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Introduction

Since its inception, ergodic theory was successfully employing combinatorial ideas
and methods – from the use of the ubiquitous pigeonhole principle in the proof of
the Poincaré recurrence theorem to combinatorial proofs of maximal inequalities, to
the utilization of the marriage lemma in Ornstein’s isomorphism theory. This debt to
combinatorics is amply repaid by the accomplishments of the ergodic Ramsey theory.

Ergodic Ramsey theory was initiated in 1977 when H. Furstenberg [F3] proved a
far reaching extension of the classical Poincaré recurrence theorem and derived from
it the celebrated Szemerédi’s theorem [Sz], which states that every set E ⊂ N with
d(E) := lim supN→∞

|E∩{1,2,...,N}|
N

> 0 contains arbitrarily long arithmetic progres-
sions. Furstenberg’s ergodic approach to Szemerédi’s theorem has not only revealed
the dynamical underpinnings of this seemingly static result, but has also opened new
vistas for mutually perpetuating research in ergodic theory, combinatorics, and num-
ber theory.

This survey is organized as follows. In Section 1 we formulate some of the classical
theorems of Ramsey theory and discuss their dynamical counterparts. The subsequent
sections are devoted to more recent developments and contain formulations of some
natural open questions and conjectures. Unfortunately, due to space constraints, some
of the topics will not get the attention they deserve. The readers will find more material
together with much more elaborated discussion in the recent survey [B4]. (See also
[F4], [B1] and [B3].)
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1. A brief survey

In partition Ramsey theory the focus is on patterns which can always be found in
one cell of any finite partition of a highly organized structure such as Zd , a complete
graph, a vector space, etc.1 Here are some examples.

Theorem 1.1 (Gallai–Grünwald2). For all r, d ∈ N, if Zd = ⋃r
i=1 Ci , then one of Ci

has the property that for every finite set B ⊂ Zd , there exist n ∈ N and v ∈ Zd such
that v + nB = {v + nu : u ∈ B} ⊂ Ci . In other words, Ci contains a homothetic
image of every finite set.

Theorem 1.2 (cf. [GraRS], p. 40). Let V be an infinite vector space over a finite
field. For all r ∈ N, if V = ⋃r

i=1 Ci , then one of Ci contains affine vector spaces of
arbitrary finite dimension.

Theorem 1.3 (Hindman’s Theorem, [Hi]). Given an infinite set E = {x1, x2, . . . } of
natural numbers let FS(E) = {xi1 + xi2 + · · · + xik : i1 < i2 < · · · < ik, k ∈ N}.
For all r ∈ N, if N = ⋃r

i=1 Ci , then one of Ci contains a set of the form FS(E) for
some infinite set E ⊂ N.

The density Ramsey theory attempts to explain (and enhance) the results of the
partition Ramsey theory by studying the patterns which ought to appear in any “large”
set. The notion of largeness may vary but it is always assumed to be partition regular
in the sense that for any finite partition of a large set at least one of the cells is large.
One also assumes (of course) that the family of large subsets of the ambient structure S

includes S itself. We will formulate now density results which correspond to (and
refine) the partition results contained in Theorems 1.1, 1.2, and 1.3.

Theorem 1.4 (Furstenberg–Katznelson’s multidimensional Szemerédi theorem,
[FK1]). Let d ∈ N and assume that E ⊂ Zd is a set of positive upper density,
that is

d(E) = lim sup
N→∞

|E ∩ [−N, N]d |
(2N + 1)d

> 0.

For every finite set B ⊂ Zd there exist n ∈ N and v ∈ Zd such that v + nB ⊂ E.

Let F be a finite field and let VF be a countably infinite vector space over F . To
define a notion of largeness which will allow us to formulate a density version of
Theorem 1.2, observe that, as an abelian group, VF is isomorphic to the direct sum
F∞ of countably many copies of F :

F∞ = {(a1, a2, . . . ) : ai ∈ F and all but finitely many ai = 0} =
∞⋃

n=1

Fn,

1More precisely, one either deals with arbitrary finite partitions of an infinite structure or with partitions into
a fixed number of cells of sufficiently large finite structures.

2Grun̈wald (who later changed his name to Gallai) apparently never published his proof. See [R], p. 123 and
[GraRS], p. 38.
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where Fn = {(a1, a2, . . . ) : ai = 0 for i > n} ∼= F ⊕ · · · ⊕ F(n times). For a set
E ⊂ VF (where VF is identified with F∞), define the upper density d(E) as3

d(E) = lim sup
n→∞

|E ∩ Fn|
|Fn| .

Theorem 1.5. Every set of positive upper density in the vector space VF contains
affine subspaces of every finite dimension.

Before introducing a family of notions of largeness which is pertinent to Hindman’s
theorem (Theorem 1.3 above), let us remark that the naive attempt to use the notion
of upper density (which works well for the Szemerédi-type theorems) immediately
fails. Indeed, while the set of odd integers has density 1

2 , it clearly does not contain
the sum of any two of its elements. One can actually construct, for any ε > 0, a set
S ⊂ N with d(S) = limN→∞ |S∩{1,2,...,N}|

N
> 1 − ε, which does not contain FS(E)

for any infinite set E ⊂ N.
It turns out that a natural notion of largeness appropriate for Hindman’s theorem

can be introduced with the help of βN, the Stone–Čech compactification of N. In
view of the increasingly important role which Stone–Čech compactifications play
in ergodic Ramsey theory, we will briefly discuss some of the relevant definitions
and facts. For missing details see ([B1], Section 3) and [B3]. (See also [HiS] for a
comprehensive treatment of topological algebra in Stone–Čech compactifications.)

A convenient way of dealing with βN is to view it as an appropriately topologized
set of ultrafilters on N. Recall that an ultrafilter p on N is a maximal filter, namely
a family of subsets of N satisfying the following conditions (the first three of which
constitute, for a nonempty family of sets, the definition of a filter).

(i) ∅ /∈ p;

(ii) A ∈ p and A ⊂ B imply B ∈ p;

(iii) A ∈ p and B ∈ p imply A ∩ B ∈ p;

(iv) (maximality) if r ∈ N and N = ⋃r
i=1 Ci then for some i ∈ {1, 2, . . . , r},

Ci ∈ p.

One can naturally identify each ultrafilter p with a finitely additive {0, 1}-valued
probability measure μp on the power set P (N). This measure μp is defined by the
requirement μp(C) = 1 iff C ∈ P . Without saying so explicitly, we will always think
of ultrafilters as such measures, but will prefer to write C ∈ p instead of μp(C) = 1.

Any n ∈ N defines the so-called principal ultrafilter {C ⊂ N : n ∈ C}. Principal
ultrafilters can be viewed as point measures corresponding to elements of N, and are
the only ones which can be constructed without the use of Zorn’s lemma (see [CN],
pp. 161–162). Since ultrafilters are maximal filters, any family of subsets of N which

3This definition depends, of course, on the way VF is represented as an infinite direct sum. Each such
representation leads to a notion of upper density in VF .
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has the finite intersection property can be “extended” to an ultrafilter. Given C ⊂ N,
let C = {p ∈ βN : C ∈ p}. The family G = {C : C ∈ N} forms a basis for the
open sets of a topology on βN (as well as a basis for the closed sets), and, with this
topology, βN is a compact Hausdorff space. Clearly, N = βN, which hints that the
operation of addition (and that of multiplication, as well) can be extended from N to
βN. In the following definition, C − n (where C ⊂ N and n ∈ N) is the set of all m

such that m + n ∈ C. For p, q ∈ βN, define

p + q = {A ⊂ N : {n ∈ N : (A − n) ∈ p} ∈ q} (1)

It is not hard to check that for principal ultrafilters the operation + corresponds
to addition in N. One can show that p + q is an ultrafilter, that the operation +
is associative and that, for any fixed p ∈ βN, the function λp(q) = p + q is a
continuous self-map of βN. It follows that with the operation +, βN becomes a
compact left topological semigroup. By a theorem due to R. Ellis, [E], any such
semigroup has an idempotent. It turns out the idempotent ultrafilters in (βN, +)

(viewed as measures) have a natural shift-invariant property which is responsible for
a variety of applications including the following result which may be regarded as a
density version of Hindman’s theorem.

