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Abstract. Milliken-Taylor systems are some of the most general infinitary

configurations that are known to be partition regular. These are sets of the
form MT (〈ai〉mi=1, 〈xn〉∞n=1) = {

∑m
i=1 ai

∑
t∈Fi

xt : F1, F2, . . . , Fm are in-

creasing finite nonempty subsets of N}, where a1, a2, . . . , am ∈ Z with am > 0

and 〈xn〉∞n=1 is a sequence in N. That is, if p(y1, y2, . . . , ym) =
∑m

i=1 aiyi

is a given linear polynomial and a finite coloring of N is given, one gets a

sequence 〈xn〉∞n=1 such that all sums of the form p(
∑

t∈F1
xt, . . . ,

∑
t∈Fm

xt)

are monochromatic. In this paper we extend these systems to images of very
general extended polynomials. We work with the Stone-Čech compactification
βF of the discrete space F of finite subsets of N, whose points we take to
be the ultrafilters on F . We utilize a simply stated result about the tensor

products of ultrafilters and the algebraic structure of βF .

1. Introduction

Given a sequence 〈xn〉∞n=1 in the set N of positive integers, let FS(〈xn〉∞n=1) =
{
∑

n∈F xn : F ∈ Pf (N)}, where, for any set X, Pf (X) is the set of finite nonempty
subsets of X. Similarly, given a sequence 〈Hn〉∞n=1 in Pf (N), FU(〈Hn〉∞n=1) =
{
⋃

n∈F Hn : F ∈ Pf (N)}. (Here FS and FU stand for “finite sums” and “finite
unions”.) In 1972 the following theorems were proved. Before they were proved,
the statements were known to be equivalent via a consideration of the binary ex-
pansions of positive integers. (If Hn ∩Hm = ∅, then

∑
t∈Hn

2t−1 +
∑

t∈Hm
2t−1 =∑

t∈Hn∪Hm
2t−1 so Theorem 1.2 trivially implies Theorem 1.1. To see that The-

orem 1.1 implies Theorem 1.2, one first shows that the sequence 〈xn〉∞n=1 can be
chosen so that, if xn =

∑
t∈Hn

2t−1, then maxHn < minHn+1.)

Theorem 1.1 (Finite Sums Theorem). Let r ∈ N and let N =
⋃r

i=1 Ci. There
exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ Ci.

Proof. [17, Theorem 3.1]. �

Theorem 1.2 (Finite Unions Theorem). Let r ∈ N and let Pf (N) =
⋃r

i=1 Ci.
There exist i ∈ {1, 2, . . . , r} and a sequence 〈Hn〉∞n=1 such that maxFn < minFn+1

for each n ∈ N and FU(〈Hn〉∞n=1) ⊆ Ci.

Proof. [17, Corollary 3.3]. �
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Before the actual publication of [17], while both were still graduate students,
Keith Milliken and Alan Taylor independently used Theorem 1.1 to prove what
has come to be known as the Milliken-Taylor Theorem, a result which provides a
simultaneous generalization of the Finite Sums Theorem and Ramsey’s Theorem
and which has been often utilized in the literature, including various powerful gen-
eralizations of Szemerédi’s Theorem on arithmetic progressions. (See for example
[1], [3], [10], and [11].) To state the Milliken-Taylor Theorem, we need to introduce
some notation. Given F,G ∈ Pf (N), we write F < G to mean that maxF < minG.
Further, when we write F < G we intend to implicitly include the assertion that
F,G ∈ Pf (N). When we say that a sequence 〈Hn〉∞n=1 in Pf (N) is an increasing
sequence we mean that for each n, maxHn < minHn+1. In a semigroup (S, ·),
analogous to the notation FS(〈xn〉∞n=1), we have FP (〈xn〉∞n=1) = {

∏
t∈F xt : F ∈

Pf (N)}, where
∏

t∈F xt is taken in increasing order of indices.
The notions defined in (5) and (6) below are special cases of (4). We present

the different terminology because these special cases arise frequently. In each of
these, the object defined depends not only on the set FP (〈yn〉∞n=1) or FS(〈yn〉∞n=1)
or FU(〈Fn〉∞n=1), but on the sequence which generates the set.

Definition 1.3. Let k ∈ N.
(1) For any set X, [X]k = {A ⊆ X : |A| = k}.
(2) For a sequence 〈xn〉∞n=1 in N,

[FS(〈xn〉∞n=1)]
k
< =

{
{
∑

n∈F1
xn,

∑
n∈F2

xn, . . . ,
∑

n∈Fk
xn} :

F1 < F2 < . . . < Fk

}
.

(3) For a sequence 〈Hn〉∞n=1 in Pf (N)

[FU(〈Hn〉∞n=1)]
k
< =

{
{
⋃

n∈F1
Hn,

⋃
n∈F2

Hn, . . . ,
⋃

n∈Fk
Hn} :

F1 < F2 < . . . < Fk

}
.

(4) In a semigroup (S, ·), FP (〈yn〉∞n=1) is a product subsystem of FP (〈xn〉∞n=1)
if and only if there exists an increasing sequence 〈Hn〉∞n=1 in Pf (N) such
that for each n ∈ N, yn =

∏
t∈Hn

xt, where the products
∏

t∈Hn
xt are

computed in increasing order of indices.
(5) In a semigroup (S,+), FS(〈yn〉∞n=1) is a sum subsystem of FS(〈xn〉∞n=1) if

and only if there exists an increasing sequence 〈Hn〉∞n=1 in Pf (N) such that
for each n ∈ N, yn =

∑
t∈Hn

xt.
(6) In the semigroup (Pf (N),∪), FU(〈Kn〉∞n=1) is a union subsystem of

FU(〈Fn〉∞n=1) if and only if there exists an increasing sequence 〈Hn〉∞n=1

in Pf (N) such that for each n ∈ N, Kn =
⋃

t∈Hn
Ft.

The subsystems defined in (4) are called IP-subsystems in [14, Chapter 8].
Version (1) of the following theorem is due to K. Milliken and version (2) is due

to A. Taylor. The fact that they are equivalent is established similarly to the way
Theorems 1.1 and 1.2 are standardly shown to be equivalent.

Theorem 1.4 (Milliken-Taylor Theorem). Let m, r ∈ N.
(1) Let [N]m =

⋃r
i=1 Ci, and let 〈xn〉∞n=1 be a sequence in N. There exist

i ∈ {1, 2, . . . , r} and a sum subsystem FS(〈yn〉∞n=1) of FS(〈xn〉∞n=1) such
that
[FS(〈yn〉∞n=1)]

m
< ⊆ Ci.
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(2) Let [Pf (N)]m =
⋃r

i=1 Ci. There exist i ∈ {1, 2, . . . , r} and an increasing
sequence 〈Hn〉∞n=1 in Pf (N) such that [FU(〈Hn〉∞n=1)]

m
< ⊆ Ci.

Proof. (1) [21, Theorem 2.2], or see [20, Theorem 18.7].
(2) [24, Lemma 2.2], or see [20, Corollary 18.8]. �

The case m = 1 of Theorem 1.4(1) is an apparent strengthening of the Finite
Sums Theorem. That is, not only is one guaranteed a sequence with its finite sums
in one color class, but one may get such a sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1)
as a sum subsystem of any specified sequence. (This strengthening is also easily
derivable from the Finite Sums Theorem itself. See the sequence of exercises at the
end of [20, Section 5.2].)

A goal of this paper is to establish a polynomial version of the Milliken-Taylor
Theorem, thereby adding to the circle of results represented by the Polynomial van
der Waerden Theorem and the Polynomial Hales-Jewett Theorem. (See [6] and
[7].) To start explaining our approach, we introduce the notion of Milliken-Taylor
System.

Definition 1.5. Let m ∈ N and let 〈aj〉mj=1 and 〈xn〉∞n=1 be sequences in N. The
Milliken-Taylor System determined by 〈aj〉mj=1 and 〈xn〉∞n=1 is

MT (〈aj〉mj=1, 〈xn〉∞n=1) = {
∑m

j=1 aj

∑
t∈Fj

xt : F1 < F2 < . . . < Fm} .

Milliken-Taylor systems are partition regular. That is, there is the following
result which is well known among the experts.

Theorem 1.6. Let m, r ∈ N, let 〈aj〉mj=1 and 〈xn〉∞n=1 be sequences in N, and let
N =

⋃r
i=1 Ci. There exist i ∈ {1, 2, . . . , r} and a sum subsystem FS(〈yn〉∞n=1) of

FS(〈xn〉∞n=1) such that MT (〈aj〉mj=1, 〈yn〉∞n=1) ⊆ Ci.

One may extend Theorem 1.6 by producing sum subsystems of the set of finite
sums of several different sequences, and allowing them to occur in arbitrary order.
For example with m = 3 and k = 2 in the following theorem, one can be asking for
partition regularity of sums of the form a1

∑
t∈F1

y1,t+a2

∑
t∈F1

y2,t+a3

∑
t∈F3

y1,t.
See the explanation following the statement of Theorem 1.13, regarding the diffi-
culties introduced by possible repetitions of sequences.

Theorem 1.7. Let k,m, r ∈ N, let 〈aj〉mj=1 be a sequence in N and for each
j ∈ {1, 2, . . . , k}, let 〈xj,n〉∞n=1 be a sequence in N. Let f : {1, 2, . . . ,m} →
{1, 2, . . . , k} and let N =

⋃r
i=1 Ci. There exists i ∈ {1, 2, . . . , r} and for each

j ∈ {1, 2, . . . , k}, there exists a sum subsystem FS(〈yj,n〉∞n=1) of FS(〈xj,n〉∞n=1)
such that {

∑m
j=1 aj

∑
t∈Fj

yf(j),t : F1 < F2 < . . . < Fm} ⊆ Ci.

It is quite easy to see that Theorem 1.7 implies Theorem 1.6. The converse is
not so obvious. In fact, we shall show in the appendix that Theorems 1.6, 1.7, and
the following theorem are all equivalent to the Milliken-Taylor Theorem (Theorem
1.4) (in the informal sense that each is easily derivable from the other).

