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Abstract

Let P = {p1, . . . , pr} ⊂ Q[n1, . . . , nm] be a family of polynomials such that
pi(Zm) ⊆ Z, i = 1, . . . , r. We say that the family P has the PSZ property if
for any set E ⊆ Z with d∗(E) = lim supN−M→∞

|E∩[M,N−1]|
N−M > 0 there exist in-

finitely many n ∈ Zm such that E contains a polynomial progression of the form
{a, a + p1(n), . . . , a + pr(n)}. We prove that a polynomial family P = {p1, . . . , pr}
has the PSZ property if and only if the polynomials p1, . . . , pr are jointly inter-
sective, meaning that for any k ∈ N there exists n ∈ Zm such that the integers
p1(n), . . . , pr(n) are all divisible by k. To obtain this result we give a new ergodic
proof of the polynomial Szemerédi theorem, based on the fact that the key to the
phenomenon of polynomial multiple recurrence lies with the dynamical systems de-
fined by translations on nilmanifolds. We also obtain, as a corollary, the following
generalization of the polynomial van der Waerden theorem: If p1, . . . , pr ∈ Q[n] are
jointly intersective integral polynomials, then for any finite partition Z =

⋃k
i=1 Ei of

Z, there exist i ∈ {1, . . . , k} and a, n ∈ Ei such that {a, a+p1(n), . . . , a+pr(n)} ⊂ Ei.

1 Introduction

Let us call a polynomial p ∈ Q[n] integral if it takes on integer values on the integers.
The polynomial Szemerédi theorem ([BeL]) states that if a set E ⊆ Z has positive upper
Banach density, d∗(E) = lim supN−M→∞

|E∩[M,N−1]|
N−M > 0, then for any finite family of

integral polynomials P = {p1, . . . , pr} with pi(0) = 0, i = 1, . . . , r, one can find an
∗The first two authors were supported by NSF grant DMS-0600042
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arbitrarily large n ∈ N such that, for some a ∈ E, {a, a + p1(n), . . . , a + pr(n)} ⊂ E.
Moreover, the set

NP (E) =
{

n ∈ Z : for some a, {a, a + p1(n), . . . , a + pr(n)} ⊂ E
}

is syndetic, that is, NP (E) has a nontrivial intersection with any long enough interval in Z
(see [BeM1]). The polynomial Szemerédi theorem is an extension of Szemerédi’s theorem
on arithmetic progressions, which corresponds to pi(n) = in, i = 1, . . . , r, (see [Sz] and
[Fu1]) and of the Sàrközy–Furstenberg theorem, which corresponds to the case r = 1 (see
[Sa], [Fu1], [Fu2]).

It is not hard to see that the condition pi(0) = 0, i = 1, . . . , r, in the polynomial
Szemerédi theorem is not superfluous. (Consider, for example, r = 1, p(n) = 2n + 1,
E = 2N, or r = 1, p(n) = n2 + 1, E = 3N.) On the other hand, it is also clear
that this condition is not a necessary one. For example, it is easy to see that it can
be replaced by the condition pi(n0) = 0, i = 1, . . . , r, for some n0 ∈ Z. Actually, the
latter condition still falls short of being necessary. Let us say that a family of integral
polynomials P = {p1, . . . , pr} has the PSZ property if for every set E ⊆ Z with d∗(E) > 0
the introduced above set NP (E) is nonempty, and let us say that P has the SPSZ property
if for every set E ⊆ Z with d∗(E) > 0 the set NP (E) is syndetic. Our goal in this paper
is to establish necessary and sufficient conditions for a family of integral polynomials to
have the PSZ property. When r = 1, such a condition was obtained in [KaM]. Namely,
it was proved in [KaM] that a family consisting of a single integral polynomial p has the
PSZ property if and only if p is intersective, meaning that for any k ∈ N the intersection
{p(n), n ∈ Z}∩kZ is nonempty. It is clear that any integral polynomial with zero constant
term, and, more generally, any integral polynomial with an integer root, is intersective.
There are also examples of intersective polynomials without rational roots; for example,
one can show that the polynomial p(n) = (n2 − 5)(n2 − 41)(n2 − 205) is intersective (see
Section 6).

As we will see, our condition for a family P to have the PSZ property is a natural
generalization of the Kamae and Mendès France condition from [KaM]. We will say that
polynomials p1, . . . , pr are jointly intersective if for every k ∈ N there exists n ∈ Z such
that pi(n) is divisible by k for all i = 1, . . . , r. Here is now the formulation of our main
result.

Theorem 1.1. Let P = {p1, . . . , pr} be a system of integral polynomials. The following
statements are equivalent:
(i) P has the PSZ property;
(ii) P has the SPSZ property;
(iii) the polynomials p1, . . . , pr are jointly intersective.
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A special case of this theorem for 3 polynomials in one variable was proved by Frantziki-
nakis ([F], Theorem F).
Remark. One can easily show (see Section 6.1 below) that several integral polynomials
of one variable are jointly intersective if and only if they are all divisible by a single
intersective polynomial, and thus it follows from Theorem 1.1 that a family P of integral
polynomials possesses the PSZ property iff it is of the form P = {q1p, q2p, . . . , qrp} where
q1, . . . , qr ∈ Q[n] and p is an intersective polynomial. In particular, for any intersective
polynomial p and any r ∈ N the family P = {p, 2p, . . . , rp} has the PSZ property; this
result was also obtained in [F].

Theorem 1.1 tells us that the only obstacle for a family of integral polynomials to
possess the PSZ property is of arithmetic nature. The following direct corollary of Theo-
rem 1.1 gives a precise meaning to this observation:

Theorem 1.2. If p1, . . . , pr are integral polynomials such that any lattice kZ in Z contains
a configuration of the form {a, a + p1(n), . . . , a + pr(n)} with a, n ∈ Z, then any set of
positive upper Banach density in Z also contains such a configuration.

As a matter of fact, we will obtain a “multiparameter” version of Theorem 1.1, that
is, we will prove this theorem for polynomials of several variables. (Passing from one to
many variables does not make the proof longer, but essentially strengthens the theorem.)
We say that a polynomial p of m ≥ 1 variables with rational coefficients is integral if
p(Zm) ⊆ Z. We will interpret any integral polynomial p of m variables as a mapping
Zm −→ Z, and say that p is an integral polynomial on Zm. A set S in Zm is said to be
syndetic if S + K = Zm for some finite K ⊂ Zm; the other definitions do not change, and
from now on we will assume that the polynomials p1, . . . , pr in Theorem 1.1 are integral
polynomials on Zm.

Clearly, (ii) in Theorem 1.1 implies (i); it is also clear that (i) implies (iii): if
p1, . . . , pr are not jointly intersective and k ∈ N is such that for no n ∈ Zm the integers
p1(n), . . . , pr(n) are all divisible by k, then the lattice kZ does not contain configurations
of the form {a, a + p1(n), . . . , a + pr(n)}. So, it is only the implication (iii) =⇒ (ii) which
needs to be proven. We will actually get a stronger result:

Theorem 1.3. Let p1, . . . , pr be jointly intersective integral polynomials on Zm and let
E ⊆ Z, d∗(E) > 0. Then there exists ε > 0 such that the set

{

n ∈ Zm : d∗
(

E ∩ (E − p1(n)) ∩ . . . ∩ (E − pr(n))
)

> ε
}

is syndetic.
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Like the proof of the polynomial Szemerédi theorem in [BeL], our proof of Theorem 1.3
relies on Furstenberg’s correspondence principle. This principle, which plays instrumental
role in [Fu1], can be found in the following form in [Be]:
For any set E ⊆ Z with d∗(E) > 0 there exists an invertible probability measure preserving
system (X,B, µ, T ) and a set A ∈ B with µ(A) = d∗(E) such that for any r ∈ N and
n1, n2, . . . , nr ∈ Z one has

d∗
(

E ∩ (E − n1) ∩ . . . ∩ (E − nr)
)

≥ µ
(

A ∩ T−n1A ∩ . . . ∩ T−nrA
)

.

