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We also obtain a polynomial version of the central sets 
theorem of Furstenberg, extend the theory of (m, p, c)-systems 
of Deuber, Hindman and Lefmann and generalize a classical 
theorem of Rado regarding partition regularity of linear 
systems of equations over N to commutative semigroups.
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1. Introduction

The main goal of this paper is to obtain new polynomial and multidimensional gen-
eralizations of Ramsey-theoretical results due to R. Rado [26] and W. Deuber [11]. To 
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put our results into perspective, we will start the discussion by briefly reviewing some of 
the relevant classical results.

Some familiar results of Ramsey theory can be formulated as results about partition 
regularity of homogeneous systems of equations. For example, the celebrated van der 
Waerden theorem [29], which states that, for any finite coloring N =

⋃r
i=1 Ci, one of the 

Ci contains arbitrarily long arithmetic progressions {x, x + d, . . . , x + (k − 1)d}, d �= 0, 
can be formulated as follows.

Theorem 1.1. For any finite coloring of N = {1, 2, . . . } and for any k ∈ N there exists a 
monochromatic solution of the system

x2 − x1 = x3 − x2 = · · · = xk − xk−1 �= 0. (1)

A slightly stronger theorem, due to A. Brauer [9], states that one can actually guar-
antee that the difference d of the monochromatic progression {x, x + d, . . . , x +(k− 1)d}
appearing in van der Waerden’s theorem is also of the same color. Since x, d, x +d satisfy 
the equation x + y = z, it follows that Brauer’s theorem is a simultaneous extension 
of Schur’s theorem [28] (which states that x + y = z is a partition regular equation 
over N) and van der Waerden’s theorem. Here is a formulation of Brauer’s theorem in 
the language of partition regularity of systems of homogeneous equations.

Theorem 1.2. For any k ∈ N, the system
⎧⎪⎪⎨
⎪⎪⎩
x2 − x1 = x0

...
...

...
xk − xk−1 = x0

(2)

is partition regular, meaning that, for any partition N =
⋃r

i=1 Ci, one of the Ci contains 
a solution (x0, x1, . . . , xk) of (2).

In his fundamental paper [26], R. Rado established a necessary and sufficient condition 
for partition regularity of the system Cx = 0, where C is a k × n matrix with integer 
entries and x is an n-dimensional vector. For the formulation of Rado’s theorem see 
Section 7 below.

In 1973, W. Deuber offered a new approach to partition regularity of homogeneous 
systems of linear equations [11]. The main novelty of Deuber’s approach was the intro-
duction of a family of configurations, the so-called (m, p, c)-sets defined in Definition 1.3
below. On the one hand, these configurations can always be found in one cell of a par-
tition of N, while on the other they contain solutions of homogeneous partition regular 
systems of equations.

Definition 1.3. Let m, p, c ∈ N and let s = (s0, . . . , sm) ∈ (Z \ {0})m+1. The (m, p, c)-set 
generated by s is the set
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D(m, p, c; s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cs0,

is0 + cs1, i ∈ {−p, . . . , p}
is0 + js1 + cs2, i, j ∈ {−p, . . . , p}

...
...

i0s0 + · · · + im−1sm−1 + csm, im−1, . . . , i0 ∈ {−p, . . . , p}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The following theorem summarizes Deuber’s results from [11].

Theorem 1.4.

(1) For any m, p, c ∈ N and any finite partition N =
⋃r

i=1 Ci, one of the Ci contains an 
(m, p, c)-set for some s ∈ Nm+1.

(2) For any m, p, c, r ∈ N, there exist M, P, C ∈ N such that for any S ∈ NM+1 and 
any r-coloring of D(M, P, C; S), there exists s ∈ Nm+1 such that D(m, p, c; s) is 
contained in D(M, P, C; S) and is monochromatic.

Theorem 1.4 contains as special cases several classical Ramsey-theoretical results:

Example 1.5.

(1) Schur’s theorem (stated above). Indeed, any (1, 1, 1)-set contains elements s0, s1,

s0 + s1.
(2) Brauer’s theorem (Theorem 1.2 above). Indeed, any (1, k, 1)-set contains elements 

s0, s1, s1 + s0, . . . , s1 + ks0 which satisfy (2). As a consequence, van der Waerden’s 
theorem also follows from Deuber’s result.

(3) Folkman’s theorem (cf. [16, Theorem 3.11]), stating that for any finite color-
ing of N there exists a set A of arbitrary finite cardinality such that the set 
FS(A) := {

∑
i∈B i : ∅ �= B ⊂ A} is monochromatic. FS(A) is contained in an 

(m, 1, 1)-set, where m + 1 is the cardinality of A.

The theorems mentioned in Example 1.5 also follow from Rado’s criterion [26] for 
partition regularity of a system of linear equations (see Theorem 7.2 below) although 
not as immediately. In fact Deuber proved that a set A ⊂ N contains an (m, p, c)-set for 
every m, p, c ∈ N if and only if A contains a solution to every partition regular system 
of the form Cx = 0.

Deuber’s approach allowed him to confirm a conjecture of Rado, stated in [26]. To 
formulate Rado’s conjecture, call a set A ⊂ N rich if it contains a solution to every 
partition regular homogeneous system of linear equations. One can reformulate Rado’s 
theorem as “for any finite partition of N, one of the cells is rich”. Rado’s conjecture stated 
that for any finite partition of a rich set, one of the cells is still rich; this conjecture follows 
from part (2) of Theorem 1.4.



122 V. Bergelson et al. / Journal of Combinatorial Theory, Series A 147 (2017) 119–154
We will see below that Theorem 1.4 can be significantly generalized in two ways. On 
the one hand, we will see that results similar to Theorem 1.4 can be proved for general 
countable commutative semigroups (see Theorem 1.7 below). On the other hand, in 
the case of countable abelian groups, part (1) of Theorem 1.4 admits a polynomial 
generalization (see Theorem 1.8 below). These generalizations hinge on a broadening 
of the notion of (m, p, c)-sets (see Definition 3.1 and the discussion that follows it in 
Section 3). The following definition, which is a special case of Definition 3.1, gives the 
flavor of the idea behind generalized (m, p, c)-sets.

Definition 1.6. Let m, d ∈ N, let c : Zd → Zd be an additive homomorphism, and let 
�F = (F1, . . . , Fm) be an m-tuple where for each i = 1, . . . , m, Fi is a finite family 
of polynomial functions of the form f : Zid → Zd such that f(0) = 0. Finally, let 
s = (s0, . . . , sm) ∈ (Zd \ {0})m+1. Then the (m, �F , c)-set generated by s is defined by

D(m, �F , c; s) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c(s0)
f(s0) + c(s1), f ∈ F1
f(s0, s1) + c(s2), f ∈ F2
...

...
f(s0, . . . , sm−1) + c(sm), f ∈ Fm

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Note that, when d = 1 and when all the polynomials are linear, Definition 1.6 reduces 
to Definition 1.3. Indeed, given a triple (m, p, c) ∈ N3 one can let c̃ be the map defined 
by c̃ : x �→ cx for each x ∈ Z and, for each j = 1, . . . , m, let Fj be the set of all maps 
x �→ 〈x, ξ〉 with ξ ∈ {−p, . . . , p}j and x ∈ Zj . Finally make �F = (F1, . . . , Fm). Then an 
(m, p, c)-set is an (m, �F , ̃c)-set.

The following is a multidimensional generalization of Theorem 1.4. The first part of 
Theorem 1.7 extends the first part of Theorem 1.4 and is a special case of the more 
technical Corollary 3.7 which is proved in Section 4. The second part of Theorem 1.7
extends the second part of Theorem 1.4 and is a special case of the more technical 
Theorem 3.14 which is proved in Section 5.

Theorem 1.7. Let d, m ∈ N, let c : Zd → Zd be a scalar homomorphism (i.e. 
c(x1, . . . , xd) = (ax1, . . . , axd) for some a ∈ Z \ {0}) and let �F = (F1, . . . , Fm) be an 
m-tuple where, for each i = 1, . . . , m, Fi is a finite family of homomorphisms from (Zd)i

to Zd.

(1) For any finite partition Zd =
⋃r

i=1 Ci, one of the Ci contains D(m, �F , c; s) for some 
s = (s0, . . . , sm) ∈ (Zd \ {0})m+1.

(2) For any r ∈ N, there exist M ∈ N, a scalar homomorphism C : Zd → Zd and an 
M -tuple �H = (H1, . . . , HM ) where Hi is a finite family of homomorphisms from Zdi

to Zd such that for any S ∈ (Zd \ {0})M+1 and any r-coloring of D(M, �H, C, S), 
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there exists s ∈ (Zd \ {0})m+1 such that D(m, �F , c; s) is a subset of D(M, �H, C, S)
and is monochromatic.

We remark that when all the homomorphisms are scalar, Theorem 1.7 can be derived 
from [12].

The following result, which is a special case of part (2) of Corollary 3.7 below, can be 
viewed as a polynomial extension of part (1) of Theorem 1.4.

Theorem 1.8. Let d, m ∈ N and, for each i = 1, 2, . . . , m let Fi be a finite set of poly-
nomials of the form f : (Zd)i → Zd such that f(0) = 0. Let �F = (F1, . . . , Fm) and 
let c : Zd → Zd be a scalar homomorphism. For any finite coloring of Zd, there exists 
s ∈ (Z \ {0})m+1 such that the set D(m, �F , c; s) is monochromatic.

Van der Waerden’s theorem was generalized to higher dimensions by T. Grünwald 
(Galai).2 The following corollary is a simultaneous generalization of Brauer’s theorem 
and of the multidimensional extension of van der Waerden’s theorem. (It will be proved 
in Section 3 after Corollary 3.7.)

Corollary 1.9. Let d ∈ N and let f : Nd → N be a semigroup homomorphism (here N is a 
shorthand for (N, +)). For any finite partition of Nd and any k ∈ N there exist a, b ∈ Nd

such that the set

{b} ∪
{
a +
(
i1f(b), · · · , idf(b)

)
: 0 ≤ i1, . . . , id ≤ k

}
(3)

is contained in a single cell of the partition.

Observe that when d = 1 this result reduces to Brauer’s theorem.
A polynomial generalization of the multidimensional van der Waerden theorem was 

established in [6]. An immediate corollary of Theorem 1.8 (corresponding to m = 1) 
is the following common generalization of Brauer’s theorem and the multidimensional 
polynomial van der Waerden theorem.

Corollary 1.10. Let d ∈ N and let F be a finite set of polynomials f : Zd → Z such that 
f(0) = 0. For any finite partition of Zd there exist a, b ∈ (Z \ {0})d such that the set

{b} ∪
{
a +
(
f1(b), · · · , fd(b)

)
: f1, . . . , fd ∈ F

}

is contained in a single cell of the partition.

2 R. Rado attributed this result to G. Grünwald in [27, p. 123]. Rado, however, had in mind T. Grünwald 
who never published his proof and later changed his name to Galai. (Géza Grünwald was a talented young 
Hungarian analyst who was murdered in 1943, see http :/ /www .math .technion .ac .il /hat /people /obits).

http://www.math.technion.ac.il/hat/people/obits
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This corollary can also be deduced from [8, Theorem 0.11]. For m = 2, Theorem 1.8
(and the more general Corollary 3.7) provide new classes of partition regular configura-
tions. For example, it follows from Theorem 1.8 that for any finite coloring of N there 
exists a monochromatic quadruple {x, y + x2, z, z + y2}. To see this, apply Theorem 1.8
with d = 1, m = 2, F1 containing only the polynomial x �→ x2 and F2 comprised of the 
polynomials (x, y) �→ 0 and (x, y) �→ y2.

