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Topological multiple recurrence

for polynomial configurations in nilpotent groups

V. Bergelson, A. Leibman

Abstract

We establish a general multiple recurrence theorem for an action

of a nilpotent group by homeomorphisms of a compact space. This

theorem can be viewed as a nilpotent version of our recent polynomial

Hales-Jewett theorem ([BL2]) and contains nilpotent extensions of

many known “abelian” results as special cases.

0. Introduction

0.1. The celebrated van der Waerden theorem on arithmetic progressions, published in

1927 ([vdW]) states that if the set of integers is partitioned into finitely many classes then

at least one of the classes contains arbitrarily long arithmetic progressions. Few years

later Grünwald (=Gallai) obtained the following multidimensional extension of van der

Waerden’s theorem (see [R], p. 123).

0.2. Theorem. Let d ∈ N. For any finite coloring of Z
d and any finite set E ⊂ Z

d there

exist v ∈ Z
d and n ∈ N such that the set v + nE =

{

v + nz
∣

∣ z ∈ E
}

is monochromatic.

In [FW] Furstenberg and Weiss offered a new approach, based on methods of topolog-

ical dynamics, to results of this type. A dynamical version of the Gallai theorem proved

in [FW] (from which Theorem 0.2 can be easily derived) reeds as follows.

0.3. Theorem. Let (X, ρ) be a compact metric space and let g1, . . . , gk be commuting

self-homeomorphisms of X. Then for any ε > 0 there exist x ∈ X and n ∈ N such that

ρ(gn
i x, x) < ε for all i = 1, . . . , k.

0.4. More recently, a polynomial extension of Theorem 0.3 was proved in [BL1]:

Theorem. Let (X, ρ) be a compact metric space, let g1, . . . , gl be commuting self-homeo-

morphisms of X and let pi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ l, be polynomials Z −→ Z sat-
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isfying pi,j(0) = 0. Then for any ε > 0 there exist x ∈ X and n ∈ N such that

ρ(g
pi,1(n)
1 . . . g

pi,l(n)
l x, x) < ε for all i = 1, . . . , k.

0.5. Corollary. Let d, k ∈ N and let P : Zk −→ Z
d be a polynomial mapping satisfying

P (0) = 0. Then for any finite coloring of Z
k and any finite set E ⊂ Z

k there exist v ∈ Z
d

and n ∈ N such that the set v + P (nE) is monochromatic.

It was S. Yuzvinsky who conjectured in 80-ies that Theorem 0.3 might be still true

if one replaces the assumption of commutativity of the homeomorphisms g1, . . . , gk by the

condition that they generate a nilpotent group. Yuzvinsky’s conjecture was confirmed in

[L1], where the following “nilpotent” extension of Theorem 0.4 was proved.

0.6. Theorem. Let self-homeomorphisms g1, . . . , gl of a compact metric space (X, ρ)

generate a nilpotent group and let pi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ l, be polynomials Z −→ Z

satisfying pi,j(0) = 0. Then for any ε > 0 there exist x ∈ X and n ∈ N such that

ρ(g
pi,1(n)
1 . . . g

pi,l(n)
l x, x) < ε for all i = 1, . . . , k.

0.7. Here is a combinatorial corollary of Theorem 0.6:

Corollary. Let G be a nilpotent group, let g1, . . . , gl ∈ G and let pi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ l,

be polynomials Z −→ Z satisfying pi,j(0) = 0. For any finite coloring of G there exist h ∈ G

and n ∈ N such that the elements hg
p1,1(n)
1 . . . g

p1,l(n)
l , . . . , hg

pk,1(n)
1 . . . g

pk,l(n)
l of G are all of

the same color.

0.8. The following equivalent form of Corollary 0.7 is more geometric in nature (cf. with

Corollary 0.5 above):

Corollary. Let H and G be nilpotent groups, let P :H −→ G be a polynomial mapping

satisfying P (1H) = 1G and let E be a finite subset of H. Then for any finite coloring

of G there exist h ∈ G and n ∈ N such that the set hP (En) =
{

hP (zn)
∣

∣ z ∈ E
}

is

monochromatic.

(For the definition of a polynomial mapping of groups see [L3].)

0.9. While Theorem 0.6 provides a satisfactory result pertaining to finitely many home-

omorphisms (or, equivalently, to partition theorems involving finitely generated nilpotent

groups), it is desirable to have an extension of Theorem 0.3 which would deal with infinitely

many homeomorphisms (and would have as combinatorial corollaries Ramsey-theoretical

results about infinitely generated (semi)groups). One such extension, the (abelian) IP-van

der Waerden theorem is already contained in the paper of Furstenberg and Weiss alluded

to above. To formulate it we need to recall the notion of IP-system, introduced in [FW].
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Denote by F the set of finite subsets of N. An IP-system in a commutative semigroup G

(which should be viewed as a generalized sub-semigroup of G) is a mapping from F into

G, α 7→ gα, α ∈ F , which satisfies gα∪β = gαgβ whenever α ∩ β = ∅. In particular, if

{gi}i∈N is a sequence of elements of G, the IP-system generated by {gi}i∈N is the set of all

products of the form gα =
∏

i∈α gi, α ∈ F . It is easy to see that any IP-system in G can

be obtained in this way.

