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Main idea

For an autonomous differential operator N , consider

vt = N [v] , v(x, 0) = v0(x)

Formal small time expansion:

ṽ(x, t) = v0(x) + tv1(x) + t2v2(x) + ..,

where v1(x) = N [v0](x), v2 = 1
2

{Nv(v0)[v1]} (x),..

Generically divergent if order of N is greater than 1

If divergent series can be resummed appropriately, then

v =
∑

B ṽ can be shown to be a solution to IVP.

Depending on properties of v, the solution can be extended over

to [0, T ]. Time blow up reflected in exponential growth at ∞ in an

appropriate dual variable.



Borel Summation Illustrated in a Simple Linear ODE

y′ − y =
1

x2

Want solution y → 0, as x → +∞
Dominant Balance (or formally plugging a series in 1/x):

y ∼ − 1

x2
+

2

x3
+ ...

(−1)kk!

xk+1
+ .. ≡ ỹ(x)

Borel Transform:

B[x−k](p) =
pk−1

Γ(k)
= L−1[x−k](p) for Re p > 0

B
[

∞
∑

k=1

akx−k

]

(p) =
∞
∑

k=1

ak

Γ(k)
pk−1



Borel Summation for linear ODE -II

Y (p) ≡ B[ỹ](p) =
∞
∑

k=1

(−1)kpk = − p

1 + p

y(x) ≡
∫ ∞

0

e−pxY (p)dp = LB[ỹ]

is the linear ODE solution we seek. Borel Sum defined as LB.

Note once solution is found, it is not restricted to large x.

Necessary properties for Borel Sum to exist:

1. The Borel Transform B[ỹ0](p) analytic for p ≥ 0,

2. e−αp|B[ỹ0](p)| bounded so that Laplace Transform exists .

Remark: Difficult to check directly for non-trivial problem s



Borel sum of nonlinear ODE solution

Instead, directly apply L−1 to equation; for instance

y′ − y =
1

x2
+ y2; with lim

x→∞
y = 0

Inverse Laplace transforming, with Y (p) = [L−1y](p):

−pY (p) − Y (p) = p + Y ∗ Y implying Y (p) = − 1

1 + p
− Y ∗ Y

1 + p

(1)

For functions Y analytic for p ≥ 0 and e−αpY (p) bounded, it can

be shown that (1) has unique solution for sufficiently large α.

Implies ODE solution y(x) =
∫ ∞

0
Y (p)e−pxdp for Re x > α

The above is a special case of results available for generic

nonlinear ODEs (Costin, 1998)



Eg: Illustrative IVP: 1-D Heat Equation

vt = vxx , v(x, 0) = v0(x) , v(x, t) = v0 + tv1 + ..

Obtain recurrence relation

(k + 1)vk+1 = v′′
k , implies vk =

v
(2k)
0

k!

Unless v0 entire, series
∑

k tkvk factorially divergent.

Borel transform in τ = 1/t: V (x, p) = B[v(x, 1/τ ))](p),

V (x, p) = p−1/2W (x, 2
√

p), then Wqq − Wxx = 0

Obtain v(x, t) =
∫

R
v0(y)(4πt)−1/2 exp[−(x − y)2/(4t)]dy,

i.e. Borel sum of formal series leads to usual heat solution.

We seek applications of these simple ideas to more complicat ed

PDEs, including 3-D Navier-Stokes



Background

Borel Summability for linear PDEs studied before (Balser, M iyake,

Lutz, Schaefke, ..)

Sectorial existence for a class of nonlinear PDEs (Costin & T .)

Complex singularity formation for a nonlinear PDE (Costin & T.)

Navier Stokes is a nonlinear PDE governing fluid velocity v(x, t):

vt + v · ∇v = −∇P + ν∆v + f

∇ · v = 0 , v(x, 0) = v0(x)

Using PDE techniques, Leray (1930s) proved local existence ,

uniqueness for classical solutions and global existence fo r weak

solutions. Global existence of classical solutions known i n 2-D,

not in 3-D. Literature extensive ( (Constantin, Temam, Foia s,...).



Background II

Global existence of classical solution or lack of it has

fundamental implications to fluid turbulence.

Blow up of classical solution with finite energy ‖v0‖L2(R3) implies

‖∇ × v(., t)‖∞ and ‖v(., t)‖L3(R3) blow up (Beale et al, Sverak).