A more general corollary of Theorem 1.8 is the following result, which involves a 
“chain of configurations” of the form {x, y, x + f(y)} where f is a polynomial.

Corollary 1.11. Let k ∈ N and let f1, . . . , fk ∈ Z[x] be polynomials with fi(0) = 0. Then 
for any finite coloring of Z there exist x0, x1, . . . , xk, a1, a2, . . . , ak ∈ Z \ {0}, all with the 
same color, satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1 − x1 = f1(x0)
a2 − x2 = f2(x1)

...
...

ak − xk = fk(xk−1)

Corollary 1.11 follows from Theorem 1.8 by putting d = 1, m = k and, for each i =
1, . . . , k, letting Fi consist of the zero polynomial and the polynomial (x0, . . . , xi−1) �→
fi(xi−1).

Another new result obtained in this paper is a polynomial extension of Furstenberg’s 
central sets theorem [15, Proposition 8.21] which is of independent interest (see Theo-
rem 4.10 below) and is essential to the proofs of some combinatorial results below. We 
postpone its formulation to a later section as it requires some additional definitions to 
state. Other important tools employed in our proofs include the polynomial Hales–Jewett 
theorem [6] and the IP-polynomial Szemerédi theorem [8].

The paper is organized as follows. In Section 2 we review the necessary background 
material. In Section 3 we give precise definitions and formulations of our results. In 
Sections 4 and 5 we prove our generalizations of Theorem 1.4, namely Corollary 3.7
and Theorem 3.14. In Section 6 we extend results of Deuber, Hindman and Lefmann 
on (m, p, c)-systems, which are common extensions of Deuber’s result and Hindman’s 
theorem [13,21]. Finally, in Section 7 we derive, in the spirit of Rado’s theorem, a rather 
general sufficient condition for partition regularity of a system of linear equations in a 
countable commutative semigroup.

1.1. Definitions and notation

Following a suggestion by the referee, in this short subsection we collect some defi-
nitions and conventions used throughout the paper. We denote by N = {1, 2, 3 . . . } the 
set of natural numbers and by Z = {. . . , −1, 0, 1, . . . } the set of integer numbers. When 
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referring to N or Z as a semigroup without specifying the operation, we tacitly assume 
that the operation is addition.

Throughout this paper, we use the arrow notation �F for tuples of sets of functions. 
For tuples of semigroup elements (s1, . . . , sd) ∈ Gd we will use boldface: s = (s1, . . . , sd).

Let (G, +) and (H, +) be two commutative semigroups. A semigroup homomorphism
is a map φ : H → G between H and G satisfying f(a + b) = f(a) + f(b) for all a, b ∈ H. 
When G = H = Zd for some d we say that a homomorphism f : H → G is a scalar 
homomorphims if it is of the form x �→ ax for some a ∈ Z.

For two (countable commutative) semigroups G, H we denote by Hom(H, G) the set of 
all semigroup homomorphisms from H to G. We also use End(G) to denote Hom(G, G)
(elements of End(G) are often referred to as endomorphisms).

When r ∈ N, we will sometimes denote by [r] the set {1, . . . , r}.

2. Preliminaries

2.1. IP-sets

Given an infinite set X, we denote by F(X) the family of all finite non-empty subsets 
of X, i.e., F(X) := {α ⊂ X : 0 < |α| < ∞}. We denote by F = F(N) the family of 
all non-empty finite subsets of N. Let G be a countable commutative semigroup and 
let (xn)n∈N be an injective sequence in G. For each α ∈ F define xα =

∑
n∈α xn. The

IP-set generated by (xn)n∈N is the set FS(xn) = {xα : α ∈ F}. Clearly xα∪β = xα + xβ

for any disjoint α, β ∈ F . Moreover, if (yα)α∈F is any ‘sequence’ indexed by F such 
that xα∪β = xα + xβ for any disjoint α, β ∈ F , then the set {yα : α ∈ F} is an IP-set 
(generated by (y{n})n∈N). For this reason we will denote IP-sets by (yα)α∈F , with the 
understanding that they are generated by the singletons yn, n ∈ N.

Definition 2.1. Let (xα)α∈F , (yα)α∈F be IP-sets in a countable commutative semi-
group G.

(1) We define a partial order on F by letting α < β whenever α, β ∈ F and maxi∈α i <
minj∈β j.

(2) We say that (xα)α∈F is a sub-IP-set of (yα)α∈F if there exist α1 < α2 < · · · in F
such that xn = yαn

for all n ∈ N.

2.2. Central sets and D-sets

Central sets were introduced by Furstenberg in (N, +) in [15]. A characterization in 
terms of ultrafilters was discovered later [5], and this spurred the study of central sets. 
For the reader’s convenience we will state some of the basic properties of ultrafilters that 
we will use. The reader will find missing details in [3] or [23].
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Definition 2.2. A filter on a countable set G is a non-empty family p of subsets of G such 
that

(1) ∅ /∈ p.
(2) If A ∈ p and A ⊂ B then B ∈ p.
(3) If A and B are both in p then A ∩B ∈ p.

If in addition p satisfies the following condition, then p is an ultrafilter.

(4) A ∈ p ⇐⇒ (G \A) /∈ p.

Remark 2.3. Equivalently, an ultrafilter is a family p of subsets of G such that for any 
finite partition of G, exactly one of the cells of the partition belongs to p.

The simplest example of an ultrafilter is that of a principal ultrafilter pg generated 
by a point g ∈ G and defined by A ∈ pg ⇐⇒ g ∈ A. In fact, these are the only explicit 
examples; the existence of non-principal ultrafilters needs some form of the axiom of 
choice.

Ultrafilters are maximal filters (with respect to the inclusion relation) and hence, by 
Zorn’s lemma, any filter is contained in an ultrafilter. The set of all ultrafilters on G
is denoted by βG and can be identified with the Stone–Čech compactification of the 
(discrete) space G (see, for example, Theorem 3.27 in [23]). The space βG is a compact 
Hausdorff space with the topology generated by the clopen sets

A := {p ∈ βG : A ∈ p} ∀A ⊂ G (4)

One can naturally extend the semigroup operation from G to βG. When A ⊂ G and 
g ∈ G we use the notation A − g := {h ∈ G : h + g ∈ A}. Given p, q ∈ βG we define

p + q = {A ⊂ G : {g ∈ G : A− g ∈ p} ∈ q}. (5)

The operation defined in (5) is associative (cf. Theorems 4.1, 4.4 and 4.12 in [23]) but, 
in general, not commutative. An ultrafilter p ∈ βG is called idempotent if p + p = p. By 
a theorem of Ellis [14], any semi-continuous compact semigroup contains an idempotent, 
so in particular for any countable semigroup G there exists an idempotent ultrafilter 
in βG. The interest in idempotent ultrafilters lies in the fact that any set belonging to 
such an ultrafilter contains an IP-set; this fact implies Hindman’s celebrated theorem 
[19] stating that for any finite partition of N, one of the cells contains an IP-set (cf. [3, 
Sections 2 and 3]).

A right ideal in βG is a subset I ⊂ βG satisfying I + βG ⊂ I. By Zorn’s Lemma, 
there exist minimal (with respect to the inclusion relation) right ideals in βG. A minimal
ultrafilter is an ultrafilter p ∈ βG which belongs to some minimal right ideal. To bet-
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ter understand the importance of minimal ultrafilters, we need the notion of piecewise 
syndetic sets.

Definition 2.4. Let G be a countable commutative semigroup and let A ⊂ G.

(1) A is a syndetic set if finitely many shifts of A cover G. More precisely, if there exists 
a finite set F ⊂ G such that G =

⋃
g∈F (A − g).

(2) A is a thick set if it contains a shift of every finite set, i.e., if for every finite set 
F ⊂ G there exists g ∈ G such that g + F ⊂ A.

(3) A is a piecewise syndetic set if it is the intersection of a thick set with a syndetic 
set. In other words, A is a piecewise syndetic set if there exists a finite set F ⊂ G

such that the union 
⋃

g∈F (A − g) is thick.

One can show that if p ∈ βG is a minimal ultrafilter and A ∈ p, then A is piecewise 
syndetic. Conversely, for any piecewise syndetic set A, there exist minimal ultrafilters 
p ∈ βG for which A ∈ p (see, for example, [2]). Of special importance among minimal 
ultrafilters are the minimal idempotent ultrafilters i.e. ultrafilters which are simultane-
ously minimal and idempotent. For any countable commutative semigroup G there are 
minimal idempotent ultrafilters p ∈ βG.

Definition 2.5. Let G be a countable commutative semigroup and let A ⊂ G. We say 
that A is a central set if there exists a minimal idempotent ultrafilter p ∈ βG such that 
A ∈ p.

Since every countable commutative semigroup has a minimal idempotent, it follows 
from Remark 2.3 that for every finite partition of a countable commutative semigroup, 
one of the cells is a central set. Central sets are important in combinatorics because they 
are both IP-sets and piecewise syndetic sets; the combinatorial richness possessed by 
central sets is best illustrated by the central sets theorem.

Theorem 2.6 (Central sets theorem). Let G be a countable commutative semigroup, let 
j ∈ N, let A ⊂ G be a central set and let (yα)α∈F be an IP-set in Gj. Then there exists 
an IP-set (xβ)β∈F in G and a sub-IP-set (zβ)β∈F of (yα)α∈F such that

∀i ∈ {1, . . . , j} ∀β ∈ F xβ + πi(zβ) ∈ A

where πi : Gj → G is the projection onto the i-th coordinate.

This theorem was obtained by Furstenberg for the case G = N in [15]. In [5], The-
orem 2.6 was proved for certain classes of countable commutative semigroups, and an 
alternative, dynamical characterization of central sets for arbitrary countable commu-
tative semigroups was established, which hinted at the full generality of Theorem 2.6. 
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Theorem 2.6 was obtained in full generality in [22], and in a stronger formulation in [10], 
see also [20] for a history of these developments.

By relaxing the definition of central set one obtains the notion of a D-set, which was 
introduced in [4]. While this notion makes sense in any countable amenable semigroup, 
we will only consider D-sets in Zn. An ultrafilter p ∈ βZn is an essential idempotent if 
it is an idempotent ultrafilter and every A ∈ p has positive Banach upper density, i.e.

d∗(A) = sup
{Πk}k∈N

lim sup
k→∞

|A ∩ Πk|
|Πk|

> 0

where the supremum is taken over all sequences of parallelepipeds

Πk = [a(1)
k , b

(1)
k ] × · · · × [a(n)

k , b
(n)
k ] ⊂ Zn; k ∈ N

with b(i)k − a
(i)
k → ∞ as k → ∞ for all 1 ≤ i ≤ n.

Definition 2.7. A set A ⊂ Zn is a D-set if there exists an essential idempotent p ∈ βZ

such that A ∈ p.

Every piecewise syndetic set has positive Banach upper density, therefore every central 
set is a D-set. It was shown in [4] that the converse is not true. However, the central 
sets theorem is true under the weaker assumption that A is a D-set [1]. Observe that, 
for every finite partition of Z, one of the cells is a D-set.

