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Background

Stability of oscillating pipe or channel flows important in

transition to turbulence

Numerical methods become difficult and unreliable for large

Reynolds number, most analytic calculations limited to sma ll

amplitude oscillations

Earlier investigations (Hall, ’78), Hall (’03),

(Blennerhasset-Bassom, ’08) present a confusing picture;

quantitative agreement with experiment (Eckmann-Grotber g,

1991) not good.

More generally, analysis methods available for stability o f time

oscillating states are quite limited- hence the motivation for this

line of research.



2-D Linearized disturbance equation for parallel flow

2∂t[∂
2
y − α2]ψ − [∂2

y − α2]2ψ = − iU
ǫ

[∂2
y − α2]ψ +

iUyy

ǫ
ψ,

where 0 < y < β, U(y, t) is the known time-periodic base flow, ψ:

perturbed stream function, ǫ: reciprocal Reynolds number.

Disturbance wavelength α fixed.

Initial condition: ψ(y, 0) = ψ0(y) and no slip wall BC implies:

ψ(0, t) = ψy(0, t) = 0 = ψ(β, t) = ψy(β, t)

U(y, t) depends on flow situation. For β = ∞ for walls oscillating

along x-direction, U(y, t) = e−y cos(t− y). Other expressions for

time-oscillating pressure or for finite β. In pipe flows, equations

more complicated, though similar mathematical structure



Relation of IVP with Floquet problem

In a general context, if

ut = [A + 2 cos t B]u , u(x, 0) = u0,

where A and B are time-independent spatial operators.

If A−1 incorporates boundary or decay conditions at ∞, we can

can write

A−1ut =
[

I + 2 cos t A−1B
]

u

When a priori exponential bounds in t exist, Laplace transform

U(., p) =
∫ t

0
e−ptu(., t)dt justified and satisfies

(I −K)U(., p) = u0, (1)

where K = pA−1 − A−1BS+ − A−1BS−, where shift operators

defined by [S−U ](., p) = U(., p− i), [S+U ](., p) = U(., p+ i)



Relation to Floquet problem- page II

If we define p = σ + in, U(., σ + in) = Un,

[A − in]Un − σUn − BUn−1 − BUn+1 = u0 (2)

When Rn ≡ [A − in]−1 exists,

Un = σRnUn + RnBUn−1 + RnBUn+1 + Rnu0

We may define operator K acting on U = {Un}n∈Z
such that

[KU]n = σRnUn + RnBUn−1 + RnBUn+1

Then, [I − K] U = U0

Fredholm applies when K is a compact operator on a Hilbert

space, implying solvability iff only solution to Floquet pr oblem

(I − K)U = 0 is U = 0.



Stability criteria

If Floquet problem has only zero solution for Reσ ≥ 0 in a Hilbert

space where un decays sufficiently rapidly in n, then u(x, t)

decays since

u(x, t) =

∫ i∞

−i∞

eptU(x, p)dp

Since U(., p) = (I − K)
−1
u0 = Rσu0, the singularities of

resolvent Rσ in σ determine the long-term behavior of u(x, t)

Singularities

Original
Inversion

Deformed Inversion
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Path
Re p

Im p

x

x

Resolvent



Floquet spectrum for oscillating plates

For the oscillating plate, the floquet problem becomes

(

∂2
y − α2 − 2σ − 2in

)

Φn =
iV

2ǫ
(1 + I)Φn+1+

iV ∗

2ǫ
(1 + I) Φn+1,

where V (y) = a
[

e−(1+i)y + e−(1+i)(β−y)
]

, ψ = Iφ

Theorem: For 0 < β < ∞, the Floquet problem has only discrete spectrum. For

β = ∞, discrete spectrum also, except for σ ∈
{

−α2

2
+ iZ + R

−
}

−alpha^2/2
x Re sigma

Im sigma



Floquet problem for oscillating plate for β = ∞

For β = ∞, V (y) = 1
2
e−y(1+i), with Floquet problem:

(

∂2
y − α2 − 2σ − 2in

)

Φn =
iV (y)

ǫ
Φn−1 +

2V

ǫ
I[Φn−1]

+
iV ∗(y)

ǫ
Φn+1 − 2V ∗

ǫ
I[Φn+1].

