 3
—5—577(;774—57'(;7-—'—5(; — G G'n’r]n:O

Plugging G(n, 7) = Y 1o T°Gr(n), Go(n) satisfies:
1 2 / 3 177

G satisfies linear equation:

Tk — 1 3G R
0 ) Gk', _ _k

2
LhGr=G" 4+ — qgG' — (2= —
T A (9G3 TG, G3

Ry known in terms of G;,3 = 0,1..(k — 1)
For |np| — oo, n € D:

Go(n) ~n 12 Gr(n) ~ arn *! for known ay



Crucial Lemma in Proof of Theorem for MHDYM

Lemma: There exists A and B independent of integer k so that

BAF
3/2G . <
Iy, klloo,p < (k + 1)

Control for large k needed in L,.G, = %. WKB solutions to:
0]

. o 2 (7k—1 +3Gg'> ;
U =u u — u =
g 0G3 ! 90G3 | Go

n]
=G k3P h 5=1,P :/ d
u; = Go(n) exp |w;k!/*P(n)] , wherew} =1, P(n) = | '
Recall Go(n) ~ n—1/2 for large n only when

argn € (—4n /9,47 /9). Near n = n, >> 1, Go(n) = n~*/2U(¢),

where ¢ =logC — 2 logn + 4 2\{779/4 Tect? = e2VU (%)



lllustrative Example for large k contr ol

Suppose in D C C, want u satisfying

Lru = kr , where eTkP (M) golve Liv=0

Know that Re P(nps) = 400 and Re P(n,,) = —oco and at other
points in @D, P is finite and contin uous, while analytic in D.

Want u so that

[#]|eo,p < Cl|7]|eo,D

T’ 4 n 4
u(n) = / P =Py (1) ! — / e—*IP =Py (') dny,
v

m

u above satisf es desired bounds if there exists paths Cq, Cs In the

n’-plane connecting 7 to s, N, SO that Re P(n’) iIs monotonic,
since |ek[P("7)—P("7,)]| S 1on Cq, |e_k5[P(77)_P("7/)]| S 1 on Cs.



Domain D for illustrative problem




Finding paths Cq, Cs

Problem is to ensure such paths C;, C2 can be found. One way is
to choose Steepest-descent paths Im P = ¢, when possib le.

Note if P(n) = then, steepest descent paths are

"70 Go ( )’
generated by:

d
d—n = Go(n) , where s € RT
S

since

d {dndP
— ImP =Im
ds dn

ds

} — Im[1] =0



Implicit Descent Problem as Dynamical System

Steepest descent too restrictive . Instead generate descent or
ascent paths for Re P, by solving

d .
M _ L ivgym) . b e (—3, 5)
ds

For MHDYM problem, Go(n) near singularity known as an ODE
solution. Convenient to choose u(s) = Go(n(s)) an unkno wn
along with n(s) treat (n,u) € C? as a function of s.

Other Complications in MHDYM: 3rd order ODE and only WKB
solution to Lru = 0 known. Tackled as an integral equation:

Lru = kr written as Lwxpu = [Lwkp — Li|u + kr

u=Lygpl[Lwks — Lilu+ kr]



Conclusions

For some PDEs, including Navier-Stokes, Borel summing t << 1
expansions gives a rigor ous theory for actual solutions

For some evolutionar y nonlinear PDESs, singularity generation in
C can be studied rigor ously by transf orming to scaled variables
and proving convergence of G(n,7) = > o, T*Gk(n) in aregion
encir cling singularity of Gg. Singularity study for Gg relies on a
minor adaptation of Costin-Costin (2001) analysis. The

diver gence in asymptotic series for t << 1 (or |z| >> 1) is
encapsulated in Gg(n)

Analysis developed useful in similarity blow-up for PDEs:

m_ws

! H
(ts T t)p <(ts T t)q

Proving H(n,T) ~ Hg(n) demonstrates blow-up.

h(z,t) = (ts — t)r)



	Borel Summation and Singularities in PDEs
	Background
	Small $t$ expansion for evolution PDEs
	Small $t$ Expansion-II
	Borel Summability of Navier-Stokes for $t $ small
	Modified Harry-Dym
	MHdym: $t<<1$ expansion and scales
	Domain $mathcal {D}$ of $	au $-series convergence
	Leading order similarity ODE for $G_0$
	Illustration of ideas behind Costin-Costin results
	Singularity results for MHDYM for $G(eta , 	au )$
	Domain $mathcal {D}$ of $	au $-series convergence
	Equations for $G_k (eta )$
	Crucial Lemma in Proof of Theorem for MHDYM
	Illustrative Example for large $k$ control
	Domain $mathcal {D}$ for illustrative problem
	Finding paths $mathcal {C}_1$, $mathcal {C}_2$
	Implicit Descent Problem as Dynamical System
	Conclusions

