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Viscous Fingering in Porous media

Planar interface between less viscous fluid pushing a more

viscous fluid unstable (Hill, ’52, Saffman & Taylor, ’58)
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Fingering in Hele-Shaw cell

Mathematically, the porous media flow related to displaceme nt of

more viscous by less viscous fluid in a Hele-Shaw cell, where

b/a << 1
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Saffman-Taylor Experiment in 1958



Idealized model for Hele-Shaw flow

Gap averaged Stokes flow: u1 = − b2

12µ1
∇p1 in Ω1 and

u2 = − b2

12µ2
∇p2 in Ω2. With φ1 = − b2

12µ1
p1, φ2 = − b2

12µ2
,

incompressibility gives harmonic φ1, φ2. Nondimensionalizing:
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Zero viscosity ratio simplification

In this case, we only need consider one domain Ω = Ω1, where

∆φ = 0

Far-field and wall conditions in non-dimensionalized form:

φ ∼ x + O(1) as x → +∞ , and
∂φ

∂y
(x,±1) = 0

Interfacial conditions:

vn =
∂φ

∂n
, and φ = ǫκ

where κ is the curvature and ǫ surface tension coefficient. These

interfacial conditions ignores 3-D thin-film effects. It tu rns out

(Taylor and Saffman,’59), for steady flow, the problem with

nonzero viscosity ratio is equivalent to a zero-viscosity p roblem

with change of parameters.



Mathematically Related Crystal Growth

Τ ∼−δ
n

Ω

x

y

On Γ:  Τ=−d
0
κ  , n.[

Γ

grad T ] = −2 Pv

2 P Tt
+ 2 P Tx

= ∆ Τ

Here d0, P , δ, vn and κ are capillary lengths, Peclet number,

non-dimensional undercooling, normal interface speed and

curvature respectively.



Small undercooling limit of Dendrite equation

For an interface that approaches a parabola in the far-field, P is

related to δ. For δ << 1, P << 1 and limit for small undercooling

for (x, y) << O(P−1/2) for a one-sided model gives the following

equations for u = − T
2P

(Kunka et al, ’97):

∆u = 0, for (x, y) ∈ Ω

∂u

∂n
= vn , u = ǫκ for (x, y) ∈ ∂Ω,

u → x + O(1) , as (x, y) → ∞, far from the interface

Except for the geometry, this limiting small undercooling 1 -sided

dendritic crystal growth model, reduces to the Hele-Shaw 1- sided

model



Other Mathematically Related Problems

Directional Solidification, where growth is driven by conce ntration

diffusion rather than Temperature (Pelce, ’87, Kessler et al, ’87)

Streamers in Electric Discharge (Ebert et al, ’11)

Continuum model for probability density function in Diffus ion

Limited Aggregation (DLA) (Witten & Sanders, ’81)

Tumor Growth models in limiting cases (Bazaliy & Friedman, ’ 03)

Zero surface tension evolution model related to Random Matr ix

Theory (Wiegmann, ’06)



Mathematical Issues

1. Determination of steady translating shapes and critical role of

surface tension or other regularization

2. Stability of translating states and role of regularizati on

3. Initial Value Problem: Global Existence of solutions

Mathematics simplifies considerably when ǫ = 0. In many

physical situation, as in Saffman-Taylor experiment, ǫ << 1. So,

it is tempting to set ǫ = 0. Unfortunately, the model is structurally

unstable and ill-posed for ǫ = 0 in any physically relevant norm

and ǫ = 0 model predictions need not be physically relevant.

Also, mathematics simplifies, without being structurally u nstable

or ill-posed, when ǫ 6= 0, and one looks at small bubbles that

translate along the channel or when side-walls are far apart and

initial bubbles are nearly circular.



Structural stability and physical relevance

Any mathematical model can be described abstractly by

N [u; ǫ] = 0,

where operator N can describe arbitrary differential, integral or

algebraic operator and ǫ describes parameters.

The above problem is structurally stable if solution set {u} depends

continuously on ǫ.

Consider initial value problem (IVP): ut = N [u], u(0) = u0. The

problem above is well-posed if there exists unique solution to the

IVP that depends continuously on u0

Models that are not structurally stable or well-posed are ge nerally

irrelevant physically since ǫ and u0 not known exactly in

experiment. Singular ǫ effects cannot be ignored.