Let γn =
√
α2 + 2σ + 2in. Hall (’74) assumed

Φn =
∑

j,k,n

Aj,k,ne
−(γn+k+ij)y +

∑

j,k

Bj,ke
−(α+k+ij)y,

constrained by Re γn + k > 0, α+ k > 0. The recurrence

relations for Aj,k,n, Bj,k were solved numerically. Concluded

Reσ < 0 for ǫ ≥ 1/200. Note: more and more terms are needed

for accuracy as ǫ → 0+.



Floquet problem for oscillating plate

Blennerhasset and Bassom (’08) concluded instability for ǫ ≈ 1
700

based on numerics on the same recurrence relation. They

suggest an inviscid instability mode

Based on U varying on relatively slow time scale, a quasi-steady

calculation (Hall, ’03) based on inviscid Rayleigh equatio n:

(U − c)
[

∂2
y − α2

]

ψ − Uyyψ = 0 ,with c = 2iǫσ

suggested stability.

Experiment (Merkli-Thomann, ’75, Clemen-Minton, ’77,

Eckmann-Grotberg ’91) suggests instability, though quant itative

disagreement with theory about onset.

Effect of transients on possible nonlinear stability, like for

non-oscillatory pipe and channel flow, is not known.



Further Laplace transform for β = ∞
Laplace Transform in y, which can be rigorously justified, gives

(s2 − λ2
n)Φ̂n(s) = (s2 − λ2

n)Φ̂
(0)
n (s)

+
i

2ǫ

(

1 +
2i

[(s+ 1 − i)2 − α2]

)

Φ̂n+1(s+ 1 − i)

+
i

2ǫ

(

1 − 2i

[(s+ 1 + i)2 − α2]

)

Φ̂n−1(s+ 1 + i),

where

Φ̂(0)
n (s) =

Φ′
n(0) + sΦn(0)

s2 − λ2
n

,

λ2
n = α2 + 2σ + 2in

Contraction argument gives for large Re s, unique solution

Φ(s) ∼ Φ(0)(s)



More on Floquet Problem for β = ∞
Convenient to introduce discretized variables

sk,j = s+k−ij , λn,k,j = λn+k−ij , Φn,k,j(s) = Φn(s+k−ij)

Then, with

β
(1)
n,k,j(s) ≡ 1

s2k,j − λ2
n+j







1 +
2i

[

s2k+1,j+1 − α2
]







,

β
(−1)
n,k,j(s) ≡ 1

s2k,j − λ2
n+j







1 − 2i
[

s2k+1,j−1 − α2
]







,

Φn,k,j(s) = Φ
(0)
n,k,j(s) + β

(1)
n,k,j(s)Φn+1,k+1,j+1(s)

+β
(−1)
n,k,j(s)Φn−1,k+1,j−1(s)



Associated Homogeneous Equation and Solution

G
(n)
k,j = β

(1)
n+j,k,jG

(n)
k−1,j−1 + β

(−1)
n+j,k,jG

(n)
k−1,j+1 , with G

(n)
0,0 = 1

Introduce τ = {a1, a2, .., ak} ∈ {−1, 1}k with

jk ≡ a1 + a2 + ..+ ak. Then for |j| ≤ k,

G
(n)
k,j (s) =

∑

τ,jk=j

k
∏

l=1

β
(al)
n+jl−1,l−1,jl−1

(s)

1−i
k

j

k−ij

1+i



G
(n)
k,j (s) =

∑

τ,jk=j

k
∏

l=1

1
(

s+ l− 1 + ijl−1)2 − λ2
n+jl−1

)

×
[

1 +
2ial

(s+ l+ ijl)2 − α2)
,

]

where

jl−1 = a1 + a2 + ..al−1 , j0 = 0 , {a1, a2, ...ak} ∈ {−1, 1}k

λn =
√

α2 + 2σ + 2in



Solution in terms of
{

Φn(0),Φ
′
n(0)

}

n∈Z

It can be proved that

Φ̂n(s) =
∞
∑

k=0

(

i

2ǫ

)k k
∑

j=−k,2

G
(n)
k,j (s)Φ

(0)
n+j,k,j(s)

