Two bubbles in Stokes Flow

Exact Solutions and Constraints

Saleh Tanveer (Ohio State University)

Collaborators: D.G. Crowdy, G. L. Vasconcelos

Research supported by

• National Science Foundation, EPSRC

Bubbles in 2-D Stokes Flow: Eqns and BCs

$$\mathbf{u} = (\psi_y, -\psi_x) \ ext{in} \ D$$

$$abla^4\psi=0.$$

On ∂D :

$$-pn_j + 2e_{jk}n_k = \kappa n_j,$$

 $V_n = \mathbf{u} \cdot \mathbf{n},$

 p, e, κ, n : pressure, strain, curvature and normal. V_n : normal interface velocity

$$\mathbf{u} \sim (eta(t)x, -eta(t)y) + o(1) \quad ext{at} \; \; \infty$$

Background

Problem of interest to study of bubble coalescence **Exact solutions (singly connected domain):** Richardson (1968), Hopper (1990), Antanovskii (1994), Howison & Richardson (1994), Tanveer & Vasconcelos ('94,'95), Siegel,...

Rigorous general context results

Prokert (1995), Solonnikov (1999), ..

Methodology for multiply connected domains

Crowdy & Tanveer, '98, Richardson '99, Crowdy, '02, '03, ...

A lot of numerical work

Pozrikidis, Kuiken, Kropinski,.....

Taylor's Four-Roll Experiment

Goursat Function Representation and Symmetry

Configuration retains mirror-symmetry about x & y-axis

Goursat function representation of flow:

$$\psi = Im \, \left[ar{z} f(z,t) + g(z,t)
ight]$$

$$u+iv=-f(z,t)+zar{f}'(ar{z},t)+ar{g}'(ar{z},t)$$

Stress BC on ∂D_1 and ∂D_2 :

$$f(z,t)+zar{f}'(ar{z},t)+ar{g}'(ar{z},t)=-irac{z_s}{2}+\mathcal{A}_1$$

$$f(z,t)+zar{f}'(ar{z},t)+ar{g}'(ar{z},t)=-irac{z_s}{2}+\mathcal{A}_2$$

Symmetry implies $\mathcal{A}_1 = \mathcal{A}_2^* = -\mathcal{A}_1^*$

Symmetric 2-bubble configuration

Conformal map from semi-circle to 1st Quad

$$z(\zeta,t) = i\zeta^{-1/2}(\zeta+\alpha)^{1/2}(1+\alpha\zeta)^{-1/2}h(\zeta,t)$$

$$h(\zeta,t) = \sum_{n=0}^{\infty} h_n(t) \zeta^n$$
 analytic for $|\zeta| < 1$

$$h(\zeta,t) = \sum_{n=0}^{N} h_n(t) \zeta^n \; ext{ exact solution for any } \; N$$

Equation satisfied by $h(\zeta, t)$ in $|\zeta| > 1$

$$h_t = \zeta q_1 h_\zeta + q_2 h + q_3 \;\;,\;\; q_j ext{ analytic in } |\zeta| > 1$$

Theorem: If $h(\zeta, 0) = \sum_{n=1}^{N} h_n \zeta^n$, then $h(\zeta, t) = \sum_{n=1}^{N} h_n(t) \zeta^n$ as long as solution exists with analytic shapes

$$X_k = \alpha h_0 h_{k-2} + \sum_{j=0}^{N-k} \left[2(1+\alpha^2)(j+1)h_{j+1} \right]$$

$$-lpha(2j+1)h_j]\,h_{k+j}-lpha\sum_{j=1}^{N-k+2}(2j-1)h_jh_{k+j-2}$$

Canonical variables: X_k , k = 1, ... N + 2

ODEs for X_k , α :

$$\dot{X}_n = -(n-1) \sum_{k=0}^{N-n} I_k X_{n+k} - 2\alpha h_0^2 \beta(t) \delta_{n,2}$$

$$\dot{X}_1 = -rac{m(t)}{\pi}$$

$$I_0(t) = rac{1}{4\pi} \int_0^{2\pi} rac{d heta}{|z_{\zeta}(e^{i heta},t)|} \; , \; I_k(t) = rac{1}{2\pi} \int_0^{2\pi} rac{\cos(k heta)d heta}{|z_{\zeta}(e^{i heta},t)|}$$

$$\dot{lpha} = -lpha \mathcal{I}(lpha,t)$$
 $\mathcal{I}(lpha,t) = rac{1}{2\pi} \int_{0}^{2\pi} rac{e^{i heta}+lpha}{e^{i heta}-lpha} rac{1}{|z_{\zeta}(e^{i heta},t)|} d heta$

