1. If A, B, and C are constants, the differential equation

$$
\begin{equation*}
A x^{2} X^{\prime \prime}+B x X^{\prime}+C X=0 \tag{1}
\end{equation*}
$$

is called a Cauchy-Euler equation.
(a) Exhibit two independent solutions to this equation.
(b) (i) Show that with the substitution $x=e^{s}$ this differential equation can be put into the form

$$
\begin{equation*}
A \frac{d^{2} Y}{d s^{2}}+(B-A) \frac{d Y}{d s}+C Y=0 \tag{2}
\end{equation*}
$$

(ii) Also, write down the relation between X and Y which allows the values of X to be evaluated in terms of the values of Y. (iii) Finally, write down the relation between Y and X which allows the values of Y to be evaluated in terms of those of X.
(iii) Finally, write down the relation between Y and X which allows the values of Y to be evaluated in terms of those of X. In fact, you might even consider doing (ii) and (iii) before doing (i).
(iv) When $A=B=1$ and $C=\lambda>0$, exhibit
(1) two independent complex solutions to Eq.(1)
(2) two independent real solutions to Eq.(1)
(3) two independent complex solutions to Eq.(2)
(4) two independent real solutions to Eq.(2)