For a multiparameter sequence (an)n∈Zm of real numbers we define UC-limn an =
limN→∞

1
|ΦN |

∑

n∈ΦN
an, if this limit exists for every Følner sequence (ΦN) in Zm.1 (Note

that if this limit exists for all Følner sequences, then it does not depend on the choice
of the sequence.) In view of Furstenberg’s correspondence principle, Theorem 1.3 is a
corollary of the following ergodic result.

Theorem 1.4. Let integral polynomials p1, . . . , pr on Zm be jointly intersective. Then for
any invertible probability measure preserving system (X,B, µ, T ) and any set A ∈ B with
µ(A) > 0,

UC-lim
n

µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

> 0. (1)

We remark that the converse of this theorem is also true: if the polynomials p1, . . . , pr are
not jointly intersective, one can construct a (finite) measure preserving system and a set
A such that the limit in (1) is equal to 0. We also remark that having “lim inf” instead
of “lim” in formula (1) would be quite sufficient to prove Theorem 1.3; but, anyway, it is
known that the limit UC-limn µ

(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

exists, – see [L4].
It is worth noticing that while being ergodic in nature, our proof of Theorem 1.4 is

quite different from the ergodic proofs of polynomial Szemerédi theorem in [BeL] and
[BeM1]. The reason that we had to resort to a completely different approach lies with
the fact that the main ingredients of the proofs in [BeL] and [BeM1], namely the PET
induction and combinatorial results such as the polynomial van der Waerden theorem
(in [BeL]) and the polynomial Hales–Jewett theorem (in [BeM1]), do not work when the
polynomials involved may have a non-zero constant term. In particular, it is not clear
how to obtain by purely combinatorial means (or with the help of topological dynamics
but without using an invariant measure) the following corollary of Theorem 1.3.

1A Følner sequence in a (discrete) abelian group G is a sequence (ΦN ) of finite subsets of G with the
property that for any g ∈ G, |(ΦN + g)4ΦN |/|ΦN | −→ 0 as N −→∞.
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Theorem 1.5. For any finite partition Z =
⋃k

i=1 Ei, one of the Ei has the property that
for any r, m, and any jointly intersective integral polynomials p1, . . . , pr on Zm there
exists ε > 0 such that the set

{

n ∈ Zm : d∗
(

Ei ∩ (Ei− p1(n))∩ . . .∩ (Ei− pr(n))
)

> ε
}

is
syndetic.

Remarks. 1. One can also show that, for any collection {p1, . . . , pr} of integral poly-
nomials of one variable and any partition Z =

⋃k
i=1 Ei, one of the Ei contains many

configurations of the form {a, a + p1(n), . . . , a + pr(n)} with n ∈ Ei; see Theorem 5.5
below.
2. Note that the converse of 1.5 is also true: if p1, . . . , pr are not jointly intersective and
k ∈ N is such that for no n ∈ Zm the integers p1(n), . . . , pr(n) are all divisible by k, then
no element of the partition Z =

⋃k−1
i=0 (kZ + i) of Z contains configurations of the form

{a, a + p1(n), . . . , a + pr(n)}.
The proof of Theorem 1.4 is divided into several steps. The first one is a reduction to

nilsystems via the Host-Kra–Ziegler machinery. The second step is a differential geometry
argument (Lemma 2.3) which allows us to reduce the recurrence problem to properties
of the closure of an orbit in a nilsystem (Proposition 2.4). The last step is a description
of polynomial orbits on tori (Section 3) and on nilmanifolds (Section 4). In Section 5
we finish the proof of Theorem 1.3 and obtain (an enhanced version of) Theorem 1.5.
Section 6 is devoted to concluding remarks and conjectures.

2 Polynomial Szemerédi theorem and polynomial or-
bits in nilmanifolds

To facilitate the proof of Theorem 1.4 we make some relatively routine reductions. First,
we assume that the measure space (X,B, µ) is Lebesgue. (To justify this assumption, let
us observe that given a set A ∈ B, we can confine ourselves to the separable T -invariant σ-
algebra generated by the family {T nA}n∈Z. Invoking the Carathéodory and von Neumann
Theorems (see for example [Roy], Ch. 15, Theorems 4 and 20) we may now assume that
(X,B, µ) is a Lebesgue space.) Next, we will assume that T is ergodic. (Indeed, by using
the ergodic decomposition one can easily show that the validity of Theorem 1.4 follows
from its validity in the ergodic case.)

Our next step is to reduce the situation to the case where (X,T ) is a nilsystem. An
s-step nilsystem is a measure preserving system defined by a translation on a compact s-
step nilmanifold2 equipped with the normalized Haar measure. An s-step pro-nilsystem is

2An s-step nilmanifold is the quotient space, X = G/Γ, of an s-step nilpotent Lie group G by a discrete
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the inverse limit of a sequence of s-step nilsystems.3 Let p1, . . . , pr be integral polynomials
on Zm, m ≥ 1. It was proved in [L4] (see also [HKr2]) that for an ergodic probability
measure preserving system (X,B, µ, T ), where X is a Lebesgue space, a certain pro-
nilsystem ( ˜X, ˜B, µ̃, ˜T ) is a characteristic factor of (X,B, µ, T ) with respect to the system
of polynomial actions {T p1(n), . . . , T pr(n)}, which means that ( ˜X, ˜B, µ̃, ˜T ) is a factor4 of
(X,B, µ, T ) such that for any f0, f1, . . . , fr ∈ L∞(X) one has

UC-lim
n

∫

X
f0 · f1◦T p1(n) · . . . · fr◦T pr(n) dµ

= UC-lim
n

∫

X
E(f0| ˜X) · E(f1| ˜X)◦˜T p1(n) · . . . · E(fr| ˜X)◦˜T pr(n) dµ̃

(where E(·| ˜X) stands for the conditional expectation5 with respect to ˜X).
The statement

UC-lim
n

µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

> 0 for any measurable A ⊆ X with µ(A) > 0

(2)
is clearly equivalent to the statement

UC-lim
n

∫

X
f · f ◦T p1(n) · . . . · f ◦T pr(n)dµ > 0 for all f ∈ L∞(X)

such that f ≥ 0 and
∫

X f dµ > 0.

Thus, in order to prove Theorem 1.4, we have to check (2) for pro-nilsystems only.
The following lemma, which appears in [FuK], shows that it is enough to check the result
in the case where (X,B, µ, T ) is a nilsystem.

cocompact subgroup Γ of G. A translation on the nilmanifold X = G/Γ is the mapping gΓ 7→ agΓ, g ∈ G,
defined by an element a ∈ G.

3A measure preserving system (X,B, µ, T ) is the inverse limit of (an increasing) sequence of its factors4

(Xα,Bα, µα, Tα), α ∈ N, if B1 ⊆ B2 ⊆ . . . in B and the σ-alegbra
∨

α∈N Bα generated by the union of Bα

equals B.
4A factor of a measure preserving system (X,B, µ, T ) is a measure preserving system ( ˜X, ˜B, µ̃, ˜T )

together with a measure-preserving mapping π : X −→ ˜X satisfying ˜T ◦π = π◦T . In this situation, π−1( ˜B)
is a T -invariant sub-σ-algebra of B, which is identified with ˜B. Another, and in some sense equivalent,
way to introduce a factor of (X,B, µ, T ) is to indicate the corresponding T -invariant sub-σ-algebra of B.