0.10. Theorem. ([FW]) Let {g
(1)
α }α∈F , . . . , {g

(k)
α }α∈F be IP-systems in an abelian group

of self-homeomorphisms of a compact metric space (X, ρ). For any ε > 0 there exist x ∈ X

and a nonempty α ∈ F such that ρ(g
(i)
α x, x) < ε for all i = 1, . . . , k.

0.11. An equivalent combinatorial form of Theorem 0.10 reads as follows.

Theorem. Let G be an abelian group, and let {g
(1)
α }α∈F , . . . , {g

(k)
α }α∈F be IP-systems in

G. For any finite coloring of G there exist h ∈ G and a nonempty α ∈ F such that the

elements hg
(1)
α , . . . , hg

(k)
α all have the same color.

0.12. The following corollary of Theorem 0.10, which is a special case of the so-called

Geometric Ramsey theorem, due to Graham, Leeb and Rothschild ([GLR]), deals with

infinitely generated abelian groups of the form
⊕

K, where K is (the additive group of) a

finite field.

Theorem. Let V be an infinite dimensional vector space over a finite field. Then for

any finite coloring of V there are arbitrarily large monochromatic finite dimensional affine

subspaces.

For derivation of this theorem from Theorem 0.10 see [B2].

0.13. We formulate now a general abelian polynomial IP-multiple recurrence theorem,

which is a corollary of the polynomial Hales-Jewett theorem obtained in [BL2] (see Theo-

rem 5.5 below), and is a simultaneous extension of Theorem 0.4 and Theorem 0.10.

Theorem. Let (X, ρ) be a compact metric space, let k, d ∈ N and let g
(i)
j1,...,jd

, 1 ≤ i ≤ k,

j1, . . . , jd ∈ N, be commuting homeomorphisms of X. For any ε > 0 there exist x ∈ X

and a finite nonempty set α ⊆ {1, . . . , N} such that ρ
(
∏

j1,...,jd∈α g
(i)
j1,...,jd

x, x
)

< ε for all

i = 1, . . . , k.

0.14. A corollary of Theorem 0.13 extending Corollary 0.5 and Theorem 0.11 reads as

follows:

Theorem. Let G be an abelian group and let g
(i)
j1,...,jd

∈ G, 1 ≤ i ≤ k, j1, . . . , jd ∈ N. For

any finite coloring of G there exist h ∈ G and a nonempty α ∈ F such that the elements
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h
∏

j1,...,jd∈α g
(i)
j1,...,jd

, i = 1, . . . , k, all have the same color.

0.15. Our goal in this paper is to establish a nil-IP-multiple recurrence theorem which

would extend all abelian results mentioned above to a nilpotent setup. To formulate

our main result we will need to introduce some definitions and notation. Some care and

precision are needed here due to the fact that we are dealing with a non-commutative

situation.

0.16. We start with extending (and somewhat modifying) the definition of IP-system to

a non-commutative situation. Let ≺ be (any) linear order on N. (In particular, it may be

the standard order < on N.) Let G be a (not necessarily commutative) semigroup. Given

a sequence {gj}j∈N in G and α ∈ F , let gα =
∏≺

j∈α gj denote the product of gj , j ∈ α,

in the order which ≺ induces on α. (We put g∅ = 1G.) Let FP
(

{gj}j∈N,≺
)

= {gα}α∈F .

The elements of the set of ≺-ordered finite products, FP
(

{gj}j∈N,≺
)

, satisfy the relation

gα∪β = gαgβ whenever α ≺ β (which means that k ≺ l for all k ∈ α, l ∈ β). The objects of

the form FP
(

{gj}j∈N,≺
)

are the non-commutative IP-systems, which, alternatively, may

be defined as follows:

Definition. Given a semigroup G, an IP-system in G is a mapping F −→ G, α 7→ gα,

such that for some linear order ≺ on N one has gα∪β = gαgβ whenever α ≺ β.

0.17. To give the reader a flavor of what our main theorem is about we will formulate first

its special, “linear” case which is an extension of Theorem 0.10.

Theorem. Let G be a nilpotent group of self-homeomorphisms of a compact metric space

(X, ρ). For any ε > 0 and any IP-systems {g
(1)
α }α∈F , . . . , {g

(k)
α }α∈F in G there exist x ∈ X

and a nonempty α ∈ F such that ρ
(

g
(i)
α x, x

)

< ε for all i = 1, . . . , k.

0.18. We are moving now to give a formulation of our main result, the polynomial nil-IP

theorem. (It is worth mentioning that the only known to us way of proving Theorem 0.17 is

to derive it as a corollary from this much more general fact. This situation is quite different

in the abelian case where one can get the proof of the “linear” result, Theorem 0.10, in a

self-contained way.) Before introducing general nil-IP-polynomials, let us summarize the

pertinent definitions and facts about IP-polynomial with values in abelian groups. Call a

mapping P from F into a commutative (semi)group G an IP-polynomial of degree 0 if P

is constant, and, inductively, define an IP-polynomial of degree ≤ d if for any β ∈ F there

exists a polynomial mapping DβP :F(N \ β) −→ G of degree ≤ d − 1 (where F(N \ β) is

the set of finite subsets of N \ β) such that P (α ∪ β) = P (α) + (DβP )(α) for every α ∈ F

with α ∩ β = ∅.