2.3. Some results we use

In the course of our proofs we will take advantage of some powerful theorems. For the 
convenience of the reader we list them in this subsection, but first we need the following 
definition.

Definition 2.8. Given a map f : H → G between countable commutative groups we say 
that f is a polynomial map of degree 0 if it is constant. We say that f is a polynomial 
map of degree d, d ∈ N, if it is not a polynomial map of degree d −1 and for every h ∈ H, 
the map x �→ f(x + h) − f(x) is a polynomial of degree ≤ d − 1. Finally we denote by 
P(G, H) the set of all polynomial maps f : G → H with f(0) = 0.

Note that homomorphisms are elements of P(G, H) having degree 1.

Theorem 2.9 (Multidimensional IP polynomial Szemerédi theorem, [8], Theorem 0.10). 
Let n ∈ N, let B ⊂ Zn have positive Banach upper density, let j ∈ N and let (yα)α∈F be 
an IP-set in (Zn)j = Znj. For any finite family F ⊂ P(Znj , Zn) there exist x ∈ Zn and 
α ∈ F such that x + f(yα) ∈ B for all f ∈ F .
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Theorem 2.10 (IP polynomial van der Waerden theorem for abelian groups, cf. [7, Corol-
lary 8.8]). Let G, H be countable abelian groups and let F ⊂ P(H, G) be a finite subset. 
Then for every finite partition G = C1 ∪ · · · ∪ Cr and every IP set (yα)α∈F in H there 
exists i ∈ {1, . . . , r}, a ∈ Ci and α ∈ F such that a + f(yα) ∈ Ci for every f ∈ F .

Theorem 2.11 (Equivalent finitistic form of Theorem 2.10). Let r ∈ N, let G, H be count-
able abelian groups, let F ⊂ P(H, G) be a finite subset and let (yα)α∈F be an IP set in H. 
There exists a finite set I ⊂ G such that for every r-coloring χ : I → [r] there exists 
i ∈ [r], a ∈ I with χ(a) = i and α ∈ F such that χ

(
a + f(yα)

)
= i for every f ∈ F .

Proof. It is easy to see that Theorem 2.11 implies Theorem 2.10. To prove the other 
direction, assume, for the sake of a contradiction, that Theorem 2.11 is false. Therefore 
for each finite subset I ⊂ G there exists a “bad” coloring χ : I → [r], that is, a coloring 
for which no monochromatic configuration of the form {a} ∪ {a + f(yα) : f ∈ F} exists. 
Let g1, g2, . . . be an enumeration of G and, for each n ∈ N, let In = {g1, . . . , gn}. Assume 
χn : In → [r] is a “bad” r-coloring for In.

Next we define a coloring χ : G → [r]. Let S0 = N and choose, inductively, for each 
j ∈ N, some i ∈ [r] for which the set Sj := {n ∈ Sj−1 : χn(gj) = i} is infinite. Define 
χ(gj) = i. The coloring χ induces a partition of G into r sets. In view of Theorem 2.10, 
there exists i ∈ {1, . . . , r}, a ∈ G with χ(a) = i and α ∈ F such that χ

(
a + f(yα)

)
= i

for every f ∈ F . Since F is finite, there exists some j ∈ N for which a ∈ Ij and 
a + f(yα) ∈ Ij for every f ∈ F . For n ∈ Sj , the coloring χn and χ agree on the set 
{a} ∪ {a + f(yα) : f ∈ F}. This contradicts the hypothesis that the coloring χn was 
“bad”, which finishes the proof. �

We are now in position to prove the following statement, which will be utilized in the 
proof of Theorem 3.5.

Corollary 2.12. Let j ∈ N, let G be a countable abelian group and let F be a finite family 
of polynomial maps from Gj to G such that f(0) = 0 for each f ∈ F . Then for every 
piecewise syndetic (in particular, central) set A ⊂ G and every IP set (yα)α∈F in Gj

there exists a ∈ A and α ∈ F such that a + f(yα) ∈ A for every f ∈ F .

Proof. Since A is piecewise syndetic there exists a finite set J ⊂ G such that T := A −J

is thick. Take r = |J | and apply Theorem 2.11; let I be the finite set obtained. Since 
T is thick, there exists some g ∈ G such that I + g ⊂ T . Let χ : I → J be defined so 
that x + g + χ(x) ∈ A for all x ∈ I. Since |J | = r, there exists some j ∈ J , ã ∈ I with 
χ(ã) = j and α ∈ F such that χ

(
ã + f(yα)

)
= j for all f ∈ F .

Using the definition of χ, we conclude that a := ã + g + j ∈ A and, for every f ∈ F , 
we have a + f(yα) = ã + f(yα) + g + j ∈ A. �
Definition 2.13 (Combinatorial line). Let A be a finite alphabet, let ∗ /∈ A and let n ∈ N. 
A variable word in An is an element of the set (A ∪{∗})n \An. Given a variable word w
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and a ∈ A let w(a) ∈ An be the word obtained by replacing each instance of ∗ in w with a. 
The combinatorial line generated by a variable word w is the set {w(a) : a ∈ A} ⊂ An.

Theorem 2.14 (Hales–Jewett [18]). For each k, r ∈ N there exists HJ(k, r) ∈ N such 
that for all n ≥ HJ(k, r) and any r coloring of [k]n, there exists a monochromatic 
combinatorial line.

3. Precise formulations of main results

Recall that, for each triple (m, p, c) ∈ N3, an (m, p, c)-set is the image of some vector 
s ∈ (N \ {0})m+1 under a finite set of semigroup homomorphisms x �→ 〈x, ξ〉 (see Defi-
nition 1.3 and explanation right after Definition 1.6). We can generalize this concept by 
allowing more general classes of mappings.

Definition 3.1. Let G be a countable commutative semigroup.

(1) A shape in G is a triple (m, �F , c) where m ∈ N, c : G → G is a homomorphism and 
�F is an m-tuple �F = (F1, . . . , Fm) where each Fj is a finite set of functions from Gj

to G.
(2) Given a shape (m, �F , c) and s = (s0, . . . , sm) ∈ (G \ {0})m+1, the (m, �F , c)-set 

generated by s is the set

D(m, �F , c; s) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c(s0)
f(s0) + c(s1), f ∈ F1
f(s0, s1) + c(s2), f ∈ F2
...

...
f(s0, . . . , sm−1) + c(sm), f ∈ Fm

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

To see how the notion of (m, �F , c)-sets generalizes the concept of (m, p, c)-sets, take 
a triple (m, p, c) ∈ N3. Let c̃ : x �→ cx where x ∈ Z and, for each j = 1, . . . , m, let Fj be 
the set of all maps f : Zj → Z of the form f : x �→ 〈x, ξ〉 with ξ ∈ {−p, . . . , p}j . If we 
take �F = (F1, . . . , Fm), then for each s ∈ (Z \ {0})m+1, D(m, p, c; s) = D(m, �F , ̃c; s).

We are interested in shapes which are partition regular.

Definition 3.2. Let G be a countable commutative semigroup and let (m, �F, c) be a shape 
in G. We say that (m, �F , c) is partition regular if for every finite partition G = C1∪· · ·∪Cr

there exists i ∈ {1, . . . , r} and s ∈ (G \ {0})m+1 such that D(m, �F , c; s) ⊂ Ci.

One could wishfully hope that any shape (m, �F, c) in a countable commutative semi-
group G is partition regular. This, however, is not true in general.

Example 3.3. Take G = N, partitioned into odd numbers and even numbers, and consider 
the shape (1, �F , c) where c is the identity map and �F = (F1) is comprised of the two 
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functions x �→ x and x �→ x + 1. Then a (1, �F , c)-set is a triple {s0, s0 + s1, s0 + 1 + s1}, 
but neither the odd numbers nor the even numbers contain a configuration with two 
consecutive elements.

Another example, when all the maps involved are homomorphisms, is the following.

Example 3.4. Let G = Z2, let m = 1 and let c : Z2 → Z2 be the map c(x, y) = (x, 0). Let 
�F = (F1) where F1 consists of the maps (x, y) �→ (0, 0), (x, y) �→ (0, x) and (x, y) �→ (0, y). 
Finally, consider the partition

Z2 = {(0, 0)} ∪ {(x, 0) : x �= 0} ∪ {(0, y) : y �= 0} ∪ {(x, y) : x, y �= 0}.

It is not hard to see that there is no (m, �F , c)-set in a single cell of this partition.

In this paper we establish sufficient conditions for a shape (m, �F, c) to be partition 
regular. This will allow us to obtain the strong generalizations of Deuber’s theorem 
alluded to in the introduction. Recall that P(H, G) denotes the set of polynomial maps 
f : H → G with f(0) = 0 (see Definition 2.8).

Here is the formulation of one of the main results of this paper, whose proof is given 
at the end of Section 4.

Theorem 3.5. Let G be a countable commutative semigroup, let A ⊂ G be a central set 
and let (m, �F , c) be a shape in G. Assume that at least one of the following holds:

(1) The map c is the identity map and, for each j = 1, . . . , m, we have Fj ⊂ Hom(Gj , G).
(2) G is a group, the image of c has finite index in G and, for each j = 1, . . . , m, 

Fj ⊂ P(Gj , G).

Then A contains an (m, �F , c)-set.

A special case of this theorem was obtained by Furstenberg, who showed that any 
central set in N contains a (m, p, c)-set for any triple (m, p, c) ∈ N3 [15].

An extension of Furstenberg’s result was establish in [1], where it was shown that any 
D-set in N contains a (m, p, c)-set for any triple (m, p, c) ∈ N3. The following theorem 
strengthens the second part of Theorem 3.5 in the case3 G = Zn; its proof is presented 
at the end of Section 4.

Theorem 3.6. Let A ⊂ Zn be a D-set and let (m, �F , c) be a shape in Zn, where the image 
of c has finite index in Zn, and for each j = 1, . . . , m we have Fj ⊂ P(Znj , Zn). Then A
contains an (m, �F , c)-set.

3 We believe that Theorem 3.6 is actually valid for general countable commutative groups, but to prove 
it one would need an appropriate generalization of Theorem 2.9, which is currently unavailable.
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An immediate corollary of Theorem 3.5 is that certain rather general types of shapes 
are partition regular:

Corollary 3.7. Let G be a countable commutative semigroup and let (m, �F, c) be a shape 
in G. Assume that at least one of the following holds:

(1) The map c is the identity map and, for each j = 1, . . . , m, we have Fj ⊂ Hom(Gj , G).
(2) G is a group, the image of c has finite index in G and, for each j = 1, . . . , m, 

Fj ⊂ P(Gj , G).

Then (m, �F , c) is partition regular.

We now show how this corollary implies Corollary 1.9 from the introduction.

Proof of Corollary 1.9. We will use part (1) of Corollary 3.7. Let G = Nd, m = 1 and

F1 =
{
x �→
(
i1f(x), . . . , idf(x)

)
: 0 ≤ i1, . . . , id ≤ k

}
⊂ Hom(Nd,Nd),

where x denotes an element of Nd. For any finite coloring of Nd there is some s =
(s0, s1) ∈ N2 such that D(m, �F , c; s) is monochromatic. Putting b = s0 and a = s1 we 
obtain a monochromatic configuration

{b} ∪
{
a +
(
i1f(b), · · · , idf(b)

)
: 0 ≤ i1, . . . , id ≤ k

}
. �

The main tool employed by Furstenberg in his proof of the special case of Theorem 3.5
mentioned above was his central sets theorem (cf. Theorem 2.6). A similar strategy was 
adopted in [1] to establish the result for D-sets. Our proof of Theorem 3.5 is based 
on the following polynomial version of the central sets theorem, which we believe is of 
independent interest.

