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Dedicated to Anatole Katok on the occasion of his 60th birthday.

1. INTRODUCTION

Atits inception in the early 1930’s, ergodic theory concerned itself with continuous one-parameter
flows of measure preserving transformations ([Bi], [vN1], [KvN], [Ho1], [Ho2]). Soon it was re-
alized that working withZ-actions rather than witlR-actions, has certain advantages. On the one
hand, while the proofs become simpler, the resultdieactions can often be easily derived from
those forZ-actions (see, for example, [Ko]). On the other hand, dealing E4tor even withN-
)actions extends the range of applications to measure preserving transformations which are not nec-
essarily embeddable in a flow. Weakly mixing systems were introduced (under thedgaamical
systems of continuous spegtima [KvN]. By the time of publishing in 1937 of Hopf’s book [Ho3],
the equivalence of the following conditions (which, for convenience, we formulatg-factions)
was already known. It is perhaps worth noticing that, while in most books either (i) or (ii) below is
taken as the “official” definition of weak mixing, the original definition in [KvN] corresponds to the
condition (vi).

Theorem 1.1. Let T be an invertible measure-preserving transformation of a probability mea-
sure spacgX,B,|). Let Ur denote the operator defined on the space of measurable functions
by (Ut f)(x) = f(Tx). The following conditions are equivalent:

(i) Forany ABe€ B,

. 1 N—-1 n
dim S n; IMANT"B) — (A)U(B)| = 0.

(i) Forany AB e B, there is a set R- N of density zero such that
lim pANT "B) = w(A)U(B).
n—oo, n¢P
(i) T x T is ergodic on the Cartesian square(@f, B, ).
(iv) Forany ergodic probability measure preserving syst&nD, v, S), the transformation & S
is ergodic on Xx Y.
(v) If f is a measurable function such that for some C, Ut f = Af a.e., then f= const a.e.
(vi) For f € L2(X,B,u) with Jx fdu= 0, consider the representation of the positive definite
sequencéUTf, f),n € Z, as a Fourier transform of a measuweonT = R/Z:

(URF, f) = / €4y, nez
T
(this representation is guaranteed by Herglotz theorem[lded. Thenv has no atoms.

Remark 1.2. It is not too hard to show that condition (i) can be replaced by the following more
general condition:
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(i) For anyA B € B and any sequence of intervals = [ay + 1,an +2,...,bn] € Z, N > 1,
with |In| = by —an — o, one has

1 _
im =S JWANT"B)~ H(AW(B)| =O.
N=es [Iy| n=an+1

Condition (1), in its turn, is equivalent to a still more general condition in which the sequence of
intervals{ln }n>1 is replaced by an arbitrafylnersequence, i.e. a sequence of finite $gts Z,
N > 1, such that for anp € Z,

|(Fn +a) NRy|

—1 as N — oo,
12N

This more general form of condition’(imakes sense for any (countably infinite) amenable group
and, as we shall see below (cf. Theorem 1.6), can be used to define the notion of weak mixing for
actions of amenable groups.

Remark 1.3. If (X,B,) is aseparablespace (which will be tacitly assumed from now on), the
condition (ii) can be replaced by the following condition (see Theorem | in [KvN]):

(i") There exists a s& C N of density zero such that for ay B € B, one has

HHQE¢QKAFH”“B)=LKANKB)

Condition (ii) in Theorem 1.1 indicates the subtle but significant difference between weak and
strong mixing: while for strong mixing one hasANT "B) — p(A)W(B) asn — oo for any pair
of measurable sets, a weakly mixing system which is not strongly mixing is characterized by the
absenceof mixing for somesets alongsomerarefied (i.e. having density zero) sequence of times.
Although the first examples of weakly but not strongly mixing measure preserving transformations
were quite complicated, numerous classes of measure preserving systems that satisfy this property
are known by now. For instance, one can show that the so-called interval exchange transformations
(IET) are often weakly mixing ([KS], [V]). On the other hand, A. Katok proved in [Ka] that the IET
are never strongly mixing. It should be also mentioned here that weakly mixing measure preserving
transformations are “typical”, whereas strongly mixing ones are not (see, for example, [H]). Before
moving our discussion to weak mixing of actions of general groups, we would like to formulate
some more recent results which exhibit new interesting facets of the notion of weak mixing.

Theorem 1.4. Let T be an invertible measure-preserving transformation of a probability measure
space(X, B, ). The following conditions are equivalent:

(i) The transformation T is weakly mixing.
(i) Weakly independent sets are dens&in(Here a set Ac B is weakly independerif there
exists a sequenca R ny < --- such that the sets A, i > 1, are mutually independent).
(i) Forany Ac Band ke N, k> 2, one has
1t n 2n kn k+1
I|m — Zbu (ANT"ANT AN ---NTA) = (U(A) .

(iv) Forany ke N, k> 2 any f, fa,..., fk € L*(X,B,1), and any non-constant polynomials
p1(n), p2(n), ..., pk(n) € Z[n] such that for all i j, deg pi — p;) > 0, one has

lim = %fl Tpl x) 2 TP2()y X)- Tpk /f1du1/f2d112 /fkdl“k

in L2-norm.
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Remark 1.5. Condition (i) is due to U. Krengel (see [Kr] for this and related results). Condition (jii)
plays a crucial role in Furstenberg’s ergodic proof of Sz&is theorem on arithmetic progressions
(see [F1] and [F2]). Criterion (iv) was obtained in [Bel]. Similarly to the “linear” case (iii), the
condition (iv) (or, actually, some variations of it) plays an important role in proofs of polynomial
extensions of Szemedi's theorem (see [BelL1], [BeM1], [BeMZ2], [L]). Note that the assumption
k > 2 in (iii) and (iv) is essential. Indeed, fédr= 1 condition (ii) expresses just the ergodicity of
T, whereas fok = 1, condition (iv) is equivalent to the assertion that all non-zero powefsare
ergodic. The following equivalent form of condition (iv) is, however, both true and nontrivial already
for k=1 (cf. condition (if) in Remark 1.3):

(iv") For anyk > 1 and any nonconstant polynomiglg(n),..., px(n) € Z[n] such that for all

i # j, ded pi — pj) > O, there exists a s€ C N having zero density such that for any sets
Ao,..., A« € B, one has
) IirTg]¢Pu(AoﬂTpl<“)A1m - NTPOA) = p(A)H(AY) - M(AW)-

Theorems 1.1, 1.4, and numerous appearances and applications of weakly mixing one-parameter
actions in ergodic theory hint that the notion of weak mixing could be of interest and of importance
for actions of more general groups. One wants, of course, not only to be able to come up with a
definition (this is not too hard: for example, condition (iii) in Theorem 1.1 makes sense for any
group action), but also to be able to have, similarly to the case of one-parameter actions, many
diverse equivalent forms of weak mixing including those which pertain to independence and higher
degree mixing properties of the type given in Theorem 1.4.

Let (Tq)gec be a measure preserving action of a locally compact g&ap a probability measure
spacg X, B,l). If Gis amenable, one can replace condition (i) in Theorem 1.1 (or, rather, condition
(i") in remark 1.2) by the assertion that the averages of the expre$gi@msTyB) — u(A)u(B)| taken
along any Fglner sequence@converge to zero. I6 is noncommutative, one also has to replace
condition (v) by the assertion that the only finite-dimensional subrepresentatibly)gtc (where
Uy is defined by(Ugf)(x) = f(Tgflx), f € L2(X,B, ) is the restriction to the subspace of constant
functions. H. Dye has shown in [D] that under these modifications the conditions (i), (iii), and (v)
in Theorem 1.1 are equivalent. Dye’s results are summarized in the following theorem (cf. [D],
Corollary 1, p. 129). Again, for the sake of notational convenience, we state the theorem for the case
of a countable groufs.