Determination of Steady Translating Shapes

ǫ = 0 exact solutions by Zhuravlev, ’56, Saffman & Taylor ’58,

Taylor & Saffman ’59, T., ’87 reveals degeneracy of solution s,

indexed by translation speed U (equivalent to width λ for a finger)

and symmetry about channel centerline. For symmetric finger s,

x = 2
1 − λ

π
log cos

(

πy

2λ

)

, y ∈ (−λ, λ) , λ ∈ (0, 1)

However, experiment resulted in λ ≈ 1
2

, and λ = 1
2

theoretical

shape agreed with it. Thus, there was a "selection problem."

Similar problems for translating bubbles of specified area ( Taylor

& Saffman, 1959), where bubble speed U was undetermined; also

in other pattern formation problems

Selection quandary worse than believed. There exists ǫ = 0

non-symmetric fingers (Taylor-Saffman, ’59) and bubbles (T ., ’87).



Steady State Selection for ǫ 6= 0

Numerical work (McLean-Saffman,’80, VandenBroeck, ’82, K essler

& Levine, ’86) suggested selection for ǫ 6= 0 of a discrete family of

solution branches as below, though formal perturbation in

powers of ǫ suggested no selection !
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Selection Through Exponential Asymptotics

Formal exponential asymptotics (Combescot et al ’86, Hong &

Langer ’86, Shraiman, ’86, T. ’86, ’87b, Dorsey-Martin ’87)

suggested selection and stability of one branch only (T., 87 c,

Bensimon-Pelce ’87), though differing conclusions by Xu ’9 1,

Scwartz & DeGregoria ’87

Selection results proved rigorously (Xie & T. ’03, T. & Xie, 2 003,

Xie, ’08)

Formal exponential asymptotics with 3-D effects available (T.,

1990); qualitatively similar results

Other λ 6= 1
2

or non-symmetric finger solutions accessible in

experiment with etching of glasses (BenJacob et al, 1985), Needle

Piercing the interface (Zocchi et al, ’87), small bubble in front of a

finger (Couder et al ’86).



Conformal map formulation for 1-fluid

Ω

Conformal map from unit−semi−circle
to physical domain Ω in one fluid problem
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Steady finger formulation in co-moving frame

z=x+iy plane
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With Z(ζ) = Z0(ζ;λ) + f(ζ), where Z0(ζ;λ) is the ZST solution,

obtain Im f = 0 on (−1, 1) and on |ζ| = 1:

Re f = −
ǫ

|f ′ + h|
Re

[

1 + ζ
f ′′ + h′

f ′ + h

]

, where h(ζ) =
1 − (2λ − 1)ζ2

ζ(ζ2 − 1)

Formal expansion f ∼ ǫf1 + ǫ2f2 + .. consistent for λ ∈ (0, 1) !



Toy problem in exponential asymptotics selection

Consider the solution φ(x, y) to

∆φ = 0 for y > 0

On y = 0, require Boundary Condition

ǫφxxx(x, 0) + (1 − x2 + a)φx(x, 0) − 2xφy(x, 0) = 1,

where a ∈ (−1,∞) is real. Also require that as x2 + y2 → ∞,

(x2 + y2) |∇φ| bounded.

Can show W (x + iy) = φx(x, y) − iφy(x, y) satisfes

ǫW ′′ +
[

−(z + i)2 + a
]

W = 1

For ǫ = 0, W = W0 ≡ 1
−(z+i)2+a

. Ansatz W = W0 + ǫW1 + ..

consistent. Suggests no restriction on a. Yet, we will discover

this conclusion to be incorrect !



Toy problem for exponential asymptotics–II

With scaling of dependent and independent variable, obtain :

z + i = i2−1/2ǫ1/2Z ; W = 2−1ǫ−1G(Z) ; a = 2ǫα

G′′ − (
1

4
Z2 + α)G = −1

Using parabolic cylinder functions, the above problem has a n

explicit solution. Requiring G → 0 as Z → ∞ for

argZ ∈
(

−π
2
, π
2

)

is possible if and only for integer n ≥ 0

α = (2n +
3

2
) , i .e. a = 2ǫα = 2ǫ

(

2n +
3

2

)

limǫ→0+ solution not equal ǫ = 0 solution, unless a is as above.

