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Summary. We use ergodic-theoretical tools to study various notions of “large” sets
of integers which naturally arise in theory of almost periodic functions, combinatorial
number theory, and dynamics. Call a subset of IN a Bohr set if it corresponds to
an open subset in the Bohr compactification, and a piecewise Bohr set (PWB) if
it contains arbitrarily large intervals of a fixed Bohr set. For example, we link the
notion of PWB-sets to sets of the form A+B, where A and B are sets of integers
having positive upper Banach density and obtain the following sharpening of a recent
result of Renling Jin.

Theorem. If A and B are sets of integers having positive upper Banach density,
the sum set A+B is PWB-set.
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1 Introduction to Some Large Sets of Integers

In combinatorial number theory, as well as in dynamics, various notions of
“large” sets arise. Some familiar notions are those of sets of positive (upper)
density, syndetic sets, thick sets (also called “replete”), return-time sets (in
dynamics), sets of recurrence (also known as Poincaré sets), (finite or infinite)
difference sets, and Bohr sets. We will here introduce the notion of “piecewise-
Bohr” sets (or PWB-sets), as well as “piecewise-Bohry” sets (or PWBg-sets),
and we’ll show how they arise in some combinatorial number-theoretic ques-
tions.

We begin with some basic definitions and elementary considerations. We’ll
say that a subset A C Z has positive upper (Banach) density, d*(A) > 0,
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if for some § > 0, there exist arbitrarily large intervals of integers J =
{a,a+1,...,a +1— 1} with |J‘9f‘ > §. (Here |S| is the cardinality of the
set S; d*(A) = Lu.b.{d as above}.) Syndetic sets are special cases of sets
with positive upper density. Namely, A is syndetic if for some [, every inter-
val J of integers with |J| > [ intersects A. Clearly d*(A4) > 1/l in this case.
We'll say a set A is thick if it contains arbitrarily long intervals; thus A is
syndetic & Z\A is not thick & AN B # () for any thick set B. For any
distinct r integers {a1,as,...,a,} the set {a; —a;|]1 < i < j < r} is called
an r-difference set or a A,-set. Every thick set contains some r-difference
set for every r. This is obvious for r = 2, and inductively, if A is thick
and if A contains the (r — 1)-difference set formed from {a,...,a,_1}, by
choosing a, in the middle of a large enough interval in A, we can complete
this to an r-difference set. It follows that for any r, a set that meets every
r-difference set is syndetic. An example of this is the set of (non-zero) differ-
ences A— A={z—y:x,y € A,z #y} when A has positive upper density.
For if d*(A) > 1/r and if the numbers a1, as,...,a, are distinct, the sets
A+ ay, A+ as,..., A+ a, cannot be disjoint; so, for some 1 < i < j < r,
aj —a; € A — A. One conclusion which is behind much of our subsequent
discussion is that if A has positive upper density, then A — A is syndetic. We
shall see in §3 that d*(A) > 0 implies that A — A is a piecewise-Bohr set.

Definition 1.1. S C Z is a Bohr set if there exists a trigonometric polynomial

m .
P(t) = 3 cpe™t, with the Ny real numbers, such that the set
k=1

S"'={n e€Z:Rey(n) >0}

is non-empty and S D S'. When (0) > 0 we say S is a Bohry set. (Compare
with [Bilu97]).

The fact that a Bohr set is syndetic is a consequence of the almost period-
icity of trigonometric polynomials. It is also a consequence of the “uniform
recurrence” of the Kronecker dynamical system on the m-torus

(01302;---0m) — (01+)\1;02+)\2;---;0m+)\m)-

Indeed, it is not hard to see that a set S C Z is Bohr if and only if there exist
m €N, o« € T™ and an open set U C T™ suchthatSD{nEZ:naEU}.

Alternatively we can define Bohr sets and Bohrg sets in terms of the topol-
ogy induced on the integers Z by imbedding Z in its Bohr compactification.
Namely, a set in Z is Bohr if it contains an open set in the induced topology,
and it is Bohry if it contains a neighborhood of 0 in this topology.

We can apply the foregoing observations regarding A — A to dynamical
systems. We shall be concerned with measure preserving systems (X, B, u,T),
where (X, B, 1) is a probability space, T: X — X a measurable measure pre-
serving transformation. We assume (for simplicity) that the system is ergodic
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(T7'A = Afor A € B = pu(A)u(X\A) = 0). The ergodic theorem then
ensures that for A € B with u(4) > 0, the orbit {T™z},cz of almost ev-
ery z visits A along a set of times V(z,A) = {n : T"z € A} of positive
density. If we set Ry(4) = {n: ANT ™A # (0} (the return time set of A),
then for any z, Ri(A) D V(z,A) — V(z,A). Hence R;(A) is syndetic. We
can define a smaller set R(A) = {n : p(ANT"A) > 0} = R(A') where
A= A\ U{(ANnT™A4) : y(ANT"™A) = 0}, and it follows that R(A) is
also syndetic. This can be seen directly as well (and for arbitrary measure
preserving systems), but the present argument illustrates the connection of
dynamics to combinatorial properties of sets. We shall call sets containing sets
of the form R(A), where u(A) > 0, RT-sets (for return time). A set meeting
every RT-set is called a Poincaré set since Poincaré’s recurrence theorem gives
content to the property by implying that R(A) is never empty for u(A) > 0
even if T is not ergodic. These are also known in the literature as intersec-
tive sets. (See [Ruz82]). Much is known about these (see [Fur81], [B-M86|,
[BH96], [BFM96]). In particular {n";n = 1,2,...} is a Poincaré set for each
r=123,...

For a family F of subsets of Z it is customary to denote by F* the dual
family: 7* = {S C Z:VS' € F,SNS’ # }. Note that {syndetic} = {thick}*,
{thick} = {syndetic}* and {RT'} = {Poincaré}*, {Poincaré} = {RT}*.

We have seen above that a AZ-set is necessarily syndetic. One of our
objectives is to sharpen this statement.

We will need the notion of a “PW-F” set for a family F of subsets of Z.
“PW” stands for “piecewise” and if S € F and @ is a thick set then we
shall say SN Q is PW-F (or SN Q € PW-F). Clearly this notion is useful
only for families of syndetic sets. “PW-syndetic” is itself a useful notion. Van
der Waerden’s theorem [GRS80] implies that syndetic sets contain arbitrarily
long arithmetic progressions. In fact this is true for PW-syndetic sets. Unlike
the family of syndetic sets, the latter have the “divisibility” property: if S is
PW-syndetic and S = S; U Sy U---U S is a finite partition, then some
S; is PW-syndetic, see [Bro71]. A recent result of Renling Jin [Jin02] is the
following;:

Theorem 1.2. If A,B C Z and d*(A) > 0, d*(B) > 0, then A+ B is PW-
syndetic.

We will sharpen this to

Theorem 1. If A,B C Z and d*(A) > 0, d*(B) > 0, then A+ B is a PW-
Bohr set (PWB-set).