Alternative Cauchy Transform Approach

For $z \in D_k$, k = 1, 2, inside of one of two bubbles

$$C_k(z,t) = rac{1}{2\pi i} \int_{\partial D(t)} rac{ar z' dz'}{z'-z}$$

Note: If bubble areas given, Cauchy Tranforms completely determine D(t)

Lemma: If domain D(t) is invariant under transformation $z \to z^*$ and $z \to -z$, i.e. reflectionally symmetric about both x-y axis, then $\mathcal{A}_1 = \mathcal{A}_2 = 0$ implies $C_1(z,t) = C_2(z,t)$

Invariance of meromorphic representation

Theorem: If C(z,t) is a meromorphic function initially with a finite number of simple poles in D, then as long as solution exists,

$$C(z,t) = A_{\infty}(t)z + rac{A_0(t)}{z} + \sum_{j=1}^{N} rac{2A_j(t)z}{z^2 - z_j^2(t)}$$

where $A_j(t) = A_j(0)$ for j = 0....N and

$$\dot{A}_\infty - p_\infty(t)A_\infty = 2eta(t) \ , \ \dot{z}_j = -2f(z_j(t),t)$$

Symmetry implies if z_j is complex, then there exists some $j' \neq j$ so that $z_{j'} = z_j^*$. Same applies to A_j . However, A_0 , A_∞ must be real.

Mapping from annular region to D(t)

Note: $\zeta=\pm
ho_1=\pm\sqrt{
ho(t)}$ corresponds to $z=\infty$, z=0

Representation of Exact Solutions

Theorem: When C(z,0) is initially meromorphic with a finite number of poles, then

$$egin{split} z(\zeta,t) &= iR(t)igg[rac{P(-\zeta\sqrt{
ho}^{-1};
ho)P(-\zeta\sqrt{
ho};
ho)}{P(\zeta\sqrt{
ho}^{-1};
ho)P(\zeta\sqrt{
ho};
ho)}igg]L(\zeta,\eta_0,-1;
ho) \ & imesigg(\sum_{j=1}^N L(\zeta,\eta_j,\zeta_j;
ho)igg) \end{split}$$

where

$$P(\zeta;\rho) = (1-\zeta) \prod_{k=1}^{\infty} (1-\rho^{2k}\zeta)(1-\rho^{2k}\zeta^{-1}),$$
$$L(\zeta,\eta_j,\zeta_j;\rho) = \frac{P(\zeta\sqrt{\rho}\eta_j;\rho)P(\zeta\sqrt{\rho}\eta_j^{-1};\rho)}{P(\zeta\sqrt{\rho}\zeta_j;\rho)P(\zeta\sqrt{\rho}\zeta_j^{-1};\rho)}.$$

Equations for parameters in Exact Solution

Lemma: Image of $\bar{\zeta}_j^{-1}$ under $z(\zeta, t)$ corresponds to z_j , the poles of C(z, t). Further, condition $\dot{z}_j = -2f(z_j, t)$ translates to:

$$\frac{d}{dt} \left[\bar{\zeta}_j^{-1} \right] = -\bar{\zeta}_j^{-1} \mathcal{I}(\bar{\zeta}_j^{-1}, t)$$

where
$$\mathcal{I}(\zeta,t) = \mathcal{I}^+(\zeta,t) - \mathcal{I}^-(\zeta,t) + I_c(t)$$

$$\mathcal{I}^+(\zeta,t) = rac{1}{2\pi i} \oint_{|\zeta|=1} rac{d\zeta'}{\zeta'} igg(1-2rac{\zeta}{\zeta'} rac{P'(\zeta\zeta'^{-1};
ho)}{P(\zeta\zeta'^{-1};
ho)}igg) rac{1}{2|z_\zeta(\zeta',t)|},$$

$$\mathcal{I}^{-}(\zeta,t) = \frac{1}{2\pi i} \oint_{|\zeta|=\rho} \frac{d\zeta'}{\zeta'} \left(1 - 2\frac{\zeta}{\zeta'} \frac{P'(\zeta\zeta'^{-1};\rho)}{P(\zeta\zeta'^{-1};\rho)} \right) \left(-\frac{1}{2\rho|z_{\zeta}(\zeta',t)|} - \frac{\dot{\rho}}{\rho} \right)$$