5The conditional expectation E(f | ˜X), or E(f | ˜B), of a function f ∈ L1(X) with respect to a fac-
tor π : (X,B, µ) −→ ( ˜X, ˜B, µ̃) is the (uniquely defined) function f̃ ∈ L1( ˜X) satisfying

∫

B f̃ dµ̃ =
∫

π−1(B) f◦π dµ for every B ∈ ˜B.
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Lemma 2.1. Let r ∈ N. Let (X,B, µ, T ) be a measure preserving dynamical system and
(Bα)α∈N be an increasing sequence of T -invariant sub-σ-algebras such that

∨

α∈N Bα = B.
Then, for any B ∈ B, there exist α ∈ N and B′ ∈ Bα such that µ(B′) ≥ µ(B)/2 and, for
all n1, . . . , nr ∈ Z,

µ
(

B ∩ T−n1B ∩ . . . ∩ T−nrB
)

≥ 1
2µ

(

B′ ∩ T−n1B′ ∩ . . . ∩ T−nrB′) .

Proof. We assume that µ(B) > 0. The sequence of conditional probabilities (mea-
sures) (µ (B | Bα))α∈N

6 converges in measure to the characteristic function 1B. Hence

there exists α such that the set B′ :=
{

µ (B | Bα) ≥ 1− 1
2(r+1)

}

has measure ≥ 1
2µ(B).

For any n ∈ Z, we have T−nB′ :=
{

µ (T−nB | Bα) ≥ 1− 1
2(r+1)

}

. Using the fact that
µ (B0 ∩B1 ∩ . . . ∩Br | Bα) ≥ 1− (r + 1)ε if µ (Bi | Bα) ≥ 1− ε, 0 ≤ i ≤ r, we get

µ
(

B ∩ T−n1B ∩ . . . ∩ T−nrB
)

=
∫

X
µ

(

B ∩ T−n1B ∩ . . . ∩ T−nrB | Bα
)

dµ

≥
∫

B′∩T−n1B′∩...∩T−nr B′
µ

(

B ∩ T−n1B ∩ . . . ∩ T−nrB | Bα
)

dµ

≥ 1
2
µ

(

B′ ∩ T−n1B′ ∩ . . . ∩ T−nrB′) .

Thus, Theorem 1.4 is reduced to the following proposition:

Proposition 2.2. Let integral polynomials p1, . . . , pr on Zm be jointly intersective. Then
for any nilsystem (X,B, µ, T ) and any set A ∈ B with µ(A) > 0,

UC-lim
n

µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

> 0.

We will now assume that X is a nilmanifold, X = G/Γ, and (X,B, µ, T ) is a nilsystem.
A subnilmanifold of X is a closed subset of X of the form D = Kx, where K is a closed
subgroup of G and x ∈ X. A subnilmanifold is a nilmanifold itself under the action of the
nilpotent Lie group K, and supports a unique probability Haar measure which we will
denote by µD. It is known (see [L2], or [Sh] for a much more general result) that if H is
a subgroup of G and x ∈ X, then D = Hx is a subnilmanifold of X.

A (multiparameter) polynomial sequence in G is a mapping g : Zm −→ G of the form
g(n) = ap1(n)

1 . . . apr(n)
r , n ∈ Zm, where ai ∈ G and pi are integral polynomials on Zm. It

6µ(B|Bα) = E(1B |Bα).
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is proved in [L3] that if g is a polynomial sequence in G and D is a subnilmanifold of
X, then the closure Y = Orbg(D) of the orbit Orbg(D) =

⋃

n∈Z g(n)D of D is either a
subnilmanifold or a finite disjoint union of subnilmanifolds of X. Moreover, the sequence
{g(n)D}n∈Z has an asymptotic distribution in Y : we have UC-limn g(n)µD = µ′Y , where
µ′Y is a convex combination of the Haar measures on the connected components of Y .
In particular, if Y is connected, then Y is a subnilmanifold, and µ′Y = µY is the Haar
measure on Y .

Let p1, . . . , pr be integral polynomials on Zm; consider the polynomial sequence g(n) =
( 1G

ap1(n)...
apr(n)

)

, n ∈ Zm, in the group Gr+1. Let ∆Xr+1 be the diagonal , ∆Xr+1 =
{

x̄ =
(

x...
x

)

:

x ∈ X
}

in the nilmanifold Xr+1, and let Y = Orbg(∆Xr+1). Then for any continuous
functions f0, f1, . . . , fr on X,

UC-lim
n

∫

X
f0 · f1◦T p1(n) · . . . · fr◦T pr(n) dµ

= UC-lim
n

∫

∆Xr+1

f0 ⊗ f1◦T p1(n) ⊗ . . .⊗ fr◦T pr(n) dµ∆Xr+1

= UC-lim
n

∫

∆Xr+1

(

f0 ⊗ f1 ⊗ . . .⊗ fr
)

(g(n)x) dµ∆Xr+1 (x)

= UC-lim
n

∫

g(n)∆Xr+1

f0 ⊗ f1 ⊗ . . .⊗ fr dµg(n)∆Xr+1 .

=
∫

Y
f0 ⊗ f1 ⊗ . . .⊗ fr dµ′Y .

Since C(X) is dense in Lr+1(X, µ) and all the marginals of µ′Y are equal to µ, we obtain
from the multilinearity of the above expressions that

UC-lim
n

∫

X
f0 · f1◦T p1(n) · . . . · fr◦T pr(n) dµ =

∫

Y
f0 ⊗ f1 ⊗ . . .⊗ fr dµ′Y

for any f0, f1, . . . , fr ∈ L∞(X). In particular, for any measurable set A ⊆ X,

UC-lim
n

µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

= µ′Y (Ar+1 ∩ Y ),

and in order to prove Proposition 2.2 we only need to show that µ′Y (Ar+1 ∩ Y ) > 0
whenever µ(A) > 0.

We claim that this is true as long as Y ⊇ ∆Xr+1 . Indeed, let us assume that this
inclusion holds, and let A be a set of positive measure in X. Let x ∈ X be a Lebesgue
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point of A, and let x̄ =
(

x...
x

)

∈ ∆Xr+1 . Using a system of Malcev coordinates in G (see
Section 4), we identify a connected open neighborhood Ω of x with an open subset of
Rd, where d = dim X. Then, under this identification, Y ′ = Y ∩ Ωr+1 is a smooth
(polynomial) manifold in Rd(r+1), and the restriction on Y ′ of the measure µ′Y is equivalent
to the Lebesgue measure (that is, the s-volume7, where s = dim Y ) in Y ′. Let S be the
connected component of Y ′ that contains ∆Ωr+1 . Our claim now follows from the following
lemma.

Lemma 2.3. Let Ω be an open subset of Rd and let S be a connected C1-manifold in Ωk

with S ⊇ ∆Ωk . Let σ be the Lebesgue measure on S. Then for any subset A of Ω with
positive Lebesgue measure one has σ(Ak ∩ S) > 0.

Proof. Let x be a density point of A. For t > 0 let Qt be the cube in Rd of size t centered
at x, and let Pt = Qk

t (which is the cube in Rdk of size t centered at x̄ =
(

x...
x

)

). Let πi,

i = 1, . . . , k, be the projection from Rdk = (Rd)k onto the ith factor. Since S contains
∆Ωk , for any i, πi projects S onto Ω and has full rank at all points of S.