This becomes incompatible with the modeling assumptions in

deriving Navier-Stokes. Hence other parameters not includ ed in

Navier-Stokes would become important in turbulent flow.

For the usual PDE techniques, key to global existence questi on is

believed to be a priori energy bounds involving ∇v (Tao). None is

available thus far.

This motivates alternate formulation of initial value prob lems for

nonlinear PDEs that are not dependent on energy bounds at all .

Borel methods and its generalization allows such a formulat ion.



Illustration: Borel Transform for Burger’s equation

Substitute v = v0(x) + u(x, t) into vt + vvx = vxx to obtain

ut − uxx = −v0ux − uv0,x − uux + v1(x)

where v1(x) = v′′
0 − v0v0,x , and , u(x, 0) = 0

Inverse Laplace Transform in 1/t and Fourier-Transform in x:

pÛpp + 2Up + k2Û = v̂1 − ikv̂0∗̂Û − ikÛ∗∗Û ≡ Ĝ(k, p) + v̂1,

∗̂ is Fourier convolution, ∗∗ Fourier-Laplace convolution. Hence

Û(k, p) =

∫ p

0

K(p, p′; k)Ĝ(k, p′)dp′ + Û (0)(k, p) ≡ N
[

Û
]

(k, p)

K(p, p′; k) =
ikπ

z
{z′Y1(z

′)J1(z) − z′Y1(z)J1(z
′)}

z = 2|k|√p , z′ = 2|k|
√

p′ , Û (0)(k, p) = 2
J1(z)

z
v̂1(k)



Solution to integral equation Û = N [Û ]

We find |K(p, p′; k)| ≤ C
√

p
, C a constant

‖F̂ (., p)∗̂Ĝ(., p)‖L1(R) ≤ C‖F̂ (., p)‖L1(R)‖Ĝ(., p)‖L1(R)

Define norm ‖.‖(α) for functions F (p, k)

‖F‖(α) =

∫ ∞

0

e−αp‖F (., p)‖L1(R) dp

easily follows ‖F∗∗G‖(α) ≤ C‖F‖(α)‖G‖(α)

N seen to be contractive for large α implies Burgers solution for

for Re 1
t

> α in the form v(x, t) = v0(x) +
∫ ∞

0
e−p/tU(x, p)dp

Global classical PDE solution implied if ‖Û(., p)‖L1(R3) bounded.

Borel summability for analytic v0 requires analyticity of U(., p) for

p ∈ 0 ∪ R
+; proof a bit more delicate.



Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Simila r

results expected for finite domain with no-slip BC using

eigenfunctions of Stokes operator as basis. In Fourier-Spa ce

v̂t + ν|k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂(k)

Pk =

(

I − k(k·)
|k|2

)

, v̂(k, 0) = v̂0(k)

where Pk is the Hodge projection in Fourier space, f̂(k) is the

Fourier-Transform of forcing f(x), assumed divergence free and

t-independent. Subscript j denotes the j-th component of a

vector. k ∈ R
3 or Z

3. Einstein convention for repeated index

followed. ∗̂ denotes Fourier convolution.



Integral equation for Navier Stokes in Borel plane

Substitute v̂ = v̂0 + û(k, t), into Navier-Stokes, inverse-Laplace

Transform in 1/t and inverting as for Burger’s equation obtain

integral equation:

U(k, p) =

∫ p

0

K(p, p′)R̂(k, p′)dp′ + U(0)(k, p),

R̂(k, p) = −ikjPk

[

v̂0,j ∗̂Û + Ûj ∗̂v̂0 + Ûj
∗∗ Û

]

U(0)(k, p) = 2
J1(z)

z
v̂1(k), where

v̂1(k) = −|k|2v̂0 − ikjPk [v̂0,j ∗̂v̂0] + f̂(k)



Some Results for Navier-Stokes (NS) in R
3

Define ‖.‖µ,β, for µ > 3, β ≥ 0:

‖v0‖µ,β = sup
k∈R3

eβ|k|(1 + |k|)µ|v̂0(k)|

Theorem 1: For β > 0, the NS solution v is Borel summable in 1/t, i.e. there exists

U(x, p), analytic in a neighborhood of 0 ∪ R
+, exponentially bounded, and analytic

in x for | Im x| < β so that v(x, t) = v0(x) +
∫ ∞

0
U(x, p)e−p/tdp.

When t → 0, v(x, t) ∼ v0(x) +
∑∞

m=1 tmvm(x), where

|vm(x)| ≤ m!A0Bm
0 , with A0, B0 generally dependent on v0, f .

