
Borel Summation and 3-D Navier Stokes Existence

Saleh Tanveer

(Ohio State University)

Collaborator: Ovidiu Costin

Research supported in part by

• Institute for Math Sciences (IC), EPSRC &

NSF.



Background and main idea

Existence of smooth 3-D Navier-Stokes solution an important

open problem, though some sufficient conditions exist

(Beale,Kato & Majda, Constantin-Fefferman,...)

Classical Results involving Sobolev space methods give smooth

solutions (Leray) for smooth data, only locally in time. Energy

estimates not good enough to push further.

Borel summation is a summation procedure for divergent series,

under some conditions that generates an isomorphism between

series and functions they represent (Ecalle, Costin,..).

Borel summation may be for large x, large t, small t

Formal expansion of N-S solution possible for small t:

v(x, t) = v0(x) +
∑∞

m=1 tmvm(x).

Borel Summability ensures that this represents an actual to N-S.



Background-II

Sobolev methods are based on a priori energy estimates. Without

good global estimates, only local classical solutions are

amenable. In that case, beyond some time determined by initial

data, one is usually unable to say anything about the solution,

except perhaps that weak solutions exist.

An important feature of the Borel-based method that we introduce

here is that the solution is expressed as a Laplace transform of a

known solution to an integral equation. If the growth rate of this

known solution at ∞ is sub-exponential in p, then global

existence in t follows. So, global existence question can be

related to an asymptotic problem.



Small t expansion for evolution PDEs

vt = N [v] , v(x, 0) = v0(x)

v(x, t) = v0(x) + tv1(x) + t2v2(x) + ..,

where v1(x) = N [v0](x), v2 = 1
2

{Nv(v0)[v1]} (x),..

Such expansions divergent if the order of space derivative in N is

higher than 1.

Borel Summability ensures that

v(x, t) = v0(x) +

∫ ∞

0

U(x, p)e−p/tdp,

where U(x, p) is analytic in p for p ≥ 0 and e−αp|U(x, p)|
bounded, where crude bounds on α so far obtained involves v0.

Solution representation valid for t ∈ [0, α−1). With

subexponential growth, solution exists on [0, ∞).



Borel Summation Illustrated in a Simple Linear ODE

y′ − y =
1

x2

Want solution y → 0, as x → +∞
Dominant Balance (or formally plugging a series in 1/x):

y ∼ − 1

x2
+

2

x3
+ ...

(−1)kk!

xk+1
+ .. ≡ ỹ(x)

Borel Transform:

B[x−k](p) =
pk−1

Γ(k)
= L−1[x−k](p) for Re p > 0

B
[

∞
∑

k=1

akx−k

]

(p) =
∞
∑

k=1

ak

Γ(k)
pk−1



Borel Summation for linear ODE -II

Y (p) ≡ B[ỹ](p) =
∞
∑

k=1

(−1)kpk = − p

1 + p

y(x) ≡
∫ ∞

0

e−pxY (p)dp = LB[ỹ]

is the linear ODE solution we seek. Borel Sum defined as LB.

Note once solution is found, it is not restricted to large x.

Necessary properties for Borel Sum to exist:

1. The Borel Transform B[ỹ0](p) analytic for p ≥ 0,

2. e−αp|B[ỹ0](p)| bounded so that Laplace Transform exists.

Remark: Difficult to check directly for non-trivial problems



Borel sum of nonlinear ODE solution

Instead, directly apply L−1 to equation; for instance

y′ − y =
1

x2
+ y2; with lim

x→∞
y = 0

Inverse Laplace transforming, with Y (p) = [L−1y](p):

−pY (p) − Y (p) = p + Y ∗ Y implying Y (p) = − 1

1 + p
− Y ∗ Y

1 + p

(1)

For functions Y analytic for p ≥ 0 and e−αpY (p) bounded, it can

be shown that (1) has unique solution for sufficiently large α.

Implies ODE solution y(x) =
∫ ∞

0
Y (p)e−pxdp for Re x > α

The above is a special case of results available for generic

nonlinear ODEs (Costin, 1998)



Borel sum of nonlinear ODE solution-II

Define χj(p) characteristic function, equalling 1 for

p ∈ [j, (j + 1)) and zero otherwise.

Define Yj(p) = Y (p)χj(p). Then from property of Laplace

convolution ∗ for p ∈ [j, j + 1) : Y ∗ Y =
∑j

l=0 Yl ∗ Yj−l

Therefore, integral equation for p ∈ [j, j + 1) becomes:

Yj +
2Y0 ∗ Yj

1 + p
= − p

1 + p
− 1

1 + p

j−1
∑

l=1

Yl ∗ Yj−l

Nonlinear ODE problem transformed to a sequence of linear

problems beyond [0, 1) interval. If a convergent series or other

representation is available in [0, 1), the rest involves a sequence

of linear problem. This feature generalizes to nonlinear PDEs as

well.



Singularities in Borel Plane–Stokes Phenomena

No singularities in the p-plane so far; but can arise.