Theorem 1.6. Let p be an idempotent ultrafilter in (βN, +). If C ∈ p, then there is
an infinite set E ⊂ N such that FS(E) ⊂ C.

While Theorems 1.1 through 1.6 obviously have a common Ramsey-theoretical
thread, their formulations do not reveal much about their dynamical content. Our next
goal is to convince the reader that all of these results can be interpreted as recurrence
theorems in either topological or measure-preserving dynamics. (Topological dynam-
ics forms the natural framework for partition results; measure preserving dynamics
corresponds to density statements).

We start with formulating the dynamical version of the Gallai–Grünwald theorem.
The idea to apply the methods of topological dynamics to partition results is due to
H. Furstenberg and B. Weiss (See [FW]).

Theorem 1.7 (cf. [FW], Theorem 1.4). Let d ∈ N, ε > 0, and let X be a compact
metric space. For any finite set of commuting homeomorphisms Ti : X → X, i =
1, 2, . . . , k, there exist x ∈ X and n ∈ N such that diam{x, T n

1 x, T n
2 x, . . . , T n

k x} < ε.

To derive Theorem 1.1 from Theorem 1.7, one utilizes the fact that, for fixed r, d ∈
N, the r-colorings of Zd (viewed as mappings from Zd to {1, 2, . . . , r}) are naturally
identified with the points of the compact product space � = {1, 2, . . . , r}Zd

. For
m = (m1, m2, . . . , md) ∈ Zd , let |m| = max1≤i≤d |mi |. Introduce a metric on � by
defining, for any pair x, y ∈ �, ρ(x, y) = infn∈N

{ 1
n

: x(m) = y(m) for |m| < n
}
.

Note that ρ(x, y) < 1 ⇐⇒ x(0) = y(0). Let B = {b1, . . . , bk} ⊂ Zd . Define the
homeomorphisms Ti : � → �, i = 1, 2, . . . , k by (Tix)(m) = x(m + ai), and set,
for l = (l1, l2, . . . , lk) ∈ Zk , T l = T

l1
1 T

l2
2 · · · T lk

k . Let y(m), m ∈ Zd , be the element
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of � which corresponds to the given coloring Zd = ⋃r
i=1 Ci . let X = {T ly}l∈Zk be

the orbital closure of x in �. It follows from Theorem 1.7 that for some x ∈ X which
can without loss of generality be chosen to be of the form T uy for some u ∈ Zk , one
has diam{x, T n

1 x, T n
2 x, . . . , T n

k x} = diam{T uy, T uT n
1 y, T uT n

2 y, . . . , T uT n
k y} < 1.

This implies that, for v = u1b1 + u2b2 + · · · + ukbk, y(v) = y(v + nb1) = · · · =
y(v + nbk), which means that the set v + nB is monochromatic.

In a similar fashion one can derive Theorem 1.2 from the following dynamical
result. (Cf. [B4], p. 766).

Theorem 1.8. Let F be a finite field and let F∞ be the direct sum of countably many
copies of F . Assume that (Tg)g∈F∞ is an action of F∞ by homeomorphisms on a
compact metric space X. Then for all ε > 0, there exist x ∈ X and g ∈ F∞,
g �= (0, 0, . . . ) such that diam{Tcgx, c ∈ F } < ε.

We move now to dynamical formulations of Theorems 1.4 and 1.5. We start with
the discussion of Szemerédi’s theorem (corresponding to d = 1 in Theorem 1.4).
Let E ⊂ N with d(E) > 0. Observe that E contains a progression of the form
{a, a+n, . . . , a+kn} if and only if E∩(E−n)∩· · ·∩(E−kn) �= ∅. It is not too hard to
see that Szemerédi’s theorem is actually equivalent to an ostensibly stronger statement:
for all k ∈ N there exists n ∈ N such that d(E ∩ (E − n) ∩ · · · ∩ (E − kn)) > 0. This
version of Szemerédi’s theorem has already a detectible dynamical content (arithmetic
progressions are “produced” as the result of shifting E by n, 2n, . . . , kn and getting
the intersection of positive upper density). This dynamical essence of Szemerédi’s
theorem is embodied in Furstenberg’s multiple recurrence theorem (which implies
Szemerédi’s result):

Theorem 1.9 ([F3]). Let T be a measure preserving transformation of a probability
measure space (X, B, μ). For all k ∈ N and all A ∈ B with μ(A) > 0, there exists
n ∈ N such that

μ(A ∩ T −nA ∩ T −2nA ∩ · · · ∩ T −knA) > 0.

To derive Szemerédi’s theorem from Theorem 1.9 one uses the Furstenberg’s
correspondence principle which allows one to connect the dynamics in the “pseudo-
dynamical” system (Z, P (Z), d, τ ) (where τ is the shift map: τ(n) = n + 1, n ∈ Z)
with a genuine measure preserving symbolic system which can be naturally con-
structed given a set E ⊂ Z with d(E) > 0.

Let E be a set of integers with d(E) > 0 and let X be the orbital closure of
1E ∈ {0, 1}Z under the transformation T : ω(l) → ω(l + 1), ω ∈ {0, 1}Z. Let
C = {ω ∈ X : ω(0) = 1}. One can show (see, for example, [F4], Lemma 3.17) that
there exists a T -invariant Borel measure μ on X which satisfies μ(C) ≥ d(E). By
Theorem 1.9 there exists n ∈ N such that μ(C ∩T −nC ∩T −2nC ∩· · ·∩T −knC) > 0.
If ω ∈ C ∩ T −nC ∩ T −2nC ∩ · · · ∩ T −knC then {ω, T nω, T 2nω, . . . , T knω} ∈ C,
which implies ω(0) = ω(n) = ω(2n) = · · · = ω(kn). Since ω belongs to the orbital
closure of 1E , there is an m ∈ Z such that the sequences ω(l) and T m1E(l) coincide for
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0 ≤ l ≤ kn. This implies 1E(m) = 1E(m + n) = 1E(m + 2n) = · · · = 1E(m + kn)

and gives a progression {m, m + n, . . . , m + kn} ⊂ E.
Similar considerations (involving Furstenberg’s correspondence principle for

Zd - and F∞-actions) allow one to derive Theorems 1.4 and 1.5 from the following
dynamical theorems.

Theorem 1.10 ([FK1]). Let (X, B, μ) be a probability measure space. For any finite
set {T1, T2, . . . , Tk} of commuting measure-preserving transformations of X and for
all A ∈ B with μ(A) > 0, there exists n ∈ N such that

μ(A ∩ T −n
1 A ∩ T −n

2 A ∩ · · · ∩ T −n
k A) > 0.

Theorem 1.11. Let (Tg)g∈F∞ be a measure preserving action of VF = F∞ on a
probability measure space (X, B, μ). Let A ∈ B, μ(A) > 0. Then for some
g ∈ F∞, g �= (0, 0, . . . ), one has μ

( ⋂
c∈F TcgA

)
> 0.4

Remark. It is not hard to derive from Theorem 1.11 (by simple iterating proce-
dure) the following fact: for all k ∈ N there exist g1, . . . , gk ∈ F∞ such that
dim(span{g1, g2, . . . , gk}) = k and μ

( ⋂k
i=1

⋂
c∈F Tcgi

A
)

> 0. It is this result,
which, via the appropriate version of Furstenberg’s correspondence principle, im-
plies Theorem 1.5.