Requiring solution to be pole free at s = λn, s = α gives

∑

j∈Z

an,n+jΦn(0) +
∑

j∈Z

bn,n+jΦ
′
n(0) = 0, for n ∈ Z

∑

j∈Z

cn,n+jΦn(0) +
∑

j∈Z

dn,n+jΦ
′
n(0) = 0, for n ∈ Z,

where an,n+j =
∞
∑

k=|j|

(

i

2ǫ

)k αk,jG
(n)
k,j (α)

α2
k,j − λ2

n+j

,

Similarly expressions for bn,n+j , c′s, d′s. Note
∣

∣

∣
G

(n)
k,j

∣

∣

∣
≤ C

k!
.



Asymptotics for G
(n)
k,j for |j| << k

for |n| << k, k >> 1, σ << 1
ǫ

We note that

β
(al)
n+jl−1,l−1,jl−1

(s) =
1

(s+ l− 1)2 − λ2
n

[

1 −
2iljl−1 + j2l−1 + 2ijl−1

(s+ l− 1)2 − λ2
n

]−1
[

1

For l >> 1, if jl−1 << l, then we have

β
(al)
n+jl−1,l−1,jl−1

(s) =
1

(s+ l− 1)2 − λ2
n

+
2iljl−1

[(s+ l− 1)2 − λ2
n]

2
+O(

j2l
l2

)

G
(n)
k,j (s) ∼ A(n)Γ(s− λn)Γ(s+ λn)

Γ(s+ k − λn)Γ(s+ k + λn)

k!
(

k−j
2

)

!
(

k+j
2

)

!

[

1 +A1

j

k
+ ..

]

,



Computational details in G
(n)
k,j (s)

To get results for G
(n)
k,j as quoted, we need

Sk,j;m ≡
k
∑

l=1

∑

τ,jk=j

g(l)jml−1.

Note that Sk,j;m =

k
∑

l=1

f(l)∂m
β |β=0 Tl,k,j(β),

Tl,k,j(β) =
∑

τ,jk=j

eβjl−1

ζ(z;β) ≡
k
∑

j=−k

Tl,k,jz
j =

∑

τ

ea1(β+log z)..eal−1(β+log z)eal log z...eak log z

ζ =

(

zeβ +
1

z
e−β

)l−1 (

z +
1

z

)k−l+1



Floquet Spectrum in the closed right-half plane

Use of Gamma function asymptotics and Euler-McLaurin

summation converts the system of equation into a set of integ ral

equations for which there is no nonzero solution for Reσ ≥ 0 for

|σ| ≤ c
ǫ

for some small c.

Theorem: For β = ∞, the Floquet problem for oscillating plate has no spectrum in

the region Reσ ≥ 0 for |σ| ≤ c
ǫ

for some small c.

For σ = O
(

1
ǫ

)

a different asymptotic analysis is needed.

Further, for finite β, we use a Neumann series based on Volterra

kind of integral equation, instead of explicit Laplace tran sform in

y, though analysis is more complicated.

Other non-perturbative Floquet problems require somewhat

different techniques, as exemplified in the following for th e 3-D

Schroedinger equation with time-periodic potential.



Floquet problem in ionization of hydrogen atom

Reference: O. Costin, J. Lebowitz, S.T, Comm. Math. Phys, 20 10

(

−∆ − b

r
− iσ + nω

)

Φn = −iΩ(|x|) [Φn+1 − Φn−1]

reduces to

[

d2

dr2
+
b

r
− l(l+ 1)

r2
+ iσ − nω

]

wn = −iΩ[wn+1−wn−1]

Ω(r) assumed smooth and nonzero in support r ≤ 1. Also, can

prove iσ ∈ R

Can prove wn = 0 for r > 1 for n < 0 as otherwise

Φn = wn(r)
r

Yl,m(θ, φ) /∈ L2(R3), implying wn(1), w′
n(1) = 0 for

n < 0.