Theorem 1.8. Let m, k, r ∈ N, and let f : {1, 2, . . . ,m} → {1, 2, . . . , k}. For
each j ∈ {1, 2, . . . , k}, let 〈Hj,n〉∞n=1 be an increasing sequence in Pf (N), and let
Pf (N)m =

⋃r
i=1 Ci. There exists i ∈ {1, 2, . . . , r} and for each j ∈ {1, 2, . . . , k}

there exists a union subsystem FU(〈Kj,n〉∞n=1) of FU(〈Hj,n〉∞n=1) such that

{(
⋃

t∈F1
Kf(1),t,

⋃
t∈F2

Kf(2),t, . . . ,
⋃

t∈Fm
Kf(m),t) : F1 < F2 < . . . < Fm} ⊆ Ci .
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Before the proof of the Finite Sums Theorem, Fred Galvin knew that this the-
orem would be an easy consequence of the existence of what he called an almost
translation invariant ultrafilter on N, namely an ultrafilter p with the property that
whenever A ∈ p, {x ∈ N : −x+ A ∈ p} ∈ p, where −x+ A = {y ∈ N : x+ y ∈ A}.
(We are here viewing an ultrafilter as a maximal filter on N, that is a set of sub-
sets of N which is maximal with respect to the finite intersection property. The
“almost translation invariant” terminology reflects the fact that an ultrafilter can
be thought of as a finitely additive, {0, 1}-valued, measure on P(N), wherein the
assertion that A ∈ p is the same as saying that p assigns measure 1 to A. Thus
when one says that p is almost translation invariant, one is saying that a p-large
set p-almost always translates to a p-large set.) In 1975, Galvin met Steven Glazer
who knew that an almost translation invariant ultrafilter was simply an idempotent
in the compact right topological semigroup (βN,+) and that any compact Haus-
dorff right topological semigroup has idempotents [13, Lemma 1]. Consequently, a
very easy proof of the Finite Sums Theorem became available. (See for example
[20, Theorem 5.8]. And the process of exploiting the algebraic structure of the
Stone-Čech compactification for combinatorial applications began.

We pause now to briefly introduce the algebra of the Stone-Čech compactification
of a discrete semigroup. Given a discrete semigroup (S, ·), we take the points of βS
to be the ultrafilters on S, identifying the points of S with the principal ultrafilters.
(The principal ultrafilter associated with the point x ∈ S is {A ⊆ S : x ∈ S}.
If one is thinking of an ultrafilter as a measure, this is the point mass measure
which has µ({x}) = 1.) The operation on S extends to an associative operation on
βS, customarily denoted by the same symbol. (In particular, if the operation on
S is denoted by +, so is the operation on βS. But the reader should be warned
that (βS,+) is very unlikely to be commutative. In fact, the centers of (βN,+)
and (βN, ·) are both equal to N [20, Theorem 6.10].) Given p ∈ βS and x ∈ S, the
functions ρp and λx from βS to itself are continuous, where, for q ∈ βS, ρp(q) = q ·p
and λx(q) = x · q. Given A ⊆ S and p, q ∈ βS, A ∈ p · q if and only if

{x ∈ S : x−1A ∈ q} ∈ p ,

where x−1A = {y ∈ S : xy ∈ A}. In particular, since we are identifying the points
of S with the principal ultrafilters, if a ∈ S, p ∈ βS, and A ⊆ S, then A ∈ ap if
and only if a−1A ∈ p. A great deal is known about the algebraic structure of βS
and its combinatorial consequences. (See [20] for much of this information as well
as an elementary introduction to the subject.)

In this paper, we will be primarily concerned with applications of the basic fact
cited above that any compact Hausdorff right topological semigroup has idempo-
tents and the relationship with what are known as IP-sets. In a semigroup (S, ·),
a set A is an IP-set if and only if there exists a sequence 〈xn〉∞n=1 in S such that
FP (〈xn〉∞n=1) ⊆ A.

Lemma 1.9. Let (S, ·) be a semigroup and let 〈xn〉∞n=1 be a sequence in S. Then
T =

⋂∞
m=1 FP (〈xn〉∞n=m) is a compact subsemigroup of βS, and thus there is an

idempotent in T .

Proof. [20, Lemma 5.11]. �

Theorem 1.10. Let (S, ·) be a semigroup and let A ⊆ S. Then A is an IP-set if
and only if there is an idempotent p ∈ βS such that A ∈ p.
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Proof. The sufficiency is the Galvin-Glazer proof referred to above. The necessity
is Lemma 1.9. �

Milliken-Taylor systems are images of infinite matrices under matrix multipli-
cation and provide most of the known examples of infinite image partition regular
matrices. (See [18].) Classifying infinite image partition regular matrices is a major
unsolved problem. (By way of contrast, the finite image partition regular matri-
ces are completely characterized in terms of first entries matrices [19], which are
essentially the same thing as Deuber’s (m, p, c)-sets [12], or see [16].)

The following relationship between a Milliken-Taylor system and a linear form
in one variable evaluated at an ultrafilter is the starting point for our current
investigation. The proof follows from [20, Theorems 17.31 and 17.32]. (It is also
a special case of Corollary 3.5.) Note that, if p ∈ βN and a ∈ N, then ap is the
product in βN and not the sum of p with itself a times. It is not true in general
that a1p+ a2p = (a1 + a2)p.

Theorem 1.11. Let k ∈ N, let 〈aj〉kj=1 and 〈xn〉∞n=1 be sequences in N, let g(z) =∑k
j=1 ajz, and let A ⊆ N. The following statements are equivalent.

(a) There is an idempotent p ∈
⋂∞

m=1 FS(〈xn〉∞n=m) such that A ∈ g(p).
(b) There is a sum subsystem FS(〈yn〉∞n=1) of FS(〈xn〉∞n=1) such that

MT (〈aj〉kj=1, 〈yn〉∞n=1) ⊆ A.

One can also simply extend Theorem 1.11 to apply to linear expressions with
multiple variables. The following result is also a special case of Corollary 3.5.

Theorem 1.12. Let k ∈ N, let 〈aj〉kj=1 be a sequence in N and for each j ∈
{1, 2, . . . , k}, let 〈xj,n〉∞n=1 be a sequence in N. Let g(z1, z2, . . . , zk) =

∑k
j=1 ajzj,

and let A ⊆ N. The following statements are equivalent.
(a) For each j ∈ {1, 2, . . . , k}, there is an idempotent pj ∈

⋂∞
m=1 FS(〈xj,n〉∞n=m)

such that A ∈ g(p1, p2, . . . , pk).
(b) For each j ∈ {1, 2, . . . , k}, there is a sum subsystem FS(〈yj,n〉∞n=1) of

FS(〈xj,n〉∞n=1) such that {
∑k

j=1 aj

∑
t∈Fj

yj,t : F1 < F2 < . . . < Fk} ⊆ A .

Since βN is a semigroup under both addition and multiplication, it makes sense to
talk about polynomials in multiple variables evaluated at members of βN. Consider,
for example the polynomial h(z1, z2) = −3z1 + 2z2z1. The following theorem is a
special case of [25, Theorem 2.3], a result which is in turn a special case of Corollary
3.5 of the current paper.

Theorem 1.13. Let h(z1, z2) = −3z1 + 2z2z1, A ⊆ N, and for i ∈ {1, 2}, let
〈xi,t〉∞t=1 be a sequence in N. The following are equivalent:

(a) For each i ∈ {1, 2}, there exists an idempotent pi ∈
⋂∞

m=1 FS(〈xi,t〉∞t=m)
such that A ∈ h(p1, p2).

(b) There exist sum subsystems FS(〈yi,t〉∞t=1) of FS(〈xi,t〉∞t=1) for each i ∈
{1, 2} such that {−3

∑
t∈F1

y1,t + 2
∑

t∈F2
y2,t

∑
t∈F3

y1,t : F1 < F2 <
F3} ⊆ A.

If, instead of the polynomial h(z1, z2) = −3z1 + 2z2z1, one were dealing with
the polynomial g(z1, z2, z3) = −3z1 + 2z2z3, the directly analogous result with
three idempotents p1, p2, and p3 and three given sequences would hold. But then
it would be a routine computation. The reason involves the continuity of the
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operations in (βZ,+) and (βZ, ·). Given p, q ∈ βZ, let ρ+
p (q) = q + p, ρ•p(q) =

q · p, λ+
p (q) = p + q, and λ•p(q) = p · q. Then both ρ+

p and ρ•p are continuous,
and if p ∈ Z, then λ+

p and λ•p are continuous. Let p1, p2, p3 ∈ βN and let U be
an open neighborhood of g(p1, p2, p3). Since g(p1, p2, p3) = ρ+

2p2p3

(
λ•−3(p1)

)
, one

gets a neighborhood V1 of p1 such that −3V1 + 2p2p3 ⊆ U . Given any z1 ∈ V1,
−3z1 + 2p2p3 = λ+

−3z1

(
ρ•p3

(
λ•2(p2)

))
so one gets a neighborhood V2 of p2 such that

−3z1 +2V2p3 ⊆ U . Given any z2 ∈ V2, −3z1 +2z2p3 = λ+
−3z1

(
λ•2z2

(p3)
)

so one gets
a neighborhood V3 of p3 such that −3z1 + 2z2V3 ⊆ U and given any z3 ∈ V3 one
has −3z1 + 2z2z3 ∈ U . In the event that p3 = p1, this routine argument does not
allow one to choose z3 = z1. That is, the challenge in the case of h is to choose the
sum subsystem to simultaneously satisfy the requirements on F1 and F3.

In recent years, some of the classical results of Ramsey Theory have been “poly-
nomialized”, beginning with [6] where the following extension of Szemerédi’s The-
orem [22] was established: If A is a subset of N with positive upper density, k ∈ N,
and P1, P2, . . . , Pk are polynomials taking integer values at the integers and having
zero constant term, then there exist a andm such that {a+P1(m), a+P2(m), . . . , a+
Pk(m)} ⊆ A. More recently [23] the same result was established where A is only
assumed to have positive relative density in the set of prime numbers. Other poly-
nomializations of versions of Szemerédi’s Theorem can be found in [9] and [10].

The works cited in the paragraph above all used ordinary polynomials. In [7], set
polynomials were used to obtain a generalization of the Hales-Jewett Theorem [15].
In [8], [4], [5], [11], generalized polynomials were studied and applied. These are
functions with values in R or Rd that are built up using addition, multiplication,
and applications of the greatest integer function. In the current paper, we introduce
extended polynomials in which we allow arbitrarily many associative operations.