Theorem 3.8 (Multidimensional polynomial central sets theorem). Let G be a countable 
abelian group, let j ∈ N and let (yα)α∈F be an IP-set in Gj. Let F ⊂ P(Gj , G) and 
let A ⊂ G be a central set or, if G = Zn, let A be a D-set. Then there exist an IP-set 
(xβ)β∈F in G and a sub-IP-set (zβ)β∈F of (yα)α∈F such that

∀f ∈ F ∀β ∈ F xβ + f(zβ) ∈ A.

Note that for G = Z, a version of Theorem 3.8 was obtained by McCutcheon in [24]
(see also [25] and [30] for related results). Theorem 3.8 will be derived as a corollary of 
the more general Theorem 4.10 below.

As we mentioned in the introduction, one of the main motivations for Deuber to 
introduce (m, p, c)-sets was to prove a conjecture of Rado stating that for a finite partition 
of rich sets, one of the cells is still rich.
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We obtain an analogous result for certain (m, �F, c)-sets. Before we state the main 
result in this direction (Theorem 3.13 below) we need a few definitions.

Definition 3.9. Let G be a countable commutative semigroup. A clique in G is an infinite 
(not necessarily countable) set of shapes. Given a clique Λ in G, we say that a set A ⊂ G

is Λ-rich if for every shape (m, �F , c) ∈ Λ there exists an (m, �F , c)-set contained in A.

For example, let Λ be the clique in N consisting of the shapes that arise from all 
possible triples (m, p, c) ∈ N3. Then a set A ⊂ N is Λ-rich if and only if it is rich in the 
sense defined in the introduction. Here are more examples.

Example 3.10.

(1) Let k ∈ N, let c : N → N be the identity map, let F1,k = {x �→ ix : i = 0, . . . , k −
1} ⊂ End(N) and make �Fk = (F1,k). Then any (1, �Fk, c)-set contains a “Brauer 
configuration” of length k (i.e. an arithmetic progression of length k together with 
its common difference, cf. Theorem 1.2).

(2) Let c and �Fk be as in part (1) above. Consider the clique Λ = {(1, �Fk, c) : k ∈ N}. 
A set A ⊂ N is Λ-rich if and only it contains Brauer configurations of arbitrary 
length.

(3) Let m ∈ N and let c : N → N be the identity map. For each j = 1, . . . , m, let Fj,m

be the set of all maps f : Nj → N of the form f : x �→ 〈x, ξ〉 where ξ ∈ {0, 1}j . 
Let �Fm = (F1,m, . . . , Fm,m). Then any (m, �Fm, c)-set is a set of the form FS(A) for 
some set A ⊂ N with cardinality m + 1.

(4) Let c and �Fm be as in part (3) of this example. Define the shape Λ = {(m, �Fm, c) :
m ∈ N}. A set A ⊂ N is Λ-rich if and only if it is an IP0 set, i.e. a set containing 
FS(A) for some arbitrarily large finite sets A.

Definition 3.11. Let G be a countable commutative semigroup. Let m ∈ N and, for 
each i = 1, . . . , m, let Fi ⊂ Hom(Gi, G) be finite. Also, let �F = (F1, · · · , Fm) and let 
c ∈ End(G). We say that c is concordant with �F if there exists a non-zero homomorphism 
b ∈ End(G) and, for each i ∈ [m] and f ∈ Fi, there is a homomorphism af ∈ Hom(Gi, G)
such that c ◦ af = f ◦ b, where b : Gi → Gi is the homomorphism b(g1, . . . , gi) =(
b(g1), . . . , b(gi)

)
.

Observe that the identity homomorphism c : x �→ x is concordant with any �F . More 
generally, if c is in the center of the semigroup End(G), then c is concordant with any �F

(by taking b = c and af = f).
When c is an automorphism, it is concordant with any �F . Indeed, one can take b to 

be the identity map and af = c−1 ◦f . In the following example, c is neither in the center 
of End(G) nor it is an automorphism.
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Example 3.12. Let G = Z2, let m = 1, let c ∈ End(Z2) be the projection onto the first 
coordinate and let �F = (F1) where F1 consists of finitely many endomorphisms of Z2

whose image is contained in c(Z2). Then c is concordant with �F .
Indeed, take f ∈ F1. We let b ∈ End(Z2) be the identity map and af = f . Since the 

restriction of c to its image is the identity map, we have c ◦ af = f ◦ b.

One can reinterpret each part of Corollary 3.7 as providing an example of a clique 
Λ such that, for any finite partition of G, one of the cells is Λ-rich. Our next theorem 
provides a natural example of a clique Λ with the stronger property that, for any finite 
partition of a Λ-rich set, one of the cells is still Λ-rich. Theorem 3.13 deals with an 
arbitrary countable commutative semigroup G; when G = N we recover Deuber’s result 
(Theorem 1.4, part (2)).

Theorem 3.13. Let G be a countable commutative semigroup and let ΛG be the clique 
consisting of all shapes (m, �F , c) with m ∈ N, c in the center of End(G) and �F =
(F1, . . . , Fm) where each Fj ⊂ Hom(Gj , G). For any finite partition of a ΛG-rich set, 
one of the cells is still ΛG-rich.

If we take G = N then End(N) is isomorphic to the multiplicative semigroup (N, ×)
and hence is commutative; this means that any shape (m, �F , c) arising from a triple 
(m, p, c) ∈ N3 as explained after Definition 3.1, is in ΛG. Therefore Theorem 3.13 implies 
Deuber’s theorem (Theorem 1.4). Theorem 3.13 will be derived in Section 5 from its 
finitistic version, which we now state.

Theorem 3.14. Let G be a countable commutative semigroup and let Λconc be the clique 
of all shapes (m, �F , c) where m ∈ N, Fi ⊂ Hom(Gi, G) for all i = 1, . . . , m and c is 
concordant with �F .

For any r ∈ N and any shape (m, �F , c) ∈ Λconc there exists another shape (M, �H, C) ∈
Λconc such that any partition of an (M, �H, C)-set into r-cells, one of the cells contains 
an (m, �F , c)-set.

Moreover, if c is the identity, we can take C to be the identity as well, and if c is in 
the center of End(G) we can take C to be in the center of End(G).

The proof of Theorem 3.14 occupies most of Section 5.
The following definition was introduced by Deuber and Hindman in [13]. For finitely 

many finite sets A1, . . . , An we define the sum

n∑
i=1

Ai := {a1 + · · · + an : a1 ∈ A1, . . . , an ∈ An}.

Definition 3.15 ((m, p, c)-system). A set A ⊂ N is an (m, p, c)-system if for each 
(m, p, c) ∈ N3 there exists s = s(m, p, c) ∈ Nm+1 such that
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(1) D
(
m1, p1, c1; s(m1, p1, c1)

)
∩D
(
m2, p2, c2; s(m2, p2, c2)

)
= ∅ whenever (m1, p1, c1) �=

(m2, p2, c2).
(2) For all nonempty finite sets α ⊂ N3, we have

∑
(m,p,c)∈α

D
(
m, p, c; s(m, p, c)

)
⊂ A.

In [13] it was proved that for any finite partition of N one of the cells is 
an (m, p, c)-system, and in [21] it was shown that for any finite partition of an 
(m, p, c)-system, one of the cells is an (m, p, c)-system. We have extensions of both 
results for certain countable cliques in countable commutative semigroups.

Definition 3.16 (Λ-system). Let G be a countable commutative semigroup and let Λ be 
a countable clique in G. A set A ⊂ G is a Λ-system if for every shape (m, �F , c) ∈ Λ there 
exists s = s(m, �F , c) ∈ Gm+1 such that

(1) D
(
m1, �F1, c1; s

)
∩D
(
m2, �F2, c2; s

)
= ∅ whenever (m1, �F1, c1) �= (m2, �F2, c2).

(2) For all α ∈ F(Λ) = {α ⊂ Λ : 0 < |α| < ∞} we have

∑
(m,�F ,c)∈α

D
(
m, �F , c; s(m, �F , c)

)
⊂ A.

We have two results regarding Λ-systems. The first, Theorem 3.17, extends the result 
of [13] and utilizes, in its proof, Corollary 3.7. The second, Theorem 3.20, extends the 
result of [21] and utilizes, in its proof, Theorem 3.13.

Theorem 3.17. Let G and Λ satisfy at least one of the following two conditions.

(1) G is a countable commutative semigroup and Λ is a countable clique composed by 
shapes (m, �F , c) satisfying the first condition of Corollary 3.7.

(2) G is a countable commutative group and let Λ is a countable clique composed by 
shapes (m, �F , c) satisfying the second condition of Corollary 3.7.

Then for any finite partition of G, one of the cells is a Λ-system.

Theorem 3.17 is proved in Section 6.
Theorem 3.20 below establishes partition regularity of ΛG-systems, where the clique 

ΛG is defined in Theorem 3.13. Since ΛG-systems do not exist when ΛG is uncountable, 
we will assume in Theorem 3.20 that the clique ΛG is countable. Observe that ΛG is 
countable if and only if Hom(Gj , G) is countable for every j ∈ N. Before formulating 
Theorem 3.20 we provide some relevant examples.
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Example 3.18. If G is a finitely generated commutative semigroup, then the clique ΛG

is countable. Indeed, for every j ∈ N the semigroup Gj is finitely generated, hence a 
homomorphism f ∈ Hom(Gj , G) is determined by finitely many values. This fact implies 
that Hom(Gj , G) is countable, and in particular, the center of End(G) is also countable. 
It follows that ΛG is countable.

Example 3.19. If G is the additive group of an algebraic number field, then ΛG is count-
able. Indeed, G is isomorphic to Qn for some n ∈ N, and hence, for each j ∈ N, 
a homomorphism f ∈ Hom(Gj , G) = Hom(Qnj , Qn) is determined by finitely many 
points, namely the nj points of the form (0, . . . , 0, 1, 0, . . . , 0) ∈ Qnj . This fact implies 
that Hom(Gj , G) is countable, and in particular the center of End(G) is also countable. 
It follows that ΛG is countable.

Theorem 3.20. Let G be a countable commutative semigroup and let ΛG be the clique 
defined in Theorem 3.13. Assume that ΛG is countable. Then for any finite partition of 
a ΛG-system, one of the cells in the partition is still a ΛG-system.

Theorem 3.20 is proved in Section 6.

4. Idempotent ultrafilters and (m, �F , c)-sets

Theorem 3.6 and parts (1) and (2) of Theorem 3.5 have similar proofs. To avoid 
repetition, we unify the three results into a single abstract result; this is Theorem 4.9
below. Before formulating it, we need to introduce some definitions.

Definition 4.1 (R-family). Let G, H be countable commutative semigroups and let p ∈ βG

be an ultrafilter. Let Γ be a set of functions from H → G. We say that Γ is an R-family4

with respect to p if for every finite set F ⊂ Γ, every A ∈ p and every IP-set (yα)α∈F
in H, there exist x ∈ G and α ∈ F such that

x + f(yα) ∈ A ∀f ∈ F

Example 4.2. Let n, j ∈ N and take G = Zn, H = Znj and Γ = P(Znj , Zn). Then Γ is 
an R-family with respect to any essential idempotent ultrafilter. Indeed, let p ∈ βZn be 
an essential idempotent and let A ∈ p. Then A has positive Banach upper density. Let 
F ⊂ Γ be any finite set and let (yα)α∈F be an IP-set in Znj . Theorem 2.9 implies that 
there exist x ∈ Zn and α ∈ F such that x + f(yα) ∈ A for any f ∈ F , which is precisely 
the condition for being an R-family.