In particular d*(A) > 0 will imply that A— A is a PW-Bohr set. More precisely
it is a PW-Bohry (PWBy)-set. This will also follow from our earlier observation
that it is a A¥-set for sufficiently large 7, and from

Theorem II. For each r > 2, a A}-set is PW-Bohry.
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It is not hard to see that the prefix “PW” is indispensable in these the-
orems. For example A = (J[10",10" 4+ n] has d*(A) = 1 but A + A is not
syndetic. Also since z2 + 3® = 23 has no solution in non-zero integers, it fol-
lows that the set of non-cubes S = Z\{n%n = +£1,£2,+3,...} is a A} set.
But by Weyl’s equidistribution theorem S is not a Bohrg-set. (See Theorem 4.1
below for a stronger form of this observation.)

From Theorem I we shall deduce the following result which should be
compared with a theorem due to Ruzsa ([Ruz82], Theorem 3) which states
that if d*(A) > 0, then A + A — A is a Bohr set. (Both Ruzsa’s theorem
and our result can be viewed as improvements on a theorem of Bogoliouboff
([Bog39], [Fel54]) which implies that if d*(A4) > 0, then A — A+ A — Ais a
Bohr set.)

Corollary 1.3. If A, B,C are three subsets of 7 with positive upper density
and one of them is syndetic, then A+ B + C is a Bohr set.

2 Measure Preserving Systems, Time Series, and
Generic Schemes

In this section we introduce a basic tool which will be needed repeatedly: the
correspondence between data given on large intervals of time (“time series”)
and measure preserving dynamical systems. This tool has been used previously
under the name “correspondence principle” (see e.g., [Ber96]) and here we
present it in a more general form. We repeat the definition of a measure
preserving system which was given informally in §1.

Definition 2.1. A measure preserving system is a quadruple (X,B,u,T)
where (X, B, u) is a probability space where we assume B is countably gen-
erated, and T is a measurable, invertible, and measure preserving map,
T:X — X. The system is ergodic if every measurable T-invariant set has
measure 0 or 1.

For a measurable function f: X — C we denote by Tf the function
Tf(x) = f(Tx). We take note of the ergodic theorem (see, for example,
[Kre85]):

Theorem 2.2. If (X,B,u,T) is a measure preserving system and f € L' (X,
B, ), then

N—1
1 ey
JJEHOONT;TJE f

exists almost everywhere. If f € LP(X,B,u), 1 < p < oo, the convergence is

in LP as well. If the system is ergodic then f = [ fdu a.e., so that the average
of the sequence {f(T"xz)} equals a.e. the average of f over X.
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Sequences of the form {f(T"x)},<n<p are referred to as “time series”. In
a certain sense the ergodic theorem enables one to reconstruct a dynamical
system from “time series data”. We shall make this precise in the notion of
“generic schemes” which we proceed to define. In the next definitions the
indices [ and r range over the natural numbers.

Definition 2.3. An array is a sequence {J;} of intervals of integers, J; =
{ag,ap +1,...,b;} for which |J)|=b —a;+1— o0 as | — 0.

Definition 2.4. A scheme ({J;}, {€L}) is an array {J;} together with a doubly
indexed set of complez-valued functions {€L} where, for each r, £.(n) is defined
for n € J; and, for each r, the functions {¢.;1 = 1,2,...} are uniformly
bounded. For n ¢ J; we take £.(n) = 0. The {£L} will be referred to as time
series. They are defined on all of 7 but only the values on J; have significance.
The following notion relates closely to that of a “stationary stochastic process”.

Definition 2.5. A process (X,B,u,T,®) consists of a measure preserving
system (X,B,u,T) together with an at most countable ordered set & =
{¢1,92,...} of L>®-functions on X such that B is the o-algebra generated
by the functions of ® and their translates under T. (When the p; are com-
plex valued we assume ® closed under conjugation). A process is ergodic if the
underlying measure preserving system is ergodic.

Finally we have

Definition 2.6. A scheme ({J;}, {€.}) is generic for a process (X, B, u, T, ®)
if for every m and for every choice of i1,i2,..,im and j1,jo,-.-,Jm (the
indices here need not be distinct):

1
lim - S ¢ el Vol ; .
Jim 57 2t e 0t ki) 0
= /lesOMTJZSOlZ T]msolmdu
X

It will be convenient to introduce the countable family ®* consisting of
the products appearing in (1):
= {¢ =T"¢; Tpi - T 5, }
The corresponding time series have the form

¢'(n) =&, (n+ )€, (n+j2) - & (n+ jm),

and when (1) holds, we say that {('}represents 1.
It will be convenient in the sequel to regard ®* as the increasing union of
o0
finite sets, ®* = |J ®}. The subscript h has no significance other than as an

h=1
index with ® C ®3 C--- C & C ---.
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We note that the ergodic theorem implies that if (X, B, u,T) is ergodic,
then for almost every zo € X, the scheme ({.J;}, {¢L} is generic for the process
(X,B,u, T, ®) with J; = [1,1] and &L(n) = ¢, (T"x0) independently of /.

The main result of this section goes in the opposite direction, and will
attach to an arbitrary scheme an ergodic process. First we need the notions
of subarrays and subschemes.

Definition 2.7. An array {H,} is a subarray of {J;} if | = L; is a monotone
increasing function from N to N and Hj is a subinterval of Jr,.

Definition 2.8. A scheme ({H;},{n.}) is a subscheme of ({J;},{¢L}) if {H;}
is a subarray of {J;} : Hy C Jr,, and 1. is the restriction of & to Hj.

Our main result in this section is

Theorem 2.9. For any scheme ({J;},{¢.}) there exists a subscheme and an
ergodic process for which the subscheme is generic.

Proof. First we will pass to a subscheme which is generic for a process
(X,B, 1, T,®) which is not necessarily ergodic. For each r, let A, C C be
a compact set with £.(n) € A, for all l and n. Let A = [[ A, and let X = A%
We denote by &, the point in AZ with &L = (..., &L(=1),£L(0),&£L(1),...) and
form El = (&, d,..) ¢ A? = X. X is a compact metrizable space and we

form the measures 1
V) = —— (S n &l (2)
1 25,7

where T: X — X denotes the shift map Tw(n) = w(n + 1). Since |.J;| — oo,
any weak limit of a subsequence of v; is T-invariant, and we let v be some
such limit: v = lim vz,. It is not hard to see that ({Jr,},{¢L1}) is generic for
the process (X, B,v, T, ®) where B is the Borel o-algebra of sets in X and
® = {1, ps,...} with ¢, the functions on AZ given by ¢,(w) = w(0)(r). By
ergodic decomposition there will be an ergodic measure y whose support is a
subset of the support of v. Any point in the support of y is a limit of points
of the form T"¢" with n € J; and | — oo, by (2). Since p is ergodic, almost
every point w in its support is generic for u, in the sense that averages of a
given bounded measurable function along the orbit of w tend to the integral
of the function. In particular for functions in ®* we have:

k+N-—1
N > Tl T4, - Timep;, (T"w) — /T”%lT”% s Ty, dp
n==k

3)
uniformly for |k| < N.

