Approximate analytical Tritronqué solution

to P1 and rigorous estimates

Saleh Tanveer (Ohio State University)

Collaborator: A. Adali

Collaborators in a similar problem: O. Costin, M. Huang.

Research supported by

National Science Foundation

Basic Idea

- Application of a very general but basic idea applicable to a whole class nonlinear problems written abstractly as $\mathcal{N}[u] = 0$.
- Suppose, we determine some u_0 for which initial/BC are approximately satisfied and $\mathcal{N}[u_0] = R$ is small. Then $E = u - u_0$ satisfies

$$\mathcal{L}E = -R - \mathcal{N}_1[E] \; ,$$

- where $\mathcal{L} = \mathcal{N}_u$, $\mathcal{N}_1[E] = \mathcal{N}[u_0 + E] \mathcal{N}[u_0] \mathcal{L}E$
- If \mathcal{L} can be suitably inverted, and nonlinearity \mathcal{N}_1 is regular, then we note E satisfies the weakly nonlinear equation,

$$E=E_0-\mathcal{L}^{-1}R-\mathcal{L}^{-1}\mathcal{N}_1[E]$$

where E_0 solves $\mathcal{L}E_0 = 0$ and satisfies IC/BC.

Remarks

Inversion of this type needed in bounding $|u-u_0|$ in a problem of the type: $\mathcal{N}[u;\epsilon]=0$ where $\mathcal{N}[u_0;0]=0$

Previously, this idea used to determine errors in numerical solution to elliptic PDEs(Nakao *et al*, (2005); determine existence of Stokes Water Wave (Fraenkel, '07) using a rough u_0 . Computer assisted proof by Kobayashi ('04)

Not recognized until recently is the determination of an accurate analytical quasi-solution u_0 , together with efficient error determination.

Recent work in this direction: (Costin, Huang, Schlag, 2012), (Costin, Huang, T., 2012), (Costin, T., 2013), (Costin, Kim, T. 2014),(T. 2013) in problems arising in NLS, Proof of Dubrovin Conjecture for P-1, Blasius similarity solution, and water waves.

Painleve-1 and Tritronqué solution

Painleve-1 Equation:

$$y^{\prime\prime}+6y^2-x=0$$

Widely studied integrable ODE arising from reduction of many integrable PDEs. Dubbed as a 'nonlinear special function' (Clarkson) Unique solution to P-1 with the following property termed as the Tritronqué (Boutroux)

$$y=\sqrt{rac{x}{6}}\left[1+o\left(x^{-5/8}
ight)
ight] ~~ ext{as}~~x
ightarrow+\infty$$

Tritronqué properties studied before (Joshi & Kitaev ('01), Masoero ('11), Olver & Trogdon ('14), ...,) Dubrovin, Grava and Klein (2008) conjectured that the sector $\arg x \in \left(-\frac{4}{5}\pi, \frac{4}{5}\pi\right)$ is singularity free. Dubrovin conjecture proved recently (Costin, Huang & T., '14).

Past studies

- Well-known Painleve solutions are single valued and meromorphic with singularity location determined by initial condition $y(x_0), y'(x_0)$ For P-1 singularities are double poles in \mathbb{C} .
- Solution also characterized by x_p, \hat{a}_2 in the local representation:

$$y(x) = -\frac{1}{(x-x_p)^2} + (x-x_p)^2 \sum_{j=0}^{\infty} \hat{a}_j (x-x_p)^j , \qquad (1)$$

 $\hat{a}_0=-rac{x_p}{10},$ $\hat{a}_1=-rac{1}{6},$ $\hat{a}_3=0$ and for $n\geq 4,$ \hat{a}_n is determined from

$$\hat{a}_n = -\frac{6}{(n+5)(n-2)} \sum_{j=0}^{n-4} \hat{a}_k \hat{a}_{n-4-k}$$
⁽²⁾

Known that the closest x_p from the origin for the tritronqué is on the negative axis (Joshi & Kitaev, '01), and its location determined numerically.

Properties of tritronqué and open question

- Singularties at larger distance can be rigorously estimated by adiabatic invariance of conserved quantities(Costin *et al*,'14). When x_p is not particularly large, we are unaware of any method of rigorous analysis to confirm its location.
- In general, while numerical methods have been used to calculate Painlev'e solutions to great accuracy (e.g. Fornberg), we are unaware of rigorous error determination.
- Will find accurate tritronqué approximation with rigorous error bounds in some domain $D \subset \mathbb{C}$. The method is an extension of the methods used to prove Dubrovin Conjecture (Costin, Huang, T.)
- Will be clear that the method is much more general and applicable to all solutions of all Painleve equations, and generally a broad class of nonlinear problems.