Example 4.3. Let G be a countable abelian group, let j ∈ N and let H = Gj . Then the 
family Γ = P(Gj , G) is an R-family with respect to any minimal idempotent ultrafilter. 

4 R stands for returns.
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Indeed, let p ∈ βG be a minimal idempotent ultrafilter and let A ∈ p. By definition, 
A is a central set, hence a piecewise syndetic set. Fix a finite set F ⊂ Γ and an IP-set 
(yα)α∈F in Gj . It follows from Theorem 2.12 that there exists a ∈ A and α ∈ F such 
that a + f(yα) ∈ A for all f ∈ F , and hence Γ is an R-family.

Yet another family of examples is provided by the following proposition.

Proposition 4.4. Let G be a countable commutative semigroup, let j ∈ N, let H = Gj

and let Γ = Hom(Gj , G). Then Γ is an R-family with respect to any minimal idempotent 
ultrafilter p ∈ βG.

Proof. We remark that when G is a group, Proposition 4.4 follows from Corollary 2.12
(note that homomorphisms are polynomial maps of degree at most 1).

Let (yα)α∈F be an IP-set in Gj and let A ∈ p. Since A is, in particular, a piecewise 
syndetic set, there exists a finite set B ⊂ G such that A −B := {x ∈ G : ∃a ∈ A, b ∈ B :
x + b = a} is a thick set.

Let F ⊂ Λ be a finite set and let n = n(|F |, |B|) be the number given by Theorem 2.14. 
Since A −B is thick, we can find g ∈ G such that:

∀(f1, . . . , fn) ∈ Fn g +
(
f1(y1) + · · · + fn(yn)

)
∈ A−B

We can color Fn with |B| colors by associating (f1, . . . , fn) ∈ Fn with an element 
b ∈ B such that g + b + f1(y1) + · · · + fn(yn) ∈ A. Apply Theorem 2.14 to find a 
variable word w ∈ (F ∪{∗})n whose corresponding combinatorial line is monochromatic. 
Let b ∈ B be the “color” corresponding to the monochromatic combinatorial line, let 
C =
{
i ∈ {1, . . . , n} : wi ∈ F

}
, let α = {1, . . . , n} \C be the positions of the wild card ∗

in w and let

x = g + b +
∑
i∈C

wi(yi).

For any f ∈ F we have

g + b +
∑
i∈C

wi(yi) + f

(∑
i∈α

yi

)
∈ A,

and this can be rewritten as x + f(yα) ∈ A for all f ∈ F , which finishes the proof. �
Definition 4.5. Let G, H be countable commutative semigroups and let Γ be a set of 
functions from H to G. We say that Γ is licit if for any f ∈ Γ and any z ∈ H, there 
exists a function φz ∈ Γ such that f(y + z) = φz(y) + f(z).
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Example 4.6. Let G, H be countable commutative semigroups and let Γ ⊂ Hom(H, G). 
It is not hard to see that Γ is licit. Indeed, note that for every f ∈ Γ and any z ∈ H one 
can take φz = f in the definition.

Example 4.7. If G, H are countable abelian groups, the set Γ = P(H, G) is licit. Indeed, 
for each f ∈ Γ and z ∈ H one can define φz(y) := f(y + z) − f(z). Clearly φz(0) = 0. 
For any h ∈ H, we have

φz(y + h) − φz(y) = f(y + z + h) − f(z) − f(y + z) + f(z)

= f
(
(y + z) + h

)
− f(y + z).

If f ∈ P(H, G) has degree d, then f
(
(y+z) +h

)
−f(y+z) is a polynomial map of degree 

at most d − 1 in the variable y (now both h and z are constants), and hence φz is also a 
polynomial map of degree at most d.

Definition 4.8. Let G be a countable commutative semigroup. An endomorphism c ∈
End(G) is called IP-regular if for every IP-set (xα)α∈F in G there exists an IP-set 
(yα)α∈F such that 

(
c(yα)

)
α∈F is a sub-IP-set of (xα)α∈F (and in particular 

(
c(yα)

)
α∈F

is itself an IP-set).

When G = Z, any nontrivial endomorphism c ∈ End(Z) is IP-regular. It is not hard 
to see that when G is an arbitrary countable abelian group, any endomorphism whose 
image has finite index is IP-regular. We can now formulate our abstract theorem (which 
has Theorems 3.5 and 3.6 as corollaries):

Theorem 4.9. Let G be a countable commutative semigroup, let p ∈ βG be an idempotent 
ultrafilter and let Γ1, Γ2, . . . be R-families with respect to p which are licit, where Γj

consists of maps from Gj to G. Let c : G → G be IP-regular, let m ∈ N and, for each 
j = 1, . . . , m, let Fj ⊂ Γj be finite. Finally, put �F = (F1, . . . , Fm). Then for any A ∈ p

there exists an IP-set 
(
sα
)
α∈F in Gm+1 such that D(m, �F , c; sα) ⊂ A for every α ∈ F .

In order to prove Theorem 4.9 we first need to establish an abstract version of the 
central sets theorem.

Theorem 4.10. Let G, H be countable commutative semigroups, let p ∈ βG be an idem-
potent ultrafilter, let Γ be an R-family with respect to p which is licit. Then for any finite 
set F ⊂ Γ, any A ∈ p and any IP set (yα)α∈F in H, there exist a sub-IP-set (zβ)β∈F of 
(yα)α∈F and an IP-set (xβ)β∈F in G such that

∀f ∈ F ∀β ∈ F xβ + f(yβ) ∈ A

Proof. Let B = {n ∈ A : A − n ∈ p}. Because p is an idempotent ultrafilter, B ∈ p. 
Moreover, by Lemma 4.14 in [23], for any n ∈ B, we have B − n ∈ p. We will construct 
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sequences x1, x2, . . . in G and α1 < α2 < · · · in F inductively, so that for each n we 
have

∀f ∈ F ∀β ⊂ [n], β �= ∅ xβ + f(zβ) ∈ B (6)

where zβ =
∑

i∈β yαi
.

Since Γ is an R-family with respect to p, we can find α1 ∈ F and x1 ∈ G such that 
x1 + f(yα1) ∈ B for all f ∈ F ; in other words we get (6) for n = 1.

Now assume we have found x1, . . . , xn in G and α1 < · · · < αn in F such that (6) is 
true. Let

C = B ∩

⎛
⎜⎜⎝ ⋂

∅�=β⊂[n]
f∈F

B − xβ − f(zβ)

⎞
⎟⎟⎠ .

Each of the sets of the intersection is in p, and because p is closed under finite intersec-
tions, also C ∈ p. We now take advantage of the fact that Γ is licit to find, for each f ∈ F

and each nonempty β ⊂ [n], a map φf
β ∈ Γ such that f(zβ + y) = φf

β(y) + f(zβ). Let 
Φ = F ∪{φf

β : ∅ �= β ⊂ [n]; f ∈ F}. We can now use again the fact that Γ is an R-family 
with respect to p and find xn+1 ∈ G and αn+1 > αn in F such that xn+1 + f(zn+1) ∈ C

for all f ∈ Φ, where zn+1 := yαn+1 . We claim that (6) holds for n +1 with these choices, 
which will complete the induction and finish the proof.

Indeed, let f ∈ F and let β ⊂ [n + 1] be non-empty. If β ⊂ [n], then xβ + f(zβ) ∈ B

by the induction hypothesis. If β = {n + 1}, then xn+1 + f(zn+1) ∈ C ⊂ B because 
F ⊂ Φ. Otherwise the set defined by γ := β \ {n + 1} ⊂ [n] is nonempty. Recalling that 
xβ = xγ + xn+1 and zβ = zγ + zn+1, we have

xn+1 + φf
γ(zn+1) ∈ C ⊂ B − xγ − f(zγ),

so

xγ + xn+1 + f(zγ) + φf
γ(zn+1) ∈ B

which is equivalent to

xβ + f(zβ) ∈ B. �
A concrete corollary of this general result is Theorem 3.8, which can be interpreted 

as a polynomial version of the central sets theorem. It follows from Theorem 4.10 by 
taking G to be a group and letting H = Gj , Γ = P(Gj , G), and p to be a minimal 
idempotent (or an essential idempotent if G = Z). According to Examples 4.2 and 4.3, 
Γ is an R-family so Theorem 3.8 follows.

We are now in position to prove Theorem 4.9.
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Proof of Theorem 4.9. What we need to show is that there exists some IP-set (sα)α∈F
in Gm+1 such that, for all α ∈ F ,

c(sα,0) ∈ A

∀f ∈ F1 f(sα,0) + c(sα,1) ∈ A

∀f ∈ F2 f(sα,0, sα,1) + c(sα,2) ∈ A
...

...
...

...
∀f ∈ Fm f(sα,0, . . . , sα,m−1) + c(sα,m) ∈ A

(7)

The proof goes by induction on m; assume first that m = 0. Since A belongs to an 
idempotent ultrafilter, it contains an IP-set, say (x̃α)α∈F . Since c is IP-regular, we can 
find an IP-set (xα)α∈F such that 

(
c(xα)

)
is a sub-IP-set of (x̃α)α∈F and hence c(xα) ∈ A

for each α ∈ F . Let s(0)
α := xα for each α ∈ F .

Now suppose that m ≥ 1 and we have an IP-set in Gm

(s(m−1)
α )α∈F =

((
s
(m−1)
α,0 , s

(m−1)
α,1 , . . . , s

(m−1)
α,m−1

))
α∈F

such that for any α ∈ F we have D(m − 1, �F , c; s(m−1)
α ) ⊂ A; in other words, if we take 

si = s
(m−1)
α,i for each i = 0, . . . , m − 1 we get the first m lines of (7), for any α ∈ F .

Now apply Theorem 4.10 with H = Gm, Γ = Γm, F = Fm and (yα)α∈F =
(s(m−1)

α )α∈F . We obtain a sub-IP-set (tα) of (s(m−1)
α ) in Gm and some IP set (xα)α∈F

in G such that

∀α ∈ F ∀f ∈ Fm xα + f(tα) ∈ A. (8)

Since c is IP-regular we can find an IP-set (yβ)β∈F in G such that 
(
c(yβ)

)
β∈F is a 

sub-IP-set of (xα)α∈F ; in other words, there exist α1 < α2 < · · · such that c(yβ) =∑
i∈β xαi

for all β ∈ F . To ease the notation, let αβ denote the set αβ :=
⋃

i∈β αi ∈ F . 
Then

∀β ∈ F c(yβ) = xαβ
. (9)

Now define (s(m)
β )β∈F by taking the corresponding sub-IP-set of (tα)α∈F for the first 

m coordinates and letting (yβ)β∈F be the last coordinate. More precisely we have:

s(m)
β =

(
tαβ

, yβ
)
∈ Gm+1.