For instance, we had solution to y′ − y = 1
x2

:

y(x) = −
∫ ∞

0

pe−px

1 + p
dp,

If rotate counter-clockwise in the complex x-plane past arg x = π,

the Laplace contour in the p-plane needs to be rotated clockwise

past arg p = −π. From contour deformation, get additional

contribution (Stokes phenomenon) from contour C below:

C

L

−1 Re p

Im p



Integral equation for N-S in Borel plane

v̂t + |k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂(k) , v̂(k, 0) = v̂0(k),

Pk =

[

1 − k (k·)
|k|2

]

,

where ∗̂ denotes Fourier convolution. Introducing τ = 1
t
:

−τ2v̂τ + |k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂(k)

Decompose v̂ = v̂0 + û so that û → 0 as τ → ∞. Applying L−1

in the τ variable, obtain equation for U(k, p) = L−1[u(k, .)](p):

∂pp

[

pÛ
]

+ |k|2U = R̂

U(k, p) =

∫ p

0

K(p, p′)R̂(k, p′)dp′



Integral Equation formulation for 3-D NS -II

R̂(k, p) = −ikjPk

[

v̂0,j ∗̂Û + Ûj ∗̂v̂0 + Ûj
∗∗ Û

]

+ v̂1δ(p)

where
∗∗ denote Laplace convolution, followed by Fourier

convolution. K(p, p′), v̂1(k) given by:

K(p, p′) =
π

z
(z′J1(z)Y1(z

′) − z′Y1(z)J1(z
′)) , z = 2|k|√p,

z′ = 2|k|
√

p′ , v̂1(k) = −|k|2v0 − ikjPk [v̂0,j ∗̂v̂0] + f̂(k)

Introduce norm ‖.‖µ,β, with µ > 3, β ≥ 0 so that

‖v0‖µ,β = sup
k∈R3

eβ|k|(1 + |k|)µ|v̂0(k)|



Results on 3-D Navier-Stokes

Theorem 1: If ‖v̂0‖µ+2,β < ∞, µ > 3, β ≥ 0, NS has a unique solution in the

form with ‖v̂(·, t)‖µ,β < ∞ for Re 1
t

> α, where α depends on v̂0.

Furthermore, v̂(·, t) is analytic for Re 1
t

> α and ‖v̂(·, t)‖µ+2,β < ∞ for

t ∈ [0, α−1). If β > 0, this implies that v is analytic in x with the same analyticity

width as v0 and f .

Theorem 2: For β > 0 (analytic initial data) and µ > 3, the solution v is Borel

summable in 1/t, i.e. there exists U(x, p), analytic in a neighborhood of R
+,

exponentially bounded, and analytic in x for | Im x| < β so that

v(x, t) = v0(x) +

∫ ∞

0

U(x, p)e−p/tdp

Therefore, in particular as t → 0,

v(x, t) ∼ v0(x) +
∞
∑

m=1

tmvm(x)

with

|vm(x)| ≤ m!A0Bm
0 ,

where A0 and B0 depend on v0 and f .



Remarks on Theorem

Remark: Borel summability and classical Gevrey-asymptotic results imply, for small t:

∣

∣

∣

∣

∣

∣

v(x, t) − v0(x) −
m(t)
∑

m=1

vm(x)tm

∣

∣

∣

∣

∣

∣

≤ A0[m(t)]1/2e−m(t)

where m(t) = bB−1
0 t−1c. Our bounds on B0 are likely suboptimal. Formal

arguments in the recurrence relation of vm+1 in terms of vm, vm−1,...,v1, indicate

that B only depend on β, but not on ‖v̂0‖µ,β .

Remark: While most of the results in Theorem 1 already known through classical

methods, the problem of continuation of solution beyond t = 1
α

can be related to an

asymptotics problem for known solution Û(k, p) of an integral equation. No

equivalent characterization known before.



Conclusions

We have shown how Borel summation methods provides an

alternate existence theory for N-S equation

By converting a nonlinear PDE problem into an integral equation

involving convolutions, global existence is implied if the known

solution to an integral equation has subexponential growth.

Beyond an initial interval, the integral equation breaks up into a

sequence of linear problems, making it computationally and

analytically attractive.

Borel methods give precise asymptotic estimates for small time

dynamics.



Key points in the proof

Define norm : ‖f̂(k, p)‖ = sup
p≥0

e−αp(1 + p2)‖f̂(., p)‖µ,β

Because of properties

eαp

(1 + p2)
∗ eαp

(1 + p2)
= eαp

∫ p

0

ds

(1 + s2)[1 + (p − s)2]
≤ M0eαp

1 + p2

[

e−β|k|(1 + |k|)−µ
]

∗̂
[

e−β|k|(1 + |k|)−µ
]

≤ C0(µ)e−β|k|

(1 + |k|)−µ
,

the following algebraic properties follow:

‖[f̂(k, p)]∗̂[ĝ(k)]‖µ,β ≤ C0‖f̂(·, p)‖µ,β‖ĝ‖µ,β

‖û
∗∗ v̂‖ ≤ M0C0‖û‖‖v̂‖ , ‖

∫ p

0

|û(k, s)|ds‖ ≤ Cα−1‖û‖



Small t Expansion-II

Note: 1/t not always correct choice for Borel-Transform

For instance, for Kuramato-Sivishinsky equation

ut + uxx + uux + uxxxx = 0 , u(x, 0) = u0(x),

correct variable is T = t−1/3 for Borel-Transform:

−T 4

3
uT + uxx + uux + uxxxx = 0

Writing u(x, T ) = u0(x) + v(x, T ) and Borel-Transforming in T :

1

3
[pV ]pppp + Vxx + Vxxxx + u0Vx + V u0x + V ∗ Vx = R(x)

Fourth-order in both p and x; Cauchy-Kowalewski ideas may be

applied. Solution u(x, t) = u0(x) +
∫ ∞

0
V (x, p)e−pt−1/3

dp
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