Theorem 1.6. Let (Tg)gec be a measure preserving action of a countable amenable group G on a
probability measure spadeX, B, 1t). Then the following conditions are equivalent:

(i) Forevery Falner sequendé&),,_; in G and any AB € B, one has

im =S (AN TgB) — HA(B) | 0.
= [Fol g,
(i) The only finite dimensional subrepresentation\df)qcc is its restriction to the space of
constant functions.
(iif) The diagonal action ofTq x Tg)gec ON the product spacéX x X, B ® B,U® ) is ergodic
(i.e. has no nontrivial invariant sets).

Remark 1.7. As a matter of fact, it is not too hard to show that conditions (ii) and (iii) in Theorem
1.6 are equivalent for any locally compact honcompact second countable group. See, for instance,
[Moore], Proposition 1, p. 157.

A measure preserving systeiX, 8,1, T) is called a system witHiscrete spectrurii L?(X, B, )
is spanned by the eigenfunctions of the induced unitary opdtitolt is not hard to show that the
condition (v) in Theorem 1.1 implies that a measure preserving syste, u, T) is weakly mixing
if and only if it does not have a nontrivial factor which is a system with discrete spectrum. Remark
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1.7 hints that a natural generalization of this fact to general group actions holds as well. (A measure
preserving action of a group on a probability spacéX, B, ) has discrete spectrumlif(X, B, )
is representable as a direct sum of finite-dimensional invariant subspaces.)

In [vN2] and [H] von Neumann and Halmos have shown that an ergodic one-parameter measure
preserving action has discrete spectrum if and only if it is conjugate to an action by rotations on
a compact abelian group. Again, this result has a natural extension to general group actions. See
[Mac] for details and further discussion.

The duality between the notion of weak mixing and discrete spectrum extends teldtiee
case namely, to the situation where one studies the properties of a system relatively to its factors.
The theory of relative weak mixing is in the core of highly nontrivial structure theory developed by
H. Furstenberg in the course of his proof ([F1]) of Szesdetheorem. See also [FK1] and [F2],
Chapter 6.

In [Z1] and [Z2] the duality between weak mixing and discrete spectrum is generalized to exten-
sions of general group actions. In particular, Zimmer established a far reaching “relative” version of
Mackey'’s results on actions with discrete spectrum.

A useful interpretation of condition (i) in Theorem 1.6 is tha{li§) g is a weakly mixing action
of an amenable grou@, then for evenyA B € B ande > 0, the set

Rag ={g9€ G:[U(ANTGB) —MA)W(B)| <&}
is large in the sense that it has density 1 with respect to any Fglner seqég)ite:

. |RNFy|
lim
n—oo |Fn‘

=1

A natural question that one is led to by this fact is whether there is a similar characterization of the
setsRa g in the case whef is not necessarily amenable.

It turns out that for every locally compact group which acts in a weakly mixing fashion on a
probability space, the s&ag is always “conull”, and in more than one sense. One approach,
undertaken in [BeRo], is to utilize the classical fact that functions of the fpfg) = ((ANTA) are
positive definite. This implies that sudi{g), as well as a slightly more general functions of the form
@) = W(ANTyB), areweakly almost periodi¢see [Eb]). By a theorem of Ryll-Nardzewski (see
[R-N]), there is a unique invariant mean on the space V@&Pf weakly almost periodic functions.
Denoting this mean byl and assuming that for eve#y,B € B, the functiong — H(ANTyB) is
continuous orG, let us call the actiofiTy)gec weakly mixing if for all

fu, 2 € L. B0 ©{f € L2(X, B0 ¢ [ =0},

M (’/X F1(x) f2(TgX)d(X) ) —0.

Theorem 1.8. ([BeRo], Theorem 4.1) Le&Tg)gec be a measure preserving action of a locally com-
pact second countable group G on a probability spé¢eB, ). The following are equivalent:

(i) (Tg)gea is weakly mixing.

(i) Forevery f,f, € L?(X,B,p),

X
(iiiy Forevery §,..., fn € L3(X,B,p) ande > 0, there exists g G with

one has

<g, i=1....n

[ fob0 1T
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(iv) Foreveryg,...,on € G, f e L3(X,B,H), ande > 0, there exists g G such that

‘/Xf(Tgx)f(Tgix)du(x) <& i=1...n

(v) For all F € L?(X,B,), F is not equivalent to a constant, the 4eft(Tgx) : g € G} is not
relatively compact in &(X, B, ).
(vi) L%(X, B, 1) contains no nontrivial finite dimensional invariant subspace@iggcc.
(vii) (Tg x Tg)gea is ergodic.
(viii) (Tg x Tg)gea is weakly mixing.

We shall describe now one more approach to weak mixing for general group actions (see [Be3],
Section 4, for more details and discussion). Gde a countably infinite, not necessarily amenable
discrete group. For the purposes of the following discussion it will be convenient toP@gwhe
Stone€ech compactification dB, as the space of ultrafilters @ i.e. the space of0, 1}-valued
finitely additive probability measures on the power®é6) of G. Since elements @G are{0, 1}-
valued measures, it is natural to identify egch BG with the set of all subsets havirgmeasure 1,
and so we shall writé € p instead ofp(A) = 1. (This explains the terminology: ultrafilters are just
maximalfilters.) Givenp,q € G, one defines the produpt g by

Acp-qe {x:Axlep}eq

The operation defined above is nothing but convolution of measures, which, on the other hand, is an
extension of the group operation @ (Note that elements @ are in one-to-one correspondence
with point masses, the so-callgdincipal ultrafilters.) It is not hard to check that the operation
introduced above is associative and th@®, -) is a left topological compact semigroup (which,
alas, is never a group for infini®). For a comprehensive treatment of topological algebra in the
Stone€ech compactification, the reader is referred to [HiS]. By a theorem due to R. Ellis [El], any
compact semigroup with a left continuous operation has an idempotent. (There are, actually, plenty
of them since there arée #isjoint compact semigroups 3G.) Idempotent ultrafilters find numerous
applications in combinatorics (see, for example, [Hi] and [HiS], Part 3) and also are quite useful
in ergodic theory and topological dynamics (see, for example, [Be2], [Be3]). Given an ultrafilter
p € BG and a sequendeyg)gec iN @ compact Hausdorff space, one writes

p-lim xg =y
geG

if for any neighborhood) of y, one has

{geG:xgeU}ep.
Note that in compact Hausdorff spaces p-limit always exists and is unique.

The following theorem, which is an ultrafilter analogue of Theorem 1.7 from [FK2], illustrates
the natural connection between idempotenf8@and ergodic theory of unitary actions.

Theorem 1.9. Let (Ug)ge be a unitary action of a countable group G on a Hilbert spage For
any nonprincipal idempotent @ BG and any fe # one has
p-limUgf =Pf (weakly
geG
where P is the orthogonal projection on the subspageof p-rigid elements that is, the space
defined by

Hy ={f:p-limUgf = f}.
Theorem 1.9 has a strong resemblance to the classical von Neumann’s ergodic theorem. In both

theorems a generalized limit biyf, g € G, (in case of von Neumann’s theorem this is the &es
limit) is equal to an orthogonal projection dfon a subspace aff. But while von Neumann’s
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theorem extends via Ca® averages over Fglner sets to amenable groups only, Theorem 1.9 holds
for nonamenable groups as well.