Now fix β ∈ F ; we need to show that D(m, �F , c; s(m)
β ) ⊂ A. If j ∈ {0, 1, . . . , m − 1} and 

f ∈ Fj then

f
(
s
(m)
β,0 , . . . , s

(m)
β,j−1

)
+ c(s(m)

β,j ) = f
(
s
(m−1)
α ,0 , . . . , s

(m−1)
α ,j−1

)
+ c(s(m−1)

α ,j ) (10)

β β β
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and the expression in (10) is in A by induction. If j = m then

f
(
s
(m)
β,0 , . . . , s

(m)
β,j−1

)
+ c(s(m)

β,j ) = f(tαβ
) + c(yβ) = c(yβ) + f(tαβ

). (11)

By (9), the expression in (11) is equal to xαβ
+ f(tαβ

) and hence, by (8), it is also 

in A. We conclude that D(m, �F , c; s(m)
β ) ⊂ A. This finishes the induction process and 

the proof. �
We notice that Theorem 4.9 allows for repeated terms in D(m, �F , c; s), in other words, 

one could have 1 ≤ i ≤ j ≤ m and f ∈ Fi, g ∈ Fj such that

f(s0, . . . , si−1) + c(si) = g(s0, . . . , sj−1) + c(sj).

In fact, under the same conditions as Theorem 4.9, one may not be able to find s for which 
D(m, �F , c; s) has no repeated terms. However, if one makes the additional assumption 
that for every j ∈ {1, . . . , m} and every f, g ∈ Fj the set 

{
x ∈ Gj : f(x) = g(x)

}
is 

finite, then one can modify the above proof to guarantee the additional property that 
D(m, �F , c; s) has no repeated terms.

Indeed, observe that this condition implies that, for every j ∈ {1, . . . , m}, the set

{
x ∈ Gj : (∃f, g ∈ Fj) : f(x) = g(x)

}
is finite. Thus, given any IP-set (xα)α∈F in Gj there exists a sub-IP-set (yβ)β∈F such 
that for all β ∈ F and f, g ∈ Fj one has f(yβ) �= g(yβ). Only one modification of the 
proof of Theorem 4.9 is needed to obtain this condition: after choosing the sub-IP-set 
(tα) of (s(m−1)

α ) with the property (8), pass to a further sub-IP-set (yβ) of (tα) with the 
property that for all β ∈ F and all f, g ∈ Fj one has f(yβ) �= g(yβ).

The following theorem summarizes the above discussion.

Theorem 4.11. Let G, p, c, m, F1, . . . , Fm, �F be as in Theorem 4.9. Assume that for every 
j ∈ {1, . . . , m} and every f, g ∈ Fj the set 

{
x ∈ Gj : f(x) = g(x)

}
is finite. Then for 

any A ∈ p there exists an IP-set 
(
sα
)
α∈F in Gm+1 such that D(m, �F , c; sα) is contained 

in A and has no repeated terms, in the sense that for every α ∈ F and for all i, j with 
1 ≤ i ≤ j ≤ m and f ∈ Fi, g ∈ Fj we have

f(s0, . . . , si−1) + c(si) �= g(s0, . . . , sj−1) + c(sj).

We will now deduce Theorems 3.5 and 3.6 from our abstract Theorem 4.9.

Proof of Theorem 3.5. Let G be a countable commutative semigroup and let A ⊂ G be 
a central set. Thus, there exists a minimal idempotent p ∈ βG with A ∈ p.

We start by proving part (1). Assume (m, �F, c) is a shape in G where c is the identity 
map and that Fj ⊂ Hom(Gj , G) for each j = 1, . . . , m. The endomorphism c is trivially 
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IP-regular. For each j ∈ N let Γj = Hom(Gj , G); it follows from Proposition 4.4 that 
each Γj is an R-family with respect to p. Finally, by Example 4.6 each Γj is licit. We 
can now apply Theorem 4.9 to find s ∈ Gm+1 with D(m, �F , c; s) ⊂ A as desired.

Next we prove part (2). Assume G is a group and (m, �F , c) is a shape in G where 
c is an endomorphism whose image has finite index in G and, for each j = 1, . . . , m, 
Fj ⊂ P(Gj , G). To see that c is IP-regular, observe that any IP-set has a sub-IP-set 
contained in the image of c, and that IP-sets carry through homomorphisms. For each 
j ∈ N let Γj = P(Gj , G); it follows from Example 4.3 that each Γj is an R-family with 
respect to p. By Example 4.7 each Γj is licit. We can now apply Theorem 4.9 to find 
s ∈ Gm+1 with D(m, �F , c; s) ⊂ A as desired. �
Proof of Theorem 3.6. Let n ∈ N, let G = Zn and let A ⊂ Zn be a D-set. Thus, there 
exists an essential idempotent p ∈ β(Zn) with A ∈ p. Assume (m, �F , c) is a shape 
in Zn where c is an endomorphism whose image has finite index in Zn and, for each 
j = 1, . . . , m, Fj ⊂ P(Znj , Zn). To see that c is IP-regular, observe that any IP-set has a 
sub-IP-set contained in the image of c, and that IP-sets carry through homomorphisms.

For each j ∈ N let Γj = P(Znj , Zn); it follows from Example 4.2 that each Γj is 
an R-family with respect to p. By Example 4.7 each Γj is licit. We can now apply 
Theorem 4.9 to find s ∈ Gm+1 with D(m, �F , c; s) ⊂ A as desired. �
5. Proofs of Theorems 3.13 and 3.14

The main purpose of this section is to prove Theorems 3.13 and 3.14.
Our proof of Theorem 3.14 is inspired by a proof of Deuber’s original result presented 

in [17]. Before we start with the proofs we need a definition.

Definition 5.1. Let G be a countable commutative semigroup, let (m, �F, c) be a shape 
in G, let s ∈ Gm+1 and let k ∈ {0, 1, . . . , m}. The k-th line of the (m, �F , c)-set 
D(m, �F , c; s) is the set

{f(s0, . . . , sk−1) + c(sk) : f ∈ Fk}.

Observe that D(m, �F , c; s) is the union of its m + 1 lines.
The proof of Theorem 3.14 goes by induction. Due to its complicated nature it is 

convenient to isolate the induction step as a separate lemma.

Lemma 5.2. Let G be a countable commutative semigroup with identity 0, let Λconc be the 
clique defined in Theorem 3.14, let (m, �F , c) ∈ Λconc and let r ∈ N. Then there exists a 
shape (M, �H, C) ∈ Λconc such that for any r-coloring of an (M, �H, C)-set such that the 
last k lines are each monochromatic (but different lines can have different colors) there 
exists a subset which is an (m, �F , c)-set whose last k + 1 lines are each monochromatic.

Moreover, if c is the identity map, we can take C to be the identity map as well, and 
if c is in the center of End(G) we can take C to be in the center of End(G).
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Proof. Since any subset of a monochromatic set is monochromatic, we can work with 
conveniently chosen supersets of the Fi’s. Hence we may and will assume that each Fi

contains the projection homomorphisms πj : Gi → G (in each coordinate) and the zero 
homomorphism. We will also add to each Fi all the homomorphisms of the form

φ(x0, . . . , xi−1) = f(x0, . . . , xj−1) with f ∈ Fj and j < i.

The main technical tool of our proof is Hales–Jewett’s theorem (Theorem 2.14). Let 
n = HJ(|Fm−k|, r) be such that any r-coloring of Fn

m−k contains a monochromatic 
combinatorial line. Since c is concordant with �F , there exists an endomorphism b : G → G

and, for each f ∈ Fm−k, there exists af ∈ Hom(Gm−k, G) such that c ◦af = f ◦b (where 
b ∈ End(Gm−k) is defined by b(x1, . . . , xm−k) = b(x1) + · · · + b(xm−k)).

For convenience we denote by N the product N = n(m − k) and let M = N + k. For 
each j = 1, . . . , M , let Hj be a finite set of homomorphisms from Gj → G that will be 
determined later. Let HN be the set of all homomorphisms φ : GN → G of the form

φ(t0, . . . , tN−1) =
n−1∑
i=0

fi ◦ b(ti(m−k), ti(m−k)+1, . . . , ti(m−k)+m−k−1)

with f0, . . . , fn−1 ∈ Fm−k. Finally, make �H = (H1, . . . , HM ) and C = c ◦ b. Observe that 
if c is in the center of End(G), then b = c, and hence C is also in the center of End(G). 
Moreover, if c is the identity map, then b is also the identity map, and so is C.

Let t0, . . . , tM ∈ G be arbitrary and let SH be the (M, �H, C)-set they induce. It will 
simplify considerably the notation to let

Ti := (ti(m−k), ti(m−k)+1, . . . , ti(m−k)+m−k−1) ∈ Gm−k

for each i = 0, . . . , n − 1. Thus, in particular, we can write

HN =
{
φ : (t0, . . . , tN−1) �→

n−1∑
i=0

fi ◦ b(Ti) : f0, . . . , fn−1 ∈ Fm−k

}
.

Assume that we are given a coloring of SH into r colors such that each of the last k lines 
are monochromatic (but not necessarily of the same color).

Color w = (f0, . . . , fn−1) ∈ Fn
m−k with the color of

n−1∑
i=0

fi ◦ b(Ti) + C(tN ). (12)

Observe that the elements in (12) are in the Nth line of SH . It follows from the Hales–
Jewett theorem that one can find a variable word w ∈ (Fm−k ∪ {∗})n which induces a 
monochromatic combinatorial line. We let 〈n〉 = {0, . . . , n −1}, let A = {i ∈ 〈n〉 : wi = ∗}
and let B = 〈n〉 \A. Now define
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uj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b(tM−m+j) if m− k < j ≤ m∑
i∈B

awi
(Ti) + b(tN ) if j = m− k

∑
i∈A

b(ti(m−k)+j) if 0 ≤ j < m− k

(13)

Note that, for each 
 = 0, . . . , m, the point um−� depends only on t0, . . . , tM−�.
We claim that, with the right choice of �H, the (m, �F , c)-set SF generated by u0, . . . , um

is a subset of SH and that each of the last k+ 1 lines of SF are monochromatic. Indeed, 
for m − k < j ≤ m, the j-th line of SF is the set

{f(u0, . . . , uj−1) + c(uj) : f ∈ Fj} = {f(u0, . . . , uj−1) + C(tM−m+j) : f ∈ Fj}.

This will be a subset of the line M −m + j of SH if we make HM−m+j contain all the 
homomorphisms φ of the form

φ(t0, . . . , tM−m+j−1) = f(u0, . . . , uj−1)

for any f ∈ Fj , any possible choice of A, B ⊂ 〈n〉 and any wi ∈ Fm−k (with the uj ’s 
being determined by (13)). Hence the j-th line of SF is monochromatic.

The (m − k)-th line of SF is the set

{f(u0, . . . , um−k−1) + c(um−k) : f ∈ Fm−k}

=
{
f

(∑
i∈A

b(Ti)
)

+
∑
i∈B

c ◦ awi
(Ti) + C(tN ) : f ∈ Fm−k

}

=
{∑

i∈A

f ◦ b(Ti) +
∑
i∈B

wi ◦ b(Ti) + C(tN ) : f ∈ Fm−k

}

which is precisely the monochromatic combinatorial line found by applying the Hales–
Jewett’s theorem. Hence the (m −k)-th line of SF is inside SH and it is monochromatic.

For j < m − k, the j-th line of SF is the set

{f(u0, . . . , uj−1) + c(uj) : f ∈ Fj}

=
{
f(u0, . . . , uj−1) + c

(∑
i∈A

b(ti(m−k)+j)
)

: f ∈ Fj

}
.