We can find N sufficiently large that the difference of the two sides in (3)
is < e for all TV, ---Timp; € ®%. We then choose ¢! close enough
to w, n € Jj, so that the difference of the two sides of (3) remains < ¢ with
w replaced by T"E!. Since n € J;, assuming ! sufficiently large, we will have
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H =h+kn+k+N-—1] C J; for some k with |k|] < N. We now let
e = 0, h oo, and choose an appropriate subsequence of [; rescrambling
the information in (3) we find a subscheme ({H;}, {¢L}) which is generic for
(X,B,u,T,®).

Scholium to Theorem 2.9. If for some r,

1
limsup —| Y &(n)| >0,

=00 |Jl| ned;

we can add the condition that the corresponding ¢, does not vanish a.e. This
follows from the fact that the measure v satisfies [ ¢,dv # 0 and so v must
have an ergodic component with [ ¢,du # 0.

We remark that in the case of ergodic processes, given a generic scheme,
“many” subschemes will again be generic. This is made precise in the follow-
ing: For any process (X, B, u,T,®), ®* is countable and we fix an increasing
family of finite sets ®; C ®* increasing to ®*. Given a scheme ({J;},{¢L})
and fixing [, and letting ¢ > 0, we shall say that an interval H C J; is
e-h-generic for the process (X, B, u, T, ®) if (1) holds approximately; i.e, if for
every 1) € ®; and corresponding time series (' (n).

i 3 < = [ v

neH

<e. (4)

Assume now a process (X, B, u, T, ®) given with ®* = | J @} as above, and let
({T1},{€L}) be a generic scheme for the process.

Proposition 2.10. If (X, B, u, T, ®) is an ergodic process, then for any e > 0
and h € N there exists pg € N so that for any p > po there exists a positive
number ly(e, h, p) so that for 1 > ly(g, h,p), at least (1 —)(|J;| —p+1) of the
(|Ji]| = p + 1) intervals of length p in J; are e-h-generic for the process.

Letting p and [ grow we see, according to the proposition, that the intervals
J; can be replaced by many choices of subintervals, and the scheme will remain
generic. It is easy to see that this is not true for non-ergodic processes (where
time series have different statistical behavior along different intervals of time).

Proof of Proposition 2.10. It suffices to treat a single function and the cor-
responding time series. For if for each of the |®}| functions in ®; we have
(1 —e1)(J il —p+ 1) “ei-generic” intervals with £1|®}| < &, the number of
intervals common to all of these will not be less than (1 —¢)(|J;] —p + 1),
and these intervals are €;-h-generic, and so also e-h-generic. So let ¢ € ®*.

p—1
Ergodicity assures that for p large, % > T%) is L?-close to [ ¢dpu, and so
q=0

JGEr) (/)
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p—1

is small. Fix p and set n(n) = % qZ:O ¢((n+q). n and ¢ have the same long-term
averages,
2 1
MX; (n(m) = [ o) :717;1"" (IJIZ; )(f¢du)

+ (f ¢du)

— [ ( T%) — (v’

which is small for large p. But this implies that most 7(n) are close to [ du
as asserted in the proposition.

3 Some Examples of PW-Bohr Sets

3.1 Fourier Transforms

Our first example of PW-Bohr sets will lead to three more in the following
subsections.

Theorem 3.1. Let w be a non-negative measure on T = R/Z with a non-
trivial discrete (atomic) component, and let & denote its Fourier transform:
@(n) = [e2mitndw(t). If

T

S ={n:Rew(n) >0},
then S is a PW-Bohry set.

Proof. Let wy denote the discrete component of w: wg = Y., w({\})dx where
AEA
A consists of all the atoms of w . Let Ag be a finite subset of A so that

wi(Ao) > 3wq(A). Set

,(/}(7.) — Z wd(A)GQﬂ'iAT

AEAq

and let By be the Bohrg set: By = {n : Ret)(n) > 2wq(Ao)}. The measure
w — wq is continuous and so by Wiener’s theorem (see [Kre85], p.96)

N

=0

o(n) — Galm)|

im —
N 2N + 1 ZN

It follows that Q' = {n : ‘d}(n) - d)d(n)‘ Fw (Ao)} has density 0 so that
Q =7Z\Q' is a thick set.
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In BO N Q,
Rew(n) > Rewy(n) — swa(Ao)
> Retp(n) — wa(A\Ao) — 3wa(Ao)
> Rep(n) — qwa(A) — jw (Ao)
> %wd(AO) — §wd(A ) — %wd(Ao) =0
so that BoNQ C S. It follows that S is PWBy. (]

3.2 Positive Definite Sequences

Theorem 3.2. Let {a(n)}necz be a positive definite sequence of non-negative
N
reals for which lim 5 2N+1 > a(n)>0. Then S ={n:a(n) >0} is a PWB,
N

n——_
set.

Proof. By Herglotz’s theorem a(n) = &(n) for some non-negative measure w
on T [Hel83], and the hypothesis of the theorem implies that w{0} > 0. The
previous theorem applies and so S is PWBy. O

3.3 Return Time Sets

A consequence of the foregoing is that RT-sets are PW-Bohry sets. Re-

call a return time set has the form S O R(A) = {m:u(ANT""A4) > 0}

where (X, B, u,T) is a measure preserving system, A € B and u(A4) > 0. If

a(n) = p(ANT~™A) we can write a(n) = [ fT"fdu with f = 14 and T is
N

a unitary operator. It is easily checked that Y a(n —m)z,Z, > 0 for any
m,n=1
Z1,%2,...,xN, and so {a(n)} is a positive definite sequence. We also have

1 N .
s g0y / T fdy — / fPrfdu,

where Pr is the self-adjoint projection of L?(X,B,u) to the subspace of
T-invariant functions. Since [ Prfdu = p(A), it follows that Prf # 0, and
since [ fPrfdu = [ fP}fdu = [(Prf)*dp > 0 the hypotheses of Theo-
rem 3.2 are fulfilled. This proves

Theorem 3.3. RT sets are PW-Bohry.