We will briefly discuss now the dynamical content of Hindman’s theorem. Let
p ∈ βN be an idempotent ultrafilter. The relation p = p + p implies (via (1)) that a
set C ⊂ N is p-large (i.e. belongs to p) if and only if {n ∈ N : (C − n) ∈ p} ∈ p. In
other words, if p ∈ βN is an idempotent, then every p-large set has the property that,
for p-many n ∈ N, the shifted set C −n is also p-large. This, in turn, means that, if C

is p-large then for p-many n, the set C∩(C−n) is p-large. This can be interpreted as
a version of the Poincaré recurrence theorem for idempotent ultrafilter measures. The
fact that the “shifting” n can itself be chosen to belong to the p-large set C comes as
a bonus which, as we will presently see, immediately leads to a short and streamlined
proof of Hindman’s theorem.5 Fix an idempotent ultrafilter p and let N = ⋃r

i=1 Ci

be an arbitrary finite partition of N. Since p is a finitely additive probability measure,
one (and only one) of Ci , call it C, will be p-large. As we have seen above, we can
choose n1 ∈ C so that the set C1 = C ∩ (C −n1) is in p. We can now choose n2 ∈ C1
so that n2 > n1 and C2 = C1 ∩(C1 −n2) = C∩(C−n1)∩(C−n2)∩(C−(n1 +n2))

is in p. Continuing in this fashion we will obtain an infinite set E = {n1, n2, . . . }
such that FS(E) ⊂ C, which concludes the proof of Hindman’s theorem.

The sets of finite subsets which appear in Hindman’s theorem are called in ergodic
Ramsey theory IP sets (for infinite-dimensional parallelepiped, a term coined by
H. Furstenberg and B. Weiss6). The notion of IP set makes sense in any commutative

4Theorem 1.11 follows, for example, from Theorems 1.13 and 2.9 below.
5The original proof of Hindman’s theorem in [Hi] was very complicated. See [HiS], pp. 102–103 for references

to other proofs and interesting historical comments.
6As we have seen, IP also naturally connects to IdemPotent.
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semigroup and it is often convenient to think of IP sets as generalized semigroups.
Many recurrence and convergence theorems which deal with semigroup actions can
be extended to actions “along” IP sets, which leads to significant strengthening (and
unification) of known results. As an illustration, we will formulate now IP versions
of Theorems 1.7 and 1.10.

An F -sequence in an arbitrary space Y is a sequence (yα)α∈F indexed by the
set F of the finite nonempty subsets of N. If Y is a commutative and multiplica-
tive semigroup, one says that an F -sequence defines an IP-system if for any α =
{i1, i2, . . . , im} ∈ F one has yα = yi1yi2 . . . yim . Note that if α ∩ β = ∅, then
yα∪β = yαyβ . This “partial” semigroup property turns out to be sufficient to guar-
antee the validity of the following multiple recurrence result which simultaneously
extends Theorems 1.7 and 1.8. (It was proved first in [FW]. For a shorter proof based
on the idea from [BPT], see [B2] and [B4], Cor. 2.3.)

Theorem 1.12. If X is a compact metric space and G a commutative group of its
homeomorphisms, then for any k IP-systems (T

(1)
α )α∈F , . . . , (T

(k)
α )α∈F in G, and all

ε > 0, there existsα ∈ F andx ∈ X such that diam{x, T
(1)
α x, T

(2)
α x, . . . , T

(k)
α x} < ε.

It is clear that Theorem 1.12 implies Theorem 1.7 (any Z action can be viewed
as a special case of an IP-system). But it is also not hard to see that Theorem 1.12
implies Theorem 1.8. See [B4], pp. 765–766 for details.

IP sets can be conveniently utilized to measure the abundance of configurations
which are studied in Ramsey theory. Call a set E in a commutative semigroup G an
IP∗ set if E has nonempty intersection with every IP set in G. It is not hard to show
that every IP∗ set is syndetic.7 To see this, one has to observe that the complement of
a non-syndetic set has to contain arbitrarily long intervals, and it is not hard to show
that any such set contains an IP set.

The advantage of IP∗ sets over syndetic sets is that the family of IP∗ sets has the
finite intersection property (this can be shown with the help of Hindman’s theorem).
It follows that Theorem 1.12 not only gives a simultaneous extension of Theorems 1.7
and 1.8, but also refines each of them. For example, it follows from Theorem 1.12
that for any finite partition N = ⋃r

i=1 Ci , one of Ci has the property that, for any
k ∈ N, the set

Rk = {d ∈ N : for some m ∈ N, {m, m + d, m + 2d, . . . , m + kd} ⊂ Ci}
is IP∗. We will see in the next section that this set Rk has much stronger intersectivity
properties. (For example, Rk has nontrivial intersection with the set of values of any
integer-valued polynomial p(n) satisfying p(0) = 0).

The following powerful ergodic IP Szemerédi theorem obtained by H. Furstenberg
andY. Katznelson in [FK2] is a natural measure preserving analogue of Theorem 1.12.

7A subset S in a discrete semigroup G is called syndetic if finitely many translates of S cover G. If G is not
commutative one has to distinguish between the notions of left and right syndetic. A left translate of S is defined
as x−1S = {g ∈ G : xg ∈ S} and a right translate is defined as Sx−1 = {g ∈ G : gx ∈ S}.
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Theorem 1.13 (See [FK2], Theorem A). Let (X, B, μ) be a probability space and
G an abelian group of measure-preserving transformations of X. For all k ∈ N, any
IP-systems (T

(1)
α )α∈F , (T

(2)
α )α∈F , . . . , (T

(k)
α )α∈F in G and all A ∈ B with μ(A) > 0

there exists α ∈ F such that

μ(A ∩ T (1)
α A ∩ T (2)

α A ∩ · · · ∩ T (k)
α A) > 0.

Since the notion of an IP-system of commuting invertible measure preserving
transformations generalizes the notion of a measure preserving action of a countable
abelian group, Theorems 1.10 and 1.11 are immediate corollaries of Theorem 1.13.
It also follows that, on a combinatorial level, Theorem 1.13 implies Theorems 1.4
and 1.5. However, Theorem 1.13 gives more! For example, it follows from it that the
sets of configurations always to be found in “large” sets in Zd or F∞ are abundant
in the sense that their parameters form IP∗ sets. These IP∗ versions of combinato-
rial results can be derived, with the help of an appropriate version of Furstenberg’s
correspondence principle, from the following corollary of Theorem 1.13.

Theorem 1.14. Let (X, B, μ) be a probability space, and let G be a countable
Abelian group. For all k ∈ N and any measure preserving actions (T

(1)
g )g∈G,

(T
(2)
g )g∈G, . . . , (T

(k)
g )g∈G of G on (X, B, μ) and any A ∈ B with μ(A) > 0, the set

{g ∈ G : μ(A ∩ T (1)
g A ∩ T (2)

g A ∩ · · · ∩ T (k)
g A) > 0}

is an IP∗ set in G (and in particular, is syndetic).

We will conclude this section by discussing two more classical results of Ramsey
theory – the Hales–Jewett partition theorem and its density version proved in [FK3].