In our applications of extended polynomials, we deal with idempotents with
respect to any of the operations. The following theorem, dealing with the same
polynomial h defined by h(z1, z2) = −3z1 + 2z2z1, is a special case of Corollary 3.5
applied to this polynomial, wherein p1 is a multiplicative idempotent and p2 is an
additive idempotent.

Theorem 1.14. Let h(z1, z2) = −3z1 + 2z2z1, A ⊆ N, and for i ∈ {1, 2}, let
〈xi,t〉∞t=1 be a sequence in N. The following are equivalent:

(a) There exist p1 = p1 · p1 ∈
⋂∞

m=1 FP (〈x1,t〉∞t=m) and p2 = p2 + p2 ∈⋂∞
m=1 FS(〈x2,t〉∞t=m) such that A ∈ h(p1, p2).

(b) There exist a product subsystem FP (〈y1,t〉∞t=1) of FP (〈x1,t〉∞t=1) and a sum
subsytem FS(〈y2,t〉∞t=1) of FS(〈xi,t〉∞t=1) such that
{−3

∏
t∈F1

y1,t + 2(
∑

t∈F2
y2,t)(

∏
t∈F3

y1,t) : F1 < F2 < F3} ⊆ A.

Our main tool is the notion of tensor products of ultrafilters, which we introduce
now.

Definition 1.15. Let k ∈ N and for i ∈ {1, 2, . . . , k}, let Si be a semigroup and
let pi ∈ βSi. We define

⊗k
i=1 pi ∈ β(×k

i=1Si) inductively as follows.

(1)
⊗1

i=1 pi = p1.
(2) Given k ∈ N and A ⊆×k+1

i=1 Si, A ∈
⊗k+1

i=1 pi if and only if
{(x1, x2, . . . , xk) ∈×k

i=1Si : {xk+1 ∈ Sk+1 :
(x1, x2, . . . , xk+1) ∈ A} ∈ pk+1} ∈

⊗k
i=1 pi.
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It is routine but mildly tedious to verify that
⊗k

i=1 pi is an ultrafilter on×k
i=1Si.

(We shall present the details in the appendix.)
One can establish the following two generalizations of Theorem 1.10. We will

also provide proofs of these in the appendix.

Theorem 1.16. Let m ∈ N and for each i ∈ {1, 2, . . . ,m}, let Si be a semigroup
and let A ⊆×m

i=1Si. The following statements are equivalent.
(a) For each i ∈ {1, 2, . . . ,m}, there is a sequence 〈xi,n〉∞n=1 in Si such that

{(
∏

t∈F1
x1,t,

∏
t∈F2

x2,t, . . . ,
∏

t∈Fm
xm,t) : F1 < F2 < . . . < Fm} ⊆ A .

(b) For each i ∈ {1, 2, . . . ,m}, there is an idempotent pi ∈ βSi such that A ∈⊗m
i=1 pi.

Theorem 1.17. Let S be a semigroup, let m ∈ N, and let A ⊆ ×m
i=1S. The

following statements are equivalent.
(a) There is a sequence 〈xn〉∞n=1 in S such that

{(
∏

t∈F1
xt,

∏
t∈F2

xt, . . . ,
∏

t∈Fm
xt) : F1 < F2 < . . . < Fm} ⊆ A .

(b) There is an idempotent p ∈ βS such that A ∈
⊗m

i=1 p.

The reader will see that the proof of Theorem 1.16 is much simpler than the
proof of Theorem 1.17, again because in the latter case one needs to be concerned
with an appearence of a given xt at each position in the expression

(
∏

t∈F1
xt,

∏
t∈F2

xt, . . . ,
∏

t∈Fm
xt) .

We should point out that we do not see a way to show that the Milliken-Taylor
Theorem implies either Theorem 1.16 or Theorem 1.17 (beyond the formal fact that
these theorems are true.)

The basic facts which we need about the tensor products of ultrafilters are pre-
sented in Section 2 in the context of the semigroup F of finite nonempty subsets
of N under the operation of union. As we have noted, we customarily use the
same notation to denote the extension of an operation to βS as used for the op-
eration in S. However, for p, q ∈ βF , p ∪ q already means something, so we
denote the extended operation by ∗. Thus, for A ⊆ F , A ∈ p ∗ q if and only if
{F ∈ F : {G ∈ F : F ∪G ∈ A} ∈ q} ∈ p.

Definition 1.18. δF = {p ∈ βF : (∀n ∈ N)({F ∈ F : minF > n} ∈ p)}.

Equivalently, given p ∈ βF , p ∈ δF if and only if for each G ∈ F , {F ∈ F :
F∩G = ∅} ∈ p. By [2, Proposition 2.6], δF is a subsemigroup of βF . One deals with
δF rather than βF because the operation is better behaved there. For example, the
function ϕ : F → N defined by ϕ(F ) =

∑
t∈F 2t extends to a continuous function

ϕ̃ : βF → βN. This extension is not a homomorphism on βF , but its restriction to
δF is a homomorphism.

The principal result of Section 2 is the following generalization of the Milliken-
Taylor Theorem.

Theorem 2.6. Let m, k ∈ N and let f : {1, 2, . . . ,m} → {1, 2, . . . , k}. For each
i ∈ {1, 2, . . . , k}, let pi be an idempotent in δF , and let A ∈

⊗m
i=1 pf(i). Then for

each i ∈ {1, 2, . . . , k} there exists an increasing sequence 〈Hi,n〉∞n=1 in F such that

{(
⋃

t∈F1
Hf(1),t,

⋃
t∈F2

Hf(2),t, . . . ,
⋃

t∈Fm
Hf(m),t) : F1 < F2 < . . . < Fm} ⊆ A .
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In Section 3 we will introduce the notion of an extended polynomial over a set S,
where S is a semigroup with respect to each of a set S of operations on S. In the
special case that S = N these include the ordinary polynomials. We will then define
the set Pm to be the set of extended polynomials with m variables. For example, if
S = N, {+, ·,∨} ⊆ S, and g(x1, x2, x3, x4) =

((
(2 + x1)∨ 3

)
· x2

)
+

(
(3 · x3) + x4

)
,

then g ∈ P4. We will then prove the following theorem, which is the fundamental
result that allows us to prove quite intricate results about extended polynomials
based on the relatively simple Theorem 2.6. One of these results is Corollary 3.5
and as we have already mentioned, several results presented in this introduction
are consequences of Corollary 3.5.

Theorem 3.2. Let S be a nonempty set, let S be a nonempty set of associative
operations on S, let g ∈ Pm and let p1, p2, . . . , pm ∈ βS. Let g̃ : β(Sm) → βS be
the continuous extension of g. Then g̃(

⊗m
j=1 pj) = g(p1, p2, . . . , pm).

2. Tensor products of idempotents

In this section we will primarily be concerned with the proof of Theorem 2.6 as
stated in the introduction. We begin with the following two lemmas, whose routine
proofs will be presented in the appendix.

Lemma 2.1. Let k, l ∈ N. For i ∈ {1, 2, . . . , k + l}, let Si be a semigroup and let
pi ∈ βSi. Let A ⊆×k+l

i=1Si. Then A ∈
⊗k+l

i=1 pi if and only if

{(x1, x2, . . . , xk) ∈×k
i=1Si : {(xk+1, xk+2, . . . , xk+l) ∈×k+l

i=k+1Si :

(x1, x2, . . . , xk+l) ∈ A} ∈
⊗k+l

i=k+1 pi} ∈
⊗k

i=1 pi .

Lemma 2.2. Let m ∈ N and for j ∈ {1, 2, . . . ,m}, let pj ∈ δF . Then
{(F1, F2, . . . , Fm) ∈×m

j=1F : F1 < F2 < . . . < Fm} ∈
⊗m

j=1 pj.

Lemma 2.3. Let S be a semigroup, let 〈xn〉∞n=1 be a sequence in S, and let p be an
idempotent in

⋂∞
m=1 FP (〈xn〉∞n=m). Define ψ : F → S by ψ(F ) =

∏
n∈F xn and

let ψ̃ : βF → βS be its continuous extension. There exists an idempotent q ∈ δF
such that ψ̃(q) = p.

Proof. It suffices to show that δF ∩ ψ̃−1[{p}] is a subsemigroup of δF , which there-
fore contains an idempotent. For this it in turn suffices to show that δF∩ψ̃−1[{p}] 6=
∅ and that the restriction of ψ̃ to δF is a homomorphism.

We show first that δF ∩ ψ̃−1[{p}] 6= ∅. Given A ∈ p and m ∈ N, let B(A,m) =
{F ∈ F : ψ(F ) ∈ A and minF ≥ m}. Given C1, C2 ∈ p and m1,m2 ∈ N,
we have that B(C1 ∩ C2,max{m1,m2}) ⊆ B(C1,m1) ∩ B(C2,m2) so to see that
{B(A,m) : A ∈ p and m ∈ N} has the finite intersection property, it suffices to
show that each B(A,m) 6= ∅, so let A ∈ p and m ∈ N. Then A∩FP (〈xn〉∞n=m) ∈ p
so pick F ∈ F such that minF ≥ m and

∏
n∈F xn ∈ A. Then F ∈ B(A,m).

To see that the restriction of ψ̃ to δF is a homomorphism, it suffices by [20,
Theorem 4.21] to observe that if F,G ∈ F and F < G, then ψ(F ∪ G) = ψ(F ) ·
ψ(G). �

Lemma 2.4. Let m ∈ N. For j ∈ {1, 2, . . . ,m}. let Tj and Sj be discrete
topological spaces, let ψj : Tj → Sj, and let ψ̃j : βTj → βSj be the continu-
ous extension of ψj. Define ϕm : ×m

j=1Tj → ×m
j=1Sj by ϕ

m(x1, x2, . . . , xm) =
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ψ1(x1), ψ2(x2), . . . , ψm(xm)

)
and let ϕ̃m : β(×m

j=1Tj) → β(×m
j=1Sj) be its con-

tinuous extension. For each j ∈ {1, 2, . . . ,m} let qj ∈ βTj and let pj = ψ̃j(qj).
Then ϕ̃m(

⊗m
j=1 qj) =

⊗m
j=1 pj.

Proof. We proceed by induction on m. Since ϕ1 = ψ1, the case m = 1 is trivial. So
let m ∈ N and assume the conclusion holds for m. It suffices to let A ∈

⊗m+1
j=1 qj

and show that ϕm+1[A] ∈
⊗m+1

j=1 pj . Let

B ={(x1, x2, . . . , xm) ∈×m
j=1Tj :

{xm+1 ∈ Tm+1 : (x1, x2, . . . , xm+1) ∈ A} ∈ qm+1} .