Given an elemenp € 3G, itis easy to see th&= p-BGis arightideal i3G (thatis,R- G C R).
By using Zorn's lemma one can show that any right ideal contains a minimal ideal. It is also not
hard to prove that any minimal right ideal in a compact left topological semigroup is closed (see
[Be3], Theorem 2.1 and Exercise 6). Now, by Ellis’ theorem, any minimal ide@Girrontains an
idempotent. Idempotents belonging to minimal ideals are called minimal. It is minimal idempotents
which allow one to introduce a new characterization of weak mixing for general groups. Recall that
a setA C Z is calledsyndeticif it has bounded gaps amlecewise-syndetif it is an intersection
of a syndetic set with a union of arbitrarily long intervals. The following definition extends these
notions to general semigroups.

Definition 1.10. Let G be a (discrete) semigroup.
(i) Aset AC G is called syndetic if for some finite setFG, one has
Jart=c.
teF
(i) A set AC G is piecewise syndetic if for some finite set s, the family

{ <tLeJFAt1> al:iae G}

has the finite intersection property.

The following proposition establishes the connection between minimal idempotents and certain
notions of largeness for subsets@f It will be used below to give a new sense to the fact that for a
weakly mixing action on a probability spack, B, ), the seRa g is large for alle > 0 andA, B € B.

Theorem 1.11. (see[Be3], Exercise 7) Let G be a discrete semigroup and {$G,-) a minimal
idempotent. Then
(i) Forany Ac p, the set B= {g: Ag~* € p} is syndetic.
(i) Any A€ pis piecewise syndetic.
(iii) For any Ac p, the set
AA= {xe G:yxe Afor some y A}
is syndetic. (Note that if G is a group, then %\ = {gilgz 101,02 € A})

Definition 1.12. A set AC G is called central if there exists a minimal idempotert G such that
Ac p. Aset AC Gis called a C-set (or central set) if A is a member of any minimal idempotent in
BG.

Remark 1.13. The original definition of central sets (i), which is due to Furstenberg (see [F2],

p. 161), was the following: a subs8tC N is a central set if there exists a systé¥1 T), a point

x € X, a uniformly recurrent poiny proximal tox, and a neighborhoody of y such thatS= {n:

T"x e Uy}. The fact that central sets can be equivalently defined as members of minimal idempotents
was established in [BeH]. See also Theorem 3.6 in [Be3].

The following theorem gives yet another characterization of the notion of weak mixing.

Theorem 1.14. (see[Be3], Section 4) Le{Ty)qcc be a measure preserving action of a countable
group G on a probability spaceX, B, 1). Then the following are equivalent:

(i) (Tg)gec is weakly mixing.

(i) Forevery fe L?(X,B,u) and any minimal idempotentgBG, one has

p-lim f(Tyx) = / fdu  (weakly)
geG X
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(iii) There exists a minimal idempotentepBG such that for any fe L?(X,B,u), one has
p-lim g f(TgX) = [y fdp (weakly).
(iv) Forany AB < B and anye > 0, the set

{9€G: [WANTyB) — WAW(B)| < €}
is a C'-set.

Given a weakly mixing action of, say, a countable (but not necessarily amenable)@rome
would like to know whether the action has higher order mixing properties along some massive and/or
well-organized subsets &. For example, it is not hard to show that for any weakly mix#gction
and any nonconstant polynomig{n) € Z[n], one can find ahP-setS such that for anyA, B € ‘B,
one has

lim uANTPB) = u(A)u(B).

n—oo neS
(An IP-set generated by a sequeree: i > 1} is, by definition, any set of the forfm;, +---+nj, :
i1 <. <y keN})

Another example of higher degree mixing along structured sets is provided by a theorem proved
in [BeRu], according to which any weakly mixing action of a countable infinite direct &n
®n>1Zp, WhereZ, is the field of residues modulp, has the property that the restriction of the
action of G to an infinite subgroup (which is isomorphic @) is Bernoulli (see also [BeKM1],
[BeKM2], [BeKLM], [JRW], [J], [B1]).

In Section 2 below we give a detailed analysis of higher order mixing properties for a concrete
classical example — the standard action of BIZ) on the 2-dimensional torug?. Since SI(2,7)
contains mixing automorphisms (namely, hyperbolic automorphisms), this action is weakly mixing.
On the other hand, this action is not strongly mixing becaug@ 1) contains nontrivial unipotent
elements.

While many of the results obtained below hold (sometimes, after an appropriate modification)
for toral actions of Skn,Z) and even in more general situations, we intentionally deal here with
SL(2,Z)-actions in order to make the paper more accessible and important issues more transparent.

Here is a sample of what is proved in the next section:

o (cf. Proposition 2.10) LeTy,...,Tx € SL(2,Z). Then the following assertions are equiva-
lent:
(i) ForeveryAy,...,Ac € B,

KA NT{ALN- - NTIA) — W(Ao) -~ H(A) as n— oo.

(i) EachTj is hyperbolic,T; # £T; for i # j, and for everyp > 1, there are at most two
matrices among;i, i = 1,...,k, having an eigenvaluk such thatA| = p.
e (cf. Proposition 2.20) LeTy,..., Tk € SL(2,Z) be hyperbolic automorphisms. Denote by
Ai the eigenvalue off; such thatAi| > 1. Putagn=0,n>1. Letk>1 anda, € Z,
i=1,...,k be such that

min{|log|Ai|-ain—log|Aj|-ajn| :0<i<j<n}—o as n— co.
Then for evenh, ..., A € B,

H(ANT AL M- NTXA) — W(Ao) -+ W(A) as n— o,

This result generalizes Rokhlin’s theorem [R] in the case of 2-dimensional torus. See also
Proposition 2.24 for an analogue of this result for unipotent automorphisms.
¢ While every abelian group of automorphis@svhich acts in a mixing fashion of is mix-
ing of orderk for everyk > 1, (that is, for everk > 1 and sequence®pn =€,gin,...,0kn €
G such that

Oigjn—® as n—o for 0<i<j<Kk,



10 V. BERGELSON, A. GORODNIK

one has

H(AoNgLnALN -+ NGknAk) — M(Ao) - H(A) as n— o)

a nonabelian group of automorphismsTf is never mixing of order 2 (see Proposition
2.31). Note that there are nonabelian groups of automorphisms that act in a mixing fashion
onT? (see the discussion after Proposition 2.30).

2. SL(2,Z)-ACTION ON TORUS

Definition 2.1. A sequenceqle SL(2,Z), n > 1, is called mixing if for everyf f, € L°°(11‘2),

@ [ et - ( [, hed) ([ a@d) as noe

A transformation Te SL(2,Z) is called mixing if the sequencé'Th > 1, is mixing.

Note that this definition is different from the one given in [BBe].

Recall that a matrid is calledhyperbolicif its eigenvalues have absolute values different from
1, andunipotentif all its eigenvalues are equal to 1. It is well-known that an automorpHism
SL(2,7) is mixing on the torusT? if and only if it is hyperbolic. This implies that the action
of SL(2,Z) on T? is weakly but not strongly mixing and motivates the following problem: give
necessary and sufficient conditions for a sequapeeSL(2,Z), n > 1, to be mixing.

We start with a useful and straightforward lemma (cf. Theorem 3.1(1) in [B2]). For a niatrix
denote byT its transpose.