Let s = dim S. Let L be the tangent space to S at the point x̄ =
(

x...
x

)

and let λ
be the Lebesgue measure on L. Let 1 ≤ i ≤ k. To simplify notation, assume that
x = 0, so that L is a vector subspace of (Rd)k. Since S ⊇ ∆Ωk , L ⊇ ∆(Rd)k , and
so L +

(

(Rd)i−1 × {0} × (Rd)k−i
)

= Rdk. Thus, there exists a vector subspace V ⊆
(Rd)i−1 × {0} × (Rd)k−i such that L ⊕ V = Rdk. Let η be the projection S −→ L in
the direction of V . η is a diffeomorphism in a neighborhood of x̄, and in the coordinate
system in Rdk in which L is the first s-dimensional coordinate plane, Dη−1(x̄) = (I|0).
Thus, using (L, η−1) to parametrize S in a neighborhood of x̄, we see that dη(σ)

dλ (z) → 1
as z → x̄, and so, there exists a neighborhood U of x̄ such that

1
2
λ(η(E)) ≤ σ(E) ≤ 2λ(η(E)) (3)

for any measurable set E ⊆ S ∩ U . For the same reason, for t small enough we have
η(S ∩ Pt) ⊆ L ∩ P2t and L ∩ Pt ⊆ η(S ∩ P2t). By the definition of η, π1◦η = π1; thus for
any B ⊆ Ω, η(π−1

1 (B) ∩ S) = π−1
1 (B) ∩ L. It follows that for t small enough,

η
(

π−1
1 (B) ∩ S ∩ Pt

)

⊆ π−1
1 (B) ∩ L ∩ P2t (4)

7For a smooth s-dimensional surface S in Rm, defined (locally) by y = τ(u), u ∈ U ⊆ Rm, the
Lebesgue measure σ on S is given by dσ = τ

((∑

|I|=s

∣

∣
∂yI
∂u

∣

∣

2)1/2
dλ

)

, where λ is the Lebesgue measure on
U . (Note that σ does not depend on the choice of parametrization of S.)
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and
π−1

1 (B) ∩ L ∩ Pt ⊆ η
(

π−1
1 (B) ∩ S ∩ P2t

)

(5)

for any measurable set B ⊆ Ω. Combining (4) and (3), (5) and (3), we obtain that for t
small enough,

σ
(

π−1
1 (B) ∩ S ∩ Pt

)

≤ 2λ
(

π−1
1 (B) ∩ L ∩ P2t

)

(6)

and
λ

(

π−1
1 (B) ∩ L ∩ Pt

)

≤ 2σ
(

π−1
1 (B) ∩ S ∩ P2t

)

(7)

for any measurable set B ⊆ Ω. Let σt and λt be the normalized Lebesgue measures
on S ∩ Pt and on L ∩ Pt respectively. Then for t small enough we have from (7) that
σ (S ∩ Pt) ≥ 1

2λ(L ∩ Pt/2) = 2−2s−1λ(L ∩ P2t), and thus from (6),

σt(π−1
i (B) ∩ S ∩ Pt) ≤ 22s+2λ2t(π−1

i (B) ∩ L ∩ P2t) (8)

for any measurable B ⊆ Ω.
For t > 0, let νt be the normalized Lebesgue measure on the cube Qt ⊂ Rd. Since L is

an affine space passing through the center of Qt, and since, for each i, L projects by πi onto
Rd, we have πi(λt) ≤ ciνt with a constant ci independent on t. Let c = max{c1, . . . , ck},
then λt(π−1

i (B) ∩ L) ≤ cνt(B) for any measurable set B ⊆ Rd and all i.
Now choose t small enough so that (8) holds for all i and that ν2t (Q2t \ A) <

1/(22s+2kc) (which is possible since x is a density point of A). Then

σt
(

Ak ∩ Pt ∩ S
)

≥ 1−
k

∑

i=1

σt
(

π−1
i (Qt \ A) ∩ S

)

≥ 1−
k

∑

i=1

22s+2λ2t
(

π−1
i (Q2t \ A) ∩ L

)

≥ 1−
k

∑

i=1

22s+2cν2t (Q2t \ A) > 0,

and so σ(Ak ∩ S) > 0.

Hence, we are done if we prove that Orb(x̄) 3 x̄ for every x̄ ∈ ∆Xr+1 . After considering
the new nilmanifold Xr+1 and changing notation, Proposition 2.2 is now reduced to the
following proposition.

Proposition 2.4. Let X = G/Γ be a nilmanifold and let g(n) = ap1(n)
1 . . . apr(n)

r be a
polynomial sequence in G such that the polynomials p1, . . . , pr are jointly intersective.
Then Orbg(x) 3 x for any x ∈ X.

We will prove Proposition 2.4 in Section 4 (see Proposition 4.3).

10



3 Intersective polynomials and polynomial orbits on
tori

Given two integers b, k, we will write b ... k if k divides b. We will use the term lattice for
cosets of subgroups of finite index in Zm. If Λ is a lattice of Zm, then Λ is an affine image
of Zm, and the notion of an integral polynomial on Λ is well defined. (Clearly, integral
polynomials on Λ are restrictions of polynomials on Zm taking on integer values on Λ.)
We will say that integral polynomials p1, . . . , pr on Λ are jointly intersective (on Λ) if for
any k ∈ N there exists n ∈ Λ such that p1(n), . . . , pr(n) ... k.

Lemma 3.1. If integral polynomials p1, . . . , pr on a lattice Λ are jointly intersective, then
for any sublattice Λ′ of Λ there exists l ∈ Λ such that the polynomials p1, . . . , pr are jointly
intersective on Λ′ + l.

Proof. Let L ⊂ Λ be a finite set such that Λ′ + L = Λ. For any k ∈ N there exists lk ∈ L
such that pi(n + lk)

... k, i = 1, . . . , r, for some n ∈ Λ′. Let l be such that lk! = l for
infinitely many k. Then for any k ∈ N there exists k0 > k such that lk0! = l, and thus
there exists n ∈ Λ′ such that pi(n + l) ... k0!

... k, i = 1, . . . , r.

Lemma 3.2. Let integral polynomials p1, . . . , pr on a lattice Λ be jointly intersective. For
any k ∈ N there exists a lattice Λ′ ⊆ Λ such that p1, . . . , pr are jointly intersective on Λ′

and p1(n), . . . , pr(n) ... k for all n ∈ Λ′.

Proof. Let d ∈ N be such that dp1, . . . , dpr have integer coefficients. By Lemma 3.1,
there exists l ∈ Λ such that p1, . . . , pr are jointly intersective on Λ′ = kdΛ + l. There
exists n0 ∈ Λ such that pi(kdn0 + l) ... k, i = 1, . . . , r. For any n ∈ Λ and every i we
have pi(kdn + l) = pi(kdn0 + l) + qi(kd(n− n0)) where qi is an integral polynomial with
coefficients in 1

dZ and zero constant term. Hence, qi(kd(n− n0))
... k, i = 1, . . . , r, and so

pi(kdn + l) ... k, i = 1, . . . , r, for all n.

Let M be an (additive) torus. A polynomial sequence in M is a (multiparameter)
sequence of the form t(n) =

∑r
i=1 pi(n)vi, n ∈ Zm, where pi are integral polynomials on

Zm and vi ∈ M , i = 1, . . . , r. It is well known (see [W]) that if t is a polynomial sequence
in M , then the closure S = {t(n)}n∈Λ of t is a connected component, or a union of several
connected components, of a coset u+N for some closed subgroup N of M and an element
u ∈ M . In particular, if S is connected, it is a subtorus of M . After choosing coordinates
in M we identify M with a standard torus Rs/Zs, s ∈ N. Then any polynomial sequence
t(n) =

∑r
i=1 pi(n)vi in M can be written in the form

t(n) =

[

(

q0,1(n)...
q0,s(n)

)

1
k +

l
∑

i=1

(

qi,1(n)...
qi,s(n)

)

αi

]

mod Zs, (9)

11



where 1, α1, . . . , αl ∈ R are rationally independent, k ∈ N, and the polynomials qi,j are
linear combinations, with integer coefficients, of the polynomials p1, . . . , pr.

We first take care of the “irrational” part of t. For any polynomial q let q̂ denote the
polynomial q − q(0).

Lemma 3.3. (i) Let t(n) =
(

q1(n)...
qs(n)

)

α mod Zs where α ∈ R is irrational and q1, . . . , qs

are integral polynomials on a lattice Λ. Then {t(n)}n∈Λ is the (connected) subtorus
[(

q1(0)...
qs(0)

)

α + spanR

{(

q̂1(n)...
q̂s(n)

)

, n ∈ Λ
}]

mod Zs of M .