Then B ∈
⊗m

j=1 qj so by the induction hypothesis, ϕm[B] ∈
⊗m

j=1 pj .
We claim that

ϕm[B] ⊆{(y1, y2, . . . , ym) ∈×m
j=1Sj :

{ym+1 ∈ Sm+1 : (y1, y2, . . . , ym+1) ∈ ϕm+1[A]} ∈ pm+1}

so that ϕm+1[A] ∈
⊗m+1

t=1 pt as required. So let (x1, x2, . . . , xm) ∈ B. We need to
show that

{ym+1 ∈ Sm+1 :
(
ψ1(x1), ψ2(x2), . . . , ψm(xm), ym+1

)
∈ ϕm+1[A]} ∈ pm+1 .

Now (x1, x2, . . . , xm) ∈ B so C = {xm+1 ∈ Tm+1 : (x1, x2, . . . , xm+1) ∈ A} ∈ qm+1

and thus ψm+1[C] ∈ pm+1. Further, if xm+1 ∈ C, then(
ψ1(x1), ψ2(x2), . . . , ψm+1(xm+1)

)
∈ ϕm+1[A]

so ϕm+1[C] ⊆ {ym+1 ∈ Sm+1 :
(
ψ1(x1), ψ2(x2), . . . , ψm(xm), ym+1

)
∈ ϕm+1[A]} as

required. �

In the following lemma, we take ×0
l=1Sf(l) = {∅}. And similarly, we take

D1(w1, w2, . . . , w0) = D1(∅).

Lemma 2.5. Let m, k ∈ N, let f : {1, 2, . . . ,m} → {1, 2, . . . , k}, and for i ∈
{1, 2, . . . , k} let Si be a semigroup and let pi ∈ βSi. Let A ∈

⊗m
j=1 pf(j). Then for

j ∈ {1, 2, . . . ,m} there exists Dj :×j−1
l=1Sf(l) → P(Sf(j)) such that

(1) for j ∈ {1, 2, . . . ,m}, if for each t ∈ {1, 2, . . . , j − 1},
wt ∈ Dt(w1, w2, . . . , wt−1), then Dj(w1, w2, . . . , wj−1) ∈ pf(j); and

(2) if for each t ∈ {1, 2, . . . ,m}, wt ∈ Dt(w1, w2, . . . , wt−1),
then (w1, w2, . . . , wm) ∈ A.

Proof. We proceed by induction on m. If m = 1. we let D1(∅) = A. Both
conclusions hold. Now assume that m > 1 and the lemma holds for m− 1. Let

B ={(x1, x2, . . . , xm−1) ∈×m−1
j=1 Sf(j) :

{xm ∈ Sf(m) : (x1, x2, . . . , xm) ∈ A} ∈ pf(m)} .

Then B ∈
⊗m−1

j=1 pf(j) so by the induction hypothesis, pick for each j ∈ {1, 2, . . . ,
m− 1} some Dj :×j−1

l=1Sf(l) → P(Sf(j)) such that
(1) for j ∈ {1, 2, . . . ,m− 1}, if for each t ∈ {1, 2, . . . , j − 1},

wt ∈ Dt(w1, w2, . . . , wt−1), then Dj(w1, w2, . . . , wj−1) ∈ pf(j); and
(2) if for each t ∈ {1, 2, . . . ,m− 1}, wt ∈ Dt(w1, w2, . . . , wt−1),

then (w1, w2, . . . , wm−1) ∈ B.
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To define Dm : ×m−1
l=1 Sf(l) → P(Sf(m)), let (w1, w2, . . . , wm−1) ∈ ×m−1

l=1 Sf(l).
If there is some t ∈ {1, 2, . . . ,m − 1} such that wt /∈ Dt(w1, w2, . . . , wt−1), let
Dm(w1, w2, . . . , wm−1) = Sf(m) (or any other subset of Sf(m)). If for each t ∈
{1, 2, . . . ,m − 1} we have wt ∈ Dt(w1, w2, . . . , wt−1), then we have (w1, w2, . . . ,
wm−1) ∈ B so let Dm(w1, w2, . . . , wm−1) = {wm ∈ Sf(m) : (w1, w2, . . . , wm) ∈ A}
and note that Dm(w1, w2, . . . , wm−1) ∈ pf(m).

To verify conclusion (1), we have by assumption that it holds for j ∈ {1, 2, . . . ,
m− 1}. Assume that for each t ∈ {1, 2, . . . ,m− 1}, wt ∈ Dt(w1, w2, . . . , wt−1). We
have just seen that then Dm(w1, w2, . . . , wm−1) ∈ pf(m). To verify conclusion (2),
assume that for each t ∈ {1, 2, . . . ,m}, wt ∈ Dt(w1, w2, . . . , wt−1). Then by the
definition of Dm(w1, w2, . . . , wm−1), we have that (w1, w2, . . . , wm) ∈ A. �

If p is an idempotent in a semigroup S and A ∈ p, then the set A?(p) = {x ∈
A : x−1A ∈ p}. By [20, Lemma 4.14], if x ∈ A?(p), then x−1A?(p) ∈ p. In case
the semigroup is (F ,∪) and p ∈ δF , if D ∈ p, then D?(p) = {H ∈ D : H−1D ∈ p}
where H−1D = {F ∈ F : H ∪ F ∈ D}.

The reader who wishes to follow the proof of the following theorem may wish to
read first the proof in the appendix that (b) implies (a) in Theorem 1.17.

Theorem 2.6. Let m, k ∈ N and let f : {1, 2, . . . ,m} → {1, 2, . . . , k}. For each
i ∈ {1, 2, . . . , k}, let pi be an idempotent in δF , and let A ∈

⊗m
i=1 pf(i). Then for

each i ∈ {1, 2, . . . , k} there exists an increasing sequence 〈Hi,n〉∞n=1 in F such that

{(
⋃

t∈F1
Hf(1),t,

⋃
t∈F2

Hf(2),t, . . . ,
⋃

t∈Fm
Hf(m),t) : F1 < F2 < . . . < Fm} ⊆ A .

Proof. By Lemma 2.5 for each j ∈ {1, 2, . . . ,m} pick Dj : Fj−1 → P(F) such that
(1) for j ∈ {1, 2, . . . ,m}, if for each s ∈ {1, 2, . . . , j − 1},

Fs ∈ Dt(F1, F2, . . . , Fs−1), then Dj(F1, F2, . . . , Fj−1) ∈ pf(j); and
(2) if for each j ∈ {1, 2, . . . ,m}, Fj ∈ Dj(F1, F2, . . . , Fj−1),

then (F1, F2, . . . , Fm) ∈ A.
For n ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , k}, let Bi,n = {j ∈ {1, 2, . . . , n} : f(j) =

i}. For n > m, let Bi,n = Bi,m = {j ∈ {1, 2, . . . ,m} : f(j) = i}. NowD1(∅) ∈ pf(1).
Pick Hf(1),1 ∈ D1(∅)?(pf(1)). Then D2(Hf(1),1) ∈ pf(2) and H−1

f(1),1D1(∅)?(pf(1)) ∈
pf(1). For i ∈ {1, 2, . . . , k} \ {f(1)}, let Hi,1 = {1}.

Inductively, let n ∈ N and assume that for i ∈ {1, 2, . . . , k}, we have chosen
〈Hi,t〉nt=1 in F such that

(i) for i ∈ {1, 2, . . . , k} and t ∈ {1, 2, . . . , n− 1}, Hi,t < Hi,t+1 and
(ii) for j ∈ {1, 2, . . . ,m}, if F1, F2, . . . , Fj ∈ Pf ({1, 2, . . . , n}) and F1 < F2 <

. . . < Fj , then⋃
t∈Fj

Hf(j),t ∈ Dj(
⋃

t∈F1
Hf(1),t,

⋃
t∈F2

Hf(2),t, . . . ,
⋃

t∈Fj−1
Hf(j−1),t)?(pf(j)) .

At n = 1, hypothesis (i) is vacuous. To verify (ii), let j ∈ {1, 2, . . . ,m} and assume
that F1, F2, . . . , Fj ∈ Pf ({1}) and F1 < F2 < . . . < Fj . Then j = 1 and F1 = {1}
so the conclusion says that Hf(1),1 ∈ D1(∅)?(pf(1)), which is true.

For i ∈ {1, 2, . . . , k}, let ri,n = maxHi,n + 1. If Bi,n+1 = ∅, let Hi,n+1 = {ri,n}.
Now assume that Bi,n+1 6= ∅. For j ∈ Bi,n+1, let

Gj =
⋂{

(
⋃

t∈Fj
Hf(j),t)−1Dj(

⋃
t∈F1

Hf(1),t, . . . ,
⋃

t∈Fj−1
Hf(j−1),t)?(pf(j)) :

F1 < F2 < . . . < Fj < {n+ 1}
}
.



POLYNOMIAL EXTENSIONS 11

and let

Cj =
⋂{

Dj(
⋃

t∈F1
Hf(1),t, . . . ,

⋃
t∈Fj−1

Hf(j−1),t)?(pf(j)) :

F1 < F2 < . . . < Fj−1 < {n+ 1}
}
.

Let E = {H ∈ F : minH ≥ ri,n}∩
⋂

j∈Bi,n+1
(Gj∩Cj). Note that for all j ∈ Bi,n+1,

Gj ∈ pf(j) = pi by induction hypothesis (ii). Next we claim that for all j ∈ Bi,n+1,
Cj ∈ pi, so let j ∈ Bi,n+1 and let

F1 < F2 < . . . < Fj < {n+ 1} .

For s ∈ {1, 2, . . . , j − 1} we have by hypothesis (ii) that⋃
t∈Fs

Hf(s),t ∈ Ds(
⋃

t∈F1
Hf(1),t, . . . ,

⋃
t∈Fs−1

Hf(s−1),t)

so the hypothesis of (1) holds so Dj(
⋃

t∈F1
Hf(1),t, . . . ,

⋃
t∈Fj−1

Hf(j−1),t) ∈ pf(j) =
pi. Thus Cj ∈ pi as claimed. Since pi ∈ δF , {H ∈ F : minH ≥ ri,n} ∈ pi and thus
E ∈ pi. Pick Hi,n+1 ∈ E.