3.4 Difference Sets of Sets of Positive Upper Density

Proposition 3.4. Let {J;} be an array and, for each 1, let S; C J; with |S;| >
8|Jy| for fized 6 > 0. Then |J(S; — S;) is PW-Bohry.
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This leads immediately to
Theorem 3.5. If d*(S) > 0, then S — S is PWBy for S C Z

Proof of Proposition 3.4. We form the scheme ({.J;},{¢'}), where the usual
index r is suppressed since it takes only one value, and we define ¢'(n) =
1s,(n). We pass to a subscheme which is generic for a process (X, B, u, T, {¢})
where, according to the scholium following Theorem 2.2, ¢ is not almost
everywhere 0. By the construction (A = {0,1}), ¢ takes on the values 0, 1
and so o = 14 for A € B, u(A4) > 0. By definition of a generic scheme

pANT FA) = /ckacpd,u = lim m Z Em)e(n +k)
neH;

which will be > 0 only if & € |J(S; — S;). This proves the proposition. [

In the sequel we will use a stronger version of Proposition 3.4. Let us say
that a set @ is uniformly thick if for every I € N | 3" € N so that every
interval J of length I’ meets @ in a set containing an interval of length I. This
n+N

will happen if ~ > 1lg(j) — 1 uniformly in n. If w is a continuous measure
] n+1

on T then Wiener’s Theorem can be sharpened to

1 n+N
= 3 BP0
j=n+1

uniformly in n. Using this in the proof of Theorem 3.1 we find that the set S
of that theorem is the intersection of a Bohrg-set and a uniformly thick set.
If we call a set a UPW-Bohrg set if it contains intersection of a Bohr set and
a uniformly thick set, we can replace PW-Bohrg throughout this section by
UPW-Bohrg. For later reference we re-write Proposition 3.4 in its strength-
ened form as

Proposition 3.6. Let {.J;} be an array and for each l, let S; C J; with |S;| >
0| Jy| for fixed 6 > 0. Then |J(S; — S;) is a UPW-Bohry set.

4 The Hierarchy of Families of Large Sets

We consider the following families of “large sets”:

(a) Bo = Bohrg sets

(b) RT = return time sets

(¢) UAZ = sets which for some r meet every (S — S)\{0} provided |S| > r
(d) PWBy = piecewise Bohrq sets

(e) PWB = piecewise Bohr sets

(f) PW Syn = piecewise syndetic sets

(g) PD = sets of positive upper Banach density = {S : d*(S) > 0}
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It is easily seen that the first of these families is contained in the second,
the second in the third, the fourth in the fifth and the fifth in the sixth. That
JAX C PWBy is the content of our Theorem II to be proved in §9. In fact all
these inclusions are proper, and in this section we shall show that (b) # (c),
(c) # (d) and (e) # (f). The fact that (a) # (b) follows from work of I. K¥iz
[K#i787] and that (f) # (g) is an exercise.

Theorem 4.1. There are A%-sets which do not contain RT-sets. So (b) # (c).

Proof. We use the fact ([Fur81], [Sar78]) that for every r = 1,2,... the set
P. = {n"},ez is a Poincaré set; i.e., it meets every return time set. Hence
Z\P, does not contain any RT-set. On the other hand, when r > 3,Z\P, is
a Aj-set. For, by Fermat’s theorem, for any distinct a,b,c, we cannot have
b—a,andc—baswellasc—a=(b—a)+ (c—>b) all in P,. i

To prove that (c) # (d) we produce a set of density 0 in Z that contains
a A,-set for every r. The complement of this set cannot belong to any A’.
On the other hand, the complement of a set of density 0 contains arbitrarily
long intervals, and so is thick, and in particular it is PWBg. So we take as a
A,-set a set of the form

DT‘ = {_rqr‘a —(T - 1)q’l”7 ey _qr‘aoa Qry- -y (’I" - 1)‘]1"’7"‘]1"}
Choosing ¢, = r® we can check that the density of |J D, is 0. This proves

Theorem 4.2.
Ja;#PwWB,

Finally we have (e) # (f) by the following:
Theorem 4.3. There are syndetic sets that are not PWB.

Proof. We use considerations from topological dynamics. Let Q = {0,1}%
and define the shift 7 on Q by Tw(n) = w(n +1). If M C Q is a minimal
closed T-invariant subset, M # {0}, then for any w € M, {n : w(n) = 1}
is syndetic. We can choose M so that the system (M,T) is weakly mixing
([Fur81]). Let £ € M and set S = {n : {(n) = 1}. Assume S is PWB; then
S = @ N P where @ is thick and P is a Bohr set. If n = 1p then £ and 7
agree on arbitrarily long intervals and for some {ny,},lim 7™ ¢ = lim T™* ). Let
L = {T™n} ez be the closed invariant set generated by n (so that M NL # 0).
Since M is minimal, M C L. By definition of a Bohr set there is a torus T™,
a rotation R : T™ — T™, R(A) = 0 + «, and an open set U C T™ so that
R™"(0) e U = n(n) =1.Let A = {w : w(0) =1}; then R"(0) e U = T"n € A.
Let Z C T™ be the closed subgroup of T™ generated by a. By [Fur67] (Z, R)
and (M, T) are disjoint, and since both are minimal, Z x M is minimal for
R x T. This implies that {(R™(0),7"n)} is dense in Z x M. But from the
foregoing, when the first coordinate is in U the other is in A. It follows that
UxAisdensein UxM;hence M = A and £ = 1. Choosing M non-degenerate
gives us the example we seek. O
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5 The Sum Set of Positive Density Sets

In this section we will prove Theorem I which asserts that the sum set of two
sets A, B with positive upper density is a PW-Bohr set.
We begin with an elementary lemma.

Lemma 5.1. Let J,J' C 7 be intervals of length 1,1' respectively. Let S C J,
S' C J' be subsets satisfying |S| > dl, |S'| > §'l'. We can find an interval L
and a subset R C L so that for somet, S+ S D R— R+t and such that
|R| > %|L|.

Proof. Without loss of generality we suppose | < I’. For each t € 7Z, form
Ry =SnN(t—S5"). |R:| equals the number of points of S x S’ lying on the line
z +y = t. The number of such lines meeting S x S’ doesn’t exceed [ + ', and
so for some t,
|S x S| _ 881 _ 68
Al BN >

I+ —01+0'= 2
Take R = R; so that R— R C S+ (S' —t), and take L = J. ol

| R¢| >

Theorem I will now follow from

Theorem 5.2. Let {Ji,} be an array (Def. 2.3), and let Sy, C Ji,, with |Sk| >
0|Ji| where 6 > 0. Let {tx} be an arbitrary set of integers. The set A =
U (Sk — Sk + tx) is PW-Bohr.

k=1

Our next step is to reduce Theorem 5.2 to a special case in which the sets Sy

are related. For two sets of integers S’,S”, let us write S’ < S if for some
ce€Z, 58 +ccS". Clearly S’ < S” implies that S’ — S’ c §" — §".

Lemma 5.3. Theorem 5.2 is true in general if it is true for the case that
Sk < Sg41 for each k=1,2,3,....