Key Steps

- 1. Coming up with a compact analytical representation of approximate solution y_0 .
- 2. Proving that *R* is appropriate small and that boundary/initial conditions are satisfied to within small errors.
- 3. Finding bounds on \mathcal{L}^{-1} good enough to apply contraction mapping theorem.

Definitions

Define $r = \frac{7}{10}, x_0 = -\frac{770766}{323285} = -2.384168.., \tau = \frac{x - (L + x_0 + r)/2}{(L - x_0 - r)/2}.$ Also, define $P(\zeta) = \sum_{k=0}^{17} a_n \zeta^n$, where where $a_0 = -x_0/10$, $a_1 = -1/6, a_2 = \frac{19949}{321055}, a_3 = 0$ and

$$a_n = -rac{6}{(n+5)(n-2)} \sum_{j=0}^{n-4} a_k a_{n-4-k} \; ext{ for } \; 17 \geq n \geq 4$$

Define $P_u(au) = \sum_{k=0}^{22} c_k au^k$ where $\mathbf{c} := (c_0, c_1, \cdots, c_{22})$ is given by

a = (3358)	867 419	712	352463	60789	132842	43961	39599	213665
$c = \left(\frac{5390}{5390}\right)$)62 [°] 989	9125 , –	3539236	1703279	11825541	$\frac{54574472}{54574472}$	12036926	48625258
61644	10728	3 4	4761	282 49	206 41	13459	4992	11771
14973337	334445	00'18	892011 ^{, —}	13550715 ,	14839893	9 277 4551 '	$-\frac{1}{34838093}$	- <u>8149937</u> ,
2411	5 42	2106	21163	3 978	2 115	81 1469)2 122	78
276316	71 ['] 395	50107 [°]	326374	$\frac{1}{41}, -\frac{1}{15918}$	509 [°] 32652	2169, 88640	$\frac{147}{147}, -\frac{12324}{12324}$	9611 (3)

Definitions II

Further, take $b = \frac{4}{5}(24)^{1/4}$, $a = \frac{5}{2}b$, $N_0(x) = -\frac{4412401}{98304\sqrt{6}}x^{-19/2} \left[1 - \frac{1225}{90049\sqrt{6}}x^{-5/2} + \frac{30625}{2161176}x^{-5}\right]$ $\mathcal{G}_1(x) = x^{-5/8} \exp\left[-ibx^{5/4}\right]$, $\mathcal{G}_2(x) = x^{-5/8} \exp\left[ibx^{5/4}\right]$ $w_0 = \sum_{j=1}^2 \frac{(-1)^j}{ia} \mathcal{G}_j(x) \int_{\infty}^x \mathcal{G}_{3-j}(y) y N_0(y) dy$. = $\operatorname{Re}\left\{\int_0^\infty e^{-sbx^{5/4}} \mathcal{W}_0\left(x^{5/4}, s\right) ds\right\}$,

$$\mathcal{W}_{0}(z,s) = -\frac{4412401\sqrt{6}}{368640az^{7}} \left((1+is)^{-15/2} - \frac{1225\sqrt{6}}{540294z^{2}} (1+is)^{-19/2} + \frac{30625}{2161176z^{4}} (1+is)^{-23/2} \right)$$
(4)

Note w_0 is known in terms of erf function

Further Definitions

We also define domains D_j for $j = 1, \dots, 4$ with $D_1 = [5.5, \infty)$, $D_2 = [-0.49, 5.5), D_3 = [x_0 + r, -0.49)$ and $D_4 = \{x \in \mathbb{C} : |x - x_0| = r, x \neq x_0 + r\}$. We define $D = D_1 \cup D_2 \cup D_3 \cup D_4$ (See Figure).

Figure 1: Sketch of Domain $D = D_1 \cup D_2 \cup D_3 \cup D_4$

Main Results

Theorem: Let

$$y_{0}(x) = \begin{cases} \sqrt{\frac{x}{6}} \left[1 + \frac{1}{8\sqrt{6}} x^{-5/2} - \frac{49}{768} x^{-5} + \frac{1225}{1536\sqrt{6}} x^{-15/2} + w_{0}(x) \right] & \text{on } D_{1} \\ \\ -\frac{1}{(x-x_{0})^{2}} + P_{u}(\tau(x)) & \text{on } D_{2} \cup D_{3} \\ \\ -\frac{1}{(x-x_{0})^{2}} + (x-x_{0})^{2} P(x-x_{0}) & \text{on } D_{4} \end{cases}$$

$$(5)$$

Then the tritronqée solution $oldsymbol{y}$ to P-1 has the representation

$$y(x) = y_0(x) + E(x)$$
, where $|E(x)| \le 2.35 \times 10^{-5}$, $|E'(x)| \le 1.16 \times 10^{-4}$
(6)

Moreover, y has a unique double pole singularity at $x=x_p\in\{\zeta:\zeta\in\mathbb{C},|\zeta-x_0|< r\}$ with $|x_p-x_0|\leq 4.1 imes 10^{-6}$. This is the closest singularity of the tritronquée solution from the origin.