Hypothesis (i) holds by construction. To verify hypothesis (ii), let j ∈ {1, 2, . . . ,
m} and let F1, F2, . . . , Fj ∈ Pf ({1, 2, . . . , n + 1}) with F1 < F2 < . . . < Fj . If
n + 1 /∈ Fj then the conclusion holds by the fact that (ii) holds for n. So assume
that n+ 1 ∈ Fj . Assume first that Fj = {n+ 1}. Let i = f(j). Then j ∈ Bi,n+1 so
Hi,n+1 ∈ Cj ⊆ Dj(

⋃
t∈F1

Hf(1),t, . . . ,
⋃

t∈Fj−1
Hf(j−1),t)?(pi).

Now assume that Fj 6= {n + 1} and let F ′j = Fj \ {n + 1}. Let i = f(j). Then
j ∈ Bi,n+1 and F1 < F2 < . . . < Fj−1 < F ′j so

Hi,n+1 ∈ Gj ⊆ (
⋃

t∈F ′
j
Hf(j),t)−1Dj(

⋃
t∈F1

Hf(1),t, . . . ,
⋃

t∈Fj−1
Hf(j−1),t)?(pf(j))

so
⋃

t∈Fj
Hf(j),t ∈ Dj(

⋃
t∈F1

Hf(1),t, . . . ,
⋃

t∈Fj−1
Hf(j−1),t)?(pf(j)).

The inductive construction being complete, let F1 < F2 < . . . < Fm be given.
Then for each j ∈ {1, 2, . . . ,m} we have that⋃

t∈Fj
Hf(j),t ∈ Dj(

⋃
t∈F1

Hf(1),t, . . . ,
⋃

t∈Fj−1
Hf(j−1),t)?(pf(j))

so by (2) we have that (
⋃

t∈F1
Hf(1),t, . . . ,

⋃
t∈Fm

Hf(m),t) ∈ A. �

We see easily that Theorem 2.6 generalizes the Milliken-Taylor Theorem.

Corollary 2.7 (Milliken-Taylor Theorem). Let m, r ∈ N. Let [F ]m =
⋃r

i=1 Ci.
There exist i ∈ {1, 2, . . . , r} and an increasing sequence 〈Hn〉∞n=1 in F such that
[FU(〈Hn〉∞n=1)]

m
< ⊆ Ci.

Proof. For i ∈ {1, 2, . . . , r}, let

Bi = {(F1, F2, . . . , Fm) ∈ Fm : F1 < F2 < . . . < Fm and {F1, F2, . . . , Fm} ∈ Ci} .

Let Br+1 = Fm \
⋃r

i=1Bi. Pick an idempotent p ∈ δF and pick i ∈ {1, 2, . . . , r+1}
such that Bi ∈

⊗m
j=1 p. By Lemma 2.2, i 6= r + 1. By Theorem 2.6 pick an

increasing sequence 〈Hn〉∞n=1 in F such that

{(
⋃

t∈F1
Ht,

⋃
t∈F2

Ht, . . . ,
⋃

t∈Fm
Ht) : F1 < F2 < . . . < Fm} ⊆ Bi .

Then [FU(〈Hn〉∞n=1)]
m
< ⊆ Ci. �
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Corollary 2.8. Let m, k ∈ N. For each i ∈ {1, 2, . . . , k}, let Si be a semigroup, let
〈xi,n〉∞n=1 be a sequence in Si, and let pi be an idempotent in

⋂∞
r=1 FP (〈xi,n〉∞n=r).

Let f : {1, 2, . . . ,m} → {1, 2, . . . , k} and let A ∈
⊗m

j=1 pf(j). Then for each i ∈
{1, 2, . . . , k} there is a product subsystem FP (〈yi,n〉∞n=1) of FP (〈xi,n〉∞n=1) such that

{
∏

t∈F1
yf(1),t,

∏
t∈F2

yf(2),t, . . . ,
∏

t∈Fm
yf(m),t) : F1 < F2 < . . . < Fm} ⊆ A .

Proof. For each i ∈ {1, 2, . . . , k}, define ψi : F → FP (〈xi,n〉∞n=1) ⊆ Si by ψi(F ) =∏
t∈F xi,t and let ψ̃i : βF → βSi be the continuous extension of ψi. By Lemma 2.3

pick an idempotent qi ∈ δF such that ψ̃(qi) = pi.
Define ϕ : Fm →×m

j=1Sf(j) by

ϕ(F1, F2, . . . , Fm) =
(
ψf(1)(F1), ψf(2)(F2), . . . , ψf(m)(Fm)

)
and let ϕ̃ : β(Fm) → β(×m

j=1Sf(j)) be its continuous extension. By Lemma 2.4, we
have that ϕ̃(

⊗m
j=1 qf(j)) =

⊗m
j=1 pf(j). Pick B ∈

⊗m
j=1 qf(j) such that ϕ̃[B ] ⊆ A.

By Theorem 2.6 pick for each i ∈ {1, 2, . . . , k}, an increasing sequence 〈Hi,n〉∞n=1

in F such that

{(
⋃

t∈F1
Hf(1),t,

⋃
t∈F2

Hf(2),t, . . . ,
⋃

t∈Fm
Hf(m),t) : F1 < F2 < . . . < Fm} ⊆ B .

For i ∈ {1, 2, . . . , k} and n ∈ N, let yi,n =
∏

t∈Hi,n
xi,t. Then

(
∏

t∈F1
yf(1),t,

∏
t∈F2

yf(2),t, . . . ,
∏

t∈Fm
yf(m),t)

=
(
ψf(1)(

⋃
t∈F1

Hf(1),t), ψf(2)(
⋃

t∈F2
Hf(2),t), . . . , ψf(m)(

⋃
t∈Fm

Hf(m),t)
)

= ϕ(
⋃

t∈F1
Hf(1),t,

⋃
t∈F2

Hf(2),t, . . . ,
⋃

t∈Fm
Hf(m),t)

∈ ϕ[B] ⊆ A .

�

We shall conclude this section by showing that we have a characterization of
members of tensor products of idempotents. For this we shall need the following
preliminary result. We shall need this result again in the next section.

Lemma 2.9. Let m, k ∈ N. For each i ∈ {1, 2, . . . , k}, let Si be a semigroup,
let 〈xi,n〉∞n=1 be a sequence in Si, and let pi ∈

⋂∞
r=1 FP (〈xi,n〉∞n=r). Let f :

{1, 2, . . . ,m} → {1, 2, . . . , k}. Then{( ∏
t∈F1

xf(1),t, . . . ,
∏

t∈Fm
xf(m),t

)
: F1 < . . . < Fm

}
∈

⊗m
j=1 pf(j) .

Proof. We proceed by induction on m. If m = 1, we have that{ ∏
t∈F1

xf(1),t : F1 ∈ Pf (N)
}

= FP (〈xf(1),n〉∞n=1) ∈ pf(1) .

Now let m ∈ N and assume the lemma is valid for m. Let

A =
{( ∏

t∈F1
xf(1),t, . . . ,

∏
t∈Fm+1

xf(m+1),t

)
: F1 < . . . < Fm+1

}
and let B =

{( ∏
t∈F1

xf(1),t, . . . ,
∏

t∈Fm
xf(m),t

)
: F1 < . . . < Fm

}
. By assump-

tion, B ∈
⊗m

j=1 pf(j). We show that A ∈
⊗m+1

j=1 pf(j), for which it suffices that
B ⊆ {(z1, z2, . . . , zm) ∈ ×m

i=1Sf(i) : {zm+1 ∈ Sf(m+1) : (z1, z2, . . . , zm+1) ∈ A} ∈
pf(m+1)}. So let F1 < F2 < . . . < Fm and let

(z1, z2, . . . , zm) =
( ∏

t∈F1
xf(1),t,

∏
t∈F2

xf(2),t, . . . ,
∏

t∈Fm
xf(m),t

)
.
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Let r = maxFm + 1 and let C = {
∏

t∈Fm+1
xf(m+1),t : Fm < Fm+1}. Then C =

FP (〈xf(m+1),n〉∞n=r) ∈ pf(m+1) and C ⊆ {zm+1 ∈ Sf(m+1) : (z1, z2, . . . , zm+1) ∈ A}
so {zm+1 ∈ S : (z1, z2, . . . , zm+1) ∈ A} ∈ pf(m+1) as required. �

Theorem 2.10. Let m, k ∈ N, let f : {1, 2, . . . ,m} → {1, 2, . . . , k}, and let A ⊆
Fm. The following statements are equivalent.

(a) For each i ∈ {1, 2, . . . , k} there exists an idempotent pi in δF such that
A ∈

⊗m
i=1 pf(i).

(b) For each i ∈ {1, 2, . . . , k} there exists an increasing sequence 〈Hi,n〉∞n=1 in
F such that

{(
⋃

t∈F1
Hf(1),t,

⋃
t∈F2

Hf(2),t, . . . ,
⋃

t∈Fm
Hf(m),t) : F1 < F2 < . . . < Fm} ⊆ A .

Proof. That (a) implies (b) is Theorem 2.6.
To see that (b) implies (a), assume that (b) holds. For each i ∈ {1, 2, . . . , k},

we have by [20, Theorem 4.20] that Ti =
⋂∞

m=1 FU(〈Hi,n〉∞n=m) is a subsemigroup
of δF , so pick an idempotent pi ∈ Ti. Now we apply Lemma 2.9 with Si = F , for
each i ∈ {1, 2, . . . , k} and for n ∈ N, xi,n = Hi,n. Then

{(
⋃

t∈F1
Hf(1),t, . . . ,

⋃
t∈Fm

Hf(m),t) : F1 < F2 < . . . < Fm} ∈
⊗m

j=1 pf(j)

and so A ∈
⊗m

j=1 pf(j). �

3. Extended polynomials

We introduce in this section a very general variety of polynomials, extending
the notion of ordinary polynomials. We then characterize the members of these
polynomials when they are evaluated at certain idempotents in βS.

Definition 3.1. Let S be a nonempty set and let S be a nonempty (finite or
infinite) set of associative operations on S. Define a set P of “polynomials” on S
as follows.