Lemma 2.2. A sequencenTe SL(2,Z), n > 1, is mixing if and only if for everyx,y) € (Z?)? —
{(0,0)}, the equalityT,x+y = 0 holds for finitely many n only.

Proof. To prove thafl, is mixing, it is sufficient to check (1) fof; and f, in the dense subspace of
trigonometric polynomials. It follows thak, is mixing if and only if (1) holds forf; and f, that are
characters of the form

(2) Xu(8) = €0, xe 72 g e T

Forx,y € Z?, one has

B [0 if Tx+y#£0,
/T , Xx(Tn&)X, (§)dg = /TerW(E)dE - {1 it Tox+y=0.

It follows that for (x,y) € (Z2)? - {(0,0)},

/TZXX(TnE)Xy(Z)dE — </szx(2)d£> </szy(ﬁ)di) —0 as N oo

if and only if the equalityT,x+y = 0 holds for finitely manyn only. This proves the lemma. O

Denote by M2,K) the set of 2x 2-matrices over a fieltk. Using Lemma 2.2, we can now prove
the following proposition.

Proposition 2.3. Let T, € SL(2,Z), n> 1, | - || be themaxnorm onM(2,R), and D C M(2,R)
denote the set of limit points of the sequerﬂ%ﬁ as n— o, Then the sequencg & not mixing
if and only if there exist & M(2,Q) and Be M(2,Q) such that Be D and T, = A+ ||Ty||B for
infinitely many n> 1.

Proof. We may assume thdifl,,|| — . (Indeed, if|| Ty|| -» oo, then there exists a matri such that
T, = Top for infinitely manyn, and the statement is obvious.)
“<": Let Ty = A+ ||Tq||B. Since

detB = lim det(Tn 0,

)—Iim 1 o_
n—eo [Tall /o || Tal2
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B is degenerate. Thus, there exists Z2 — {0} such that'Bx= 0. Then for infinitely manyn,
Tox = 'Ax, and, by Lemma 2.2T, is not mixing.

=" By Lemma 2.2, there exist,y) € (Z?)?>— {(0,0)} such thatT,x = —y for infinitely many
n. By passing, if needed, to a subsequence, we may assume that this equality holdsXot alt is
clear that gc@ks,x2) = ged(ya, ¥2). Thus, we may assume thaandy areprimitive (that is, the ged
of their coordinates is 1). Takeé, D € SL(2,Z) such thaCe = x andDe; = —y wheree; = (1,0).

Then
T 1 an 1 -1 0 1\~
Tn—D< 0 C*=DC *+a,D 0 0 C

for somea, € Z. Put'F; =DC~land'F, =D < 8 (]5 > C1. We have
(3) Tn = Fl+aﬂ|:27
and
4) |an| - [[Fal| = [[FLll < [[Tnll < [aa] - [[F2[ + [IFl-
Hence,||Ta|| ~ |an| - ||F2]| asn — «. Replacing, if necessarFQ by —F, anda, by —a, we may
assume thad, > 0 for infinitely manyn. ThenB = BT | € D. Passing to a subsequence, we get
thata, > 0 forn> 1. By triangle inequality and (4),
o Tl 2 | 1= ol + e = 1Tl 2 | = 1+ ol ol Tl < 21l

Thus, for infinitely manyn, T, — || Ty||B = Afor someA € M(2,Q). This proves the proposition.(]
We illustrate the usefulness of Proposition 2.3 by the following two propositions.

Proposition 2.4. Let U,V € SL(2,7Z) be unipotent matrices. Then the sequenge=T "V" is
mixing if and only if UV+# VU.

Proof. If U andV commute, one can show that they are powers of a single unipotent transformation.
Hence, in this case, the sequefge= U ~"V" is not mixing.
Conversely, suppose thal #VU. There exisA, B € SL(2,7Z) such that

a1 1 u o1l 1 v
U=A (0 1>A and V=B <0 1>B

for someu,v € Z — {0}. It is sufficient to show that the sequen§e= AT,B~! is mixing. Let

AB1= 2 3>.Wehave
(1 —nu 1/ 1 nv\ [ a—(cuyn b—(av+dun—(cv)n?
5*‘(0 1)AB (0 1)‘( c d+(cvn )
Whenc =0

vzsl((l) X)B:Bl(ABl)l((l) \1/)(AB )B=A" ((1) ‘1)&

and it follows thaty andV commute. Thus; # 0.
We apply now Proposition 2.3. For sufficiently langg|S,|| = |b— (av+du)n — (cv)r?|. Also

S ( 0 —sign(cv) ) def -
1Sl 0 0
SinceS, — ||S||C is not constant for infinitely many, the sequencsg, is mixing. O

Remark 2.5. WhenU,V € SL(2,Z) are commuting unipotent transformations, the sequency"
is relatively mixing in the sense of Definition 2.22 below.
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Using a similar argument, one proves the following proposition:

Proposition 2.6. Let U,V € SL(2,Z) such that U is unipotent, and V is hyperbolic. Then the
sequence= U """ is mixing.

Proof. Denote byE;; the 2x 2 matrix with 1 in position(i, j) and O's elsewhere. For sordeB <
GL(2,R) andA with |A| > 1,

U:A—l( )c\) A(El )A and V:B—1< é i)B.
We write
T, _A1< A(;n )\On )ABl< é 'I )B_)\”C+)\”nD+)\”E+>\”nF
where
C=A'EpA D=A'EAB1E;,B, E=A1E,A, F=A'Ex»nAB 1EB.
Suppose thaF # 0. Thenﬁ — ﬁ By Proposition 2.3, we need to show that there is no

X € M(2,R) such thafT, — \|T,1||H';—H = X for infinitely manyn. SinceF is degenerate, one of the

matricesC, D, E is not a scalar multiple of (sayC). Take a basis of ¥2,R) which containsC
andF. TheC-coordinate ofT, — ||Tn\\ﬁ with respect to this basis is equalXo" +aA~"n+ A"

for somea, € R. This shows that the sequentg— HTnllu'E—H consists of distinct matrices for
sufficiently largen. Thus,T, is mixing.

Suppose thaE = 0. The”n%u — ﬁ By the same argument as in the previous paragraph, the
sequencd;, — ||Tn|\ﬁ consists of distinct matrices for sufficiently large This implies thafT, is
mixing. O

Remark 2.7. WhenU,V € SL(2,Z) are hyperbolic antl # V, the sequenctl ~"V" is mixing.
This follows from Proposition 2.10 below.

Next, we study multiple mixing for general sequences.

Definition 2.8. Let T, € SL(2,Z), n> 1, i=1,... k. The sequences ..., Ty, are jointly mixing
if for every f € L*(T?),i=1,...,k+1,

© [ T @ - ([ @) ([, o)

T2 T2 T2
as n— oo, Transformations 1. .., Ty are called jointly mixing if the sequenceg T.., T, n> 1,
are jointly mixing.

In [B2], this property was called w-jointly strongly mixing (see Definition 3.6 in [B2]).

In the course of proving Proposition 2.10 below, we shall need the following immediate extension
of Lemma 2.2 (cf. Theorem 4.3(1) in [B2]).
Lemma 2.9. Let Tn € SL(2,Z), n> 1, i=1,... k. The sequences,..., Tk are jointly mixing if
and only if for every(xy, ..., % 1) € (Z?)¥** —{(0,...,0)} the equality

TynXe+ - + Tk + X1 = 0

holds for finitely many n only.
Proposition 2.10. Let T € SL(2,Z), i = 1,...,k. The transformationsT..., T¢ are jointly mixing

if and only if each of iTis hyperbolic, T# +T; for i # j, and for everyp > 1, there are at most two
matrices among;Ti =1,...,k, having an eigenvalug such thatA| = p.
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Proof. If a matrix T € SL(2,Z) has complex eigenvalues, they are units in an imaginary quadratic
field. This implies that the eigenvalues Bfare roots of unity. Hence, the transformatibris not
mixing onT2. Therefore, we may assume that the eigenvaludsat real.