Crux of the Proof

In domain $D_j, j \geq 2, E = y - y_0$ satisfies

$$E'' + 12y_0E = -R(x) - 6E^2(x) \tag{7}$$

 G_1, G_2 are fundamental solutions to $G'' + 6y_0G = 0$; hence

$$E(x) = \frac{1}{W} \int_{x_e}^{x} \left(G_2(x) G_1(t) - G_1(x) G_2(t) \right) \left(-R(t) - 6E^2(t) \right) dt + E(x_e) G_1(x) + E'(x_e) G_2(x) =: \mathcal{N}[E] \quad (8)$$

with y_0 is chosen to make R small.

Bounds on G_1, G_2 obtained abstractly, or by using exact Green's function for a neighboring problem.

Small IC/BC and small R, guarantees small $E_0 = \mathcal{N}[0]$ and \mathcal{N} is contractive in a small ball in $C(D_j)$. Smoothness of G_1 , G_2 , shows solution to be in $C^2(D_j)$. Continuity of $y_0 + E$ and $y'_0 + E'$ at x_e guarantees solution to be the tritronqué.

Determing y_0

- In D_1 , a few terms of the asymptotic series of the Tritronqué for large x used; but to obtain 10^{-12} accuracy for $x \ge 5.5$, needed to include w_0 .
- With y and y' at x = 5.5, projected numerical solution in $[x_0 + r, 5.5]$ to a truncated Chebyshev basis, after taking out $-1/(x - x_0)^2$ to obtain $P_u(\tau(x))$. This leads to $y_0 = -\frac{1}{(x - x_0)^2} + P_u(\tau(x))$ in $D_2 \cup D_3$.
- In domain D_4 we used a truncated power-series representation, choosing x_0 and a_2 to satisfy continuity condition on y and y' at x = r.

Sounds for G_1 , G_2 in Domain $D_2 = [-0.49, 5.5]$

- Recall G_1, G_2 fundamenal solution to $G'' + 12y_0G = 0$. It is easy to prove $y_0 > 0, y'_0 > 0$ in D_2 .
- Lemma 0.1 $\|G'_1\|_{\infty} \leq 3.391$, $\|G_1\|_{\infty} \leq 3.775$, $\|G'_2\|_{\infty} \leq 1$ and $\|G_2\|_{\infty} \leq 1.114$ on D_2 .
- Proof: On multiplication by $2G'_{j}$, integration from L=5.5 to x and gives

$$G_{j}^{\prime 2}(x) + 12y_{0}(x)G_{j}^{2}(x) + 12\int_{x}^{L}y_{0}^{\prime}(t)G_{j}^{2}(t)dt = G_{j}^{\prime 2}(L) + 12y_{0}(L)G_{j}^{2}(L)$$
 (9)

Using $y_0, y_0' > 0$, and initial conditions on G_j , above implies

$$G_1'(x)^2 + 12y_0(x)G_1(x)^2 \leq 12y_0(L),$$
 (10)

$$G'_{2}(x)^{2} + 12y_{0}(x)G_{2}(x)^{2} \leq 1,$$
 (11)

 $|G'_1| \leq \sqrt{12y_0(L)} \leq 3.391$ and $|G'_2| \leq 1$ are immediate. To find bounds on G_1 , G_2 , it is convenient to partition D_2 into two intervals $[-0.49, \gamma_0)$ and $[\gamma_0, 5.5)$, where γ_0 will be chosen appropriately.

Bounds on G_1 , G_2 in D_2 -continued

Using bounds on $|G'_1|$,

$$egin{aligned} |G_1(x)| &\leq & rac{\sqrt{y_0(L)}}{\sqrt{y_0(x)}} ext{ when } \gamma_0 \leq x \leq L, ext{ and for } x \in (-0.49, \gamma_0), \ &|G_1(x)| &\leq & \int_x^{\gamma_0} |G_1'(x)| dx + |G_1(\gamma_0)| \leq (\gamma_0 - x) \sqrt{12 y_0(L)} + rac{\sqrt{y_0(L)}}{\sqrt{y_0(\gamma_0)}} \end{aligned}$$

Since y_0 is monotonically increasing, it follows from above that for any $x\in D_2$

$$\left|G_{1}(x)\right| \leq (\gamma_{0} + 0.49) \sqrt{12y_{0}(L)} + \frac{\sqrt{y_{0}(L)}}{\sqrt{y_{0}(\gamma_{0})}}$$
 (12)

Similarly, using bounds on G_2' , we obtain for any $x\in D_2,$

$$\left|G_2(x)\right| \le \frac{1}{\sqrt{12y_0(\gamma_0)}} + (\gamma_0 + 0.49)$$
 (13)

From explicit evaluation with $\gamma_0 = -rac{16}{100}$, obtain lemma bounds.