(1) If g(x1) = x1, then g ∈ P1.
(2) If a ∈ S, ∗ ∈ S, and g(x1) = a ∗ x1 or g(x1) = x1 ∗ a, then g ∈ P1.
(3) If a, b ∈ S, ∗, � ∈ S, and g(x1) = (a ∗ x1) � b or g(x1) = a ∗ (x1 � b), then

g ∈ P1.
(4) If k, l ∈ N, g ∈ Pk, h ∈ Pl, ∗ ∈ S, and r(x1, x2, . . . , xk+l) =(

g(x1, x2, . . . , xk)
)
∗

(
h(xk+1, xk+2, . . . , xk+l)

)
, then r ∈ Pk+l.

(5) P =
⋃∞

k=1 Pk.

As we mentioned in the introduction, if S = N, {+, ·,∨} ⊆ S, and

g(x1, x2, x3, x4) =
((

(2 + x1) ∨ 3
)
· x2

)
+

(
(3 · x3) + x4

)
,

then g ∈ P4.
Notice that the variables in members of Pk occur in increasing order from left

to right. This simplifies the proofs immensely, but places no real restriction on
the kind of polynomials we deal with. For example, suppose that g is as in the
paragraph above and

h(x1, x2) =
((

(2 + x2) ∨ 3
)
· x2

)
+

(
(3 · x1) + x2

)
.

Then given any p and q in βN, h(p, q) = g(q, q, p, q).
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Theorem 3.2. Let S be a nonempty set, let S be a nonempty set of associative
operations on S, let g ∈ Pm and let p1, p2, . . . , pm ∈ βS. Let g̃ : β(Sm) → βS be
the continuous extension of g. Then g̃(

⊗m
j=1 pj) = g(p1, p2, . . . , pm).

Proof. Since both g̃(
⊗m

j=1 pj) and g(p1, p2, . . . , pm) are ultrafilters, it suffices in
each case to show that g̃(

⊗m
j=1 pj) ⊆ g(p1, p2, . . . , pm).

We proceed by induction on m, so assume that g ∈ P1 and assume first that
g(x1) = x1. Let A ∈ g̃(p1) and pick B ∈ p1 such that g̃ [B ] ⊆ A. Then B = g[B] ⊆
A so A ∈ p1 = g(p1).

Now, if a, b ∈ S, B ∈ p1, and ∗, � ∈ S, then a ∗ B ∈ a ∗ p1, B ∗ a ∈ p1 ∗ a,
(a ∗B) � b ∈ (a ∗ p1) � b, and a ∗ (B � b) ∈ a ∗ (p1 � b) so in any event we see as above
that for any g ∈ P1, g̃(p1) = g(p1).

Now let k, l ∈ N, let g ∈ Pk, let h ∈ Pl, let ∗ ∈ S, and define

r(x1, x2, . . . , xk+l) =
(
g(x1, x2, . . . , xk)

)
∗

(
h(xk+1, xk+2, . . . , xk+l)

)
.

Let p1, p2, . . . , pk+l ∈ βS, and assume that g̃(
⊗k

j=1 pj) = g(p1, p2, . . . , pk) and

h̃(
⊗k+l

j=k+1 pj) = h(pk+1, pk+2, . . . , pk+l). Let A ∈ r̃(
⊗k+l

j=1 pj) and pick B ∈⊗k+l
j=1 pj such that r̃ [B ] ⊆ A. Let

C ={(x1, x2, . . . , xk) ∈ Sk :

{(xk+1, xk+2, . . . , xk+l) ∈ Sl : (x1, x2, . . . , xk+l) ∈ B} ∈
⊗k+l

j=k+1 pj} .

Then by Lemma 2.1, C ∈
⊗k

j=1 pj . Thus by [20, Lemma 3.30] g[C] ∈ g̃ [
⊗k

j=1 pj ] =
g(p1, p2, . . . , pk).

To see that A ∈ r(p1, p2, . . . , pk+l) it suffices to show that

g[C] ⊆ {y ∈ S : y−1A ∈ h(pk+1, pk+2, . . . , pk+l)}

where y−1A = {z ∈ S : y ∗ z ∈ A}. So let (x1, x2, . . . , xk) ∈ C and let y =
g(x1, x2, . . . , xk). Let D = {(xk+1, xk+2, . . . , xk+l) ∈ Sl : (x1, x2, . . . , xk+l) ∈ B}.
Then D ∈

⊗k+l
j=k+1 pj and so h[D] ∈ h̃(

⊗k+l
j=k+1 pj) = h(pk+1, pk+2, . . . , pk+l). We

claim that h[D] ⊆ y−1A so that y−1A ∈ h(pk+1, pk+2, . . . , pk+l) as required. So let
(xk+1, xk+2, . . . , xk+l) ∈ D and let z = h(xk+1, xk+2, . . . , xk+l). Now

(x1, x2, . . . , xk+l) ∈ B so r(x1, x2, . . . , xk+l) ∈ A .

Since r(x1, x2, . . . , xk+l) = y ∗ z, we have that z ∈ y−1A. �

If we have several, possibly different, operations on S denoted by ∗i, we write
i∏

n∈Fxn for the product (in increasing order of indices) with respect to the opera-

tion ∗i and let FPi(〈xn〉∞n=1) = {
i∏

n∈Fxn : F ∈ Pf (N)}.
Notice that in the next result we do not demand that each pi be an idempotent.

Theorem 3.3. Let S be a nonempty set, let S be a nonempty set of associa-
tive operations on S, let P be as in Definition 3.1, and let m, k ∈ N. For each
i ∈ {1, 2, . . . , k}, let 〈xi,n〉∞n=1 be a sequence in S, let ∗i ∈ S, and let pi ∈⋂∞

r=1 FPi(〈xi,n〉∞n=r). Let g ∈ Pm and let f : {1, 2, . . . ,m} → {1, 2, . . . , k}. Then{
g
(f(1)∏

t∈F1
xf(1),t, . . . ,

f(m)∏
t∈Fm

xf(m),t

)
: F1 < . . . < Fm

}
∈ g(pf(1), . . . , pf(m)) .
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Proof. By Theorem 3.2 g̃(
⊗m

j=1 pf(j)) = g(pf(1), pf(2), . . . , pf(m)). Let

A =
{(f(1)∏

t∈F1
xf(1),t, . . . ,

f(m)∏
t∈Fm

xf(m),t

)
: F1 < . . . < Fm

}
.

Then by Lemma 2.9, A ∈
⊗m

j=1 pf(j) so by [20, Lemma 3.30] g[A] ∈ g̃(
⊗m

j=1 pf(j)) =
g(pf(1), pf(2), . . . , pf(m)). �

Theorem 3.4. Let S be a nonempty set, let S be a nonempty set of associative
operations on S, let P be as in Definition 3.1, and let m, k ∈ N. For each i ∈
{1, 2, . . . , k}, let 〈xi,n〉∞n=1 be a sequence in S, let ∗i ∈ S, and let pi ∗i pi = pi ∈⋂∞

r=1 FPi(〈xi,n〉∞n=r). Let f : {1, 2, . . . ,m} → {1, 2, . . . , k}, let g ∈ Pm, and let
A ∈ g(pf(1), pf(2), . . . , pf(m)). Then for each i ∈ {1, 2, . . . , k} there is a ∗i-product
subsystem FPi(〈yi,n〉∞n=1) of FPi(〈xi,n〉∞n=1) such that{

g
(f(1)∏

t∈F1
yf(1),t,

f(2)∏
t∈F2

yf(2),t, . . . ,
f(m)∏

t∈Fm
yf(m),t) : F1 < F2 < . . . < Fm

}
⊆ A .

Proof. By Theorem 3.2 g(pf(1), pf(2), . . . , pf(m)) = g̃(
⊗m

j=1 pf(j)) so pick B ∈⊗m
j=1 pf(j) such that g̃ [B ] ⊆ A. By Corollary 2.8, for each i ∈ {1, 2, . . . , k}

pick a ∗i-product subsystem FPi(〈yi,n〉∞n=1) of FPi(〈xi,n〉∞n=1) such that{(f(1)∏
t∈F1

yf(1),t,
f(2)∏

t∈F2
yf(2),t, . . . ,

f(m)∏
t∈Fm

yf(m),t) : F1 < F2 < . . . < Fm

}
⊆ B .

Then
{
g
(f(1)∏

t∈F1
yf(1),t,

f(2)∏
t∈F2

yf(2),t, . . . ,
f(m)∏

t∈Fm
yf(m),t) : F1 < F2 < . . . < Fm

}
⊆

A �

We thus have the following characterization of members of idempotents evaluated
at idempotents.

Corollary 3.5. Let S be a nonempty set, let S be a nonempty set of associative
operations on S, let P be as in Definition 3.1, let m, k ∈ N, let f : {1, 2, . . . ,m} →
{1, 2, . . . , k}, let g ∈ Pm, and let A ⊆ S. For each i ∈ {1, 2, . . . , k}, let 〈xi,n〉∞n=1

be a sequence in S and let ∗i ∈ S. The following statements are equivalent.

(a) For each i ∈ {1, 2, . . . , k}, there exists pi = pi ∗i pi ∈
⋂∞

r=1 FPi(〈xi,n〉∞n=r)
such that A ∈ g(pf(1), pf(2), . . . , pf(m)).

(b) For each i ∈ {1, 2, . . . , k}, there is a ∗i-product subsystem FPi(〈yi,n〉∞n=1)
of FPi(〈xi,n〉∞n=1) such that{

g
(f(1)∏

t∈F1
yf(1),t,

f(2)∏
t∈F2

yf(2),t, . . . ,
f(m)∏

t∈Fm
yf(m),t) : F1 < F2 < . . . < Fm

}
⊆ A .

Proof. (a) ⇒ (b). Theorem 3.4.
(b) ⇒ (a). For each i ∈ {1, 2, . . . , k}, by [20, Lemma 5.11] pick pi = pi ∗i

pi ∈
⋂∞

r=1 FPi(〈yi,n〉∞n=r). Since for each i ∈ {1, 2, . . . , k},
⋂∞

r=1 FPi(〈yi,n〉∞n=r) ⊆⋂∞
r=1 FPi(〈xi,n〉∞n=r), we have for each i ∈ {1, 2, . . . , k}, pi ∈

⋂∞
r=1 FPi(〈xi,n〉∞n=r).

By Theorem 3.3{
g
(f(1)∏

t∈F1
yf(1),t,

f(2)∏
t∈F2

yf(2),t, . . . ,
f(m)∏

t∈Fm
yf(m),t) : F1 < F2 < . . . < Fm

}
∈

g(pf(1), pf(2), . . . , pf(m))

so A ∈ g(pf(1), pf(2), . . . , pf(m)). �
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4. Appendix

In this section we provide for the convenience of the reader elementary proofs
of some results that were mentioned in the introduction, as well as some proofs of
results that were omitted earlier.