If G is an abelian group, it is proved in [BL2], Theorem 8.3, that a mapping P :F −→ G
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is an IP-polynomial if and only if there exist d ∈ N and a family {g(j1,...,jd)}(j1,...,jd)∈Nd

of elements of G such that for any α ∈ F one has P (α) =
∏

(j1,...,jd)∈αd g(j1,...,jd). It is

this characterization of commutative IP-polynomials which makes sense in nilpotent setup

as well. Namely, let G be a nilpotent group. We will call a mapping P :F −→ G an IP-

polynomial if for some d ∈ N there exist a family {g(j1,...,jd)}(j1,...,jd)∈Nd of elements of G

and a linear order ≺ on N
d such that for any α ∈ F one has P (α) =

∏≺
(j1,...,jd)∈αd g(j1,...,jd).

0.19. Theorem. Let G be a nilpotent group of self-homeomorphisms of a compact metric

space (X, ρ) and let P1, . . . , Pk:F −→ G be polynomial mappings. For any ε > 0, there

exist x ∈ X and a nonempty α ∈ F such that ρ
(

Pi(α)x, x
)

< ε for all i = 1, . . . , k.

Remark. When G is abelian, Theorem 0.19 reduces to Theorem 0.13 above.

0.20. The proof of Theorem 0.19 is quite technical and will be presented in Section 3 after

the necessary machinery will be established in Sections 1 and 2. We want to conclude this

introductory section by formulating some of its combinatorial corollaries. We will formulate

the corollaries in a stronger, “finitary” form than we used for “abelian” combinatorial

statements above. (While such finitary versions of partition results of the kind considered

here follow easily from infinitary statements, they are often useful in applications.)

0.21. We start with the combinatorial version of Theorem 0.17 which is a nil-generalization

of Theorem 0.11.

Theorem. Let G be an infinite nilpotent group. For any k, r ∈ N and any linear or-

ders ≺1, . . . ,≺k on N there is N ∈ N such that for any r-coloring, G =
⋃r

m=1 Cm, of

G and any k collections g(i) = {g
(i)
j }N

j=1, i = 1, . . . , k, of N elements from G, there

exist m ∈ {1, . . . , r} and a nonempty set α ⊆ {1, . . . , N} such that the set
{

h ∈ G
∣

∣

{

h
∏≺1

j∈α g
(1)
j , . . . , h

∏≺k

j∈α g
(k)
j

}

⊆ Cm

}

is infinite.

0.22. Theorem 0.21 is a special case of the following corollary of Theorem 0.19:

Theorem. Let G be an infinite nilpotent group, let F be the free group generated by a

(finite) set {z1, . . . , zm}, let E ⊂ F be finite, let ≺1, . . . ,≺m be linear orders on N and let

r ∈ N. There exists N ∈ N such that for any r-coloring, G =
⋃r

m=1 Cm, of G and any

g
(i)
j ∈ G, 1 ≤ i ≤ m, 1 ≤ j ≤ N , there exist m ∈ {1, . . . , r} and a nonempty α ⊆ {1, . . . , N}

such that if ϕ:F −→ G is the homomorphism defined by ϕ(zi) =
∏≺i

j∈α g
(i)
j , i = 1, . . . ,m,

then the set
{

h ∈ G
∣

∣ hϕ(E) ⊆ Cm

}

is infinite.

0.23. For example, taking E to be {z1z
2
2z−3

1 , z−1
2 z2

1z2}, one can find N such that for any

r-coloring of G and any g
(1)
1 , . . . , g

(1)
N , g

(2)
1 , . . . , g

(2)
N there exist 1 ≤ j1 < . . . < jl ≤ N and
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1 ≤ m ≤ r such that for h1 = g
(1)
j1

. . . g
(1)
jl

and h2 = g
(2)
j1

. . . g
(2)
jl

, the products hh1h
2
2h

−3
1

and hh−1
2 h2

1h2 have the same color for infinitely many h ∈ G.

0.24. Theorem 0.22 allows one to obtain a nilpotent version of a classical partition result

of Hilbert which we will presently formulate. Hilbert’s result, arguably the first non-trivial

theorem of Ramsey-theoretical nature, is contained in [H] and reads as follows.

0.25. Theorem. ([H]) For any finite coloring of N and for any k ∈ N there is a k-element

set {n1, . . . , nk} ⊂ N such that one can find in one color infinitely many translates of the

set of finite sums FS
(

{nj}
k
j=1

)

=
{
∑k

j=1 ǫjnj

∣

∣ ǫ1, . . . , ǫk ∈ {0, 1}
}

.

(Hilbert needed this theorem in order to prove his irreducibility theorem, stating that if a

polynomial p(x, y) ∈ Z[x, y] is irreducible then for some x0 ∈ N the polynomial p(x0, y) ∈

Z[y] is also irreducible.)