Proof. We consider the general case of an arbitrary array {J;} with subsets
Sy C Ji. We follow the procedure in the proof of Proposition 3.4 based on
Theorem 2.2 to obtain a subscheme of ({J;},{1s,}) generic for an ergodic
process (X,B,u,T,14) with u(A) > 0. Reindexing and renaming sets we
suppose that ({Jx},{1s,}) is generic for the above process. Note that the
hypothesis of genericity implies that we will still have |Sg| > 6'|Jx| for some
positive ¢'. We now pass to a further subscheme for which S; < S; ;. This is
done as follows. Removing a set of measure 0 from A we can assume that any
non-empty intersection ANT T ANT ™2 AN---NT " A has positive measure.
It follows from the ergodic theorem that there exist points x with T™z € A
for a sequence 7y < 75 < - < 7, < --- (depending on x) with lim 7> < oo.
Thus ANT"ANTAN---NT~™A is non-empty for each r and by our
assumption p(ANT~TANT~AN---NT~™A) > 0 for each r. By genericity
of ({Ji},{1s,}) this implies that translating {0, 7,72, -, 7} by some ¢, we
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will obtain a subset of some Sy, : {¢,c, + T1,¢r 4+ T, -+, cp + T} C Sp(yy. We
now set J;. = [¢;,¢p + 7] C Jy(ry and S) = {cp,c1 + T1 00 + Ty 00 + T )
Then S;. < S,In_,’_l and since S]. C Sk(r), U(Sk — Sk +tr) D U(S. = S, + tk('r'))-
At the same time lim ™= < oo so that Ja > 0 with r = |S]| > alJ}|.

We show now how Theorem 5.2 follows from Proposition 3.6.

Proof of Theorem 5.2. According to the foregoing lemma, we may assume
that for each k, S — Sy C Sk4+1 — Sk+1. For each m = 1,2,3,..., let k(m)
be chosen so that (Sy — Sk) N [—m,m] is a fixed set for k > k(m). Write
Sm = Skim) and 17, = tyn); we will show that (J(S,, — S, + t;,,) is PW-
Bohr. By Proposition 3.6 [J(S), — S;,) is UPW-Bohry; i.e., it contains the
intersection of a Bohry set H and a uniformly thick set ). Thus there is a

trigonometric polynomial ¢(t) = Z aje*it with Ret)(0) > 0 such that for

any n € @, if Rey(n) > 0 then n E U(S,, — SI.). Form ¢, (t) = ¥(t —t),)
and pass to a subsequence {m,} so that these converge uniformly to a poly-
nomial ¢'(t). Let 0 < a < Re(0). By almost periodicity of ¢ (t) it follows
that Ret’(n) > a on a non-empty (and therefore syndetic) set of n. We
can suppose that the subsequence {m,} is such that Re¢’'(n) > « implies
Ret(n —t;, ) > 0 for each p. Form the set Q" = U([=mp,mp] N Q +17,, ).
Suppose Rezp (n) > a with n € Q'. Then for some p, n—t, € [— mp,mp] ﬂQ
and Ret(n —t;,, ) > 0. It follows that n —t;, € (U(S}, —S’ 1)) N [—mp, my).
By the choice of {5}, } this implies n € S, —S,, +t,, . Since @ is uniformly
thick, for large p, [—-m,, mp] N Q contains large intervals and this implies that
Q' is a thick set. This proves that (J(S}, — S}, + t},,) is a PW-Bohr set.

This completes the proof of Theorem I.

Corollary 5.4 (Corollary 1.3 of §1). If A,B,C,C 7Z are three sets with
positive upper density, one of which is syndetic, then A+ B+ C' is a Bohr set.

This will follow from the Theorem I together with the following lemma:

Lemma 5.5. If R is a PW-Bohr set and S is syndetic in Z then R+ S is
Bohr.

Proof. A translate of R will be PW-Bohrg and the opposite translate of S is
syndetic, so we can assume that R is a PW-Bohrg set. This means that there
is a torus T™, an a € T™, a neighborhood U of 0 in T™ and a thick set ) with
RO {n:naeU}NQ. Let V be a neighborhood of 0 in T™ with V -V C U
and let 81, Bs, - .. B € T™ so that T™ = |Jr_, (B + V).

We claim that for some [,1 <1<k ,S+ R D {n:na€ B+ V} which
implies that S+ R is a Bohr set. Assume this isn’t so; then for each [, 3x; with
i € B+ Vandz; ¢ S+R. Let S, =SN{n:na € f;+V}sothat S = S;.
We have z; ¢ S+R and so x;—S;NR = & . Since z;a € 8;+V and Sja C 51+V
we have (z; — S))a CU. Now RD {n:na e U}NQso (x; —S)NR =0
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implies that (z;—S;) C Q¢ , the complement of Q. Equivalently S; C (z;—Q)°¢,
c
soS=US C (ﬂ(ml - Q)) . But the intersection of finitely many translates

of a thick set is thick whereas S is syndetic. This contradiction proves our
assertion.

6 Kronecker-complete Processes

The remaining sections are directed to giving a proof of Theorem II of §1. The
crucial step in this proof is a proposition to be proved in §8 which generalizes
the fact (Theorem 3.5) that d*(A) > 0 implies that A— A is PWBy. To achieve
this generalization we will use once more the correspondence described in §2
between schemes and processes. Another ingredient that will enter is the point
spectrum of an ergodic system, i.e., the eigenvalues of the operator T on the
L2-space of the system. It will be of importance that in a scheme generic for
a process for which non-trivial eigenvalues exist, the eigenfunctions are also
represented. This leads to the notion dealt with in this section of a “Kronecker-
complete process.”

We begin by recalling the notion of the “Kronecker factor” of an ergodic
system: Let (X,B,u,T) be an ergodic measure preserving system. There is
a compact abelian group Z and an element a € Z whose multiples {na}
are dense in Z, and a map m: X — Z which is measurable and measure
preserving with respect to Haar measure dz on Z, and such that for a.e.
2 € X, n(Tz) = m(z) + o. If x € Z is a character on Z then f = y o7 is an
eigenfunction of T: f(Tx) = x(n(z)+a) = x(a)f(z), and every eigenfunction
of T in L*(X,B,p) is a multiple of one derived from a character. (Z,a) is
unique up to isomorphism and is called the Kronecker factor of (X,B,u,T).
The eigenvalues of T are {x(a)}, .z, so that Z = the dual group to the
(discrete) group of eigenvalues of T'. The system (X, B, u, T') is weakly mizing
if and only if there are no eigenvalues other than 1 if and only if Z is the
trivial one-element group. The discussion in this section will be vacuous in
the case of weakly mixing systems.

We turn to processes. When we speak of an eigenfunction f we will assume

f#0.

Definition 6.1. A process (X, B, u,T,®) is Kronecker-complete if it is er-
godic and if every eigenfunction of T is proportional to some function in ®.

Note that for an ergodic system, if Tf = Af for a measurable f, it is easily
seen that |A\| = 1 and that |f(z)| is constant a.e., so that f € L>(X, B, u).
Also note that T'f1 = Af1,Tfo = Afa implies that fi/f> is invariant so that
by ergodicity, fi, fo are proportional. Thus a process is Kronecker-complete
if ® contains some eigenfunction for each eigenvalue. Under our standing
hypothesis that B is a countably generated o-algebra, the set of eigenvalues
is at most countable. As a result we can always “complete” a non-Kronecker-
complete process. The principal result in this section states that if a scheme
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is generic for a non-Kronecker-complete process, by augmenting the process
and the scheme and passing to a subscheme, we will obtain a scheme generic
for a Kronecker-complete process.