Consider the following generalization of tic-tac-toe: r players are taking turns in
placing the symbols s1, . . . , sr in the k×k×· · ·×k (n times) array which one views as
the nth cartesian power An of a k-element set A = {a1, a2, . . . , ak}. (In the classical
tic-tac-toe, we have r = 2, k = 3, n = 2). We are going to define now the notion of
a combinatorial line in An. Identify the elements of An with the set Wn(A) of words
of length n over the alphabet A. Let Ã = A ∪ {t} be an extension of the alphabet A

obtained by adding a new symbol t , and let Wn(t) be the set of words of length n over Ã

in which the symbol t occurs. Given a word w(t) ∈ Wn(t) let us define a combinatorial
line as a set {w(a1), w(a)2, . . . , w(ak)} obtained by substituting for t the elements
of A. For example, the word 43t241t2 over the alphabet {1, 2, 3, 4, 5}∪ {t} gives rise
to the combinatorial line

{43124112, 43224122, 43324132, 43424142, 43524152}.
It is convenient to think of symbols s1, . . . , sr as colors; the goal of the players (in
our slightly modified tic-tac-toe) is to obtain a monochromatic combinatorial line.
The following theorem of Hales and Jewett [HaJ] implies that for fixed r, k and large
enough n, the first player can always win.
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Theorem 1.15. Let k, r ∈ N. There exists c = c(k, r) such that if n ≥ c, then
for any r-coloring of the set Wn(A) of words of length n over the k-letter alphabet
A = {a1, a2, . . . , ak}, there is a monochromatic combinatorial line.

One of the signs of the fundamental nature of the Hales–Jewett theorem is that one
can easily derive from it its multidimensional version. For m ∈ N, let t1, t2, . . . , tm
be m distinct variables, and let w(t1, t2, . . . , tm) be a word of length n over the al-
phabet A ∪ {t1, t2, . . . , tm}. (We assume that the letters ti do not belong to A). If
w(t1, t2, . . . , tm) is a word of length n over A ∪ {t1, t2, . . . , tm} in which all of the
variables t1, t2, . . . , tm occur, the result of the substitution

{w(t1, t2, . . . , tm)}(t1,t2,...,tm)∈Am = {w(ai1, ai2, . . . , aim) : aij ∈ A, j = 1, 2, . . . , m}
is called a combinatorial m-space. Observe now that if we replace the original alpha-
betAbyAm, then a combinatorial line inWn(A

m) can be interpreted as a combinatorial
m-space in Wnm(A). Thus we have the following ostensibly stronger theorem as a
corollary of Theorem 1.15.

Theorem 1.16. Let r, k, m ∈ N. There exists c = c(r, k, m) such that if n ≥ c, then
for any r-coloring of the set Wn(A) of words of length n over the k-letter alphabet A,
there exists a monochromatic combinatorial m-space.

The Hales–Jewett theorem is truly one of the cornerstones of Ramsey theory. Not
only many familiar partition results such as Theorems 1.1 and 1.2 are immediate
corollaries of the Hales–Jewett theorem,8 but this result is the natural basis of many
further generalizations, some of which we will encounter in the next sections. Also,
the Hales–Jewett theorem and its various generalizations are utilized in proofs of
various multiple recurrence results in measure preserving dynamics. For example,
the Hales–Jewett theorem is used in [FK2] in the proof of Theorem 1.13. While the
Hales–Jewett theorem was originally proved in a purely combinatorial way, it can
also be proved with the help of Stone–Čech compactifications and by using the tools
of topological dynamics. Each of these additional proofs leads in its turn to further
useful results and ramifications. See [BL2], [BL3], [BBHi], [C].

In anticipation of the discussion in the next section, we are going to formulate two
more versions of the Hales–Jewett theorem. Let F0 denote the set of finite (potentially
empty) subsets of N.

Given k ∈ N, write F k
0 for the set of k-tuples of sets form F0. Let us call any

(k + 1) element subset of F k
0 of the form

{(α1, α2, . . . , αk), (α1 ∪ γ, α2, . . . , αk),

(α1, α2 ∪ γ, . . . , αk), . . . , (α1, α2, . . . , αk ∪ γ )}
a simplex.

8To see, for example, that Theorem 1.1 follows from the Hales–Jewett theorem, take A to be a finite field F .
Then Wn(F) = Fn has the natural structure of an n-dimensional vector space over F . It is easy to see that, in
this case, a combinatorial m-space is an affine m-dimensional subspace of Fn.
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Theorem 1.17. For any k ∈ N and any finite coloring (= partition) of F k
0 , there

exists a monochromatic simplex.

Here is a dynamical counterpart of Theorem 1.17.

Theorem 1.18. Let (X, ρ) be a compact metric space. For k ∈ N, let T(α1,α2,...,αk),
(α1, α2, . . . , αk) ∈ F k

0 be a family of continuous self-maps of X such that for any
(α1, α2, . . . , αk), (β1, β2, . . . , βk) ∈ F k

0 satisfying αi ∩ βi = ∅, i = 1, 2, . . . , k, one
has

T(α1∪β1,α2∪β2,...,αk∪βk) = T(α1,α2,...,αk)T(β1,β2,...,βk).

Then for all ε > 0 and for all x ∈ X there exist a nonempty finite set γ and a k-tuple
(α1, α2, . . . , αk) ∈ F k

0 such that αi ∩ γ = ∅, i = 1, 2, . . . , k and

diam{T(α1,α2,...,αk)x, T(α1∪γ,α2,...,αk)x, T(α1,α2∪γ,...,αk)x, . . . , T(α1,α2,...,αk∪γ )x} < ε.

See [B1] for more discussion of various equivalent forms of the Hales–Jewett
theorem and ([BL2], Proposition L) for a proof via topological dynamics.

2. Ramsey theory and multiple recurrence along polynomials

We start this section with the formulation of the Furstenberg–Sárközy theorem which
has interesting links with spectral theory, Diophantine approximations, combinatorics,
and dynamical systems.

Theorem 2.1 ([F4], [Sa]). Let E ⊂ N be a set of positive upper density, and let
p(n) ∈ Z[n] be a polynomial with p(0) = 0. Then there exist x, y ∈ E and n ∈ N

such that x − y = p(n).

This result is quite surprising. While it is not hard to show that the set of differences
E − E = {x − y : x, y ∈ E} of a set E with d(E) > 0 is syndetic, there is, a priori,
no obvious reason for the set E −E to be so “well spread” as to nontrivially intersect
the set of values of every polynomial p(n) ∈ Z[n] which vanishes at zero.9 The
following dynamical counterpart of Theorem 2.1, from which Theorem 2.1 follows
with the help of Furstenberg’s correspondence principle, is just as striking.

Theorem 2.2. For any invertible measure preserving system (X, B, μ, T ), any A ∈
B with μ(A) > 0, and any polynomial p(n) ∈ Z[n] with p(0) = 0, there exists
n ∈ N such that μ(A ∩ T p(n)A) > 0.

The following result obtained in [BL1] gives a simultaneous generalization of The-
orem 2.1 and of the Furstenberg–Katznelson multidimensional Szemerédi theorem,
Theorem 1.4.

9T. Kamae and M. Mendès-France have shown in [KM] that a polynomial p(n) ∈ Z[n] has this “intersectivity”
property if and only if {p(n) : n ∈ Z} ∩ aZ �= ∅ for all a ∈ N. For example, the polynomial p(n) =
(n2 − 13)(n2 − 17)(n2 − 221) is such.
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Theorem 2.3 (cf. [BL1], Theorem B′). Let r, l ∈ N and let P : Zr → Zl be a
polynomial mapping satisfying P(0) = 0. For all S ⊂ Zl with d(S) > 0 and for all
finite sets F ⊂ Zr , there exists elements n ∈ N and n ∈ Zl such that u + P(nF) =
{u + P(nx1, nx2, . . . , nxr) : (x1, x2, . . . , xr) ∈ F } ⊂ S.

The ergodic theoretic result from which Theorem 2.3 is derived in [BL1] involves
products of commuting measure preserving transformations evaluated at “polynomial
times”:

Theorem 2.4 ([BL1], Theorem A). Let, for some t, k ∈ N, p1,1(n), . . . , p1,t (n),
p2,1(n), . . . , p2,t (n), . . . , pk,1(n), . . . , pk,t (n) be polynomials with rational coeffi-
cients taking integer values on the integers and satisfying pi,j (0) = 0, i = 1, 2, . . . , k,
j = 1, 2, . . . , t . Then for all probability space (X, B, μ), all commuting invert-
ible measure preserving transformations T1, T2, . . . , Tt of X and all A ∈ B with
μ(A) > 0, one has

lim inf
N→∞

1

N

n−1∑
n=0

μ(A ∩
t∏

j=1

T
−p1,j (n)

j A ∩
t∏

j=1

T
−p2,j (n)

j A ∩ · · · ∩
t∏

j=1

T
−pk,j (n)

j A) > 0.