0.26. It is rather curious that although Hilbert’s original proof of Theorem 0.25 occupied

more than 2 pages, a stronger density result containing it as quite a special case can

be proved in few lines by simply iterating a version of the Poincaré recurrence theorem.

Namely, one can show (see [B1], Proposition 2.5 and Remark 2.6) that if G is an amenable

group and A ⊆ G has positive upper density with respect to a F/olner sequence, then for

any k there exist distinct h1, . . . , hk ∈ G such that the set
{

h ∈ G
∣

∣ hFP{hj}
k
j=1 ⊂ A

}

(where the products are taken in the increasing order of indices) has positive upper density.

Moreover, one can choose h1, . . . , hk from any preassigned IP-system {gα}α∈F .

0.27. Given a finite set D = {h1, . . . , hk} in a group G, let Q(D) denote the set of the

products of h1, . . . , hk in all possible orders: Q(D) =
{
∏k

j=1 hσ(j)

∣

∣ σ ∈ Sk

}

. The following

open question, dealing with a strong noncommutative generalization of Hilbert’s theorem,

has very likely a negative answer for general groups.

Question. Let {gα}α∈F be an IP-set in a group G. Is it true that for any finite coloring

of G and any k ∈ N there exist a k-element set D ⊆ {gα}α∈F and h ∈ G such that the set

hQ(D) is monochromatic?

0.28. The following corollary of Theorem 0.21 shows that at least for nilpotent groups the

answer to Question 0.27 is positive.

Corollary. Let G be an infinite nilpotent group. For any k, r ∈ N there exist N ∈ N

such that for any g
(i)
j ∈ G, 1 ≤ i ≤ k, 1 ≤ j ≤ N , and any r-coloring of G there exist

a nonempty α ⊆ {1, . . . , N} and infinitely many h ∈ G such that for hi =
∏

j∈α g
(i)
j ,

i = 1, . . . , k, the products hhi1hi2 . . . hil
with 0 ≤ l ≤ k and distinct i1, i2, . . . , il, are all of

the same color.
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0.29. We are now going to discuss a nilpotent extension of Theorem 0.12. Let G be a

nilpotent group with uniformly bounded torsion, that is, for some d ∈ N, gd = 1G for all

g ∈ G. (Examples: (i) the group of upper triangular matrices with unit main diagonal

over a field of finite characteristic; (ii) any finite p-group, where p is a prime number.) It

is easy to see that any finitely generated subgroup of G is finite, and, moreover, one can

estimate its cardinality in terms of the number of generators and the nilpotency class of

G.

For convenience of discussion let us temporarily assume that G is infinite. Let a

finite coloring of G be given. In accordance with the principles of Ramsey theory, one

should be able to find in one color arbitrarily large “highly organized” configuration. In

the case of our group G, which has uniformly bounded torsion, it is natural to look for

monochromatic cosets of arbitrarily large subgroups. (Cf. Theorem 0.12 above.) While

getting such monochromatic cosets is itself a nontrivial task, an even better result would

be not only to get monochromatic cosets of arbitrarily large subgroups, but to have these

subgroups to be as “noncommutative” as G is.

We will now formalize these considerations. Given B ⊆ G, let 〈B〉 denote the subgroup

of G generated by B, and let γl〈B〉 be the l-th term of the lower central series of this

subgroup. Let G be a (finite or infinite) nilpotent group of class q and let N ∈ N; we call

G N -large if there are N elements g1, . . . , gN ∈ G and K ∈ N, K ≤ N , such that for all

k = K, . . . , N and every nonempty B ⊆ {g1, . . . , gk−1} one has γq

〈

B ∪ {gk}
〉

6= γq〈B〉.

It then follows that for any 1 ≤ l1 < l2 < . . . < lK ≤ N and 1 ≤ j1 < . . . < jlK ≤ N ,

the group generated by h1 = gj1 . . . gjl1
, h2 = gjl1+1

. . . gjl2
, . . ., hm = gjlK−1+1

. . . gjlK
has

nilpotency class q.

Theorem 0.22 shows that if G is “large as a nilpotent group of class q”, that is, if G

is N -large for N big enough, then one can find in G a “large” subgroup H of nilpotency

class q such that hH is monochromatic for some h ∈ H. Indeed, let m ∈ N. We will now

indicate how to find such a subgroup H of G of cardinality ≥ m. It suffices to find H which

is generated by m distinct elements h1, . . . , hm. The condition that hH is monochromatic

means that finitely many products of the form h
∏l

t=1 hǫt

it
have the same color. But it

follows from Theorem 0.22 that if N is big enough, then h1, . . . , hm satisfying this condition

can be found in the form h1 = gj1 . . . gjl1
, h2 = gjl1+1

. . . gjl2
, . . ., hm = gjlm−1+1

. . . gjlm

with 1 ≤ l1 < l2 < . . . < lm ≤ N , and 1 ≤ j1 < . . . < jlm ≤ N . Then, if m ≥ K, the group

generated by these elements has nilpotency class ≥ q. We arrive at the following theorem:

0.30. Theorem. For any m, d, q, r ∈ N there exists N ∈ N such that if G is an N -large

nilpotent group of class q with gd = 1G for all g ∈ G, then for any r-coloring of G there is

a subgroup H of G of nilpotency class q and of cardinality ≥ m such that for some h ∈ G
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the coset hH is monochromatic.