Theorem 6.2. Let ({J;},{¢}) be generic for an ergodic process (X, B, u, T, ®).
Denote by A the subgroup of the unit circle S' consisting of eigenvalues of T
on L?(X,B,pn). We can find eigenfunctions 1y for each A\ € A and a sub-
scheme ({Hy},{nk}) so that setting n§(n) = A" independent of k and letting
U = {¢a}ren, the process (X, B, u, T, ®U ) will be Kronecker-complete, and
the scheme ({Hy}, {€¥} U {nk}) will be generic for (X, B,u,T,®U V).

In the weak mixing case we merely need to adjoin the function 1 to the
process and to the scheme. In the general case we proceed by successively
adjoining eigenfunctions, passing to a subarray at each stage. We will thus
obtain a sequence of subarrays which is “decreasing” and a sequence ®, =
S U{Ty,,Py,,..., Py, } of sets of functions with the corresponding {n,(ak)} u
{1y Mgy - - - » Mx, } Of representative time series. Our final scheme is obtained
by choosing from successive schemes intervals that are “c-h-generic” for the
final process (X,B,u,T,® U ¥) with ¢ \, 0, h ~o00. Such intervals will be
found in the array for ®,, with n sufficiently large.

Adjoining a single eigenfunction will also entail a procedure of suc-
cessive approximation. We assume given a scheme ({J;},{¢.}) generic for
(X,B,u, T,®) and we wish to adjoin an eigenfunction for the eigenvalue \.
Fix an eigenfunction f,Tf = Af, with |f| = 1. Since we have fixed the rep-
resentative time series for the eigenfunction as n, where ny(n) = A", the
corresponding ¢, to be adjoined will be some multiple cf, |¢| = 1. Our task
is to find subintervals of J; that give better and better representation for the
augmented ® U {cf} in a sense analogous to e-h-genericity (§2). In our proce-
dure of successive approximation we can let ¢ vary, since a subsequence will
converge to a fixed value for which the intervals that have been found will still
provide good representation. We form ®* from ® as in §2, and express ®* as
a union ®* = |J®; of increasing finite subsets. Now {cf} enters the picture
and we say that the interval J C J; is “e-h-m-generic” for (X, B, u, T, ®Ucf)
if for every ¢ € ®; and the corresponding time series ¢/, and for a an integer
with 0 <a < m,

<e. (5)

EPIGIONCE R

neJ b'e

Note that for a = 0 this is e-h-genericity. What will be shown for the proof of
the theorem is the existence of e-h-m-generic intervals inside .J; for large [ for
arbitrary €, h, m, and putting these together we obtain the subscheme that is
sought.

In establishing (5) we will use the following lemma.
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Lemma 6.3. Let ai,as,...,an be N complex numbers and form, for a,b =
0,1,2,..., the averages
1 XN
— a—=b
b) = N i_Elal-al-.

There is a function §(e,p) > 0 for e > 0 and p € N so that if |[u(a,b) — 1| <
d(e,p) for 0 < a,b < p, then 36 so that

1 N
—Z|ai—5|2p<5
Ni:l

Proof. We form the average

1 _
N2 Z i — ™ = 5 > (i —ay)P (@ — @)

4,j=1 ,j=1

= PO (B)ua, ¢ )ulp—a, p—q)

The latter expression is continuous in the (p + 1)? expressions {u(q,q'),
0 < ¢, ¢ < p} and we can evaluate it for u(q,q') = 1 by setting all o; = 1.
Since the expression in question vanishes when «; = 1, it follows that we can
find (e, p) > 0 so that the hypothesis of the lemma implies

lZ(iilai—aﬂ) <e.
N — ]\71,:1

But this implies that for some index j the inside averageis < ¢, so with 8 = «;
we get the desired result.

Proof of Theorem 6.2. We have seen that to prove the theorem we have to
show the existence of long intervals .J inside .J; for sufficiently large [, for
which (5) is valid, where ¢ ranges over ®;, f is an eigenfunction Tf = Af,
and the ¢'(n) are the time series representing ¢ in the respective .J;, and the
exponent “a” ranges from 1 to m.

Our assumption in Definition 2.5 that the functions of ® generate the
o-algebra B for the process (X, B, u, T, ®) implies that linear combinations of
functions in ®* will approximate any function in L?(X, B, u) in the LP-norm,
for any p, 1 < p < oc. We wish to approximate f and for any ¢; > 0 we
can find ¢ in the linear space spanned by ®* with ||o — f||L« < &1 where ¢ =
g(m) > 8 will be made explicit further on. Taking appropriate combinations
of the time series ¢!(n) representing o in the given scheme, we find that
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1 () @) (o ) () — [ rmn
(6)

We’re going to apply Lemma 6.3 with p = 2 to the N = K|.J;| numbers:
arn =2 C(n+k)C(n) O0<k<K-1, nelJ

where ¢ = ¢!. K will be arbitrary and [ will be large. We have

u(a,b) = w - Z > A 0+ B+ R) () Cn)”

k=0 neJ;

When [ is large this is close to [, & Sy AO=9*6b54T* (595 dp. The latter
expression will be within &5 of

K-1 K-1
[ & AT T T = [ g 30N = 1
X k=0 X k=0

where g5 = g5(¢1) — 0 as 1 — 0, using the fact that o is close to f in L®
and the total exponent in the integrals above is 2a 4+ 2b < 8, and the fact that
T*f = Xk f. Having chosen e; sufficiently small, we find by Lemma 6.3 that
for | large we can find f; so that

KJl %‘/\ kC(n + k)Cn) — Bi

‘4 < & (7)

where ¢ is given.
We wish to use (7) to estimate

17 Z‘C”"'k )¢(n )—/\kﬂzC(n)r:

N |

%%Z\ S+ B0~ B 1K) < Vet

—2
where 07 = 30 () = by e C)2 T, and by (6), 67 —
[lo|*du as I — oo. Since ||o — f|la < &1 the latter expression is < (1 + &1)*
and we can assume this < 4. We get for large [

2
k
K|J| Z‘CTL-I-ICK 2 Bl((n)‘ <2\/5_ (8)
Finally we wish to use this to estimate

1 1 2
% T %‘C(n + k) = XEBiG ()|
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and for this we need an estimate of

2

K|J|Z‘<n+k|c< 2=t )| ©
As 1 — oc, (9) approaches
/<|0|4Tk|a|2 9o T |of? +Tk|o|2>d,u. (10)

The corresponding expression for f instead of o vanishes so that for some C,
the expression in (10) is bounded by Ce;, and the same will be true for (9)
when [ is large. Combining this with (8) gives