Bounds on G_1 , G_2 in domain D_4

$$Y_0(\zeta) := y_0(x_0 + \zeta) = -\frac{1}{\zeta^2} + \zeta^2 P(\zeta)$$
(14)

where $\zeta=x-x_0,$ $P(\zeta)=\sum_{j=0}^{17}a_j\zeta^j$ known. We checked $\left|a_j
ight|\leqrac{1}{2^j}$ for $0\leq j\leq 17.$

Definition 0.2 Define $G_1(\zeta) = \sum_{n=0}^{\infty} A_n \zeta^{4+n}$, $G_2(\zeta) = \sum_{n=0}^{\infty} B_n \zeta^{n-3}$, where $A_0 = 1, A_1 = A_2 = A_3 = 0$, and

$$A_n = -\frac{12}{n(n+7)} \sum_{k=0}^{\min\{n-4,17\}} a_k A_{n-4-k} , \text{ for } n \ge 4$$
 (15)

 $B_0 = 1, B_1 = B_2 = B_3 = B_7 = 0$

and for
$$n \ge 4, n \ne 7, \ B_n = -\frac{12}{n(n-7)} \sum_{k=0}^{\min\{n-4,17\}} a_k B_{n-4-k}$$
 (16)

 G_1, G_2 are independent solutions to $G'' + 6Y_0G = 0$ with Wronskian -7.

Bounds on G_1 , G_2 in D_4 –ll

Lemma 0.3 *For any integer* $n \geq 1$,

$$\left|A_{n}\right| \leq c_{A}\left(\frac{3}{4}\right)^{n}, \left|B_{n}\right| \leq c_{B}\left(\frac{3}{4}\right)^{n},$$
 (17)

where $c_A = 0.21$ and $c_B = 0.85$,

Proof: We checked the inequalities for the first twenty two coefficients

 ${A_n, B_n}_{n=1}^{22}$ through explicit calculations. Assume the inequality holds for $n \le n_0$ for some $n_0 \ge 22$. Then, using bounds on a_k , and noting that recurrence relations no longer involves A_0 , we obtain

$$\left|A_{n_0+1}\right| \leq \leq \frac{36c_A}{(n_0+1)(n_0+8)} \left(\frac{4}{3}\right)^4 \left(\frac{3}{4}\right)^{n_0+1} \leq c_A \left(\frac{3}{4}\right)^{n_0+1}$$
(18)

So, the inequality holds for $n_0 + 1$. By induction it holds for all n. The same induction proof works for B_n after using $\frac{36}{(n_0+1)(n_0-6)} \left(\frac{4}{3}\right)^4 \leq 1$ for $n_0 \geq 22$. This immediately leads to bounds on G_1, G_2 and their derivatives in D_4 .

Location of closest singularity x_p

Cauchy integral formula implies that the integral $-\frac{1}{2\pi i}\oint_{|\zeta|=r}\zeta y(x_0+\zeta)d\zeta$ equals to the number of singularities of y(x) in $|x-x_0| < r$. From this observation, we calculate

$$\left|1 + \frac{1}{2\pi i} \oint_{|\zeta| = r} \zeta y(x_0 + \zeta) d\zeta\right| \le \left|1 + \frac{1}{2\pi i} \oint_{|\zeta| = r} \zeta y_0(x_0 + \zeta) d\zeta\right| + r^2 \|y - y_0\|_{\infty} \le 1.2 \times 10^{-5}$$
(19)

implying exactly one singulariy in $|x - x_0| < r$.

Also, Cauchy formula gives $x_p-x_0=-rac{1}{4\pi i}\oint_{|\zeta|=r}\zeta^2 y(x_0+\zeta)d\zeta$, and hence

$$|x_p - x_0| \leq \left| -rac{1}{4\pi i} \oint_{|\zeta| = r} \zeta^2 E(\zeta) d\zeta
ight| \leq rac{r^3}{2} \|E\|_\infty \leq 4.1 imes 10^{-6},$$

Conclusion

- 1. We showed how a suitably accurate approximate solution u_0 can be constructed and used to determine rigorous error bounds.
- 2. ODE or systems of ODEs, including two point boundary value problems are easily amenable through this method. (Costin & T, '13, Costin, Kim & T, '14) Opens the opportunity for homoclinic-heteroclinic determination in higher dimension. Also, integro-differential equations are amenable to this approach.
- 3. PDE similarity blow up or spectral analysis in 1+1 dimension amenable to our type of analysis. (Costin *et al*, '13.)
- 4. PDEs also fit into this approach, though the challenge is always to find a suitably compact representation; as otherwise, it becomes a computer assisted proof.
- 5. Papers available online. http://www.math.ohio-state.edu/~tanveer