1. Polynomial mappings F(S) −→ G

1.1. Given a set T , F(T ) will denote the set of all finite subsets of T , F=d(T ) the set of

all subsets of T of cardinality d, F≤d(T ) the set of all subsets of T of cardinality ≤ d. In

particular, F=0(T ) = {∅}.

Let {gt}t∈T be a collection of elements of a group G indexed by a finite set T =

{t1, . . . , tn}, let ≺ be a linear order on T (or on some superset of T ). Let i1, i2, . . . , in ∈

{1, . . . , n} satisfy i1 ≺ i2 ≺ . . . ≺ in; we define
∏≺

t∈T gt = gti1
gti2

. . . gtin
. If T is empty, we

put
∏≺

t∈T gt = 1G. In some occasions, when the order ≺ is fixed or does not matter (for

example, when G is abelian), we will write
∏

t∈T gt instead of
∏≺

t∈T gt.

1.2. Let G be a group. The commutator [x, y] of elements x, y ∈ G is x−1y−1xy; so xy =

yx[x, y]. For two subsets A,B ⊆ G, their commutator [A,B] is the subgroup generated

by the set
{

[x, y]
∣

∣ x ∈ A, y ∈ B
}

. The lower central series of G is the sequence G1 ⊇

G2 ⊇ G3 ⊇ . . . of normal subgroups of G defined inductively: G = G1, Gk+1 = [G,Gk],

k = 1, 2, . . .. It is well known that [Gk, Gl] ⊆ Gk+l for any k, l ∈ N.

A group G is called nilpotent if its lower central series is finite: G is nilpotent of class

q if Gq+1 = {1G} and Gq 6= {1G}. In particular, abelian groups are nilpotent of class 1.

1.3. Let S be a nonempty set, let G be a nilpotent group. A monomial of degree d on

S with values in G is a pair (u,≺) consisting of a mapping u:Sd −→ G and a linear

order ≺ on Sd. When it can not lead to confusion, we will omit ≺ and write u instead

of (u,≺). A monomial (u,≺) induces a monomial mapping Pu:F(S) −→ G by the rule

Pu(α) =
∏≺

s∈αd u(s), α ∈ F(S).

1.4. Examples. Constant mappings F(S) −→ G are monomial of degree 0: they are

induced by monomials S0 = {∅} −→ G.

Given a sequence {gi}j∈N of elements of G, the mapping P :F(N) −→ G defined by

P (α) =
∏

j∈α gj is monomial of degree 1.

Let g ∈ G; put P (α) = g|α|2 for α ∈ F(S) (where |α| denotes the cardinality of α).

Then P :F(S) −→ G is a monomial mapping of degree 2: it is induced by the constant

monomial which equals g on S2.

1.5. Note that the monomial mapping Pu induced by a monomial (u,≺) of degree d is also

induced by a monomial (u′,≺′) of degree d + 1, which can be constructed as follows. Fix

8



any s0 ∈ S, put

u′(s1, . . . , sd, sd+1) =

{

u(s1, . . . , sd) if sd+1 = s0

1G otherwise.

Then define an order ≺′ on Sd × {s0} by
(

s1 × {s0}
)

≺′
(

s2 × {s0}
)

if s1 ≺ s2, and lift ≺′

to any linear order on Sd+1.

1.6. Note also that the composition of a monomial mapping and a group homomorphism

is a monomial mapping as well: if Pu:F(S) −→ G is a monomial mapping induced by a

monomial (u,≺) and ϕ:G −→ G′ is a homomorphism of nilpotent groups, then ϕ ◦ Pu is

induced by the monomial (ϕ ◦ u,≺).

1.7. The level of a monomial (u,≺) of degree d is the positive integer l satisfying u(Sd) ⊆

Gl \ Gl+1; we will denote the level of (u,≺) by l(u). If G is nilpotent of class q, then

1 ≤ l(u) ≤ q for nontrivial monomials u; we define the level of the trivial monomial,

u(s) = 1G for all s ∈ S, to be q +1. The weight w(u) of (u,≺) is the pair (l(u), d). The set

W of weights of monomials, that is, the set of pairs (l, d) with l, d ∈ Z, 1 ≤ l ≤ q, d ≥ 0,

is well-ordered by the rule: (l1, d1) ≤ (l2, d2) if either l1 > l2, or l1 = l2 and d1 ≤ d2.

1.8. A polynomial mapping P :F(S) −→ G is the product of finitely many monomial

mappings: P (α) = Pu1(α) . . . Pum
(α), α ∈ F(S), where Pu1 , . . . , Pum

are monomial map-

pings, corresponding to monomials (u1,≺1), . . . , (um,≺m). The weight w(P ) of a poly-

nomial mapping P is the minimum, taken over the set of all representations of P as the

product P = Pu1 . . . Pum
of monomial mappings, of the maximum of the weights w(ui),

i = 1, . . . ,m, of monomials participating in this representation. If w(P ) = (l, d), we will

call l the level of P and denote it by l(P ), and we will call d the degree of P . A polynomial

mapping of level l takes values in the subgroup Gl of G.