K|JI|Z‘<n+k )\kﬂlC( )‘ < ez =-¢e3(er)

for large I, where e3(e1) — 0 for 1 — 0.
Using the Hilbert space inequality

= lolf® < (liall + Jjol) ffu = o]

we find for large [

11
ngK(”"'kW - fT 617 ZK

k,n

2l <C'e

from which it follows that |f;] — 1. To summarize the foregoing, we have
shown that for any ¢ > 0 we can find a function ¢ with time series ¢!(n) and
v with || = 1 so that for [ sufficiently large, and any K,

1 1 2
% T >|cin+ k) = Neqd' )| <.
k,n
To apply this to (5) we let 1 < a < m and we estimate for a time series
¢'(n)
1 _ [ [
sz‘ Cn+h) = A (¢m)” “g (n+ k)| (11)

Writing 2% — y® = (z — y)(z* ! + 2% 2y + --- + y*~ 1) we obtain for large
that the expression in (11) is bounded by M./ where

a—1
w=a(Y + o Zlcl e+ DP I P o+ B )
7=0
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If ¢! represents the function ¢, the limit of the foregoing expression, as [ — oo,

18 . 1
& > [ THoP el T o
k=0

and provided g(m) > 2m + 2 with [|o — f||z« < 1, the expression in (11) will
be bounded by C'||pl|L«veE, C' = C'(m).

In all the estimates for averages over 0 < k < K, n € J;, if the overall
average is < 0, then for at least half of the n € J;, the average over k cannot
exceed 26. For large I, we let N; C J; consist of the n with {n,n+1,...,n+
K -1} C J; and

1(( n+k) —)\“k(’yzCl(n))a)fl(n-l-k)
0

We now refer to Theorem 2.9 applied to the functions of,, 1 < a < m,
¢ € ®; which are in the linear span of ®*. These functions are represented

K—

<20 ¢llrvE.  (12)

k=

a
in the given scheme by (Cl (n)) ¢ (n), and with § > 0 given, there will be a
K so that for sufficiently large [, the inequalities

1 K-1

f X (¢ m) s - [ oo

hold for most n € J; provided |J;| > K. This implies that (12) and (13) will
hold simultaneously for most n € N; for which we will then have

<0 (13)

K-1
‘ <0+ 2C"lgllpa V.

o A () ¢k = [ oo

k=0

Set c1., = A"y ' ¢!(n) ! and we can write

<leanl* (5 +2C"IlnavE) (14)

K—1

1

% Z AR el 4 k) — cﬁn/aanpdu
k=0

We write n € Nj if (14) is valid.

(15)

K-—1

1

& XN k) b, [ o] <
k=0

el (8 +20"[pllza V) + leval”e”llpllzmsllo = fllzmes

If J is the interval {n,n + 1,...,n + k — 1} then (15) has the form (5)
if the right hand side can be made small and if |¢; | is close to 1. All this
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can be achieved by choosing ¢ with ||o — f]||r« small, and finding n; € J; for
which (15) holds with |c;n| = || 71¢!(n)| =@ close to 1. The domain of n is
N, which depends on (!, but |N/|/|Ji] is bounded from below. It suffices to
show that by choosing ||o — §||L« small we will have (for ¢! representing o)

‘K(” (n)| — 1‘ < 8 for a preassigned 6 > 0 for most n € .J;. But this follows
from the fact that

kS (€r =) = (=)

as | — oo and the latter expression is small if || — f|| is small. With this we
have completed the proof of Theorem 6.2. O

Corollary 6.4. If an ergodic process is Kronecker-complete, it has a generic
scheme whereby eigenfunctions are represented by the time series cxA" for all
intervals of the array {J;}.

Suppose now that we have a generic scheme for a Kronecker-complete
process, (X,B,u,T,®) and let A C S! be the group of eigenvalues of the
process. If we identify the Kronecker factor of (X,B,u,T) with Z = A we
can define a canonical map 7w: X — Z. Namely for A € A there is a unique
eigenfunction ¢, on X with Ty = Ay, and which is represented in the
scheme by na(n) = A\". We set @ € Z = A to correspond to the inclusion
map of A — S : a(\) = ). Notice that since nx,x, = 7r, 7, We will have
Prixa = Pr1Pra- This means that for a.e. z € Xa P12 (CU) = P (CU)(,O)\Q (il?)
so that if we define 7(z)(\) = ¢ (z), then for a.e. z,w(z) € A = Z. Moreover
T(T2)() = ¢a(Tx) = Apr(2) = a(Nr(@)(N) = (@ + 7(2))(V); so 7(Tz) =
m(z) + a. The mapping 7 is measurable since all ¢, are measurable, and so
the foregoing gives an explicit map of X to its Kronecker factor. This map
will play a role in §7.

Note that for A € A, the eigenfunction ¢, on X can be identified with
x om, where y is the character on Z given by x(z) = z(\) where Z is identified
with A, since x(7(z)) = m(z)()\) = @x(z) by definition of 7. Since the time
series representing ¢y is A" = y(na), we conclude:

Proposition 6.5. Given a scheme generic for a Kronecker-complete process
(X,B,u, T, ®), if ™ is the canonical map of X to its Kronecker factor (Z,a)
then for any continuous function 1 on Z, v ow can be adjoined to ®, and it
will be represented by the time series {1)(na)}.

Proof. 1 can be approximated uniformly by linear combinations of {¢}.

7 Weighted Ergodic Averages for Kronecker-complete
Processes

Let (X, B, i, T, ®) be a Kronecker-complete process and ({.J;}, {£L}) a generic
scheme. We shall show how to evaluate L2-limits of weighted ergodic averages
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ner

for feL?(X,B,u) and ¢ representing a function ¢ € ®. By our assumption
(X,B,u,T) is ergodic so that + Z T"f — [ fdw in L% Since T is a con-

|Jz| Z = /fd,u

neJ;

traction we can write

for any array {J;}. This will be generalized for processes that are Kronecker-
complete, except that the limits taken are weak L2-limits.

Recall from §6 the notion of Kronecker factor and the canonical map
m: X — Z where Z is a compact abelian group and n(Tz) = w(z) + .
All eigenfunctions on X are, up to constant multiples, of the form x o 7
where y is a character on Z. The set of all functions in L*(X, B, u) of the
form v o 7,4 € L?(Z) form a subspace that is spanned by eigenfunctions. If
f € L*(X,B,u) we denote by E(f|Z) the unique function in L?(Z) so that
E(f|Z) o denotes the orthogonal projection of f to the subspace L?(Z) o .
E(f|Z) = 0 & f is orthogonal to all eigenfunctions in L?(X, B, u). We will
make use of an operation on L'(Z) related to (but not the same as) convolu-
tion:

f0Of (2 /fl z +u) fo(u)du

Proposition 7.1. Let ({J;}, {£L}) be generic for the Kronecker-complete pro-
cess (X,B,u, T, ®), let f € L?(X,B,pn), and let ¢ € ® be represented by the
time series &'. Then

Zsl )T f - [E(f12)0E(|2)] o n (16)

ner
where — signifies weak convergence in L*(X, B, ).