Floquet problem asymptotics for Hydrogen atom

Define n0 as the smallest positive integer for which either wn0
(1)

or w′
n0

(1) nonzero for assumed nonzero solution. Take the case

wn0
(1) 6= 0, taken 1 w.l.o.g. Find ∂j

∂ξjwn0−k(1) = ikδj,2k, where

ξ =
∫ 1

r

√

Ω(s)ds. For ξ small, wn0−k ∼ ikξ2k

(2k)!
.

Above suggests that for r = O(1), for k >> 1,

wn0−k ∼ ikξ2k

(2k)!
f(r),

Requiring O(k2), O(k) terms to vanish in the residual

Rk ≡ Lkwn0−k − iΩ [wn0−k+1 − wn0−k+1]

gn0−k(r)
,

gives f(r) = Ω−1/4(r)Ω1/4(0) exp

[

1

4

∫ r

1

ds
ωξ(s)
√

Ω(s)

]



Hydrogen Floquet Problem asymptotics

The asymptotics wn0−k ∼ ikξ2k

(2k)!
f(r) invalid when kr = O(1). We

demand substitution of

wn0−k =
ikξ2k

(2k)!
f(r)

H(kαr)

H(kα)

result in residuals of O(1) uniformly in r ∈ (0, 1]. Obtain to the

leading order in k,

H(ζ) ∼
√

2

π
eζζ1/2Kl+1/2(ζ) where Kl+1/2 is a Bessel function.

Any assumed nonzero solution is singular at r = 0. Therefore, Flo-

quet problem has no acceptable solution for Reσ ≥ 0, implying

hydrogen atom ionizes for assumed time-periodic compact po ten-

tial of arbitrary size. (Proofs appear in the paper cited).



Conclusions

The Floquet spectral problem arises naturally in the linear ized

time-evolution equation for disturbance on a time-periodi c

solution. May be rigorously and constructively analyzed in a

number of situations, including oscillating channel and pi pe

flows, 3-D Schroedinger equations, etc.

For Stokes layer problem β = ∞ problem, an intriguing

connection revealed with calculation of expected value in s ome

stochastic process. A continuum limit is identified as ǫ → 0 that

reduces an infinite discrete system of linear equation into a

system of integral equations for which the only solution is 0 for

Reσ ≥ 0 when σ << 1
ǫ
. Analysis for σ = O(1

ǫ
) is in progress

In some problems like the 3-D Schroedinger equation with a

time-periodic compact potential added to Coulomb potentia l, the

infinite set of differential-difference equations may be an alyzed

through rigorous WKB analysis.



An integral reformulation of 2-D channel IVP

If we introduce φ = (∂2
y − α2)ψ, then equation may be written as:

2∂tφ−
(

∂2
y − α2

)

φ = − iU
2ǫ
φ+

iUyy

2ǫ
I[φ],

where operator I : L2(0, β) → H2(0, β) is defined by

I[φ](y) =
sinh(αy)

α sinh(αβ)

∫ y

β

sinh[α(β − y′)]φ(y′)dy′

−sinh(α(β − y))

α sinh[αβ]

∫ y

0

sinh(αy′)φ(y′)dy′,

which incorporates I[φ](0) = 0 = I[φ](β). For β = ∞,

I[φ](y) =
e−αy

α

∫ y

∞

sinh(αy′)φ(y′)dy′−sinh(αy)

α

∫ y

0

e−αy′

φ(y′)dy′,



Integral reformulation-II

An operator R similar to similar to I can be defined as an

inversion of
(

∂2
y − α2

)

such that for χ ∈ L2(0, β), d
dy

I [R[χ]] is

zero at y = 0 and y = β. When β = ∞, replace by decay.

Evolution for φ may be written as:

φ− ∂tR[φ] =
i

2ǫ
R [Uφ] − i

2ǫ
R [UyyI[φ]]

Integration in time over (0, t) results in an integral reformulation

for rigorous justification of Laplace transform in t, and

determining how Floquet spectrum relates to initial value

problem.

Space integration of ψ equation gives O(1
ǫ
) growth rate, since

d

dt

{

‖ψy‖2 + α2‖ψ‖2
}

+ ‖ψyy‖2 ≤ |Uy|∞
2ǫα

{

‖ψy‖2 + α2‖ψ‖2
}
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