Discontinuity of solution set at ǫ = 0. So ǫ term cannot be

discarded, despite consistency of regular perturbation se ries.



Surprising sensitivity to other small effects

Suppose ǫ1 << ǫ in the following variation of the toy problem:

ǫW ′′ +

[

−(z + i)2 + a −
ǫ1

(z + i)2

]

W = 1 for y = Im z ≥ 0

Question: Should we ignore ǫ1 term ? Appears reasonable since

a scales as ǫ without ǫ1 term and ǫ1
(z+i)2

<< a for y = Im z ≥ 0.

This reasoning is incorrect .

Explanation: what matters is the size of ǫ1-term in an ǫ1/2

neighborhood of z = −i. It is O(ǫ) when ǫ1 = O(ǫ2).

This explains the dramatic effect of small perturbation in

experiment (BenJacob et al, Zocchi et al, Couder et al)

The toy problem illustrates disparate length (and time) sca les can

interact close to structural instability.



Time evolution for ǫ = 0, ǫ 6= 0

ǫ = 0 dynamics is rich (Polabarinova-Kochina, ’46, Galin, ’46,

Richardson, Gustaffson, ...

However, ǫ = 0 evolution problem has no continuity with respect to

I.C. in a physically reasonable norm (say H1) Howison (’86),

Fokas & T. (’98).

For ǫ 6= 0, local existence (Duchon & Roberts). Global existence

in unforced case (Constantin & Pugh) and for pressure gradie nt

causing a near circular bubble to translate (Ye & T.)

Denote solution as u(t; ǫ) for ǫ 6= 0. Question: When is

limǫ→0+ u(t; ǫ) = u(t; 0)?.

Define T0 ≤ ∞ to be the singularity time for u(t; 0). Evidence

shows that in some cases, there exists Td < T0, independent of ǫ

so that limǫ→0 u(t; ǫ) 6= u(t, ǫ) for t ∈ (Td, Ts) (Siegel et al ’96)



Toy problem for time evolution

Consider the following PDE for Im ξ ≥ 0:

Gt + iGξ = 1 + 2iǫ
[

G−1/2
]

ξξξ
with G(ξ, 0) = 1 − 2iξ

Formal expansion G ∼ G(0) + ǫG(1) + .. gives:

G0(ξ, t) = 2i (ξ0(t)− ξ) , where ξ0(t) = −
i

2
(1 − t)

G1
t + iG1

ξ = 30(2iξ0(t) − 2iξ)−7/2 , where G1(ξ, 0) = 0

G1(ξ, t) = −12 (2iξ0(t) − 2iξ)
−5/2

+ 12 (2iξd(t) − 2iξ)
−5/2

,

where ξd(t) = ξ0(0) + it = −
i

2
+ i t

Note ξd(t) moves faster than ξ0(t) towards real axis



Inner scale and singular effects on real axis

When ξ − ξd(t) = O(B1/3), t = Os(1),

G(ξ, t) ∼ t M−2
{

B−1/3[−i(ξ − ξd(t))]t
1/6

}

,

where M(η) satisfies

−
1

2
M +

1

6
ηM ′ =

[

−
1

2
+ M ′′′

]

M3 with matching condition

The inner ODE admits (η − ηs)
2/3 singularities; corresponding to

(ξ − ξs)
−4/3 singularity for G, clustered near ξ = ξd

These singularities affect evolution on real ξ axis before ξ0(t)

reaches real axis !

Similar singular effects occur for Hele-Shaw cell for small ǫ. Other

regularizations cause similar effect



Conclusion

The classic zero surface tension model is structurally unst able to

small regularizing effects such as surface tension.

This structural instability for steady shapes implies that most

zero surface tension shapes are physically irrelevant.

Near structurally unstable system are unpredictably sensi tive to

other small effects. No universality independent of regula rization

Structural instability in time evolution problems occur:

limǫ→0+ u(t; ǫ) 6= u(t; 0) even for t < Ts, the singular time for

u(t; 0). Strong evidence that this is the case, though

mathematical proof of this part is an open problem.

Steadily translating bubbles in a channel under the action o f a

pressure gradient are nonlinearly stable with a shrinking b asin of

attraction as ǫ → 0 for large sidewall distances.
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