As we have seen in the previous section, the “linear” multiple recurrence results
admit far reaching IP refinements. This leads to the question whether similar IP
extensions may be obtained for polynomial results as well. For example, one would
like to know whether, for every invertible measure preserving system (X, B, μ, T ),
every polynomial p(n) ∈ Z[n] with p(0) = 0, and every A ∈ B with μ(A) > 0,
the set {n ∈ Z : μ(A ∩ T p(n)A) > 0} is an IP∗ set. In other words, one would like
to know whether for every infinite set {n1, n2, . . . } ⊂ N there exists α ∈ F such
that μ(A ∩ T p(nα)A) > 0, where, as in Section 1, the IP set (nα)α∈F is defined
by nα = ∑

i∈α, α ∈ F . The answer turns out to be yes and can be obtained by
considering, instead of the conventional ergodic averages 1

N

∑N
n=1 μ(A∩T p(n)A), the

limits along IP sets (or, alternatively, limits along idempotent ultrafilters). However, a
much more important novelty which is encountered when one deals with IP analogues
of polynomial recurrence theorems is that one has now a bigger family of functions,
namely the IP polynomials, for which the IP versions of familiar theorems make sense.

Let q(t1, . . . , tk) ∈ Z[t1, . . . , tk] and let (n
(i)
α )α∈F , i = 1, 2 . . . , k, be IP sets in Z.

Then q(α) = q(n
(1)
α , n

(2)
α , . . . , n

(k)
α ) is an example of an IP polynomial. For example,

if deg q(t1. . . . , tk) = 2, the q(α) will typically look like

q(α) =
s∑

i=1

n(i)
α m(i)

α +
r∑

i=1

k(i)
α .

The following result obtained in [BFM] gives an IP extension of Theorem 2.2 for the
case of several commuting transformations.
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Theorem 2.5 (cf. [BFM], Corollary 2.1). Suppose that (X, B, μ) is a probabil-
ity space and that {T1, T2, . . . , Tt } is a collection of commuting invertible mea-
sure preserving transformations of X. Suppose that (n

(i)
α )α∈F ⊂ N are IP sets,

i = 1, 2, . . . , k, and that pj (x1, . . . , xk) ∈ Z[x1, . . . , xk] satisfy pj (0, 0, . . . , 0) = 0
for j = 1, 2, . . . , t . Then for all A ∈ B, and all ε > 0, there exist α ∈ F such that

μ
(
A ∩

t∏
i=1

T
pi(n

(1)
α ,n

(2)
α ,...,n

(k)
α )

i A
)

≥ (μ(A))2 − ε.

The next natural step is to try to extend Theorem 2.3 to a multiple recurrence
result. The following IP polynomial Szemerédi theorem, obtained in [BM2] is an IP
extension of Theorem 2.3.

Theorem 2.6 ([BM2], Theorem 0.9). Suppose we are given t commuting invertible
measure preserving transformations T1, . . . , Tt of a probability space (X, B, μ). Let
k, r ∈ N and suppose that pi,j (n1, . . . , nk) ∈ Q[n1, . . . , nk] satisfy pi,j (Z

k) ⊂ Z

and pi,j (0, 0, . . . , 0) = 0 for 1 ≤ i ≤ t , 1 ≤ j ≤ r . Then for every A ∈ B with
μ(A) > 0, the set

{
(n1, . . . , nk) ∈ Zk : μ

( ⋂r
j=1

( ∏t
i=1 T

pi,j (n1,...,nk)

i A
))

> 0
}

is an IP∗ set in Zk .

The following corollary of Theorem 2.6 can be viewed as an IP refinement of
Theorem 2.5.

Theorem 2.7. Assume that P : Zr → Zl , r , l ∈ N is a polynomial mapping satisfying
P(0) = 0 and let F ⊂ Zr be a finite set. Then for all E ⊂ Zl with d(E) > 0 and all
IP sets (n

(i)
α )α∈F , i = 1, . . . , r , there exist u ∈ Zl and α ∈ F such that

{u + P(n(1)
α x1, n

(2)
α x2, . . . , n

(r)
α xr) : (x1, . . . , xr) ∈ F } ⊂ S.

We would like to mention the two combinatorial facts which play a decisive role
in the proof of Theorem 2.6. The first is the Milliken–Taylor theorem ([M], [T])
which was also utilized in the proof of Theorem 2.5. The second is the polynomial
Hales–Jewett theorem obtained via topological dynamics in [BL2]. The following
formulation of the polynomial Hales–Jewett theorem should be juxtaposed with the
formulation of its “linear” case given in Theorem 1.17.

Theorem 2.8. For k, d ∈ N, let F k
0 (Nd) denote the set of k-tuples of finite (possibly

empty) subsets of Nd = N × · · · × N (d times). For every finite coloring of F k
0 (Nd)

there exists a monochromatic simplex of the form

{(α1, α2, . . . , αk), (α1 ∪ γ d, α2, . . . , αk),

(α1, α2 ∪ γ d, . . . , αk), . . . , (α1, α2, . . . , αk ∪ γ d)},
where γ is a finite nonempty subset of N and αi ∩ γ d = ∅ for all i = 1, 2, . . . , k.
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The polynomial Hales–Jewett theorem plays also a crucial role in the proof of the
following recent result of a polynomial nature obtained in [BLM].

Theorem 2.9. Let V, W be finite dimensional vector spaces over a countable field,
let T be a measure preserving action of W on a probability measure space (X, B, μ)

and let p1, . . . , pk be polynomial mappings V → W with zero constant term. Then
for all A ∈ B with μ(A) > 0 there exists c > 0 such that the set

{
v ∈ V : μ

( ⋂k
i=1 T(pi(v))A

)
> c

}

is syndetic in V .

Corollary 2.10. Let p1, . . . , pk be polynomials with integer coefficients and zero
constant term. For all ε > 0, there exists N ∈ N such that whenever F is a field
with |F | ≥ N and E ⊂ F with |E|

|F | ≥ ε, there exist v ∈ F , v �= 0, and w ∈ E

such that pi(v) �= 0, i = 1, . . . , k, and {w, w + p1(v), . . . , w + pk(v)} ⊂ E for all
i = 1, . . . , k.

A dynamical counterpart of Theorem 2.8 can be formulated in direct analogy to
Theorem 1.8 which corresponds to the “linear” case. (See [B1], Section 4 and [BL2]
for more discussion on various equivalent forms of the polynomial Hales–Jewett
theorem). Rather than dealing here with the full-fledged dynamical version, we are
going to formulate a rather general corollary of the polynomial Hales–Jewett theorem
which is suggestive of a further, nilpotent, generalization to be discussed in the next
section.

A mapping P from F0 into a commutative (semi)group G is an IP polynomial of
degree 0 if P is constant, and, inductively, is an IP polynomial of degree ≤ d if for all
β ∈ F0 there exists an IP polynomial DβP : F0(N\β) → G of degree ≤ d−1 (where
F0(N\β) is the set of finite subsets of N\β) such that P (α∪β) = P (α)+(DβP )(α)

for every α ∈ F0 with α∩β = ∅. (One can easily check that the IP-systems introduced
in Section 1 correspond to IP polynomials of degree 1 satisfying P (∅) = 1G.)