(ii) Let bi(n) =
(

qi,1(n)...
qi,s(n)

)

mod Zs and ti = biαi, i = 1, . . . , l, where 1, α1, . . . , αl ∈ R are

rationally independent and qi,j are integral polynomials on a lattice Λ. Let t =
∑l

i=1 ti;
then {t(n)}n∈Λ =

∑l
i=1 {ti(n)}n∈Λ. In particular, {t(n)}n∈Λ is a (connected) subtorus of

M .

Proof. (i) We may assume that qj(0) = 0, j = 1, . . . , s. Let ˜S = spanR

{(

q1(n)...
qs(n)

)

, n ∈ Λ
}

⊆

Rs and S = ˜S mod Zs; since the vectors
(

q1(n)...
qs(n)

)

are rational, S is closed in M . Hence

S is a subtorus and we have {t(n)}n∈Λ ⊆ S. On the other hand, consider an additive

character χ on M , χ
(v1...

vs

)

= c1v1 + . . .+ csvs mod 1 with c1, . . . , cs ∈ Z; if χ(t(n)) = 0 for
all n ∈ Λ, then (c1q1(n) + . . . + csqs(n))α ∈ Z for all n ∈ Λ, so c1q1(n) + . . . + csqs(n) = 0
for all n ∈ Λ, so χ|S = 0. Hence, the sequence {t(n)}n∈Λ is not contained in any proper
closed subgroup of S, and thus, is dense in S.
(ii) Again, we may assume that qi,j(0) = 0 for all i, j. By (i), {ti(n)}n∈Λ, i = 1, . . . , l, are
connected subgroups of M , and such is N =

∑l
i=1 {ti(n)}n∈Λ. Let S =

∑l
i=1 {ti(n)}n∈Λ;

clearly, S ⊆ N . We have S 3 0M , thus S a union of connected components of a closed
subgroup of N .

Let χ be a character on M , χ
(v1...

vs

)

= c1v1 + . . . + csvs mod 1 with c1, . . . , cs ∈ Z,

and let φ be the corresponding linear function on Rs, φ
(v1...

vs

)

= c1v1 + . . . + csvs. Then

χ(t(n)) = 0, n ∈ Λ, iff
∑l

i=1 φ(bi(n))αi = 0 mod 1, n ∈ Λ, which, because of the
independence of α1, . . . , αl and 1, is equivalent to φ(bi(n)) = 0 and so, χ(ti(n)) = 0,
n ∈ Λ, for all i = 1, . . . , l. Hence, any character vanishing on S also vanishes on N , and
so, S is not contained in any proper closed subgroup of N . Thus, S = N .
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Lemma 3.4. Let t(n) =
(

q1(n)...
qs(n)

)

α mod Zs where α ∈ R is irrational and q1, . . . , qs are

integral polynomials on a lattice Λ. Then {t(n)}n∈Λ 3 0M iff no linear combination of
q1, . . . , qs is a nonzero constant.

Proof. By Lemma 3.3(i), {t(n)}n∈Λ 3 0M iff
(

q1(0)...
qs(0)

)

∈ spanR

{(

q̂1(n)...
q̂s(n)

)

, n ∈ Λ
}

. This is

so iff any linear function on Rs vanishing on spanR

{(

q̂1(n)...
q̂s(n)

)

, n ∈ Λ
}

vanishes at
(

q1(0)...
qs(0)

)

as well. This is equivalent to saying that if
∑s

i=1 ciq̂i = 0, with c1, . . . , cs ∈ R, then also
∑s

i=1 ciqi = 0.

Corollary 3.5. Let t(n) =
(

q1(n)...
qs(n)

)

α mod Zs where α ∈ R is irrational and q1, . . . , qs are

jointly intersective integral polynomials on a lattice Λ. Then {t(n)}n∈Λ 3 0M .

Proof. If there exist c1, . . . , cs ∈ R and a nonzero c ∈ R such that
∑s

i=1 ciqi = c, then,
since the polynomials qi have rational coefficients, there exist c1, . . . , cs ∈ Z and a nonzero
c ∈ Z such that

∑s
i=1 ciqi = c. But this is impossible if qi are jointly intersective.

Let now t be a polynomial sequence in M , t(n) = p1(n)v1 + . . . + pr(n)vr, vi ∈ M ,
where p1, . . . , pr are jointly intersective polynomials on Λ.

Proposition 3.6. There exists a sublattice Λ′ of Λ such that p1, . . . , pr are jointly inter-
sective on Λ′, S = {t(n)}n∈Λ′ is a connected subtorus of M , and 0M ∈ S.

Example. Consider the polynomial sequence t(n) =
(

nα + 1
3n

2, nα
)

mod Z2, n ∈ Z, in
the torus M = R2/Z2, where α is an irrational number. The closure {t(n)}n∈Z of t is the
union of two subtori of M , S1 =

{

(x, x), x ∈ R/Z
}

and S2 =
{(

x + 1
3 , x

)

, x ∈ R/Z
}

.
Passing to the sublattice 3Z of Z, we get {t(n)}n∈3Z = S1.

Proof. We represent t in the form (9), where all polynomials qi,j are linear combinations

of polynomials pi and so, are jointly intersective. If a nontrivial “rational” term
(q0,1...

q0,s

)

1
k

is present, by Lemma 3.2 there exists a sublattice Λ′ ⊂ Λ such that the polynomials
q0,1, . . . , q0,r are jointly intersective on Λ′ and q0,j(n) ... k for all n ∈ Λ′ and j = 1, . . . , s.

Then
(

q0,1(n)...
q0,s(n)

)

1
k = 0 mod Zs for all n ∈ Λ′, and we may ignore this term. By Corol-

lary 3.5, for each i = 1, . . . , l and ti(n) =
(

qi,1(n)...
qi,s(n)

)

αi mod Zs, Si = {ti(n)}n∈Λ′ is a (con-

nected) subtorus of M with 0M ∈ Si, and by Lemma 3.3(ii), S = {t(n)}n∈Λ′ =
∑l

i=1 Si.
Thus, S is a (connected) subtorus of M with 0M ∈ S.
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4 Intersective polynomials and polynomial orbits on
nilmanifolds

Let P be a ring of integral polynomials on a lattice Λ. We will say that a mapping g from Λ
to a nilpotent group G is a P -polynomial sequence if g has the form g(n) = ap1(n)

1 . . . apr(n)
r

with r ∈ N, ai ∈ G and pi ∈ P , i = 1, . . . , r. The following facts are obvious and will be
used repeatedly in the sequel.
(i) if g1, g2 are P -polynomial sequences in G, then the sequence g1(n)g2(n) is P -
polynomial;
(ii) if η : G −→ G′ is a homomorphism to a nilpotent group G′ and g is a P -polynomial
sequence in G, then η(g) is a P -polynomial sequence in G′;
(iii) if η : G −→ G′ is a homomorphism onto a nilpotent group G′ and g′ is a P -polynomial
sequence in G′, then there exists a P -polynomial sequence g in G such that η(g) = g′.

Proposition 4.1. Let G be a connected nilpotent Lie group and H be a connected closed
subgroup of G. If g is a P -polynomial sequence in G such that g(n) ∈ H for all n ∈ Λ,
then g is a P -polynomial sequence in H.

Remark. Actually, the assertion of Proposition 4.1 holds for any (not necessarily topo-
logical) nilpotent group and any subgroup thereof (see [L1]).

Proof. Replacing G by its universal cover we may assume that G is simply-connected.
We then may choose a Malcev basis in G, that is, elements e1, . . . , ek ∈ G such that every
element of G is uniquely representable in the form

∏k
j=1 eyj

j with y1, . . . , yk ∈ R. (See [M].
Elements ei can be chosen to be of the form ei = exp(εi) where (ε1, . . . , εk) is a linear
base of the Lie algebra of G.) Moreover, by an elementary linear algebra argument, the
basis can be chosen to be compatible with H, so that for some j1, . . . , jl ∈ {1, . . . , k},
the elements ej1 , . . . , ejl form a basis in H, and thus

∏k
j=1 eyj

j ∈ H iff yj = 0 for all
j 6∈ {j1, . . . , jl}.