Proof. It suffices to consider two cases: (a) E(f|Z) =0, (b) f is an eigenfunc-
tion.

In the first case, for any g in L?(X,B,u) , the sequence { [ T"f - gdu}
satisfies

1 n+N / 2
~ > | TFf-gdu| — 0
Nk:n—H N—=o00

uniformly in n, so that the left hand side of (16) goes to 0 weakly, and the
proposition is verified. We turn to case (b) with f = ¢x. To A € A we as-
sociate the character y on A with x(z) = z(\). Then x o w(z) = w(2)(\) =
ox(r) = f(z), and E(f|Z) = x. In this case the right hand side of (16)
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is [xOE(p|Z2)]om = (fE(go|Z)xdz>x o m. We evaluate the left hand side

z
of (16): . .
- 1 T — A" )
|Jl|nez;lf<n> f w% s

which by genericity converges to (f <p>\cpdu)f. Since ¢y € L*(Z) o 7, we
can replace ¢ by its projection to this subspace which is E(p|Z) o 7. Since
x = x o™ we now have

/wwpduz /XE(<P|Z)dZ

X 4

and since f = x o, this proves the proposition. O

8 A Condition for PW-Bohr,

We know from Theorem 3.5 that if @*(S) > 0 for a subset S C Z, then S—S is
PW-Bohrg. We can rephrase this as saying that if for each s € S, S—sNB = ()
for a subset B C 7Z, then the complement of B is PW-Bohrg. In this section

we show that it will suffice for this conclusion that d* ((S —s)N B) = 0 for
each s € S. In §9 we’ll see how this leads to a proof of Theorem II.

Proposition 8.1. Let A C Z and B = Z\ A and let S C 7 with d*(S) > 0. If
for every s € S, d* ((S —-s)N B) =0, then A is a PW-Bohry set.

Proof. Let {J;} be an array with % — B > 0. Set &(n) = 1a(n),

&L =1p(n), €&(n) = 15(n) and consider the scheme ({J;} {¢!, &L, €LY). By The-
orem 2.9 we can find a subscheme generic for an ergodic process (X, B, u, T, @)
where ® includes @1, @9, 3 which are respectively represented by ¢!, &, €4, By
the scholium to Theorem 2.9 we can assume (3 is not a.e. 0. Since (ffl))2 = ffl)
we find ¢? = ¢; a.e. and so ¢; take values 0, 1. We write ¢ = 15, @2 = 15,
@3 = 1g with A,B,S € X, u(S) > 0, and AU B = X. Using Theorem 6.2
we can also assume that the process (X, B, u, T, ®) is Kronecker-complete and
that the eigenfunctions {ypx} of the process are represented by time series
na(n) = A™. We will also make use of the canonical map m: X — Z, where
(Z, ) is the Kronecker factor of (X, B, u,T).

We now apply Proposition 7.1 to this subscheme generic for the Kronecker-
complete process with @1, @2, 3 € ®, and where we again denote the array
of intervals by {J;}. We will take f = ¢ = 15 = ¢35 which is represented by
€L (n) = 15(n). We conclude that in the weak L2-topology,
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1

il S 1sm)T g — (fOf) o (17)

neJ;
where f = E(15|Z). The function f is bounded and non-negative with

[ fdz = pu(S) > 0 so it is non-trivial. We note that since f € L>®(Z), the
function F' = fOf is continuous on Z.

We turn now to the hypothesis that d* ((S —s)N B) =0 for s € S. This
implies that
1
— 1 1 — 0
71 Z B(n)ls(n+s)

neJ;
or

/IBTslgd,u =0.

In particular, averaging over s € S:

1 n
T > ls(n)/T lelgdu — 0. (18)
neJ;

But by (17), the limit in (18) is

/Foﬂ'-lédu (19)

and so the latter integral vanishes. We again apply the generic scheme where
according to Corollary 6.4, F' o 7 is represented by {F(na)}, a non-negative
almost periodic sequence with

> F(na) — /Fdz >0

1
| l| neJ;

Since the integral in (19) vanishes we can write

1

T > F(na)lp(n) — 0

neJ;
Let H be the Bohry set for which F(na) > 6 where 0 > 0 is chosen so that
H is non-empty. Then

> 1u(n)lg(n)

neJ;

> 1u(n)

neJ;

Y. luna(n)

neJ;

> 1u(n)

neJ;

— 0

whence

— 1.

This implies that there are arbitrarily long intervals L; C J; for which
HNL =HNANL, C A. Hence HN|JL; C A from which it follows that
A is PW-Bohrg. This proves Proposition 8.1. O
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9 Application to Aj-sets

We shall apply the foregoing results to prove Theorem IT of §1. We recall that
a subset A C Z is a A}-set, r = 2,3,... if for distinct numbers =1, 22, ..., 2.,
some difference z; — z;, i < j belongs to A. More generally we will need

Definition 9.1. If S C Z we shall write A € AX(S) if for x1,22,...,2, € S,
x; # x5 for i # j, there exists i < j with x; — x; € A.

In the sequel, A and B denote complementary sets in Z, B = Z\A. If
0 € B we denote by B’ the set B\{0}.

Lemma 9.2. The following are equivalent for a set S C Z:
(a) A€eAr,(5)
(b) AeA; (B’ n(S— s)) for every s € S.

Proof. (a) = (b): Suppose 1,2, ...,2z, € B'N(S—s). Form the (r+1)-tuple
$,8+ 1,8+ T2,...,5+x, and apply (a). (b) = (a): Let zg, z1, 22,..., 2, be
distinct elements in S. If {z1 — zo, 2 — 0, . .., T, — To} doesn’t meet A, then
this is an r-tuple in B’ N (S — zg) and we can apply (b). [

We recall Theorem II:
Theorem II. For anyr =2,3,..., if A is a A}-set then A is a PW-Bohry.

Proof. We assume A is not PW-Bohrg. By Proposition 8.1 this will imply that
whenever d*(S) > 0 there must be some s € S with d* (B Nn(s - s)) > 0.

This will give us an inductive procedure to obtain sets S; with d*(S;) > 0.
Start with S = Z and we find d*(B) > 0. Set S; = B’, there exists
s1 € Sy with d*(BN (S1 —s1)) > 0. Set Sy = B'N (S; — s1) and con-
tinue with Sgy1 = B' N (Sk — sk), sk € Sk. Now apply the foregoing lemma.

AeAN s AcANZ)=> Ac A;t_l(B’ N (z - 50)) = A () = A€

A, (B’ N(S1— 51)) = A¥_,(S2) = --- We continue with A € A*_,(S},) for
k=0,1,...,7r — 2. Finally 4 € A}(S,_2). At each stage we have d*(S) > 0.
But d*(S,—2) > 0 = S,_2 — S,_2 is PW-Bohrg; and A € A%(S,_,) =
AD S, 5 — 85, 5. This proves the theorem.
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