Theorem 2.11 ([BL2]). Let G be an abelian group of self-homeomorphisms of a
compact metric space (X, ρ), let k ∈ N and let P1, . . . , Pk be IP-polynomials map-
ping F0 into G and satisfying P1(∅) = · · · = Pk(∅) = 1G. For all ε > 0 there exist
x ∈ X and a nonempty α ∈ F0 such that ρ(Pi (α)x, x) < ε for i = 1, . . . , k.

We conclude this section by formulating a conjecture about a density version
of the polynomial Hales–Jewett theorem which would extend the partition results
from [BL2], the Furstenberg–Katznelson density version of the “linear” Hales–Jewett
theorem, as well as Theorems 2.4 and 2.9. For q, d, N ∈ N, let Mq,d,N be the set of
q-tuples of subsets of {1, 2, . . . , N}d :

Mq,d,N = {(α1, . . . , αq) : αi ⊂ {1, 2, . . . , N}d, i = 1, 2, . . . , q}.
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Conjecture 2.12. For all q, d ∈ N and ε > 0 there exists c = c(q, d, ε) such that if
N > c and a set S ⊂ Mq,d,N satisfies |S|

|Mq,d,N | > ε, then S contains a “simplex” of
the form

{(α1, α2, . . . , αq), (α1 ∪ γ d, α2, . . . , αq),

(α1, α2 ∪ γ d, . . . , αq), . . . , (α1, α2, . . . , αq ∪ γ d),

where γ ⊂ N is a nonempty set and αi ∩ γ d = ∅ for all i = 1, . . . , q.

3. Ergodic Ramsey theory in a noncommutative setting

The Ramsey theoretical results surveyed in the previous sections deal with commuta-
tive (semi)groups. One may wonder whether these results extend to noncommutative
structures. A similar question suggests itself with respect to dynamics: is it true
that multiple recurrence results such as, say, Theorems 1.10 and 2.4 hold true if the
involved transformations do not necessarily commute? It turns out that many of the
partition and density theorems (as well as their dynamical counterparts) that we en-
countered above do hold for nilpotent groups. On the other hand, the analogous results
fail quite dramatically for solvable groups of exponential growth. (See Theorem 3.7
below).

We now formulate a nilpotent version of the polynomial Hales–Jewett theorem (see
Theorems 2.8 and 2.11), from which one can derive nilpotent extensions of various
abelian theorems. In order to do so we have to extend first the notion of a polynomial
mapping P : F0 → G (discussed at the end of the previous section) to a nilpotent
setup.

If G is an abelian group, one can show (see [BL2], Theorem 8.3) that a mapping
P : F0 → G is an IP polynomial of degree ≤ d with P(∅) = 1G if and only if
there exists a family {gj1,...,jd

}(j1,...,jd )∈Nd of elements of G such that for all α ∈ F0
one has P (α) = ∏

(j1,...,jd )∈αd gj1,...,jd
. This characterization of IP polynomials

makes sense in the nilpotent setup as well. Given a nilpotent group G, let us call
a mapping P : F0 → G an IP polynomial if for some d ∈ N there exists a family
{gj1,...,jd

}(j1,...,jd )∈Nd of elements of G and a linear order < on Nd such that, for any
α ∈ F0, one has F P(α) = ∏<

(j1,...,jd )∈αd gj1,...,jd
(the entries in the product

∏< are
multiplied in accordance with the order <). The following nilpotent version of the
polynomial Hales–Jewett theorem which was obtained in [BL3] contains many of the
above partition results as special cases.

Theorem 3.1 ([BL3], Theorem 0.24). Let G be a nilpotent group of homeomorphisms
of a compact metric space (X, ρ) and let P1, . . . , Pk : F0 → G be IP polynomials
satisfying P1(∅) = · · · = Pk(∅) = 1G. Then, for all ε > 0, there exist x ∈ X and a
nonempty α ∈ F0 such that ρ(Pi (α)x, x) < ε for all i = 1, 2, . . . , k.
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One of the corollaries of Theorem 3.1 is the following nilpotent version of Theo-
rem 1.12.

Theorem 3.2 ([BL3], Theorem 0.13). Let G be a nilpotent group of homeomorphisms
of a compact metric space (X, ρ), let k ∈ N and let g

(i)
j ∈ G, i = 1, . . . , k, j ∈ N.

For all ε > 0, there exist an element x in X and a nonempty finite subset α of N such
that ρ

( ∏
j∈α g

(i)
j x, x)

)
< ε for all i = 1, . . . , k.

Theorem 3.1 implies also the following results, both of which can be viewed as
nilpotent extensions of Theorem 1.2.

Theorem 3.3 (cf. [BL3], Theorem 0.16). Let q ∈ N and let G be the multiplicative
group of q × q upper triangular matrices with unit diagonal over an infinite field
of finite characteristic. For any finite coloring of G and any c ∈ N there exists a
subgroup H of G of nilpotency class q and of cardinality ≥ c, such that for some
h ∈ G the coset hH is monochromatic.

Theorem 3.4 ([BL3], Theorem 0.17). Let q ∈ N and p be a prime, with p > q. Let G
be an infinite free q-step nilpotent group with torsion p. For any finite coloring of G

and any c ∈ N there exists a free q-step nilpotent subgroup H ⊂ G of cardinality
|H | ≥ c, such that, for some h ∈ G, the coset hH is monochromatic.

The following theorem obtained by A. Leibman in [L1] is a nilpotent extension
of Theorem 2.4, from which one can also derive a nilpotent generalization of Theo-
rem 2.3.

Theorem 3.5 (cf. [L1], Theorem NM). Let k, t, r ∈ N. Assume G is a nilpotent group
of measure preserving transformations of a probability measure space (X, B, μ). Let
pij (n1, . . . , nk) ∈ Z[n1, . . . , nk] with pij (Z

k) ⊂ Z and pij (0, 0, . . . , 0) = 0, 1 ≤
i ≤ t , 1 ≤ j ≤ r . Then for every A ∈ B with μ(A) > 0 and any T1, T2, . . . , Tt ∈ G,
the set {

(n1, . . . , nk) ∈ Zk : μ
( ⋂r

j=1

( ∏t
i=1 T

pij (n1,...,nk)

i A
))

> 0
}

is syndetic.

There is every reason to believe that nilpotent versions of Theorems 2.6 and 2.9 also
hold. The following conjecture, if true, will contain these and many other nilpotent
results as special cases.

Conjecture 3.6. Let G be a nilpotent group of measure preserving transformations
of a probability measure space (X, B, μ), and let P1, . . . , Pk : F0 → G be IP poly-
nomials. Then for all A ∈ B with μ(A) > 0 there exists a nonempty α ⊂ N such
that μ(A ∩ P1(α)A ∩ · · · ∩ Pk(α)A) > 0.

Theorem 3.5 raises question whether the assumptions can be further relaxed and
whether, in particular, an analogue of Theorem 3.5 holds true if the measure preserving
transformations T1, T2, . . . , Tk generate a solvable group. Note that every finitely
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generated solvable group is either of exponential growth or is virtually nilpotent,
i.e. it contains a nilpotent group of finite index. (See, for example, [Ro]). Since
Theorem 3.5 easily extends to virtually nilpotent groups, the question boils down to
solvable groups of exponential growth. The following result answers this question in
the negative, in a strong way.

Theorem 3.7 ([BL4], Theorem 1.1 (A)). Assume thatG is a finitely generated solvable
group of exponential growth. There exists a measure preserving action (Tg)g∈G of G

on a probability measure space (X, B, μ), elements g, h ∈ G, and a set A ∈ B with
μ(A) > 0) such that TgnA ∩ ThnA = ∅ for all n �= 0.

It is of interest to know to which extent the property of growth of the acting group
alone is responsible for the validity of the positive and negative results formulated
above. It was R. Grigorchuk who constructed in [Gri] a large family of groups
of intermediate growth, which occupy an intermediate place between the groups of
polynomial and exponential growth.

Question 3.8. Which of the above results extend to Grigorchuck’s groups?