It follows from the Campbell-Hausdorff formula8 that the multiplication in G is poly-
nomial: in the Malcev basis one has

(∏k
j=1 eyj

j

)

·
(∏k

j=1 ezj
j

)

=
∏k

j=1 eQj(y1,...,yk,z1,...,zk)
j

and
(∏k

j=1 eyj
j

)n =
∏k

j=1 eRj(y1,...,yk,n)
j where Qj and Rj are polynomials vanishing at

0. Thus, any polynomial sequence g(n) = ap1(n)
1 . . . apr(n)

r in G can be uniquely writ-
ten as g(n) =

∏k
j=1 eFj(p1(n),...,pr(n))

j where Fj are polynomials vanishing at 0. If g
8The Campbell-Hausdorff formula relates multiplication in a connected Lie group G with a certain

operation P : G × G −→ G on the Lie algebra G of G: exp(u) exp(v) = exp(P (u, v)), u, v ∈ G. When G is
nilpotent, P is a polynomial mapping (that is, a finite linear combination of multilinear forms applied to
(w1, . . . , wd) for wi = u or v, and various values of d).
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takes values only in H, Fj(p1(n), . . . , pr(n)) = 0 for all j 6∈ {j1, . . . , jl}, and g(n) =
∏

j∈{j1,...,jl} eFj(p1(n),...,pr(n))
j is a polynomial sequence in H. The last formula can be rewrit-

ten as g(n) =
∏

j∈{j1,...,jl}
∏kj

i=1(e
αj,i
j )Fj,i(p1(n),...,pr(n)) where αj,i ∈ R and Fj,i are nonconstant

monomials. Now, if all pi are in P , the polynomials qj,i(n) = Fj,i(p1(n), . . . , pr(n)) are
also in P , and so, g is a P -polynomial sequence in H.

We will also need the following fact:

Proposition 4.2. ([L2]) Let G be a connected nilpotent Lie group, let X = G/Γ be a
nilmanifold, let π be the canonical projection G −→ X, let M be the torus [G,G]\X, and
let ξ : X −→ M be the projection. If a polynomial sequence g in G is such that ξ(π(g(n)))
is dense in M , then π(g(n)) is dense in X.

Now let G be a nilpotent group, Γ a closed cocompact subgroup of G, and X = G/Γ.
Let π be the projection G −→ X, and 1X = π(1G) ∈ X. Proposition 2.4 is a consequence
of the following proposition, applied to g(n) = ap1(n)

1 . . . apr(n)
r :

Proposition 4.3. Let p1, . . . , pr be jointly intersective polynomials on a lattice Λ and let
P be the ring generated by p1, . . . , pr. If g is a P -polynomial sequence in G and x ∈ X,
then {g(n)x}n∈Λ 3 x.

Proof. We will proceed as follows: if {g(n)x}n∈Λ is not dense in X, then, applying Propo-
sitions 4.2 and 3.6, we will pass to a certain sublattice Λ′ of Λ so that {g(n)x}n∈Λ′ will lie
in a proper subnilmanifold of X containing x, and then use induction on the dimension
of X.

It is enough to prove that, for any P -polynomial sequence g, we have {π(g(n))}n∈Λ 3
1X . Indeed, if x = g0Γ ∈ X then g−1

0 gg0 is a P -polynomial sequence (this follows
from either of (i) and (ii) at the beginning of the section) and {g(n)x}n∈Λ 3 x iff
{π(g−1

0 g(n)g0)}n∈Λ 3 1X .
If X is not connected, put Ĝ = π−1(Xo), where Xo is the connected component of

X that contains 1X ; then Ĝ is a subgroup of finite index k in G. By Lemma 3.2, there
exists a sublattice Λ′ of Λ such that the polynomials p1, . . . , pr are jointly intersective on
Λ′ and for any n ∈ Λ′, p1(n), . . . , pr(n) ... k. The sequence g|Λ′ takes values in Ĝ, and after
replacing Λ by Λ′, G by Ĝ, and X by Xo we may assume that X is connected.

Let Go be the identity component of G and let θ be the canonical homomorphism
G −→ G/Go. Since X is connected, θ(Γ) = G/Go, and thus there exists a P -polynomial
sequence δ in Γ such that θ(δ) = θ(g). The sequence g′(n) = g(n)δ(n)−1 takes values
in Go and satisfies π(g′) = π(g), n ∈ Λ. By Proposition 4.1, g′(n) is a P -polynomial
sequence in Go. After replacing g by g′ and G by Go we may assume that G is connected.
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Let V = G/[G,G] = [G, G]\G with η : G −→ V being the canonical projection. V
is a connected commutative Lie group. Let M be the torus V/η(Γ) = [G,G]\X with
τ : V −→ M being the projection; we will use multiplicative notation for V and M . Let
t(n) = g(n)1M , n ∈ Λ; in other words, t = τ(η(g)) is the projection of g on M . If t is dense
in M , then by Proposition 4.2, g is dense in X and we are done. Assume that t is not
dense in M . We know that t is a P -polynomial sequence in M . By Proposition 3.6, after
replacing Λ by a suitable sublattice, the polynomials p1, . . . , pr remain jointly intersective
and S = {t(n)}n∈Λ is a connected proper subtorus of M with 1M ∈ S.

Note that τ−1(S) is a proper subgroup of V . Let L ⊆ V be the identity component of
τ−1(S):

Go 3 g(n) H
↓η ↓η ↓η

V = Go/[Go, Go] 3 η(g(n)) L
↓τ ↓τ ↓τ

M = Go/ ([Go, Go](Γ ∩Go)) 3 t(n) = τ(η(g(n))) ∈ S

We have τ(L) = S. Let u be a P -polynomial sequence in L such that τ(u) = t. Then
τ(η(g)) = τ(u), thus u(n)−1η(g(n)) ∈ η(Γ), n ∈ Λ. The sequence λ(n) = u(n)−1η(g(n)),
n ∈ Λ, is P -polynomial in η(Γ); let γ be a P -polynomial sequence in Γ such that η(γ) = λ.
Put h(n) = g(n)γ(n)−1, n ∈ Λ; then π(h) = π(g) and η(h) = u.

Let H = η−1(L); then H is a proper closed connected subgroup of G, and Y = π(H)
is a subnilmanifold of X that contains the sequence π(h) = π(g). The sequence h takes
values in H, thus by Proposition 4.1, h is a P -polynomial sequence in H. By induction
on the dimension of H, {π(h(n))}n∈Λ 3 1Y = 1X .

5 Polynomial Szemerédi and van der Waerden theo-
rems

Proof of Theorem 1.3. By Furstenberg’s correspondence principle, there exist a probabil-
ity measure preserving system (X,B, µ, T ) and a set A ∈ B with µ(A) = d∗(E) such
that for any n1, . . . , nl ∈ Z one has d∗

(

E ∩ (E − n1) ∩ . . . ∩ (E − nl)
)

≥ µ
(

A ∩ T−n1A ∩
. . . ∩ T−nlA

)

. Let cn = µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

, n ∈ Zm. By Theorem 1.4,
limN−M→∞

1
(N−M)m

∑

n∈[M,N−1]m cn = C > 0, and thus d∗
(

{n ∈ Zm : cn > C/2}
)

> 0,

where d∗(F ) = lim infN−M→∞
|F∩[M,N−1]m|

(N−M)m ). This means that the set {n ∈ Zm : cn > C/2}
is syndetic.