We show first that Theorems 1.6, 1.7, and 1.8 are equivalent to the Milliken-
Taylor Theorem (in the informal sense that each is easily derivable from the others).

Theorem 4.1. The following statements are equivalent.
(a) (Theorem 1.4). Let m, r ∈ N. Let [Pf (N)]m =

⋃r
i=1 Ci. There exist

i ∈ {1, 2, . . . , r} and an increasing sequence 〈Hn〉∞n=1 in Pf (N) such that
[FU(〈Hn〉∞n=1)]

m
< ⊆ Ci.

(b) (Theorem 1.7). Let k,m, r ∈ N, let 〈aj〉mj=1 be a sequence in N and for each
j ∈ {1, 2, . . . , k}, let 〈xj,n〉∞n=1 be a sequence in N. Let f : {1, 2, . . . ,m} →
{1, 2, . . . , k} and let N =

⋃r
i=1 Ci. There exists i ∈ {1, 2, . . . , r} and

for each j ∈ {1, 2, . . . , k}, there exists a sum subsystem FS(〈yj,n〉∞n=1) of
FS(〈xj,n〉∞n=1) such that {

∑m
j=1 aj

∑
t∈Fj

yf(j),t : F1 < F2 < . . . < Fm} ⊆
Ci.

(c) (Theorem 1.6). Let m, r ∈ N, let 〈aj〉mj=1 and 〈xn〉∞n=1 be sequences in N,
and let N =

⋃r
i=1 Ci. There exist i ∈ {1, 2, . . . , r} and a sum subsystem

FS(〈yn〉∞n=1) of FS(〈xn〉∞n=1) such that MT (〈aj〉mj=1, 〈yn〉∞n=1) ⊆ Ci.
(d) (Theorem 1.8). Let m, k, r ∈ N, and let f : {1, 2, . . . ,m} → {1, 2, . . . , k}.

For each j ∈ {1, 2, . . . , k}, let 〈Hj,n〉∞n=1 be an increasing sequence in
Pf (N), and let Pf (N)m =

⋃r
i=1 Ci. There exists i ∈ {1, 2, . . . , r} and

for each j ∈ {1, 2, . . . , k} there exists a union subsystem FU(〈Kj,n〉∞n=1)
of FU(〈Hj,n〉∞n=1) such that

{(
⋃

t∈F1
Kf(1),t,

⋃
t∈F2

Kf(2),t, . . . ,
⋃

t∈Fm
Kf(m),t) : F1 < F2 < . . . < Fm} ⊆ Ci .

Proof. (a) implies (b). Let k,m, r ∈ N, let 〈aj〉mj=1 be a sequence in N and for
each j ∈ {1, 2, . . . , k}, let 〈xj,n〉∞n=1 be a sequence in N. Let f : {1, 2, . . . ,m} →
{1, 2, . . . , k} and let N =

⋃r
i=1 Ci. For i ∈ {1, 2, . . . , r}, let

Di =
{
{F1, F2, . . . , Fm} : F1 < F2 < . . . < Fm and

∑m
j=1 aj

∑
t∈Fj

xf(j),t ∈ Ci

}
and let D0 = [Pf (N)]m \

⋃r
i=1Di. Pick i ∈ {0, 1, . . . , r} and 〈Hn〉∞n=1 as guaranteed

by (a), and note that i 6= 0 since {F1, F2, . . . , Fm} ∈ D0 if and only if the Fj ’s
are all distinct and it is not the case that F1 < F2 < . . . < Fm. For n ∈ N and
j ∈ {1, 2, . . . , k} let yj,n =

∑
t∈Hn

xj,t.
(b) implies (c). Let m, r ∈ N, let 〈aj〉mj=1 and 〈x1,n〉∞n=1 be sequences in N, and

let N =
⋃r

i=1 Ci. Let k = 1 and for j ∈ {1, 2, . . . ,m} let f(j) = 1.
(c) implies (a). Let m, r ∈ N and let [Pf (N)]m =

⋃r
i=1 Ci. For j ∈ {1, 2, . . . ,m}

let aj = 2j−1 and for n ∈ N, let xn = 2mn. Let for each i ∈ {1, 2, . . . , r},

Di = {
∑m

j=1 aj

∑
t∈Fj

xt : F1 < F2 < . . . < Fm and {F1, F2, . . . , Fm} ∈ Ci} .

Let D0 = N \
⋃r

i=1Di. Pick i ∈ {0, 1, . . . , r} and a sum subsystem FS(〈yn〉∞n=1)
of FS(〈xn〉∞n=1) such that MT (〈aj〉mj=1, 〈yn〉∞n=1) ⊆ Di and note that i 6= 0. For
each n ∈ N let Hn be the unique subset of N such that yn =

∑
t∈Hn

xt. Then
[FU(〈Hn〉∞n=1)]

m
< ⊆ Ci.

(a) implies (d). This proof is essentially identical to the proof that (a) implies
(b).
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(d) implies (a). Let m, r ∈ N and let [Pf (N)]m =
⋃r

i=1 Ci. Let k = 1 and for
each n ∈ N, let H1,n = {n}. For i ∈ {1, 2, . . . , r}, let Di = {(F1, F2, . . . , Fm) :
{F1, F2, . . . , Fm} ∈ Ci}. Let D0 = {(F1, F2, . . . , Fm) : |{F1, F2, . . . , Fm}| < m}.
Pick i ∈ {0, 1, . . . , r} and a union subsystem FU(〈K1,n〉∞n=1) of FU(〈H1,n〉∞n=1)
such that

{(
⋃

t∈F1
K1,t,

⋃
t∈F2

K1,t, . . . ,
⋃

t∈Fm
K1,t) : F1 < F2 < . . . < Fm} ⊆ Di

and note that i 6= 0. Then [FU(〈K1,n〉∞n=1)]
m
< ⊆ Ci. �

Lemma 4.2. Let k ∈ N and for i ∈ {1, 2, . . . , k}, let Si be a semigroup and let
pi ∈ βSi. Then

⊗k
i=1 pi is an ultrafilter on ×k

i=1Si.

Proof. We proceed by induction on k, the case k = 1 being trivial. So let k ∈ N and
assume that

⊗k
i=1 pi is an ultrafilter on ×k

i=1Si. It is immediate that ∅ /∈
⊗k+1

i=1 pi

and
⊗k+1

i=1 pi is closed under passage to supersets.
For A ⊆×k+1

i=1 Si, let

ψ(A) = {(x1, x2, . . . , xk) ∈×k
i=1Si :{xk+1 ∈ Sk+1 :

(x1, x2, . . . , xk+1) ∈ A} ∈ pk+1} .

Let A,B ∈
⊗k+1

i=1 pi. Then ψ(A) ∈
⊗k

i=1 pi and ψ(B) ∈
⊗k

i=1 pi so ψ(A)∩ψ(B) ∈⊗k
i=1 pi. Since ψ(A)∩ψ(B) ⊆ ψ(A∩B), ψ(A∩B) ∈

⊗k
i=1 pi so A∩B ∈

⊗k+1
i=1 pi.

Now let A ⊆×k+1
i=1 Si and assume that A /∈

⊗k+1
i=1 pi. Then ψ(A) /∈

⊗k
i=1 pi so

×k
i=1Si\ψ(A) ∈

⊗k
i=1 pi. Also×k

i=1Si\ψ(A) ⊆ ψ(×k+1
i=1 Si\A) so ψ(×k+1

i=1 Si\A) ∈⊗k
i=1 pi and thus ×k+1

i=1 Si \A ∈
⊗k+1

i=1 pi. �

Recall that if p is an idempotent in S and A ∈ p, then A? = {x ∈ A : x−1A ∈ p}
and if x ∈ A?, then x−1A? ∈ p.
Theorem 1.16. Let m ∈ N and for each i ∈ {1, 2, . . . ,m}, let Si be a semigroup
and let A ⊆×m

i=1Si. The following statements are equivalent.
(a) For each i ∈ {1, 2, . . . ,m}, there is a sequence 〈xi,n〉∞n=1 in Si such that

{(
∏

t∈F1
x1,t,

∏
t∈F2

x2,t, . . . ,
∏

t∈Fm
xm,t) : F1 < F2 < . . . < Fm} ⊆ A .

(b) For each i ∈ {1, 2, . . . ,m}, there is an idempotent pi ∈ βSi such that A ∈⊗m
i=1 pi.

Proof. (a) implies (b). For each i ∈ {1, 2, . . . ,m}, pick by Lemma 1.9 an idempotent
pi ∈

⋂∞
r=1 FP (〈xi,n〉∞n=r). Let k = m and let f : {1, 2, . . . ,m} → {1, 2, . . . , k} be

the identity function. Apply Lemma 2.9.
(b) implies (a). We proceed by induction on m, the case m = 1 being Theorem

1.10. Let m ∈ N and let A ∈
⊗m+1

i=1 pi. Let B = {(x1, x2, . . . , xm) ∈ ×m
i=1Si :

{xm+1 ∈ Sm+1 : (x1, x2, . . . , xm+1) ∈ A} ∈ pm+1}. For each i ∈ {1, 2, . . . ,m}, pick
a sequence 〈xi,n〉∞n=1 in Si such that

{(
∏

t∈F1
x1,t,

∏
t∈F2

x2,t, . . . ,
∏

t∈Fm
xm,t) : F1 < F2 < . . . < Fm} ⊆ B .

For t ∈ {1, 2, . . . ,m}, let xm+1,t be any member of Sm+1. (These terms are not
involved in the conclusion.) For n > m, let

Cn =
⋂ {

{z ∈ Sm+1 :(
∏

t∈F1
x1,t,

∏
t∈F2

x2,t, . . . ,
∏

t∈Fm
xm,t, z) ∈ A} :

F1 < . . . < Fm < {n}
}
.
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Then each Cn ∈ pm+1 and Cn+1 ⊆ Cn. Pick xm+1,m+1 ∈ C?
m+1. Let r ≥ m + 1

and assume that for each t ∈ {m + 1,m + 2, . . . , r}, xm+1,t has been chosen such
that for each k ∈ {m + 1,m + 2, . . . , r} and each nonempty G ⊆ {k, k + 1, . . . , r},∏

t∈G xm+1,t ∈ C?
k . Pick

xm+1,r+1 ∈ C?
r+1 ∩

⋂r
k=m+1

{
(
∏

t∈G xm+1,t)−1C?
k : ∅ 6= G ⊆ {k, k + 1, . . . , r}

}
.