1.9. Given a set S and a nilpotent group G, polynomial mappings F(S) −→ G form a group

with respect to the element-wise multiplication. Indeed, it is clear from definition that the

product PQ, (PQ)(α) = P (α)Q(α) of polynomial mappings P and Q is polynomial as

well. The inverse P−1
u , P−1

u (α) = Pu(α)−1, of the monomial mapping Pu induced by a

monomial (u,≺) of degree d, is also a monomial mapping: it is induced by the monomial

(u−1,≻), where u−1(s) = u(s)−1 and ≻ is the order on Sd which is inverse to ≺.

1.10. Lemma. Let P,Q:F(S) −→ G be polynomial mappings. Then

(i) w(P−1) = w(P );

(ii) w(PQ) ≤ max
(

w(P ), w(Q)
)

;

(iii) if w(Q) < w(P ), then w(PQ) = w(QP ) = w(P ).

9



Proof. (i) and (ii) follow from the definition. To prove (iii) note that the assumption

w(PQ) < w(P ) leads to a contradiction, since it implies that

w(P ) = w(PQQ−1) ≤ max
(

w(PQ), w(Q−1)
)

< w(P ).

1.11. Corollary. Given a weight (l, d), polynomial mappings P :F(S) −→ G with w(P ) ≤

(l, d) form a group.

1.12. The following proposition describes the basic properties of monomial mappings: it

tells us that if G is a nilpotent group then certain elementary operations with monomial

mappings taking values in G are “nilpotent”: they are trivial modulo polynomial mappings

of higher levels.

Proposition. Let S be a set and G be a nilpotent group.

(i) Let (u,≺) and (u,≺′) be two monomials of weight (l, d), given by the same mapping

u:Sd −→ G and different linear orders ≺,≺′ on Sd, let P and P ′ be the corresponding

monomial mappings. Then P = P ′Q where Q is a polynomial mapping F(S) −→ G with

l(Q) > l.

(ii) Let (u1,≺1) and (u2,≺2) be two monomials on S with values in G, let P1 and P2 be

the corresponding monomial mappings. Then P1P2 = P2P1Q, where Q is a polynomial

mapping F(S) −→ G with l(Q) > max
(

l(P1), l(P2)
)

.

(iii) Let u1, u2:F(Sd) −→ G be two mappings, let ≺ be a linear order on Sd, and let

P1, P2 and P be the monomial mappings induced by the monomials (u1,≺), (u2,≺) and

(u1u2,≺) respectively. Then P = P1P2Q, where Q is a polynomial mapping F(S) −→ G

with l(Q) > max
(

l(P1), l(P2)
)

.

1.13. The formal proof of Proposition 1.12 is cumbersome, but its idea is simple: in-

terchanging two products
∏

s∈A gs and
∏

t∈B ht of elements of G creates commutator

expressions indexed by products of several copies of A and B:

∏

s∈A

gs

∏

t∈B

ht =
∏

t∈B

ht

∏

s∈A

gs

∏

(s,t)∈A×B

[gs, ht]
∏

(s1,s2,t)∈A2×B
s1≺s2

[

[gs1 , ht], gs2

]

∏

. . .

and leads to appearance of monomial mappings of higher levels.

To clarify the idea involved, we first give the proof in the case where G has nilpotency

class 2 (that is, G2 = [G,G] is contained in the center of G).
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(i) Let (u,≺) and (u,≺′) be two monomials of weight (1, d), let P and P ′ be the corre-

sponding monomial mappings. Then for α ∈ F(S) we have

P ′(α) =
∏≺′

s∈αd

u(s) =
∏≺

s∈αd

u(s)
∏

s,t∈αd

s≺′t
t≺s

[

u(s), u(t)
]

= P (α)Q(α),

where Q is the monomial mapping induced by the monomial

(s, t) 7→

{

[

u(s), u(t)
]

if s ≺′ t and t ≺ s
1G otherwise

which is of degree 2d and of level ≥ 2 (the order on S2d does not matter since the range

of this monomial lies in the abelian group G2).

For the same group G, if (u1,≺1) and (u2,≺2) are two monomials, u1:S
d1 −→ G,

u2:S
d2 −→ G, and P1 and P2 are the corresponding monomial mappings, then for α ∈

F(S)

P1(α)P2(α) =
∏≺1

s∈αd1

u1(s)
∏≺2

s∈αd2

u2(s) =
∏≺2

s∈αd1

u2(s)
∏≺1

s∈αd2

u1(s)
∏

s∈αd1

t∈αd2

[

u1(s), u2(t)
]

= P2(α)P1(α)Q(α),

where Q is the monomial mapping induced by the monomial (s, t) 7→
[

u1(s), u2(t)
]

of

degree d1 + d2 and level ≥ 2.