Next, we note that one can assume without loss of generality that the eigenvalyest, . . . , k,
are positive. Indeed, pit = —T; if the eigenvalues of; are negative and; otherwise. Clearly,
transformationd;, i = 1,...,k, are jointly mixing if and only if transformation§, i = 1,....k, are
jointly mixing.

Let the transformation®y, ..., Tx be jointly mixing. Then each of the sequend’éband'l’i‘“Tj“,

i # j, is mixing too. This implies that all; are hyperbolic and; # T; for i # j. To show that the
conditions of the theorem are necessary, we consider transform@idasTs € SL(2,Z) that have
the same eigenvalie> 1. We claim that there existgy, Xz, x3) € (Z?)3 —{(0,0,0)} such that

(6) T 4%+ Tixg =0

for everyn > 1, which, in view of Lemma 2.9, implies that the sequent@sl,', T;' are not jointly
ml);ri]r?c.e'ﬁ, i =1,2,3, have the same eigenvalues, there exi&tc GL(2,R) such that

(7) T,=A'T/A and T;=B 'TiB.

Note that the matriA is a solution of the matrix equation

(8) XT =TiX,

which can be rewritten as a homogeneous system of linear equations with rational coefficients. The
set of rational solutions of (8) is dense in the space of real solutions. It follows that there exists a
rational solution (8) such that d&) # 0. This shows that we may chooseandB in GL(2,Q).

For everyv € R?, v=v, +Vv_ wherev, andv_ are eigenvectors ¢T; with eigenvalued andA—*
respectively X > 1). Define linear mapB; : vi— v, andP_ :v—v_. Then

(9) Ty =AP, +A" P, PLP.=P.P, =0, P2=P;, P, +P_=id.
Note thatP,,P_ € M(2,Q(+/d)) for somed € N determined by\. When+/d € Q, A andA~* are
algebraic integers i@, and it follows that thah = 41, which is a contradiction. Thus/d ¢ Q.

Denote byo the nontrivial Galois automorphism of the field extensi@n/d)/Q. ThenA® = A1
and(P;)° = P_. Using (7) and (9), we may rewrite equation (6) as

A" (Pyxy +'AP 'A% +'BP, B xg) + A" (Poxq +'AP_'A™ 1%, + 'BP_'B " x3) = 0.

The columns of the matriceB,, '‘AP,'A~1, and'BP,'B~! lie in the vector spacé)(+/d)? that
has dimension 4 ove@. Thus, these columns are linearly dependent dgeand there exists
(X1,X%2,%3) € (Z?)3 —{(0,0,0)} such that

Py x1 + AP A Ix; + BP, B 1x3 = 0.
Applying o to this equality, we get

P_x1 +'AP_'A" 1% + 'BP_'B !x3 = 0.

This implies (6) and proves that the conditions in the proposition are necessary for mixing.

To prove sufficiency conside®, T; € SL(2,Z), i = 1,...,k, such thatS andT; have the same
eigenvalue\; > 1, andA; < Aj fori < j. We need to show that the transformati®asTy, . . ., S, Tk
are jointly mixing. By Lemma 2.9, it is enough to prove that there is(xQyi,...,X,Yk,2) €
(22)Z+1 —{(0,...,0)} such that the equality

(10) 'Sxq + Ty + -+ 1+ Ty + 2= 0.
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holds for infinitely manyn > 1. Suppose that such2k+ 1)-tuple exists. Without loss of generality,
we may assume thgi # 0. As above, we defing +,Q; + € M(2,R) such that

'§=ANP;+A'R_, R4P_=R_P,.=0 PL=P. P,+P_=id,
T =AQ++AN'Q-, Q+Q-=Q-Q+=0 Q4 =Q:, Q++Q_=id

Then (10) can be rewritten as

k k
2 MRXEQN)+ 5 MRX+Quyi) +2=0.

Dividing this equality byA} and taking a limit over a subsequenge— o, we deduce that

P Xk + Qi+ Yk = 0.

Suppose the®y + Yk = 0. Thenyy # 0 is a rational eigenvector & with eigenvalue)x;l. It follows
thatAx, At € Q. On the other handy, andA * are algebraic integers. Hendg,= +1, which is a
contradiction. This shows that

vE R = —Qi+ Yk # 0.
We have
SV =Akv =Ty
As above, we denote hyi the nontrivial automorphism of the quadratic extens{Ax)/Q. Then
PO =P, QR =Qs A=A
and it follows that
Sk = A Wk = Tvk,
Sincev andV%k are linearly independent, this implies tt&t= Tk, which is a contradiction. Thus,
(20) holds for finitely manwy only. The proposition is proved. O

Remark 2.11. Proposition 2.10 should be juxtaposed with the case of commuting automorphisms
of the torus. It can be shown thatT, ..., Ti are commuting automorphisms Bf, then they are
jointly mixing if and only if the sequenceR" andTi*“Tj“, i # j, are mixing.

In the case of a single measure preserving transformatjdhis mixing if and only if T¥, k > 1,
is mixing. In the following proposition, we investigate what happens for general sequences in our

group:
Proposition 2.12. Let T, € SL(2,Z), n> 1, be hyperbolic automorphisms. L&t be the eigenvalue
of T, with |Ap| > 1.
(1) For any k> 1, if the sequenca,, is bounded, thengTis mixing if and only if J is mixing.
(2) Forany k> 2, if A, — o, the sequence!Tis always mixing.

Proof. Lett, = Trac€T,). ThenT, is a root of its characteristic polynomig — t,x+ 1. Using the
polynomial identity:
X = P(X) (% — taX+ 1) + On X + Bk
wheredn, Bnk € Z,
A —Ap

Opk=———-7, Bnk=
S W S

)\EkJrl _)\Efl
An—Ant

we deduce that
(11) Tnk = an,an + Bn,k~

Suppose thakn, n > 1, is bounded. Then the sequenogg andp, x are bounded, hence take on
only finitely many values. Hence, the equality

(12) TEx 4y = To(OnxX) + (Bokx+Yy) =0
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holds for soméx,y) € (Z?)%2—{(0,0)} and infinitely manyn if and only if the equalityT,x' +y =0
holds for someXx,y) € (Z?)2 —{(0,0)} and infinitely manyn. By Lemma 2.2, this proves the first
part of the proposition.
We assume now that, — . Then
ank ~ AT and Bax~ A2 as n— .

By Lemma 2.2, it is sufficient to show that if (12) holds for infinitely mamyhenx =y = 0. Suppose
that (12) holds for infinitely many. Dividing by anx and taking a limit over a subsequenge— o,
we conclude tha’d’njx — 0. Since the sequend?ajx is discrete, it follows thak = 0, andy = 0.

Thus, TX is mixing. 0

Remark 2.13. Note that the statement in part (2) of Proposition 2.12 fail&kfer1. For example,

let
n n-1
Tn:(l 1 )7 n217

If A denotes the largest eigenvalu€elgfthen clearlyh, — . However, the sequendg, n> 1, is
not mixing. (This follows from Proposition 2.3.)