A subset F of Zm is said to be thick if F contains arbitrarily large cubes. A standard
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argument allows one to obtain the following “finitary” version of Theorem 1.3:

Theorem 5.1. Let p1, . . . , pr be jointly intersective polynomials on Zm. For any δ > 0
and any thick set F ⊆ Zm there exists N0 ∈ N such that if N ≥ N0 and E is a subset of
{1, . . . , N} with |E| > δN , then there exist a ∈ E and n ∈ F such that a + p1(n), . . . , a +
pr(n) ∈ E.

Indeed, if the assertion of the theorem is wrong, then there exist δ > 0, a thick
set F ⊆ Zm, a sequence of intervals Ii = {1, . . . , Ni} with Ni −→ ∞, and a se-
quence of sets Ei ⊆ Ii with |Ei| > δ|Ni|, i = 1, 2, . . ., such that, for each i, one
has Ei ∩ (Ei − p1(n)) ∩ . . . ∩ (Ei − pr(n)) = ∅ for all n ∈ F . Let S be the shift of Z,
S(k) = k + 1. Using a diagonal process, choose a sequence (ij)∞j=1 such that the limit
ak1,...,kl = limj→∞

1
Nij

∣

∣Sk1Eij ∩Sk2Eij ∩ . . .∩SklEij

∣

∣ exists for any l ∈ N and k1, . . . , kl ∈ Z.

One can then construct a probability measure preserving system (X,B, µ, T ) with a
marked set A ∈ B such that µ

(

T k1A∩T k2A∩ . . .∩T klA
)

= ak1,...,kl for any k1, . . . , kl ∈ Z.9

Then µ(A) ≥ δ, but µ
(

A∩T−p1(n)A∩ . . .∩T−pr(n)A
)

= 0 for any n ∈ F , in contradiction
with Theorem 1.4.

By utilizing a somewhat more sophisticated argument (see [BeHMP] and [FLeWi]),
one actually can get the following result:

Theorem 5.2. Let p1, . . . , pr on Zm be jointly intersective polynomials. For any δ > 0
and any thick set F ⊆ Zm there exist γ > 0 and N0 ∈ N such that for any N ≥ N0 and
any subset E ⊆ [1, N ] with |E| > δN one has

∣

∣E ∩ (E − p1(n)) ∩ . . . ∩ (E − pr(n))
∣

∣ > γ
for some n ∈ F .

One can also derive from Theorem 1.4 the following ostensibly stronger result:

Theorem 5.3. Let integral polynomials p1, . . . , pr on Zm be jointly intersective, let
(X,B, µ, T ) be an invertible probability measure preserving system, let f ∈ L∞(X) be
a nonnegative function with

∫

f dµ > 0, and let A = {x ∈ X : f(x) > 0}. Let
f̃ = UC-limn f◦T p1(n) · . . . · f◦T pr(n) in L2-norm; then f̃ > 0 a.e. on A.

Proof. Clearly f̃ ≥ 0. It suffices to show that for any measurable subset B of A with
µ(B) > 0 one has

∫

B f̃ dµ > 0. Find δ > 0 and a measurable set B′ ⊆ B with µ(B′) > 0
9This is a version of Furstenberg’s correspondence principle. The system (X,B, µ, T ) and the set A can

be constructed in the following way: take X = {0, 1}Z with T being the coordinate shift, (Tx)i = xi+1,
x = (. . . , x−1, x0, x1, . . .) ∈ X, and let A = {x ∈ X : x0 = 0}. Define a premeasure ρ on the cylindrical
subsets of X by ρ

(

T k1A ∩ T k2A ∩ . . . ∩ T klA
)

= ak1,...,kl , l ∈ N, k1, . . . , kl ∈ Z; one can check that ρ is
σ-additive and T -invariant. Finally, let µ be the Borel measure on X induced by ρ.
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such that f ≥ δ1B′ . Then
∫

B
f̃ dµ ≥

∫

B′
f̃ dµ =

∫

B′
UC-lim

n
f ◦T p1(n) · . . . · f◦T pr(n)dµ

= UC-lim
n

∫

B′
f ◦T p1(n) · . . . · f ◦T pr(n)dµ

≥ δr UC-lim
n

∫

X
1B′ · 1B′◦T p1(n) · . . . · 1B′◦T pr(n)dµ

= δr UC-lim
n

µ(B′ ∩ T−p1(n)B′ ∩ . . . ∩ T−pr(n)B′) > 0.

The polynomial van der Waerden theorem for jointly intersective polynomials, Theo-
rem 1.5, is an immediate corollary of Theorem 1.3. However, using the “uniformity” in
Theorem 1.4 (and following an idea which was utilized in [BeM1]), we can get a stronger
version of Theorem 1.5. We start with the following strengthening of Theorem 1.3.

Proposition 5.4. Let p1, . . . , pr be jointly intersective integral polynomials on Zm and let
sets E1, . . . , Es ⊆ Z be such that d∗(Ei) > 0 for all i = 1, . . . , s. Then there exists ε > 0
such that the set

S =
s

⋂

i=1

{

n ∈ Zm : d∗
(

Ei ∩ (Ei − p1(n)) ∩ . . . ∩ (Ei − pr(n))
)

> ε
}

(10)

is syndetic.

Proof. (Cf. the proof of Theorem 0.4 in [BeM1].) Using Furstenberg’s correspondence
principle, for each i = 1, . . . , s find a probability measure preserving system (Xi,Bi, µi, Ti)
and a set Ai ∈ Bi with µ(Ai) = d∗(Ei) such that for any n1, . . . , nl ∈ Z one has d∗

(

Ei ∩
(Ei − n1) ∩ . . . ∩ (Ei − nl)

)

≥ µi
(

Ai ∩ T−n1
i Ai ∩ . . . ∩ T−nl

i Ai
)

. Put X = X1 × . . . ×Xs,
T = T1 × . . .× Ts, and A = A1 × . . .× As. By Theorem 1.4, there exists ε > 0 such that
the set

{

n ∈ Zm : µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

> ε
}

=
{

n ∈ Zm :
s

∏

i=1

µi
(

Ai ∩ T−p1(n)Ai ∩ . . . ∩ T−pr(n)Ai
)

> ε
}

is syndetic, and this is a subset of
s

⋂

i=1

{

n ∈ Zm : µi
(

Ai ∩ T−p1(n)Ai ∩ . . . ∩ T−pr(n)Ai
)

> ε
}

.
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We now confine ourselves to the one-parameter situation. A subset E of Z is said to be
piecewise syndetic if there exists a sequence of intervals J1, J2, . . . with |Jj| −→ ∞ and a
syndetic set E ′ ⊆ Z such that E = E ′∩

⋃∞
j=1 Jj. It is not hard to see that if a syndetic set

is partitioned into finitely many subsets, then one of these subsets is piecewise syndetic.

Theorem 5.5. Let p1, . . . , pr be jointly intersective integral polynomials. For any finite
partition Z =

⋃k
i=1 Ei, one of the Ei has the property that, for some ε > 0, the set
{

n ∈ Ei : d∗
(

Ei ∩ (Ei − p1(n)) ∩ . . . ∩ (Ei − pr(n))
)

> ε
}

is piecewise syndetic.

Remark. As it was already mentioned above, the fact that for some Ei (and indeed for
any Ei that has positive upper density) and some ε > 0 the set

{

n ∈ Z : d∗
(

Ei ∩ (Ei − p1(n)) ∩ . . . ∩ (Ei − pr(n))
)

> ε
}

is syndetic is a direct corollary of Theorem 1.3. The delicate point in Theorem 5.5 is that
the set of n satisfying the assertion of the theorem is a (large) subset of Ei.

Proof. Re-index E1, . . . , Ek so that d∗(Ei) > 0 for i = 1, . . . , s and d∗(Ei) = 0 for i =
s + 1, . . . , k. Choose ε as in Proposition 5.4, and let S be the syndetic set defined by
(10). Since the set Z \

⋃s
i=1 Ei has zero upper Banach density, the set S ∩

⋃s
i=1 Ei is also

syndetic, and thus S ∩ Ei is piecewise syndetic for some i ∈ {1, . . . , s}.