Let P1, P2 and P be the monomial mappings induced respectively by monomials (u1,≺),

(u2,≺) and (u1u2,≺), where u1, u2:S
d −→ G. Then for α ∈ F(S)

P (α) =
∏≺

s∈αd

u1(s)u2(s) =
∏≺

s∈αd

u1(s)
∏≺

s∈αd

u2(s)
∏

s,t∈αd

t≺s

[

u2(t), u1(s)
]

= P1(α)P2(α)Q(α),

where Q is the monomial mapping induced by the monomial

(s, t) 7→

{

[

u2(t), u1(s)
]

if t ≺ s
1G otherwise.

1.14. Proof of Proposition 1.12. We confine ourselves to the proof of statement (i); the

proofs of (ii) and (iii) are similar. Let G be a nilpotent group of class q.

We introduce first some notation. Given a set B, denote by C(B) the set of words in

the alphabet B∪{[}∪{, }∪{]} defined inductively: B ⊂ C, and if c1, c2 ∈ C then [c1, c2] ∈

C. C(B) is “the set of commutators with entries from B”. For example, if b1, b2 ∈ B,
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then [b1, b2] ∈ C(B) and
[

b1, [b2, b1]
]

∈ C(B). Also notice that C
(

C(B)
)

= C(B). Let the

depth d(c) of c ∈ C(B) be defined by d(b) = 1 for b ∈ B and d([c1, c2]) = d(c1) + d(c2) for

c1, c2 ∈ C(B). (Examples: if b1, b2 ∈ B, then d
(

[b1, b2]
)

= 2, d
([

b1, [b2, b1]
])

= 3.)

Now, let u:B −→ G be a mapping. We can lift u onto C(B) by putting u
(

[c1, c2]
)

=
[

u(c1), u(c2)
]

∈ G, c1, c2 ∈ C(B). (Note that if d(c) > q, then u(c) = 1G.) Let D ⊆

C(B) and let ≺ be a linear order on D; then for any α ∈ F(B) we put uα(D,≺) =
∏≺

c∈D∩C(α) u(c). Let D1, D2 ⊆ B and let ≺1 and ≺2 be linear orders on D1 and D2

respectively. Then we will write u(D1,≺1) = u(D2,≺2) if uα(D1,≺1) = uα(D2,≺2) for all

α ∈ F(B). (Example: let B = {b1, b2}, D1 = {b1, b2}, b1 ≺1 b2, and D2 =
{

b1, b2, [b1, b2]
}

,

b2 ≺2 b1 ≺2 [b1, b2]. Then u(D1,≺1) = u(D2,≺2) for any u.)

1.15. Lemma. For any linear orders ≺1,≺2 on a set B there exist D ⊆ C(B) with

B ⊆ D, and a linear order ≺ on D such that ≺|B =≺2, b ≺ c for any b ∈ B, c ∈ D \ B,

and u(B,≺1) = u(D,≺) for any u:B −→ G.

Proof. The idea of the proof is to “place” the elements of B in accordance with ≺1 and

then “move” them to the left in accordance with ≺2; when b ∈ B passes a commutator

c ∈ C(B), we replace c, b by b, c, [c, b]. To put this more formally, we put

D = B ∪
{

[

. . .
[

[b, b1], b2

]

, . . . , bk

]
∣

∣ k ∈ N, b, b1, b2, . . . , bk ∈ B,

b ≺1 b1, b ≺1 b2, . . . , b ≺1 bk, b1 ≺2 b, b1 ≺2 b2 ≺2 . . . ≺2 bk

}

,

and define a linear order ≺ on D as follows:

b ≺ c for any b ∈ B, c ∈ C(B) \ B; for b, b′ ∈ B, b ≺ b′ iff b ≺2 b′;
[

. . .
[

[b, b1], b2

]

, . . . , bk

]

≺
[

. . .
[

[b, b1], b2

]

, . . . , bk

]

, bk+1

]

, . . . , bl

]

;
[

. . .
[

[b, b1], b2

]

, . . . , bk

]

≺
[

. . .
[

[b′, b′1], b
′
2

]

, . . . , b′l
]

iff b ≺ b′;
[

. . .
[

[b, b1], b2

]

, . . . , bk

]

, bk+1

]

, . . . , bl

]

≺
[

. . .
[

[b, b1], b2

]

, . . . , bk

]

, b′k+1

]

, . . . , b′m
]

iff b′k+1 ≺2 bk+1.

Let R = C({∗}). (R is the set of “commutator patterns”; for example, ∗ ∈ R,
[

∗, [∗, ∗]
]

∈ R.) For c ∈ C(B) we will say that c has type r, r ∈ R, if after replacing

all B-entries of c by ∗, c transforms into r. (Example: for b1, b2 ∈ B, b1 has type ∗

and
[

[b1, b2], b1

]

has type
[

[∗, ∗], ∗
]

.) On the other hand, every r ∈ R defines a mapping

Bd(r) −→ C(B) which can be described as follows: ∗(b) = b and

[r1, r2](b1, br1 , br1+1, . . . , bd(r1)+d(r2)) =
[

r1(b1, . . . , bd(r1)), r2(bd(r1+1, . . . , bd(r1)+d(r2))
]