Recall a theorem of Rokhlin [R]:
Theorem 2.14. (Rokhlin)Let T be a mixing automorphism of a compact abelian group. Then the
sequences ¥, ..., T&n are jointly mixing provided that
min{|ain—ajn/:0<i<j<n}—o as n— oo,
where @, =0.
The following proposition shows that a naive generalization of Rokhlin’s theorem to a general
sequence of automorphismgis false.

Proposition 2.15. Let T, € SL(2,Z), n> 1. Denote by, the eigenvalue of Tsuch|Ay| > 1. If the
sequenceé, n> 1, is bounded, then for any choice of@Z, i =1,...,k, (k> 1) the sequences
T, ... T are not jointly mixing.

Proof. Without loss of generality, we may assume that 0,i =1,...,k.
By Lemma 2.9, it sufficient to show that there exists a tygle. . ., Xc11) € (Z%)¥t1 —{(0,...,0)}
such that for infinitely manm,
TAxg 4 - -+ Tx + Xy 1 = O
By (12), the last equality reduces to
(13) To(Onag X1+ -+ 0naXe) + Bnag X+ + Bra X + X1 =0.

Since the sequende, n > 1, is bounded, the sequenaes, andfn s are bounded too. Thus,
they are constant for infinitely mamy Now one can easily choosee Z2,i =1,...,k+1, not all
zero, such that (13) holds. For example, one can take’siio be multiples a fixed nonzero integer
vector. O

Remark 2.16. Even if a sequencé, € SL(2,Z), n > 1, is such that
(i) Tnis hyperbolic and mixing ofi?,
(i) An — oo, whereh, is the eigenvalue of, such that\, > 1,
the sequencek, andT,? need not be jointly mixing. For example, put
n -1

Then'T2x+Tyy+z=0forx="0,1), y="'—2,0), z= (0, —2) which implies that the sequencés
andT,? are not jointly mixing. On the other hand, it follows from Proposition 2.3 that the sequence
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Th is mixing. This example also demonstrates that pairwise conditions are not sufficient to guarantee
joint mixing even when the elements commute for every fied

We give here a generalization of Rokhlin’s theorem in the case of the 2-dimensional torus. (A
similar extension of Rokhlin’s theorem holds in any dimension.)

Proposition 2.17. Let T, € SL(2,Z), n> 1. Denote byA, the eigenvalue ofsTsuch thatjA,| > 1.
Putegn=0,n>1 Letk>1landan,<cZi=1,...,k Denote

Ya=min{|ain—ajn|:0<i<j<n}
Suppose that one of the following conditions holds:
(1) The sequence,Ts mixing, and

{w ‘n> 1} is bounded
An

)

an

Then the sequencesal"F, ..., Tn " are jointly mixing.

Remark 2.18. Part (2) of the theorem witfi, = T, n > 1, implies Rokhlin’s theorem for the case
of 2-dimensional torus.

Proof. SinceT, is measure-preserving, we are allowed to replagdy a n—min{an:i=0,...,k}.
It follows that without loss of generality, we may assume that
min{ajn:i=0,...,k} =0.
Also by changing order and passing, if needed, to subsequences, we may assume that
max{ain:i=1,...,K} =akn.
Suppose that the sequend’aaé‘”, e k" are not jointly mixing. By Lemma 2.9, there exists a
tuple (X1, ..., % 1) € (Z2)k1 —{(0,...,0)} such that the equality

tTnajI_,nX:L 4. +tTnak7nXk +Xk+1 — 0
holds for infinitely manyn. By (11), the last equality is equivalent to

K K
z10(”*"'4.ntTnxi + D BnaoXi+X1=0.
2 Z

Note that in both casea!" — o asn — . Therefore, it follows thahe™ " _
)\ﬁln o ﬁ,n*l

00,

anﬁiA ~ ) Bnﬁa{ ~ T 1 i :1,...,k.
" )\n —)\n n )\n —)\n
Then
k—1 k
Opn g Bn, !
tTnXk = - 21 —an tTnXi — Zl Bin X; — RS
i1 Onayn i1 Onayn On,acp,

= 0 ( ”;-\2”) + O 4+ A Ix.
n
Assume that condition (1) holds. Then the sequéfipg is bounded by infinitely mang. Thus,
it is constant for infinitely manwy. It follows from Lemma 2.2 that, = 0.
Suppose that condition (2) holds. We prove that 0. If Ap — oo, then'T,xx — 0 asn — o, and
this implies thatx, = 0. Otherwise, the sequencksand'T,x, are bounded for infinitely mangy,
and consequently, they are constant for infinitely mismyrhus,tTnj Xk = )\,;jlxk for a subsequence
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nj, and ifx # O, thenA, ,)\gjl € Q. SinceAy, is an algebraic integek,; = +£1, which contradicts
condition (2). This shows thai = 0.
Now the proof can be completed by inductionlon O

Remark 2.19. Condition (1) is not necessary for joint mixing of the sequernaéi ... ,Tr?k’”. For
example, put

2 3
Tn:<n1 nn1>7n>1, and gn=i,i=12

Even thoug ”I:” — 00 @ash — oo, one can check with the help of Lemma 2.9 that the sequehces
andT? are jointly mixing. It would be of interest to find a necessary and sufficient condition for
joint mixing of sequences of the forfix™", ..., Tee".

The following proposition is yet another generalization of Rokhlin’s theorem.

Proposition 2.20. Let Ty, ..., Tx € SL(2,Z) be hyperbolic automorphisms. DenoteMthe eigen-
value of T such that/Aj| > 1. Putan=0,n>1 Letk>1anda,€Z, i=1,....k be such
that

(14) min{|log|Ai| - ain —log[Aj|-ajn| :0<i<j<n}—e as n— .

Then the sequence§ahf‘, ... 7Tka“'n are jointly mixing.

Proof. As in the proof of Proposition 2.17, we reduce the proof to the case when
log[Ais+1|-@i+1,n —I0g[Ai[-@n—c as n— oo

fori=0,...,k—1.
Suppose that the sequent?'q?’”,...,T:“’” are not jointly mixing. By Lemma 2.9, there exists
(X1, ..., % Y) € (Z?)*1 —{(0,...,0)} such that the equality

(15) T % 4+ T "% +y =0

holds for infinitely manyn. LetR R _ € M(2,R),i=1,...,k, be such that
T=MR.+N'R_, PyR_=R_R, =0 P4 =PR., R, +R_=id

By (15),

k k
ajn —ain
(16) i;)\i "B +X + i;)\i R-x+y=0

holds by infinitely manyn. Dividing by )\i“’” and taking limit over a subsequenng — o, we
conclude thab . x = 0.

If x # O, it is an eigenvector dffy with the eigenvalué\gl. This implies that\y € Q. On the
other hand) is an algebraic integer. Thuk, = +1. This contradiction shows that = 0. Using
induction onk, we deduce from (16) that = 0 fori = 1,...,k. This shows that the sequences
T, T are jointly mixing. O

Remark 2.21. It clear that condition (14) in Proposition 2.20 follows from the following condition:

g1 :
al,n—>°° a.nd %_)007 |:11-"7k7 aS n—>007
i,n

)

which also appears in Proposition 2.24.