Let a = maxA. Then the j-th line of SF can be written as

⎧⎨
⎩f(u0, . . . , uj−1) +

∑
C(ti(m−k)+j) + C(ta(m−k)+j) : f ∈ Fj

⎫⎬
⎭

i∈A\{a}
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which will be contained in the a(m − k) + j-th line of SH if we make Ha(m−k)+j contain 
all the homomorphisms φ of the form

φ(t0, . . . , ta(m−k)+j) =
∑
i∈A

f(u0, . . . , uj−1) + C(ti(m−k)+j)

for any f ∈ Fj and any possible choice of A ⊂ 〈a〉, where the dependence of ui on ti is 
given by (13).

It is routine to verify that C is concordant with H. This finishes the proof. �
We move now to proving Theorem 3.14.

Proof of Theorem 3.14. If r = 1 there is nothing to prove so we assume r > 1. Let 
(m, �F , c) ∈ Λconc, let n = m(r − 1) and, for each j = 1, . . . , n, let H(0)

j be a finite 
set of homomorphisms φ : Gj → G of the following form. Take 
 ∈ {1, . . . , j} and let 
0 ≤ i1 < · · · < i� < j be arbitrary. Let f ∈ F� and define

φf,i1,...,i�(x0, . . . , xj−1) = f(xi1 , xi2 , . . . , xi�).

We let H(0)
j =

{
φf,i1,...,i�

∣∣∣
 ∈ {1, . . . , j}, f ∈ F�, 0 ≤ i1 < · · · < i� < j
}

. Now let 
�H(0) = (H(0)

1 , . . . , H(0)
m0). Finally, put c0 = c and m0 = n.

Applying repeatedly Lemma 5.2, we construct inductively sequences (mi)ni=0, (
�H(i))n

i=0 and (ci)ni=0, such that the shape (mi, �H(i), ci) satisfies the conclusion of 
Lemma 5.2 when we input the shape (mi−1, �H(i−1), ci−1) and set k = n − i.

Let M = mn, �H = �H(n) and C = cn. By construction, for any r-coloring of an 
(M, �H, C)-set SH we can find a subset which is an (mn−1, �H(n−1), cn−1)-set with the last 
line monochromatic. Iterating, we obtain for each i = 0, . . . , n, a sub (mi, �H(i), ci)-set 
with the last n − i lines monochromatic. In particular, setting i = 0 we obtain an 
(n, �H(0), c)-set with each line monochromatic (but different lines can have different col-
ors).

Let t = (t0, . . . , tn) be the generator of this (n, �H(0), c)-set. Applying the pigeonhole 
principle one can find, among the n + 1 lines of D(n, �H(0), c; t), m + 1 lines of the 
same color, say the lines 
0, 
1, . . . , 
m. For each j = 0, . . . , m let sj = t�j and let s =
(s0, . . . , sm). By the construction of H(0)

j we deduce that the j-th line of D(m, �F , c; s)
is contained in 
j-th line of D(n, �H(0), c; t). Therefore D(m, �F , c; s) is monochromatic as 
desired. �

To derive Theorem 3.13 from Theorem 3.14 we need first to establish a lemma.
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Definition 5.3. Given two shapes λ1 = (m1, �F (1), c1) and λ2 = (m2, �F (2), c2) in a count-
able commutative semigroup G, we say that λ1 contains λ2 if for every s1 ∈ Gm1+1 there 
exists s2 ∈ Gm2+1 such that

D(m1, �F
(1), c1; s1) ⊃ D(m2, �F

(2), c2; s2).

Lemma 5.4. Let G be a countable commutative semigroup and let ΛG be the clique defined 
in Theorem 3.13. For any two shapes λ1, λ2 ∈ ΛG there exists some shape λ ∈ Λ which 
contains both λ1 and λ2.

Proof. Let (mi, F (i), ci) = λi for i = 1, 2. Let c = c1 ◦ c2 = c2 ◦ c1 and let m =
max(m1, m2). We can assume that m1 = m2 = m, putting F (i)

k = ∅ for k > mi if 
necessary. For each i = 1, 2 and n = 1, . . . , m, let ci ∈ End(Gn) be the map ci :
(g0, . . . , gn−1) �→

(
ci(g0), . . . , ci(gn−1)

)
and let

Fn =
{
f ◦ c2 : f ∈ F (1)

n

}
∪
{
f ◦ c1 : f ∈ F (2)

n

}
.

Let F = (F1, . . . , Fm) and let λ = (m, �F , c). Since both c1 and c2 are in the center of 
End(G), so is c and hence λ ∈ ΛG.

Finally, given any s ∈ Gm we need to show that D(m, �F , c; s) contains an 
(mi, F (i), ci)-set for each i = 1, 2. Let s(1) = c2(s) =

(
c2(s0), . . . , c2(sm)

)
and 

s(2) = c1(s) =
(
c1(s0), c1(s1), . . . , c1(sm)

)
. We claim that

D
(
mi, F

(i), ci; s(i)) ⊂ D(m, �F , c; s).

Indeed, for any i = 1, 2, any n = 0, 1, . . . , m and any f ∈ F
(i)
n we have

ci(s(i)
n ) + f

(
s
(i)
n−1, . . . , s

(i)
0
)

= ci
(
c3−i(sn)

)
+ f
(
c3−i(sn−1, . . . , s0)

)
. (14)

Since ci ◦ c3−i = c and for f ∈ F
(i)
n we have f ◦ c3−i ∈ Fn, we deduce that the element

(14) is in D(m, �F , c; s) as desired. �
Proof of Theorem 3.13. Let A be a ΛG-rich set and consider an arbitrary finite partition 
A = A1 ∪ · · · ∪Ar. Assume none of the Ai is Λ-large. Then for each i ∈ {1, . . . , r} there 
exists a shape λi ∈ ΛG such that Ai does not contain an (m, �F , c)-set of shape λi.

Applying Lemma 5.4 r − 1 times, one can find a shape λ ∈ ΛG that contains each of 
the shapes λ1, . . . , λr. Therefore, none of the Ai can contain an (m, �F , c)-set of shape λ.

It follows from Theorem 3.14 that there exists a shape (M, �H, C) ∈ ΛG such that any 
partition of an (M, �H, C)-set into r cells contains an (m, �F , c)-set in a single cell. On the 
one hand, because A was assumed to be ΛG-large, it will contain an (M, �H, C)-set. On 
the other hand, this implies that some Ai contains an (m, �F , c)-set, contradicting the 
construction above. This contradiction implies that some Ai must be ΛG-large. �
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Theorems 3.14 and 3.13 deal only with shapes (m, �F , c) where each component Fi

of �F is a set of homomorphisms. It is not clear if the methods used to prove them can 
be adapted to more general cliques, such as those where the Fi are allowed to contain 
polynomial maps.

6. Λ-systems

In this section we prove Theorems 3.17 and 3.20 concerning the partition regularity 
of Λ-systems.

We start with the proof of Theorem 3.17.

Proof of Theorem 3.17. We show that in fact any central set contains a Λ-system. Let 
A be a central set and let p ∈ βG be a minimal idempotent such that A ∈ p. Let 
B = {n ∈ A : A − n ∈ p}. Observe that B ∈ p and that B − n ∈ p for every n ∈ B.

Next, enumerate Λ = {λ1, λ2, . . . } and let λi = (mi, �F (i), ci). It follows from Theo-
rem 4.9 that there exists s1 ∈ Gm1+1 such that D(m1, �F (1), c1; s1) ⊂ B.

We will construct inductively a sequence s1, s2, . . . such that for all n ∈ N sn ∈ Gmn+1

and such that

∀α ⊂ [n], α �= ∅
∑
i∈α

D(mi, �F
(i), ci; si) ⊂ B. (15)

Above we found s1 such that (15) holds with n = 1. Assume now that s1, . . . , sn satisfying 
(15) have been found. Let

Tn = {0G} ∪
⋃

∅�=α⊂[n]

∑
i∈α

D(mi, �F
(i), ci; si)

and let Bn =
⋂

x∈Tn
(B − x) \ Tn. Observe that Bn ⊂ B. Since for each x ∈ Tn we have 

B − x ∈ p and because p is an ultrafilter and hence closed under finite intersections, we 
deduce that Bn ∈ p. (Removing the finite set Tn does not affect this because p is not 
principal and hence can not contain finite sets.)

Using Theorem 4.9 again we can find some sn+1 ∈ Gmn+1+1 such that

D(mn+1, �F
(n+1), cn+1; sn+1) ⊂ Bn.

We claim that for this choice of sn+1 the inclusions (15) hold with n + 1.
Indeed, if ∅ �= α ⊂ [n + 1] does not contain n + 1, then (15) follows by induction. If 

n + 1 ∈ α then let β = α \ {n + 1} ⊂ [n] and let Q =
∑

i∈β D(mi, �F (i), ci; si). Observe 
that

D(mn+1, �F
(n+1), cn+1; sn+1) ⊂ Bn ⊂

⋂
(B − x).
x∈Q
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Thus 
∑

i∈α D(mi, �F (i), ci; si) = D(mn+1, �F (n+1), cn+1; sn+1) + Q ⊂ B. This proves the 
claim that (15) holds for n + 1, which finishes the induction. �

To prove Theorem 3.20 takes some more work.

Lemma 6.1. Let G and ΛG be as in Theorem 3.20 and let Λ̃ ⊂ ΛG be a cofinite subset. 
Then any Λ̃-rich set is a ΛG-rich set.

Proof. Since Λ̃ is cofinite in ΛG there must exist some shape λ̃ ∈ ΛG which is not 
contained in any shape in ΛG \ Λ̃; in other words, any shape containing λ̃ is in Λ̃.

For any shape λ ∈ ΛG one can use Lemma 5.4 to find another shape φ(λ) ∈ ΛG which 
contains both λ and λ̃. Thus φ(λ) is actually inside Λ̃.

Given any Λ̃-rich set A, it contains a φ(λ)-set for each λ ∈ ΛG, hence A contains a 
λ-set for each λ ∈ ΛG, which is to say, A is ΛG-rich. �
Lemma 6.2. Let G and ΛG be as in Theorem 3.20 and let U ⊂ βG be the set of ultrafilters 
such that for every p ∈ U , any element A ∈ p is ΛG-rich. Then U contains a non-empty 
compact semigroup. Moreover a set A ⊂ G is a ΛG-system if and only if there exists an 
idempotent ultrafilter p ∈ U such that A ∈ p.

Proof. First assume that A ⊂ G is a ΛG-system. Let s be a function which assigns to 
each shape λ = (m, �F , c) ∈ ΛG a vector s(λ) ∈ Gm+1 such that

⋃
α∈F(ΛG)

(∑
λ∈α

D
(
λ; s(λ)

))
⊂ A.

For each subset Λ̃ ⊂ ΛG denote by DS(Λ̃) the set

DS(Λ̃) =
⋃

α∈F(Λ̃)

(∑
λ∈α

D
(
λ; s(λ)

))

and let K̃ ⊂ βG be the intersection of the compact sets DS(Λ̃) as Λ̃ runs over all cofinite 
subsets of ΛG. In other words

K̃ =
⋂

α∈F(ΛG)

DS(ΛG \ α) ⊂ βG.