Remark: Same results valid for x ∈ T
3.

Theorem 2: If v0 and f have a finite number of Fourier modes, then B0 is

independent of v0 and f .



Further Results on NS in T
3

Define ‖.‖(α) so that

‖V̂ ‖(α) =

∫ ∞

0

e−αp‖V̂ (., p)‖l1(Z3)dp

Theorem 3: If ‖v̂0‖l1(Z3), ‖f̂‖l1(Z3) < ∞ then there exists some α > 0 so

that integral equation Û = N
[

Û
]

has a unique solution for p ∈ R
+ in the space

of functions
{

Û : ‖Û‖(α) < ∞
}

. Further,

v̂(k, t) = v̂0(k) +
∫ ∞

0
Û(k, p)e−p/tdp satisfies 3-D Navier-Stokes in

Fourier-Space; corresponding v(x, t) is a classical NS solution for t ∈ (0, α−1).

Remark 1: Classical PDE methods known to give similar result s.

However, in the present formulation, global PDE existence i s a

question of asymptotics of known solution to integral equat ion as

p → ∞. Sub-exponential growth implies global existence.



More Remarks on Theorem 3 for 3-D Navier-Stokes

Remark 2: Errors in Numerical solutions rigorously control led.

Discretization in p and Galerkin approximation in k results in:

Ûδ(k, mδ) = δ
m
∑

m′=0

Km,m′PNHδ(k, m′δ) + Û (0)(k, mδ)

≡ Nδ

[

Ûδ

]

for kj = −N, ...N, j = 1, 2, 3

PN is the Galerkin Projection into N -Fourier modes. Nδ has

properties similar to N . The continuous solution Û satisfies

Û = Nδ

[

Û
]

+ E, where E is the truncation error. Thus, Û − Ûδ

can be estimated using same tools as in Theorem 1.

Note: Similar control over discretized solutions to PDEs no t

available since truncation errors involve derivatives of P DE

solution which are not known to exist beyond a short-time.



Extending Navier-Stokes interval of existence

Suppose Û(., p) is known over [0, p0] through Taylor series in p

or otherwise, and computed ‖Û(., p)‖l1 is observed to decrease

towards the end of this interval. Prior discussions show tha t any

error in this computation can be rigorously controlled.

Results in the following page show that a more optimal Borel

exponent α ≤ α0 may be estimated using the known solution in

[0, p0], where α0 is the initial α estimate in Theorem 1. This

implies a longer interval
[

0, α−1
)

for NS solution.

A longer existence time for NS is relevant to the global exist ence

question for f = 0, since it is known that there exists Tc so that

any weak Leray solution becomes classical for t > Tc



Extending Navier-Stokes interval of existence -II

For α0 ≥ 0, define

ǫ = ν−1/2p
−1/2
0 , a = ‖v̂0‖l1 , c =

∫ ∞

p0

‖Û (0)(., p)‖l1e
−α0pdp

ǫ1 = ν−1/2p
−1/2
0

(

2

∫ p0

0

e−α0s‖Û(., s)‖l1ds + ‖v̂0‖l1

)

b =
e−α0p0

√
νp0α

∫ p0

0

‖Û∗∗Û + v̂0 · Û‖l1ds

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists on the interval

[0, α−1), when α ≥ α0 is chosen to satisfy

α > ǫ1 + 2ǫc +
√

(ǫ1 + 2ǫc)2 + 4bǫ − ǫ2
1



Relation of optimal α to NS time singularities

Û(k, p) =
1

2πi

∫ c0+i∞

c0−i∞

ep/t [v̂(k, t) − v̂0(k)] d

[

1

t

]

Re 1/t

Im 1/t

α+ιγ

α−ιγ

Rightmost singularity(ies) of NS solution v̂(k, t) in the 1/t plane

determines optimal α. γ gives dominant oscillation frequency.



Generalized Laplace-transform representation

Since the Borel domain growth rate α relates to complex

right-half 1
t

NS singularities, the following generalized Laplace

Transform representation for n > 1 is sought:

v̂(k, t) = v̂0(k) +

∫ ∞

0

e−q/tn

Û(k, q)dq

In order that Û(., q) has no growth for large q, unless there is a

NS singularity for t ∈ R
+, need to know a priori that there is a

singularity free sector in the right-half t-plane. This is proved to

be true for f = 0 and we have the following result:

Theorem 5: For f = 0, if NS has a global classical solution, then for all sufficiently

large n, U(x, q) = O(e−Cnq1/(n+1)

) as q → +∞, for some Cn > 0.



Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

v0(x) = (v1(x1, x2, x3, 0), v2(x1, x2, x3, 0), v3(x1, x2, x3, 0))

v1(x1, x2, x3, 0) = v2(x3, x1, x2, 0) = v3(x2, x3, x1, 0)

v1(x1, x2, x3, 0) = sin x3 (cos 3x2 cos x3 − cos x2 cos 3x3)

f1(x1, x2, x3) =
1

5
v1(x1, x2, x3, 0)

High Degree of Symmetry makes computationally less expensi ve

Corresponding Euler problem believed to blow up in finite tim e;

so good candidate to study viscous effects

In the plots, "constant forcing" corresponds to f = (f1, f2, f3) as

above, while zero forcing refers to f = 0. Recall sub-exponential

growth in p corresponds to global N-S solution.



Numerical solution to integral equation-plot-1
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Constant forcing

‖Û(., p)‖l1 vs. p for ν = 1, constant forcing.



Numerical solution to integral equation-plot-2
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Zero forcing

‖Û(., p)‖l1 vs. p for ν = 1, no forcing



Numerical solution to integral equation-plot-3
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Constant forcing

‖Û(., p)‖l1 vs. p for ν = 0.16, constant forcing



Numerical solution to integral equation-plot-4
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Constant forcing

‖Û(., p)‖l1 vs. p for ν = 0.1, constant forcing



Numerical solution to integral equation-plot-5
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Û(k, p) vs. p for k = (1, 1, 17), ν = 0.1, no forcing.



Numerical solution to integral equation-plot-6
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Constant forcing

log ‖Û(., p)‖l1 vs. log p for ν = 0.001, constant forcing



‖Û(., q)‖l1 vs. q, n = 2, ν = 0.1
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Zero forcing

Kida I.C. v
(0)
1 = sin x1(cos 3x2 cos x3 − cos x2 cos 3x3)

Other components from cyclic relation:

v
(0)
1 (x1, x2, x3) = v

(0)
1 (x3, x1, x2) = v

(0)
3 (x2, x3, x1)



Extending Navier-Stokes interval of existence

For α0 ≥ 0, define

ǫ1 = ν−1/2q
−1+1/(2n)
0 , c =

∫ ∞

q0

‖Û (0)(., q)‖l1e−α0qdq

ǫ1 = ν−1/2q
−1+1/(2n)
0

(

2

∫ q0

0

e−α0s‖Û(., s)‖l1ds + ‖v̂0‖l1

)

b =
e−α0q0

√
νq

1−1/(2n)
0 α

∫ q0

0

‖Û∗∗Û + v̂0 · Û‖l1ds

Theorem 6: A smooth solution to 3-D Navier-Stokes equation exists in the ‖.‖l1

space on the interval [0, α−1/n), when α ≥ α0 is chosen to satisfy

α > ǫ1 + 2ǫc +
√

(ǫ1 + 2ǫc)2 + 4bǫ − ǫ2
1

Remark: If q0 is chosen large enough, ǫ, ǫ1 is small when computed solution in

[0, q0] decays with q. Then α can be chosen rather small.



Other problems where approach is applicable

· Navier-Stokes with temperature field (Boussinesq

approximation)

· Fourth order Parabolic equations of the type:

ut + ∆2u = N [u, Du, D2u, D3u]

· Magneto-hydrodynamic equation with certain approximatio ns.

· For some PDE problems with finite-time blow-up, blow-up time

related to exponent α of exponential growth of Integral equation

as n → ∞.



Conclusions

We have shown how Borel summation methods provides an

alternate existence theory for PDE Initial value problems l ike N-S.

With this integral equation (IE) approach, the PDE global

existence is implied if known solution to IE has subexponent ial

growth at ∞.

The solution to integral equation in a finite interval can be

computed numerically with rigorously controlled errors.

Integral equation in a suitable accelerated variable q will decay

exponentially for unforced N-S equation, unless there is a r eal

time singularity of PDE solution.

The computation over a finite [0, q0] interval gives a refined

bound on exponent α at ∞, and hence a longer existence time
[

0, α−1/n
)

to 3-D Navier-Stokes.

Approach is applicable to a wide class of other PDE initial va lue

problems.
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