4. Generalized polynomials and dynamical systems on nilmanifolds

As we have seen in the previous section, the nilpotent framework is a natural (and
often, ultimate) setup for multiple recurrence and combinatorial applications thereof.
It also turns out that dynamical systems on nilmanifolds10 are indispensable in solving
problems which, on the face of it, have purely abelian character. For example, it is
shown in the work of Host and Kra ([HK1]) and Ziegler ([Z]) that one can reduce the
problem of establishing the existence of the L2 limit

lim
N→∞

1

N

N−1∑
n=0

f1(T
nx)f2(T

2nx) . . . fk(T
knx),

where T is an invertible measure preserving transformation of a probability space
(X, B, μ) and fi ∈ L∞(X), to the study of the special case where (X, T ) is a nilsys-
tem. It also turns out that polynomial sequences of nilrotations (see [L2], [L3], [L5])
form an adequate setup for extending Host–Kra’s and Ziegler’s results to polynomial
situations, that is to establishing the existence of the L2-limit

lim
N→∞

1

N

N−1∑
n=0

f1(T
p1(n)x) . . . fk(T

pk(n)x),

10A nilmanifold is a compact homogeneous space X of a nilpotent Lie group G; a nilrotation is a translation
of X by an element g ∈ G, x �→ gx; a nilsystem is a pair (X, T ) where X is a nilmanifold and T is a nilrotation
on X.
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where the pi are integer-valued polynomials. See [HK2] and [L4].
Another example, pertaining to recurrence, is given by the following result from

[BHKR], the proof of which crucially uses the facts about nilsystems.

Theorem 4.1 ([BHKR]). For every invertible ergodic probability measure preserving
system (X, B, μ, T ), all A ∈ B and all ε > 0, the sets

{n : μ(A ∩ T nA ∩ T 2nA) ≥ μ(A)3 − ε}
and

{n : μ(A ∩ T nA ∩ T 2nA ∩ T 3nA) ≥ μ(A)4 − ε}
are syndetic.

On the other hand, there exists an ergodic system (X, B, μ, T ) such that for every
integer l > 1 there exists a set A = A(l) ∈ B with μ(A) > 0 and μ(A ∩ T nA ∩
T 2nA ∩ T 3nA ∩ T 4nA) ≤ 1

2μ(A)l .

We will describe now one more “nilpotent connection” recently established in
[BL5]. The main object of study in [BL5] is the class of generalized polynomials,
that is, functions obtained from conventional polynomials of one or several variables
by applying the operations of addition, multiplication, and that of taking the integer
part. Various classes of generalized polynomials naturally appear in diverse mathe-
matical contexts, ranging from symbolic dynamics and mathematical games to Weyl’s
theorem on equidistribution11 and recent work of Green and Tao [GreT] on arithmetic
progressions in primes.12

Before formulating a general result from [BL5] which links generalized polyno-
mials with nilsystems, let us briefly review a dynamical approach, due to Fursten-
berg, to the proof of Weyl’s equidistribution theorem (see [F4], [F2]). Let p(x) =
a0 + a1x + a2x

2 + · · · + akx
k = b0 + b1x + b2

(
x
2

) + · · · + bk

(
x
k

) ∈ R[x]. Consider
the following affine transformation, called a skew product, of the k-dimensional torus
Tk = Rk/Zk:

τ(y1, t2, . . . , yk) = (y1 + bk, y2 + y1 + bk−1, . . . , yk + yk−1 + b1).

Let y = (0, . . . , 0, b0) ∈ Tk . One can check by induction that (τny)k = {p(n)}.
If ak is irrational, the system (Tk, τ ) is uniquely ergodic (with the unique τ -invariant
measure being the Lebesgue measure on Tk) which implies (the one-dimensional
version of) Weyl’s theorem. (For details, see [F4], Chapter 3, Section 3.)

One can also view the skew product transformation τ as a nilrotaion. Indeed, let

G be the group of upper triangular matrices

⎛
⎜⎜⎝

1 α1,2 α1,3 ... α1,k

0 1 α2,3 ... α2,k

...
. . .

. . .
...

...
0 ··· 0 1 ak,k+1
0 0 ··· 0 1

⎞
⎟⎟⎠, where ai,j ∈ Z for

11Weyl’s theorem (or rather the most quotable special case of it) says that if p is a real polynomial with at
least one coefficient other than the constant term irrational then the sequence {p(n)} = p(n) − [p(n)], n ∈ N is
uniformly distributed in the unit interval

12See, for example, [Gre], p. 13
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1 ≤ i < j ≤ k, ai,k+1 ∈ R for 1 ≤ i < k}, and let � be the subgroup of G consisting
of the matrices with integer entries. Then G is a nilpotent (non-connected) Lie group
with X = G/� ∼= Tk , and the system defined on X by the nilrotation by the element

g =
⎛
⎜⎝

1 0 0 ... bk
0 1 0 ... bk−1

...
. . .

. . .
...

...
0 ··· 0 1 b1
0 0 ··· 0 1

⎞
⎟⎠ ∈ G is isomorphic to the dynamical system on Tk defined

by the skew product τ .
The following result obtained in [BL5] says, roughly, that not only generalized

polynomials of the special form {p(n)} = p(n)−[p(n)], but any bounded generalized
polynomial can be “read off” of a nilmanifold.

Theorem 4.2. For all d ∈ N and all bounded generalized polynomials p : Zd → R

there exists a compact nilmanifold X, an ergodic Zd action (Tn)n∈Zd by nilrotations
on X, a Riemann integrable function f on X and a point x ∈ X such that for all
n ∈ Zd one has p(n) = f (Tnx).

Here is one of the numerous corollaries of Theorem 4.2:

Theorem 4.3. Let k ∈ N, let U1, . . . , Uk be commuting unitary operators on a
Hilbert space and let p1, . . . , pk be generalized polynomials Zd → Z. For any
Følner sequence13 (�N)∞N=1 in Zd the sequence

1

|�N |
∑

n∈�N

U
p1(n)
1 . . . U

pk(n)
k

is convergent in the strong operator topology.

Theorem 4.3 leads to the following conjecture.

Conjecture 4.4. Theorem 4.3 remains true if the operators U1, . . . , Uk appearing in
its formulation generate a nilpotent group.

Assume now that the unitary operatorsU1, . . . , Uk are induced by commuting mea-
sure preserving transformations T1, . . . , Tk acting on a probability space (X, B, μ).
In this case it is natural to inquire under which conditions on the generalized integer-
valued polynomials pi one has

lim
N−M→∞

1

N − M

N−1∑
n=M

μ(A ∩ T
p1(n)

1 T
p2(n)
2 . . . T

pk(n)
k A) > 0

for all A ∈ B with μ(A) > 0. In the case of conventional integer-valued polynomials
a satisfactory sufficient condition for positivity of the above limit is that pi(0) = 0,

13A sequence (�N)∞
N=1 of finite subsets of a (countable) group G is called (left) Følner if for all g ∈

G, |g�N ∩ �N |/|�N | → 1 as N → ∞. In Zd a common choice of Følner sequence is a sequence of
parallelepipeds �N = ∏d

i=1[aN,i , bN,i ] with bN,i − aN,i → ∞ as N → ∞ for all i = 1, . . . , d.
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i = 1, . . . , k; the following conjecture extends this fact to generalized polynomials.
Let us denote by P0 the set of generalized polynomials which can be constructed (with
the help of addition, multiplication, and taking of integer part) from conventional
polynomials with zero constant term.

Conjecture 4.5. Let k ∈ N and p1, . . . , pk ∈ P0. Then for any commuting invert-
ible measure preserving transformations T1, . . . , Tk of a probability measure space
(X, B, μ) and all A ∈ B with μ(A) > 0 one has

lim
N−M→∞

1

N − M

N−1∑
n=M

μ(A ∩ T
p1(n)

1 T
p2(n)
2 . . . T

pk(n)
k A) > 0.