Equations for parameters in Exact Solution-Contd.

$${\cal I}_c(t) = -rac{1}{2\pi i} \oint_{|\zeta|=
ho} rac{d\zeta'}{\zeta'} \left(-rac{1}{2
ho|z_\zeta(\zeta',t)|} - rac{\dot
ho}{
ho}
ight)$$

Further, ho(t) , A_∞ satisfy

$$rac{d}{dt}\sqrt{
ho} = -\sqrt{
ho}\mathcal{I}(\sqrt{
ho},t)$$

$$eta(t) = rac{A_\infty}{2} + A_\infty \left(rac{\dot{a}}{a} + I(\sqrt{
ho},t) + \sqrt{
ho} I_\zeta(\sqrt{
ho},t)
ight)$$

where a is the residue of $z(\zeta,t)$ at $\zeta=\sqrt{\rho}$

$$A_j(t)=A_j(0) \quad ext{for} \quad j=0,...N$$

Determination of parameters

Lemma: Residues of C(z,t) of $A_j(t)$, $A_\infty(t)$ determined by conformal mapping parameters $\zeta_j(t)$, $\eta_j(t)$, $\rho(t)$ and R(t) from matching residues at $\zeta = \zeta_j$ of the equation

$$\bar{z}(\zeta^{-1},t) = C(z(\zeta,t),t) - E_1(z(\zeta,t))$$

where $E_1(z(\zeta,t),t)$ to be analytic in $ho < |\zeta| < 1$.

Note: If $\beta(t)$ specified, all together, 2N + 2 equations for 2N + 2 parameters ζ_j , η_j , ρ and R(t)

No freedom left in specifying area!

Alternatively, for specified area, $\beta(t)$ determined from the flow.

Computation for Special Cases

$$egin{aligned} z(\zeta,t) &= rac{P(-\zeta/\sqrt{
ho},
ho)P(-\zeta\sqrt{
ho},
ho)}{P(\zeta/\sqrt{
ho},
ho)P(\zeta\sqrt{
ho},
ho)} \ & imes \left(R_2 + R_1rac{P(i\zeta\sqrt{
ho},
ho)P(-i\zeta\sqrt{
ho},
ho)}{P(-\zeta\sqrt{
ho},
ho)P(-\zeta\sqrt{
ho},
ho)}
ight) \end{aligned}$$

Note: Actually in the form of N = 1 exact solution

For given β , unknown parameters are R_1 , R_2 and ρ

Exact solution for $\sigma = 1, \beta = 0.1$

Exact solution for $\sigma = 1, \beta = 0$

Numerical Solutions for $\mathcal{A}_1 \neq 0$

Can specify bubble area and β . In annular rep.:

$$z(\zeta,t) = rac{ia}{\zeta - \sqrt{
ho}} + i \sum_{n=-\infty}^{\infty} a_n \zeta^n$$

$$F(\zeta,t)=rac{iF_\infty}{\zeta-\sqrt{
ho}}++i\sum_{n=-\infty}^\infty F_n\zeta^n$$

$$G(\zeta, t) = rac{iG_{\infty}}{\zeta - \sqrt{
ho}} + i \sum_{n = -\infty}^{\infty} G_n \zeta^n$$

 F_{∞} , G_{∞} related to p_{∞} and β Stress relations gives G_n , F_n in terms of a_n Truncation gives ODEs for $a_n(t)$, a(t), $\rho(t)$ $\sigma=0, eta=0.5$ evolution

Times shown: t = 0, (0.1), 1.5

 $\sigma=1, \beta=0.5$ evolution

Times shown: t = 0, (0.1), 1.9

Conclusion

- 1. For a two-bubble configuration, there is a constraint between bubble area and straining rate at ∞ within class of exact solutions.
- 2. More general solutions outside this class determined numerically
- **3.** Bubbles appear to come close indefinitely
- 4. For shrinking bubbles, bubble can shrink to a line or a point, depending on straining rate.
- 5. Mathematics of Cauchy Transform and conformal map is attractive for domains with higher connectivity, having certain rotational symmetries.