Next let K = K̃ ∩ U ; we claim that K is non-empty. First, note that for any cofinite 
Λ̃ ⊂ ΛG, the set DS(Λ̃) is Λ̃-rich, and hence, in view of Lemma 6.1, it is also ΛG-rich. 
Using Theorem 3.13, it follows from [23, Theorem 3.11] that the intersection U ∩DS(Λ̃)
is a non-empty compact set. Finally, for any finitely many cofinite subsets Λ1, . . . , Λk of 
ΛG, we have that Λ̃ = Λ1 ∩ · · · ∩ Λk is itself a cofinite subset of ΛG, so the intersection
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k⋂
i=1

(
DS(Λi) ∩ U

)
⊃ DS(Λ̃) ∩ U

is nonempty. This implies that the infinite intersection K = K̃ ∩ U is also nonempty, 
proving the claim.

Observe that for any p ∈ K, since DS(Λ̃) ⊂ DS(λ) ⊂ A for any subset Λ̃ ⊂ Λ, we 
have that A ∈ p. Our strategy now is to show that K is a closed semigroup and with the 
help of Ellis’s lemma5 find an idempotent p ∈ K. This idempotent will be an element of 
U that contains A.

Let p, q ∈ K; we first show that p +q ∈ U . Indeed let B ∈ p +q and let λ = (m, �F , c) ∈
ΛG be an arbitrary shape. By definition, {n ∈ G : B − n ∈ p} ∈ q. Let s(1) ∈ Gm be 
such that D(λ; s(1)) ⊂ {n ∈ G : B − n ∈ p}, let

C =
⋂

n∈D(λ;s(1))

B − n ∈ p

and let s(2) ∈ Gm be such that D(λ; s(2)) ⊂ C. Thus, in particular, for any j = 0, 1, . . . , m
and any f ∈ Fj we have

(
c(s(2)

j ) + f(s(2)
j−1, . . . , s

(2)
0 )
)

+ c(s(1)
j ) + f(s(1)

j−1, . . . , s
(1)
0 ∈ B.

Thus, taking s = s(1) + s(2), and because c, f are homomorphisms, we have D(λ; s) ⊂ B. 
Since λ ∈ ΛG was arbitrary we conclude that B is ΛG-large, and because B ∈ p + q was 
arbitrary, we conclude that p + q ∈ U .

Next we need to show that for any cofinite Λ̃ ⊂ ΛG we have p + q ∈ DS(Λ̃), which is 
equivalent to DS(Λ̃) ∈ p + q. By definition, this is equivalent to {n ∈ G : DS(Λ̃) − n ∈
p} ∈ q and since both p, q ∈ K, this will follow if we show that

DS(Λ̃) ⊂ {n ∈ G : DS(Λ̃) − n ∈ p}. (16)

Fix n ∈ DS(Λ̃). Then we can decompose n =
∑

λ∈α xλ for some α ∈ F(Λ̃) and xλ ∈
D
(
λ; s(λ)

)
. In particular, DS(Λ̃) − n ⊂ DS(λ̃ \ α) and hence it is indeed in p, proving 

(16). This concludes the proof of the claim that K is a non-empty compact semigroup. 
Thus by Ellis’s lemma, it contains an idempotent. This finishes the proof of the first 
direction.

Now we prove the converse: assume that p ∈ U is idempotent and let A ∈ p. Let 
B = {n ∈ A : A − n ∈ p} and observe that B ∈ p and for every n ∈ p also B − n ∈ p.

Next enumerate ΛG = {λ1, λ2, . . . } and let λi = (mi, �F (i), ci). It follows from Theo-
rem 3.14 that there exists s1 ∈ Gm1+1 such that D(m1, �F (1), c1; s1) ⊂ B.

5 Ellis’s lemma [14] states that any semi-continuous compact semigroup contains an idempotent.
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One can construct a sequence s1, s2, . . . inductively such that for all n ∈ N, one has 
sn ∈ Gmn+1 and

∀α ⊂ [n], α �= ∅
∑
i∈α

D(mi, �F
(i), ci; si) ⊂ B. (17)

The procedure for constructing this sequence is the same as in the proof of Theorem 3.17
and will therefore be omitted. The sequence s1, s2, . . . satisfies (17) so B is a ΛG-system, 
concluding the proof. �

We can now give the proof of Theorem 3.20:

Proof of Theorem 3.20. Let A ⊂ G be a ΛG-system. By Lemma 6.2, there exists an 
idempotent ultrafilter p ∈ βG such that A ∈ p and every element of p is ΛG-rich. For 
any finite partition of A, one of the pieces must still be in p. Invoking again Lemma 6.2
we deduce that every element of p is a ΛG-system, finishing the proof. �
7. Applications to systems of equations

In this section we derive some corollaries of our results that pertain to partition 
regularity of homogeneous systems of equations. In particular we show that the sufficient 
condition in Rado’s theorem, when appropriately formulated, applies to any countable 
commutative semigroup. Our departure point is Rado’s theorem itself.

Definition 7.1. Let d, k ∈ N, let A be a k × d matrix with integer coefficients and let 
c1, . . . , cd ∈ Zk be the columns of A. We say that A satisfies the columns condition if 
there exist m ∈ N and integers 0 = d0 < d1 < d2 < · · · < dm < dm+1 = d such that for 
every 0 ≤ j ≤ m, the sum

cdj+1 + cdj+2 + · · · + cdj+1

is in the linear span (over Q) of the set {ci : i ≤ dj} (with the understanding that the 
only vector in the linear span of the empty set is 0).

Theorem 7.2 (Rado [26]). Let d, k ∈ N and let A be a k × d matrix with integer entries. 
Then for any finite coloring of N there exists x = (x1, . . . , xd) ∈ Nd with all coordinates 
in the same color and Ax = 0 if and only if A satisfies the columns condition (possibly 
after some permutation of the columns of A).

The ‘if’ direction of Rado’s theorem follows directly from Deuber’s Theorem 1.4. The 
idea is that the columns condition implies the existence of a triple (m, p, c) ∈ N3 such 
that any (m, p, c)-set contains a solution to Ax = 0.

More precisely, using the columns condition one can find a d × (m +1) matrix B such 
that AB = 0 and, for any s ∈ Nm+1, the entries of the vector Bs are contained in the 
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(m, p, c)-set D(m, p, c; s) for some c, p ∈ N that only depend on A. Then, for any finite 
coloring of N one can find s ∈ Nm+1 such that D(m, p, c; s) is monochromatic, and in 
particular, all coordinates of Bs are monochromatic. Since AB = 0, also A(Bs) = 0. 
The details of this deduction can be found, for instance, in [16].

We now turn to linear systems of equations in countable commutative semigroups and 
establish an analogue of the columns condition in this setting.

Definition 7.3. Let G be a countable commutative semigroup with identity 0, let k, d ∈ N

and let A : Gd → Gk be a homomorphism. For each i = 1, . . . , d let ci : G → Gk be the 
map defined by ci(x) = A(0, . . . , 0, x, 0, . . . , 0), where the x appears in the i-th position.

We say that A satisfies the columns condition if there exist c ∈ End(G), m ∈ N and 
0 = d0 < d1 < · · · < dm+1 = d such that

(1) The composition (c1 + c2 + · · · + cd1) ◦ c is the zero map;
(2) For each 1 ≤ t ≤ m there are f (t)

1 , . . . , f (t)
dt

∈ End(G) such that

(cdt+1 + · · · + cdt+1) ◦ c +
(
c1 ◦ f (t)

1 + · · · + cdt
◦ f (t)

dt

)
= 0. (18)

This definition can be seen as a direct extension of Definition 7.1. Indeed, when 
G = Z, the only homomorphisms are given by multiplication by a fixed integer. Writing 
cdt+1 + · · · + cdt+1 as a linear combination

cdt+1 + · · · + cdt+1 = g
(t)
1 c1 + · · · g(t)

dt
ct (19)

where g(t)
i ∈ Q, let q ∈ Z \{0} be the common denominator of g(t)

1 , . . . , g(t)
dt

, let c ∈ End(Z)
be multiplication by q and let f (t)

i be multiplication by q · g(t)
i . With these choices, 

equation (18) is just another form of (19).
The next proposition is an extension of the ‘if’ part of Rado’s theorem to countable 

commutative semigroups.

Proposition 7.4. Let G be a countable commutative semigroup with identity 0, let k, d ∈ N

and let A : Gd → Gk be a homomorphism which satisfies the columns condition for some 
c ∈ End(G) that is either in the center of End(G) or is IP-regular. Then for any finite 
coloring of G there exists x = (x1, . . . , xd) with all entries in the same color such that 
A(x) = 0.

Proof. Let m ∈ N and c ∈ End(G) be given by the columns condition. For each j =
1, . . . , m let

Fj =
{
f :
(
s0, . . . , sj−1

)
�→

j−1∑
f

(m−�)
i (s�) : dm−j < i ≤ dm+1−j

}

�=0
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and let �F = (F1, . . . , Fm). Assume we are given a finite coloring of G. Appealing to ei-
ther Theorem 3.14 or Theorem 4.9 (according to whether c is in the center of End(G) or 
IP-regular) we can find s ∈ Gm+1 such that the (m, �F , c)-set D(m, �F , c; s) is monochro-
matic. For each i = 1, . . . , d, let j ∈ {0, . . . , m} be such that dm−j < i ≤ dm+1−j (and 
observe that j is uniquely determined). Let

xi =
j−1∑
�=0

f
(m−�)
i (s�) + c(sj).

Observe that xi ∈ D(m, �F , c; s) and hence all the entries of the vector x = (x1, . . . , xd) ∈
Gd are of the same color. Finally we need to check that A(x) = 0. Let c1, . . . , cd be as 
in Definition 7.3 and observe that each ci : G → Gk is a homomorphism. We have

A(x) =
d∑

i=1
ci(xi) =

m∑
j=0

dm−j+1∑
i=dm−j+1

ci(xi)

=
m∑
j=0

dm−j+1∑
i=dm−j+1

ci

(
j−1∑
�=0

f
(m−�)
i (s�) + c(sj)

)

=
m∑
j=0

dm−j+1∑
i=dm−j+1

(ci ◦ c)(sj) +
m∑
j=0

dm−j+1∑
i=dm−j+1

j−1∑
�=0

(ci ◦ f (m−�)
i )(s�)

=
m∑
�=0

⎡
⎣ dm−�+1∑
i=dm−�+1

(ci ◦ c) +
m−�−1∑
j=0

dm−j+1∑
i=dm−j+1

(ci ◦ f (m−�)
i )

⎤
⎦ (s�)

=
m∑
t=0

⎡
⎣
⎛
⎝ dt+1∑

i=dt+1

ci

⎞
⎠ ◦ c +

dt∑
i=1

ci ◦ f (t)
i

⎤
⎦ (s�)

=0

where the last equality follows from the columns conditions. �
While Proposition 7.4 provides a quite satisfactory extension of the sufficient condition 

in Rado’s theorem to a general setting, it is not even clear how to formulate the necessary 
condition.

Problem 7.5. Let G be a countable commutative semigroup, let k, d ∈ N and let A :
Gd → Gk be a homomorphism. Give necessary and sufficient conditions for A so that 
for any finite partition of G there exists a non-zero x = (x1, . . . , xd) with all entries in 
the same cell of the partition and such that A(x) = 0.
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We conclude by remarking that an analogue of the columns condition can be concocted 
for polynomial equations in such a way that an analogue of Proposition 7.4 holds, but 
the condition is cumbersome and so it appears to be of little practical value.
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