Note that Conjecture 4.5 implies that {n : μ(A ∩ T
p1(n)

1 T
p2(n)
2 . . . T

pk(n)
k A) > 0}

is a syndetic set. This, in turn, is a special case of the following conjecture, which
extends the polynomial Szemerédi theorem (cf. Theorem 2.4 above) to generalized
polynomials belonging to P0.

Conjecture 4.6. Let (X, B, μ) be a probability measure space, let k, r ∈ N, let
T1, . . . , Tk be commuting invertible measure preserving transformations of X and let
pi,j ∈ P0, i = 1, . . . , k, j = 1, . . . , r . Then for all A ∈ B with μ(A) > 0, the set

{n ∈ Z : μ(A ∩ T
p1,1(n)

1 . . . T
pk,1(n)

k A ∩ · · · ∩ T
p1,r (n)

1 . . . T
pk,r (n)

k A) > 0}
is syndetic in Z.

5. Amenable groups and ergodic Ramsey theory

It was John von Neumann who, in his study of the Hausdorff–Banach–Tarski paradox,
introduced a class of group which nowadays are called amenable and which are
widely recognized as providing the natural context for ergodic theory. In particular,
many classical notions and results pertaining to 1-parameter group actions extend
naturally to amenable groups. (See for example [OW] and [Li]). As we will see in this
section, countable amenable groups also form a natural framework for Furstenberg’s
correspondence principle and hence for ergodic Ramsey theory.

Definition 5.1. A semigroup G is amenable if there exists an invariant mean on the
space B(G) of real-valued bounded functions on G, that is, a positive linear function
L : B(G) → R satisfying

(i) L(1G) = 1.

(ii) L(fg) = L(gf ) = L(f ) for all f ∈ B(G) and g ∈ G, wherefg(t) := f (tg)

and gf (t) := f (gt).
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The existence of an invariant mean is only one item from a long list of equivalent
properties , such as the characterization of amenability given in the next theorem,
some of which are far from being obvious and, moreover, are valid for groups (or
special classes of semigroups) only. (See, for example, [W], Theorem 10.11.) The
following theorem was established by Følner in [Fø]. (See also [N] for a simplified
proof.)

Theorem 5.2. A countable group G is amenable if and only if it has a left Følner
sequence, namely a sequence of finite sets �n ⊂ G, n ∈ N, with |�n| → ∞ and such
that for all g ∈ G,

|g�n∩�n|
|�n| → 1 as n → ∞.

While there seems to be no general method of constructing a Følner sequence in an
amenable group defined, say, by generators and relations, in many concrete, especially
abelian situations, one has no problem finding a Følner sequence. For example, the
parallelepipeds mentioned in footnote 13 and the sets Fn ⊂ F∞ defined in section 1
form natural Følner sequences in Zd and in F∞, respectively.

Before moving to discuss the Ramsey-theoretical aspects of amenable groups we
want to mention that while the class of amenable groups is quite rich (in particular
it contains all solvable and locally finite groups), it does not contain such classical
groups as SL(n, Z) for n ≥ 2.

Given a countable amenable group G and a left Følner sequence (�n)n∈N, one
can define the upper density of a set E ⊂ G with respect to (�n)n∈N by d(�n)(E) =
lim supn→∞

|E∩�n|
|�n| . Note that it immediately follows from the definition of a left

Følner sequence that for all g ∈ G and E ⊂ G one has d(�n)(gE) = d(�n)(E). By
analogy with some known results about sets of positive density in abelian or nilpotent
groups, one can expect that large sets in G, i.e. sets having positive upper density with
respect to some Følner sequence, will contain some nontrivial configurations. The
known results support this point of view and lead to a natural conjecture which will
be formulated at the end of this section.

We formulate now a version of Furstenberg’s correspondence principle for count-
able amenable groups.

Theorem 5.3 (See [B2] , Theorem 6.4.17). Let G be a countable amenable group
and assume that E ⊂ G has positive upper density with respect to some left Følner
sequence (�n)n∈N : d(�n)(E) > 0. Then there exists a probability measure preserving

system (X, B, μ, (Tg)g∈G) and a set A ∈ B with μ(A) = d(�n)(E) such that for all
k ∈ N and g1, . . . , gk ∈ G one has

d(�n)(E ∩ g1E ∩ · · · ∩ gkE) ≥ μ(A ∩ Tg1A ∩ · · · ∩ Tgk
A).

Remark. One can extend Theorem 5.3 to general countable amenable semigroups
if instead of using Følner sequences (which cannot always be found in amenable
semigroups) one defines a set E ⊂ G to be large if for some left-invariant mean L on
B(G) one has L(1E) > 0. (See [BM1], Theorem 2.1.)
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As an illustration of the usefulness of amenable considerations, let us consider the
(abelian and cancellative) semigroup (N, · ). Let

Sn = {pi1
1 p

i2
2 · · · pin

n , 0 ≤ ij ≤ n, 1 ≤ j ≤ n},
where pi , i = 1, 2, . . . , are primes in arbitrary order. It is not hard to show that
for any sequence of positive integers (an)n∈N, the sets anSn, n ∈ N form a Følner
sequence in (N, · ).
Definition 5.4. A set E ⊂ N is called multiplicatively large if for some Følner se-
quence (�n)n∈N in (N, · ) one has d(�n)(E) > 0.

Notice that the notions of additive and multiplicative largeness which are defined
via Følner sets in, respectively, (N, +) and (N, · ) are different. For example the
set O of odd natural numbers has additive density 1

2 with respect to every Følner
sequence in (N, +), while O has zero density with respect to every Følner sequence
in (N, · ). In the other direction, consider for example a Følner sequence (anSn)n∈N

in (N, · ), where the Sn are defined above and the an satisfy an > |Sn|. Then the
set E = ⋃∞

n=1 anSn has zero additive density with respect to every Følner sequence
in (N, +), while E has multiplicative density 1 with respect to the Følner sequence
(anSn)n∈N.

As may be expected by mere analogy with additively large sets, multiplicatively
large sets always contain (many) geometric progressions. (This can be derived, for
example, with the help of the IP Szemerédi theorem, Theorem 1.13 above). It turns
out, however, that multiplicatively large sets also contain some other, somewhat un-
expected geoarithmetic configurations.

Theorem 5.5 (See [B5], Theorems 3.11 and 3.15). Let E ⊂ N be a multiplicatively
large set. For all k ∈ N, there exist a, b, c, d, e, q ∈ N such that {qi(a + id) : 0 ≤
i, j ≤ k} ⊂ E and {b(c + ie)j : 0 ≤ i, j ≤ k} ⊂ E.

We conclude this section (and this survey) by addressing the question about pos-
sible amenable extensions of the multiple recurrence results. While it is not clear
how even to formulate an amenable generalization of the one-dimensional Szemerédi
theorem, it is not too hard to guess what should be an amenable version of the multi-
dimensional Szemerédi theorem!

Let G be a group and k ∈ N. Let us call a (k + 1)-element set in the cartesian
product Gk a simplex if it is of the form

{(a1, a2, . . . , ak), (ga1, a2, . . . , ak), (ga1, ga2, . . . , ak), . . . , (ga1, ga2, . . . , gak)}
for some a1, . . . , ak, g ∈ G, and denote it by S(a1, . . . , ak; g). The following con-
jecture is known for k = 2. (See [BMZ], Theorem 6.1.)

Conjecture 5.6. Let k ∈ N and suppose that G is a countable amenable group.
Assume that a set E ⊂ Gk has positive upper density with respect to some Følner
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sequence in Gk . Then the set

{g ∈ G : there exist (a1, . . . , ak) ∈ Gk such that S(a1, . . . , ak; g) ⊂ E}
is syndetic in G.
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