18 V. BERGELSON, A. GORODNIK

Definition 2.22. Let T € SL(2,Z), i = 1,...,k. Denote by P. L?(T?) — L%(T?),i=1,...,k, the
orthogonal projection on the subspace gfrivariant functions. Letigy € Z,i=1,...,k,n> 1. We
call the sequencesf*r”, . 7T|f‘k"n relatively jointly mixing if for everyfe L®(T?),i=1,..., k+1,

an [, 68 R0 fea@ = [ (P (R fa@dk as n—e.
We have the following criterion for relative joint mixing of tuples of unipotent elements:

Proposition 2.23. Let T € SL(2,Z),i=1,...,k, be unipotent elements. Denote hyiv1,....k, a
nonzero vector such thiv; = vi. Letan€Z,i=1,...,k,n> 1. Thenthe sequence]_%l'f’, ... ,Tfk’”
are relatively jointly mixing if and only if for everigs, ..., ax) € ZX—{(0,...,0)} and ze Z2 — {0},
the equality

K
(18) Zionai,nvﬁz:o

i=
holds for finitely many n only.
Proof. For someA; € SL(2,Z) ands € Z — {0},

in _ 1 sa;
(19) T = A 1( o 9" )Aa —E+5ainB;

whereB; = Ai‘l < 8 é > A € SL(2,7), andE is the identity matrix. To establish relative mixing,

it is sufficient to check (17) in the case whéni = 1,... k, are characters of the form (2). For
X1,..., X1 € Z2, one has

K (T8 %, (T, , @) = ()

1 T T X X1 =0,
0 if tTl"’ll‘"ler---thTk "Xk + X1 7 O.

X, a
/TZ (‘Tll"nx1+---+tTkak'nxk+xk+1)

Note that for every € Z?2,

if Bix=
Px, = Xy |_ iXx =0,
0 if Bix#0.

Thus, (17) always holds fof; = x,, provided thatBjx; = O for alli = 1,... k. It follows that the

sequence?fl'”,...,Tkak"” are relatively jointly mixing if and only if for everyxi,...,x) € (Z?)X
such that for some=1,...,k, Bix; # 0 (equivalently,Tix # x) the equality

(20) T 4 4+ T+ X1 = O

holds for finitely manyn only. By (19), the last equality is equivalent to

k
sanBix+z=0
22
wherez = $¥1x. Note that the columns of the matrB; are rational multiples of the vecter.
Thus,sBix; = a;v; for someq; € Q. SinceB;x; # 0 for somd, (ay,...,0x) # (0,...,0). This shows
that (20) holds if and only if
K

OiainVi+z=0
2
for some(ay,...,ax) € QK—{(0,...,0)} andz € Z. Multiplying by a fixed integer, we get that
0j € Z. This proves the proposition. O
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We record here a convenient corollary of Proposition 2.23.

Proposition 2.24. Let T € SL(2,Z), i = 1,...,k, be unipotent elements, antha& Z, i = 1,...,k,
n> 1, such that

di+1n

— oo, =1 k

an— o and as n— oo,

geees Ky

ain
Then the sequencejs_a’*f‘, ... ,Tka“"n are relatively jointly mixing.

Proof. Suppose that the sequend’gaé’”, . ,Tlfk'” are not relatively jointly mixing. Then by Propo-
sition 2.23, (18) holds for infinitely mang. Dividing (18) by axn and taking the limit over a
subsequences — o, we deduce thatiy = 0. Similarly, it follows thataj = 0 fori = 1,...,k. This
shows that the sequenc‘él%l’“, . ,Tk""k‘n are relatively jointly mixing. O

LetT,Se SL(d,Z). It was observed by Boshernitzan that it follows from the fact that the set of
common periodic points of andSis dense ifiT® that for every nonempty open subsgetof T9,

UNT"UNS'U#0

for infinitely manyn. A measurable analogue of this fact is far less trivial. The following conjecture
seems plausible:

Conjecture 2.25. Let T,Sc SL(d,Z), and letD be a Borel subset 6f? of positive measure. Then
limsupp(DNT"DNS'D) > 0.

n—oo
In fact, in all known to us examples,
limsup u(DNT"DNS'D) > u(D)3.

n—oo
Remark 2.26. Note that wherT andS generate a (virtually) nilpotent group, Conjecture 2.25 fol-
lows from a general “nilpotent” multiple recurrence theorem proved in [L] (see also Theorem E in
[BeL2]). It was, however, proved in [BeL3], that for any finitely generated solvable group of expo-
nential growthG, there exist a measure preserving acii@)qcc on a probability spacéX, B, ),
elementsy;, g2 € G and a seD € B with (D) > 0 such that forT = Ty, andS= Tg,, one has
wWDNT"DNS'D) =0 for alln# 0. Nevertheless, we believe that for our special action ¢tiSL)
onTY, the Conjecture is true.

We obtain below some partial results on the conjecture in the case of the 2-dimensional torus.
Note that wherm andSare hyperbolic the conjecture follows from Proposition 2.10. In fact, in this
case,

lim W(oNT"DNS'D) =

n—oo

WD)? if T=§

u(D)3 if T#4S
and wheril = —S, the limit set of the sequengg DN T"DNS'D) consists of two numbersy D)2,
W DN —=D)U(D). In particular, this shows that liminf might be 0 even whg) > 0.

We can also settle the case whEmndSare unipotent and hyperbolic respectively. For this, we
need a lemma:

Lemma 2.27. Let T € SL(2,Z) be unipotent, and 8 SL(2,Z) hyperbolic. Then the sequence® T
and &, n> 1, are relatively jointly mixing.

Proof. As in the proof of Proposition 2.23, it is sufficient to show that for evegyz € Z? such that
eitherTx# x ory # 0, the equality

(21) Thx+!'Sy+2z=0
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holds for finitely manyn only. We have
T"=E+nB
wherekE is the identity matrix and® € M(2,Z). LetA be the eigenvalue &such thaiA| > 1. For
someP;,P_ € M(2,R),
'S'=A"P, +A"P_, P,P_.=P P, =0, P2=P,, P, +P_ =id.
Equality (21) is equivalent to
A"PLy+A""P_y+nBx+ (x+2) =0.

Suppose that it holds for infinitely mamy Dividing by A" and taking the limit as — o, we deduce
thatP,y = 0. Theny is an eigenvector d&. If y # 0, theny is a rational eigenvector @& andA and
A1 are rational numbers that are algebraic integers. Heéneef1, which is a contradiction. This
implies thaty = 0. Then it follows thaBx = 0 (equivalently;T x= X). This shows that (21) holds for
finitely manyn only. Thus, the sequenc&$ andS", n > 1, are relatively jointly mixing. O

Lemma 2.27 implies the following special case of Conjecture 2.25.

Proposition 2.28. Let T € SL(2,7Z) be unipotent, and 8 SL(2,Z) hyperbolic. Then for any mea-
surable® C T2, the limit of (DN T"DNS'D) as n— « exists, and

lim WoNT"DNS'D) > u(D)3.
Moreover, the equality holds if and only if®) = 1 or 0.

Proof. Let f be the characteristic function of the ¥t Denote byPr andPs the orthogonal projec-
tions on the the spaces of andS-invariant functions respectively. Sin&as ergodicPsf = u(D).
By Lemma 2.27,

im W(DNT"DNS'D) = [ 1(Pr)(Psh)du= WD) Pr [ = u(D)*

n—oo

d

In the case wheil andSare unipotent, Conjecture 2.25 seems to be open in general. We prove a
partial result for sets of special form. For a functibe L®(TY), its Fourier coefficients are denoted
by .
f(x) = /Td F(E)X_,(E)dE, xe 28,

Proposition 2.29. Let T,S< SL(2,Z) be unipotent.