�

In order to prove Theorem 1.17 we shall need the following lemma.

Lemma 4.3. Let (S, ·) be a semigroup, let m ∈ N, and let p ∈ βS. Let A ∈
⊗m

j=1 p.
Then for j ∈ {1, 2, . . . ,m} there exists Dj : Sj−1 → P(S) such that

(1) for j ∈ {1, 2, . . . ,m}, if for each s ∈ {1, 2, . . . , j − 1},
ws ∈ Ds(w1, w2, . . . , ws−1), then Dj(w1, w2, . . . , wj−1) ∈ p; and

(2) if for each s ∈ {1, 2, . . . ,m}, ws ∈ Ds(w1, w2, . . . , ws−1),
then (w1, w2, . . . , wm) ∈ A.

Proof. This is the special case of Lemma 2.5 in which k = 1, so necessarily the
function f is constant. �

Theorem 1.17. Let S be a semigroup, let m ∈ N, and let A ⊆ ×m
i=1S. The

following statements are equivalent.
(a) There is a sequence 〈xn〉∞n=1 in S such that

{(
∏

t∈F1
xt,

∏
t∈F2

xt, . . . ,
∏

t∈Fm
xt) : F1 < F2 < . . . < Fm} ⊆ A .

(b) There is an idempotent p ∈ βS such that A ∈
⊗m

i=1 p.

Proof. (a) implies (b). Pick by Lemma 1.9 an idempotent p ∈
⋂∞

r=1 FP (〈xn〉∞n=r).
By Lemma 2.9 with k = 1, A ∈

⊗m
i=1 p.

(b) implies (a). Pick an idempotent p ∈ βS such that A ∈
⊗m

i=1 p. By Lemma
4.3, pick for each j ∈ {1, 2, . . . ,m}, some Dj : Sj−1 → P(S) such that

(1) for j ∈ {1, 2, . . . ,m}, if for each s ∈ {1, 2, . . . , j − 1},
ws ∈ Ds(w1, w2, . . . , ws−1), then Dj(w1, w2, . . . , wj−1) ∈ p; and

(2) if for each s ∈ {1, 2, . . . ,m}, ws ∈ Ds(w1, w2, . . . , ws−1),
then (w1, w2, . . . , wm) ∈ A.

Recall that if x ∈ B?, then x−1B? ∈ p.
Choose x1 ∈ D1(∅)?. Let n ∈ N and assume that we have chosen 〈xt〉nt=1 such

that if j ∈ {1, 2, . . . ,m} and F1 < F2 < . . . < Fj < {n + 1}, then
∏

t∈Fj
xt ∈

Dj(
∏

t∈F1
xt,

∏
t∈F2

xt, . . . ,
∏

t∈Fj−1
xt)?.

Let

G =
⋂{

(
∏

t∈Fj
xt)−1Dj(

∏
t∈F1

xt,
∏

t∈F2
xt, . . . ,

∏
t∈Fj−1

xt)? :

j ∈ {1, 2, . . . ,m} and F1 < F2 < . . . < Fj < {n+ 1}
}

and let

E =
⋂{

Dj(
∏

t∈F1
xt,

∏
t∈F2

xt, . . . ,
∏

t∈Fj−1
xt)? :

j ∈ {1, 2, . . . ,m} and F1 < F2 < . . . < Fj−1 < {n+ 1}
}
.

By the induction hypothesis we have directly that G ∈ p. By the induction hy-
pothesis and condition (1), we have that E ∈ p. Pick xn+1 ∈ D ∩ E.
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To verify the induction hypothesis at n + 1, let j ∈ {1, 2, . . . ,m} and let F1 <
F2 < . . . < Fj < {n + 2}. If n + 1 /∈ Fj , the conclusion holds by assumption so
assume tha n + 1 ∈ Fj . If Fj = {n + 1}, the conclusion holds since xn+1 ∈ E. So
assume Fj 6= {n+ 1} and let F ′j = Fj \ {n+ 1}. Then

xn+1 ∈ (
∏

t∈F ′
j
xt)−1Dj(

∏
t∈F1

xt,
∏

t∈F2
xt, . . . ,

∏
t∈Fj−1

xt)?

so
∏

t∈Fj
xt ∈ Dj(

∏
t∈F1

xt,
∏

t∈F2
xt, . . . ,

∏
t∈Fj−1

xt)?.
The induction being complete, we have by condition (2) that

{(
∏

t∈F1
xt,

∏
t∈F2

xt, . . . ,
∏

t∈Fm
xt) : F1 < F2 < . . . < Fm} ⊆ A .

�

Lemma 2.1. Let k, l ∈ N. For i ∈ {1, 2, . . . , k + l}, let Si be a semigroup and let
pi ∈ βSi. Let A ⊆×k+l

i=1Si. Then A ∈
⊗k+l

i=1 pi if and only if

{(x1, x2, . . . , xk) ∈×k
i=1Si : {(xk+1, xk+2, . . . , xk+l) ∈×k+l

i=k+1Si :

(x1, x2, . . . , xk+l) ∈ A} ∈
⊗k+l

i=k+1 pi} ∈
⊗k

i=1 pi .

Proof. We proceed by induction on l, the case l = 1 being the definition of
⊗k+1

i=1 pi.
So let l ∈ N, and assume the statement is true for l.

Sufficiency. Let

B = {(x1, x2, . . . , xk) ∈×k
i=1Si : {(xk+1, xk+2, . . . , xk+l+1) ∈×k+l+1

i=k+1Si :

(x1, x2, . . . , xk+l+1) ∈ A} ∈
⊗k+l+1

i=k+1 pi}

and assume that B ∈
⊗k

i=1 pi. To see that A ∈
⊗k+l+1

i=1 pi, we let

C = {(x1, x2, . . . , xk+l) ∈×k+l
i=1Si :{xk+l+1 ∈ Sk+l+1 :

(x1, x2, . . . , xk+l+1) ∈ A} ∈ pk+l+1}

and show that C ∈
⊗k+l

i=1 pi.
Let D = {(x1, x2, . . . , xk) ∈ ×k

i=1Si : {(xk+1, xk+2, . . . , xk+l) ∈ ×k+l
i=k+1Si :

(x1, x2, . . . , xk+l) ∈ C} ∈
⊗k+l

i=k+1 pi}. To see that C ∈
⊗k+l

i=1 pi, it suffices to show
that D ∈

⊗k
i=1 pi, for which it in turn suffices that B ⊆ D. So let (x1, x2, . . . , xk) ∈

B and let E = {(xk+1, xk+2, . . . , xk+l+1) ∈ ×k+l+1
i=k+1Si : (x1, x2, . . . , xk+l+1) ∈ A}.

Then E ∈
⊗k+l+1

i=k+1 pi. Let

F ={(xk+1, xk+2, . . . , xk+l) ∈×k+l
i=k+1Si :

{xk+l+1 ∈ Sk+l+1 : (xk+1, xk+2, . . . , xk+l+1) ∈ E} ∈ pk+l+1} .

Then F ∈
⊗k+l

i=k+1 pi. To see that (x1, x2, . . . , xk) ∈ D, it suffices to show that

F ⊆ {(xk+1, xk+2, . . . , xk+l) ∈×k+l
i=k+1Si : (x1, x2, . . . , xk+l) ∈ C} ,

so let (xk+1, xk+2, . . . , xk+l) ∈ F . Let

G = {xk+l+1 ∈ Sk+l+1 : (xk+1, xk+2, . . . , xk+l+1) ∈ E} .
Then G ∈ pk+l+1 so to see that (x1, x2, . . . , xk+l) ∈ C, it suffices that G ⊆
{xk+l+1 ∈ Sk+l+1 : (x1, x2, . . . , xk+l+1) ∈ A}. Let xk+l+1 ∈ G. Then

(xk+1, xk+2, . . . , xk+l+1) ∈ E
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so (x1, x2, . . . , xk+l+1) ∈ A as required.
Necessity. Assume that A ∈

⊗k+l+1
i=1 pi and suppose that

{(x1, x2, . . . , xk) ∈×k
i=1Si : {(xk+1, xk+2, . . . , xk+l+1) ∈×k+l+1

i=k+1Si :

(x1, x2, . . . , xk+l+1) ∈ A} ∈
⊗k+l+1

i=k+1 pi} /∈
⊗k

i=1 pi .

Then

{(x1, x2, . . . , xk) ∈×k
i=1Si : {(xk+1, xk+1, . . . , xk+l+1) ∈×k+l+1

i=k+1Si :

(x1, x2, . . . , xk+l+1) ∈×k+l+1
i=1 Si \A} ∈

⊗k+l+1
i=k+1 pi} ∈

⊗k
i=1 pi .

So by the just established sufficiency, ×k+l+1
i=1 Si \ A ∈

⊗k+l+1
i=1 pi, a contradiction.

�

Lemma 2.2. Let m ∈ N and for j ∈ {1, 2, . . . ,m}, let pj ∈ δF . Then
{(F1, F2, . . . , Fm) ∈×m

j=1F : F1 < F2 < . . . < Fm} ∈
⊗m

j=1 pj.

Proof. We proceed by induction on m, the case m = 1 being trivial. So let m ∈ N,
let pj ∈ δF for j ∈ {1, 2, . . . ,m+ 1}, and assume that

A = {(F1, F2, . . . , Fm) ∈×m
j=1F : F1 < F2 < . . . < Fm} ∈

⊗m
j=1 pj .

Let B = {(F1, F2, . . . , Fm+1) ∈×m+1
j=1 F : F1 < F2 < . . . < Fm+1}. We show that

A ⊆ {(F1, F2, . . . , Fm) ∈×m
j=1F : {Fm+1 ∈ F : (F1, F2, . . . , Fm+1) ∈ B}} ∈ pm+1

so that B ∈
⊗m+1

j=1 pj as required. So let (F1, F2, . . . , Fm) ∈ A and let r = maxFm.
Then {Fm+1 ∈ F : (F1, F2, . . . , Fm+1) ∈ B} = {F ∈ F : minF > r}, which is in
pm+1 because pm+1 ∈ δF . �
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