6 Concluding remarks

6.1 Intersective and jointly intersective polynomials

Clearly, every integral polynomial with an integer root is intersective. There are also
intersective polynomials without rational roots; one can show that if a1, a2 are distinct
prime integers such that a1 ≡ a2 ≡ 1 (mod 4) and a1 is a square in Z/(a2Z), then the
polynomial p(n) = (n2 − a1)(n2 − a2)(n2 − a1a2) is intersective. (Such is, for example,
the polynomial p(n) = (n2 − 5)(n2 − 41)(n2 − 205), mentioned in the Introduction.)
There are similar examples of intersective polynomials of degree 5 (for instance, p(n) =
(n3− 19)(n2 + n + 1)), but there are no intersective polynomials in one variable of degree
less than 5 without rational roots (see [BBi]).
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An example of an intersective polynomial of several variables with no rational roots is
p(n1, . . . , n4) = n2

1 + . . . + n2
4 + b, where b is an arbitrary positive integer; this polynomial

has the property that all its shifts p + c, c ∈ Z, are also intersective. (No intersective
polynomials in one variable, except the polynomials ±n + b, b ∈ Z, have this property.
Indeed, if an integral polynomial p(n) is not of the form ±n + b, then there exists n0 ∈ Z
such that k = |p(n0 + 1)− p(n0)| 6= 1. Then p is not one-to-one in Z/(kZ), so is not onto,
and thus there exists d ∈ Z such that p(n)− d 6= 0 mod k for any n ∈ Z.)

Systems of jointly intersective polynomials in one variable can be easily described:

Proposition 6.1. Integral polynomials p1, . . . , pr of one variable are jointly intersective
iff they all are multiples of an intersective polynomial p.

(We say that a polynomial q is a multiple of a polynomial p if q is divisible by p in the
ring Q[n].)

Proof. Clearly, if p ∈ Q[n] is an intersective polynomial and p1, . . . , pr
... p then p1, . . . , pr

are jointly intersective.
Let p1, . . . , pr ∈ Q[n] be jointly intersective. Let p ∈ Z[n] be the greatest common

divisor of p1, . . . , pr in Q[n]. Then there exist h1, . . . , hr ∈ Q[n] such that
∑r

i=1 hipi =
p. Multiplying all hi by an integer d if necessary, we may assume that h1, . . . , hr have
integer coefficients, and that

∑r
i=1 hipi = dp. It is then clear that if p1, . . . , pr are jointly

intersective, then dp is intersective, and thus p is intersective.

The natural conjecture that integral polynomials are jointly intersective if any linear
combination of these polynomials is intersective, fails to be true. For example, one can
show that the polynomials p1(n) = n(n + 1)(2n + 1) and p2(n) = (n3 + n2 + 2)(2n + 1)
satisfy the above condition, but are not jointly intersective (see Appendix in [BeLe]).

Proposition 6.1 is no longer true for jointly intersective polynomials of several variables.
If polynomials p1, . . . , pr in m variables are jointly intersective, then the whole ideal I in
Q[n1, . . . , nm] generated by these polynomials consists of jointly intersective polynomials.
In the case m = 1, I is principal, which implies Proposition 6.1. If m ≥ 2, Q[n1, . . . , nm]
is not a principal ideal domain, and Proposition 6.1 fails. (Consider, for example, the pair
of jointly intersective polynomials pi(n1, n2) = ni, i = 1, 2.)

6.2 Total ergodicity

If one deals with totally ergodic dynamical systems (this means that T k is ergodic for any
nonzero integer k), it is not hard to verify (see Proposition 6.2 below) that any integral
polynomial is “good” for single recurrence. This is no longer true for multiple recurrence,
as the simple example following Proposition 6.2 shows.
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Proposition 6.2. Let (X,B, µ, T ) be a totally ergodic probability measure preserving dy-
namical system and let p be an integral polynomial on Zm. Then, for any set A ∈ B,
UC-limn µ

(

A ∩ T−p(n)A
)

= µ(A)2.

Proof. Total ergodicity of T is equivalent to the lack of discrete rational spectrum for
the unitary operator f 7→ f◦T on L2(X). For any f ∈ L2(X) and any Følner sequence
(ΦN)∞N=1 in Zm, the convergence in L2 of the sequence

(

1
|ΦN |

∑

n∈ΦN
f ◦T p(n)

)∞
N=1 to the

limit
∫

f dµ is then a consequence of basic spectral theory and Weyl’s equidistribution
theorem. (Cf. [Fu2], p. 70-71.)

Example. Consider the totally ergodic probability measure preserving system given by
rotation of the one dimensional torus by an irrational number α. The simplest example of
a non-intersective polynomial is 2n + 1. If we choose A to be a sufficiently small interval
on the torus, then for any n we will have A ∩ T−nA ∩ T−(2n+1)A = ∅.

It is natural to ask what is a necessary and sufficient condition for a family P =
{p1, . . . , pr} of integral polynomials to have “the multiple recurrence property” (namely,
that for any A ⊆ X with µ(A) > 0 one has µ(A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A) > 0 for
a certain n) in the framework of totally ergodic dynamical systems. We conjecture that
the condition that the ring generated by p1, . . . , pr does not contain nonzero constants
is a sufficient one. However, this condition is far from being necessary. In order to
find a necessary and sufficient condition for a family P = {p1, . . . , pr} of polynomials
to have the multiple recurrence property under the assumption of total ergodicity one
has to take into consideration the complexity of the family {p1, . . . , pr} (see [BeLLe] and
[L5]). (For example, if {p1, . . . , pr} has complexity 0, that is, if the polynomials pi−pi(0),
i = 1, . . . , r, are linearly independent, no additional restrictions on pi is needed (see [FKr]);
for a polynomial family of complexity 1, it suffices that spanZ{p1, . . . , pr} does not contain
nonzero constants.) It seems however that this necessary and sufficient condition is too
cumbersome to be either of practical or aesthetic value.

6.3 Multidimensional conjecture

The multidimensional polynomial Szemerédi theorem states that given a set E of positive
upper Banach density in Zk and vector-valued polynomials p1, . . . , pr : Zm −→ Zk with
zero constant term, the set

NP (E) =
{

n ∈ Zm : for some a ∈ Zk, {a, a + p1(n), . . . , a + pr(n)} ⊂ E
}

is infinite, and, moreover, syndetic. (See [BeL] and [BeM2].) It is natural to try to
generalize Theorem 1.1 to this multidimensional situation. Let us say that a family
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{p1, . . . , pr} of polynomial mappings Zm −→ Zk has the SPSZ property if for any set E
of positive upper Banach density in Zk the set NP (E) is syndetic in Zm; let us say that
p1, . . . , pr are jointly intersective if for any subgroup Λ of finite index in Zk there exists
n ∈ Zm such that p1(n), . . . , pr(n) ∈ Λ.

Conjecture 6.3. A set {p1, . . . , pr} of polynomial mappings Zm −→ Zk has the SPSZ
property iff the mappings p1, . . . , pr are jointly intersective.

At this stage, we are unable to check this conjecture by methods developed above
because of lack of theory of characteristic factors for Zk-actions, similar to that established
in [HKr1] and [Z] for Z-actions.

References

[BBi] D. Berend and Y. Bilu, Polynomials with roots modulo every integer, Proc.
Amer. Math. Soc. 124 (1996), no. 6, 1663–1671.

[Be] V. Bergelson, Ergodic Ramsey theory, Contemp. Math. 65 (1985), 63–87.

[BeHMP] V. Bergelson, B. Host, R. McCutcheon, and F. Parreau, Aspects of uniformity
in recurrence, Colloq. Math., 84/85 (2000), part 2, 549–576.

[BeL] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and
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