(1) For any measurabled C T2, the limit of (DN T"DNS'D) as n— w exists.

(2) Suppose that T ST. Let Ac SL(2,7Z) be such that AT A is lower triangular unipotent.
Then for every set of the forh = A(Dy x D,) whereD; and D, are measurable subsets
of T2,

lim p(oNT"DNS'D) > u(D)3.

Moreover, the equality holds if and only if?) = 1 or 0.

Proof. We prove (1) in the case whé@handSdo not commute. (Whem andS commute, they are
powers of the same transformation, and the proof goes along the same lines as the proof below.)
Letv andw be primitive integer vectors such tHav = v and'Sw= w. We claim that forf,g,h €
C™(T?),
22) [, f@erOnSE6E— 5 f(—iv—wgivi(w) as n—e,
iI,JEZ

It follows from a standard argument that it is sufficient to check (22) whem h are characters of
the form (2).
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Let f = X,, 9=X,, andh =, for somex,y,z¢ 72. First, suppose that= —iv — jw, y = iv
z= jw for somei, j € Z2. Then

L FRUTEONSEIEE = [ X, o 1, E)0E = 1

This implies (22) in this case.

Now we consider the case wheany, z are not of the above form. We need to show that the
equalityx+ 'T"y 4 'Sz = 0 holds for finitely manyn only. Suppose that it holds for infinitely many
n. Write 'T = E + B and'S= E + C whereE is the identity matrix and,C € SL(2,Z) such that
B2=C2=0. Then

X+ Ty +'S'z= (x+y+2) +n(By+Cz) =0.
holds for infinitely manyn. This implies thatx+y+z= 0 andBy= —Cz Note that the columns
of matrix B are multiples of the vector, and the columns o are multiples ofw. If By 0, v is
multiple of w, and it follows that in some basis & both T andS are unipotent upper triangular.
ThenT S= ST, and this contradicts the initial assumption. THBg= Cz= 0. Equivalently,Ty=y
andSz=z. Hencex = —iv— jv, y=1iv, andz= jw for somei, j € Z. This is a contradiction. We
have proved (22).

ReplacingT by A"1TA andS by A-1SA we reduce the problem to the case wheis lower
triangular andD = D x D,. Thenv =1'(1,0). Letw =(a,b). Let f be the characteristic function
of the setD, and f; and f, be characteristic functions of the s and D, respectively. Note that
forst ez, f(st) = fi(s)f2(t). To prove part (2), we need to show that

Y f(-i—aj,—bj)f(i,0)f(aj,bj) > w(D)*.

i,JEZ

Using the Plancherel formula and the fact tiﬁ%t: f1, we have

> f(-i—aj,-bpf(i,0)f(ajb) = Y (_z fl(—aj—i)ﬂ(i)) f2(—bj) f2(0) f(aj,bi)
I€EZ

i,JEZ JEZ

= 5 (1)(-aj) fa(-bj)u(D2) f(aj.bj)

S

N

= WD) Y [fa(@p)? fa(bj)?

JEZ
W(D2)|f1(0)% f2(0)* > w(D)*.
We are done. O

Y

Next, we investigate mixing properties of subgroups of 5E).

Proposition 2.30. Let H be a subgroup d8L(2,Z). The action of H o2 is mixing if and only if
H contains no nontrivial unipotent elements.

Proof. If the action ofH is mixing, then the action of every infinite subgrouptbfis mixing, and
consequentlyH does not contain nontrivial unipotent elements.

Conversely, suppose that the actiortbfs not mixing. By Lemma 2.2, there exists a sequence
hn € H,n>1, and(x,y) € (Z?)?— {(0,0)} such thath,x = —y for everyn > 1 andh, — . Then
th;lthnx: x for everyn > 1. Thus,hnhI1 € H is a nontrivial unipotent element for sufficiently large
n. This proves the proposition. O

A subgroup of SI2,7) is callednonparabolicif it contains no nontrivial unipotent elements.
Nonparabolic subgroups are of interest from the point of view of ergodic theory because they are
precisely the groups that act in a mixing fashion on the t@fis It follows from the pigeonhole
principle that every subgroup of $2 Z) of finite index contains a nontrivial unipotent element.
First examples of nonparabolic subgroups were constructed by B. H. Neumann in [N] (see also
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[Mag]). Any Neumann subgroup has the property that powers of a single unipotent element form a
complete system of representatives of the cosets of this group. In particular, Neumann subgroups are
maximal nonparabolic subgroups. There are examples of maximal nonparabolic subgroups that are
not Neumann (see [T], [BrL1], [BrL2]). IF is a free normal subgroup of finite index in &,7Z)
which is not equal to the commutant of &.7Z), then the commutant df is nonparabolic (see
[Mas]).

Although there are large subgroups in(8LZ) (e.g. Neumann subgroup) whose actions on the
torusT? are mixing, this is not the case for mixing of order higher than one:

Proposition 2.31. A nonabelian subgroup @L(2,Z) cannot be mixing of orde?.

Proof. Let H be a nonabelian subgroup of & 7). Suppose thall is mixing of order 2. Take
g,h € H such thagh # hg. Sinceg andh are hyperbolicg?h # hg?. Puth; =g 'hd, i =1,2 3.
Note thath; # +h; for i # j andhg, hy, h3 have the same eigenvalues. It follows from Proposition
2.10 (and its proof) that the transformatidpsandh; are jointly mixing fori # j, but

im [ 12(08) (0B8) FaHE)0& # | | ()G [, Fa@)k [, (&)

for somefy, fz, f3 € L*(T2). Thus, the sequenceg”h) andh; "h§ are not jointly mixing. This is a

contradiction. Hencel is not mixing of order 2. O
More generally, a similar argument allows one to show that the standard action on tHE%@fus

a subgrouH of SL(d,Z) which is not virtually abelian can not be mixing of ordr Another ap-

proach to the proof of this fact can be found in [Bh] where itis utilized for derivation of isomorphism

rigidity for the action ofH.

Remark 2.32. It follows from Proposition 2.31 that the action of a Neumann group is mixing, but
is not mixing of order 2.

Remark 2.33. Proposition 2.31 should be compared with the case&%ctions and S(2,R)-
actions where mixing implies mixing of all orders (see [S, Corollary 27.7] and [Moz] respectively).

We conclude by proving a result of Krengel type [Kr], which can be considered as a generalization
of the fact that every ergodic automorphism of the torus has countable Lebesgue spectrum.

Proposition 2.34. Let H be a subgroup o®L(2,Z) which acts in mixing fashion ofi2. Then for
every fe L?(T?) and everye > 0, there exist § € L?(T?) and a subgroup biof finite index in H
such that

(23) /., o) fo(&)ce = 0
for every he Hp, h#e.

Proof. First, we note that sindd is mixing, for every(x,y) € (Z?)? —{(0,0)} there is at most onle
such thathx=y. Indeed, ifthyx = thyx for somehy, h, € H, thenhsh,* € H is a unipotent element.

One can choose m
fo=) ax,
i; '

with somea; € C andx; € Z2 such that| f — fo||2 < €. We have
. _ m oy
[ oo = 5 a8 [ ..., €

Let hij € H — {e} be the unique element such tha§x; = x; (if such an element exists). Since
SL(2,Z) is finitely approximable, the subgroup is finitely approximable too. There exists a sub-
groupHg of finite index inH such thatj ¢ Ho for everyi, j =1,...,m. Then (23) holds for every
h € Ho, h+# e. This proves the proposition. O
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