(∗-s are consecutively replaced in r by b1, . . . , bd(r)). Let Rq =
{

r ∈ R
∣

∣ d(r) ≤ q
}

. Rq is

a finite set, let Rq = {r0, r1, . . . , rk} with r0 = ∗ and d(ri−1) ≤ d(ri) for all i = 1, . . . , k.
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Now all the preparatory work has been done, and we pass to the proof of Proposi-

tion 1.12(i). Let u be a mapping Sd −→ G, let ≺,≺′ be linear orders on Sd and let P, P ′

be the monomial mappings F(Sd) −→ G induced by the monomials (u,≺) and (u,≺′)

respectively. First, applying Lemma 1.15 to B0 = Sd, find D1 ⊆ C(B0), B0 ⊆ D1, with

a linear order ≺′
1 on D1 such that ≺′

1 |B0
=≺′, s ≺′

1 c for any s ∈ B0, c ∈ D1 \ B0, and

u(B0,≺) = u(D1,≺
′
1). Let B1 = D1 \ B0. Then for any α ∈ F(Sd) we have

P (α) = uα(B0,≺) = uα(D1,≺
′
1) = uα(B0,≺

′)uα(B1,≺
′
1) = P ′(α)uα(B1,≺

′
1).

Now we will “separate” commutators which have type r1. Let S1 =
{

c ∈ B1

∣

∣

c has type r1

}

. Introduce any linear order ≺1 on B1 which satisfies c1 ≺1 c2 for any

c1 ∈ S1, c2 ∈ B1 \ S1. Applying Lemma 1.15 to B1, find D2 ⊆ C(B1) ⊆ C(Sd), B1 ⊆ D2,

and a linear order ≺′
2 on D2 such that ≺′

2 |B1
=≺1, b ≺′

2 c for any b ∈ B1, c ∈ D2 \ B1,

and u(B1,≺
′
1) = u(D1,≺

′
2). Define a monomial u1: (S

d)d(r1) −→ G by

u1(s1, . . . , sd(r1)) =

{

r1

(

u(s1), . . . , u(sd(r1))
)

if r1(s1, . . . , sd(r1)) ∈ S1

1G otherwise

and by the order ≺1, and let P1 be the monomial mappings induced by u1. Let B2 =

D2 \ B1. Then for any α ∈ F(Sd) we have

uα(B1,≺
′
1) = uα(D2,≺

′
2) = uα(S1,≺1)uα(B2,≺

′
2) = P1(α)uα(B2,≺

′
2),

and hence, P (α) = P ′(α)P1(α)uα(B2,≺
′
2). Note also that, since d(c) > 1 for all c ∈ S1,

l(P1) > l(u).

After repeating this procedure k − 1 more times, that is, after consecutively sep-

arating commutators having types r1, . . . , rk, we arrive at the representation P (α) =

P ′(α)P1(α) . . . Pk(α)uα(Bk+1,≺
′
k+1), α ∈ F(Sd), where Bk+1 consists of commutators

of depth > q. Hence, the last term this product vanishes, and we get P = P ′P1 . . . Pk.

1.16. Corollary. Let P1, P2 be polynomial mappings F(S) −→ G. Then P1P2 = P2P1Q,

where Q is a polynomial mapping of level l(Q) > max
(

l(P1), l(P2)
)

.

1.17. Corollary. The group of polynomial mappings F(S) −→ G is nilpotent (and has

the same nilpotency class as G).

1.18. Corollary. Every polynomial mapping PF(S) −→ G can be represented in the

form P = PuQ, where Pu is a monomial mapping induced by a monomial u of weight

w(u) = w(P ) and Q is a polynomial mapping with l(Q) > l(P ).
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Proof. Let w(P ) = (l, d) and let Pu1 . . . Pum
be the “minimal” representation of P , that

is, let Pu1 , . . . , Pum
be the monomial mappings corresponding to monomials (u1,≺1), . . . ,

(um,≺m) with w(ui) ≤ (l, d), i = 1, . . . ,m. Let (ui1 ,≺i1), . . . , (uit
,≺it

) be the monomials

whose level is l, by 1.5, we may assume that all this monomials are of the same degree d.

Choose a linear order ≺ on Sd, and using Proposition 1.12 (i) replace all ≺i1 , . . . ,≺it
by ≺:

Puij
= PjQj , j = 1, . . . , t, where Pj is the monomial mapping induced by the monomial

(uij
,≺) and Qj is a polynomial mapping of level > l. Using Proposition 1.12 (ii), write

P = P1 . . . PtQ with l(Q) > l. Now, by Proposition 1.12 (iii) and (ii), P1 . . . Pt = PuQ′,

where Pu is the monomial mapping induced by the monomial (ui1 . . . uit
,≺).

2. Triangular monomials

A monomial u carries superfluous information in comparison with the corresponding

monomial mapping P : in every product P (α) =
∏

s∈αd u(s) an entry u(s1, . . . , sd) appears

together with u(sσ(1), . . . , sσ(d)) for all permutations σ of (1, . . . , d). We will now introduce

a more compact “encoding” of monomial mappings. As before, let S be a set and G be a

nilpotent group of class q.

2.1. A triangular monomial of degree d is the pair (v,≺) where v is a mapping F=d(S) −→

G and ≺ is a linear order on F=d(S). A triangular monomial (v,≺) induces a mapping

Pv:F(S) −→ G by the rule

Pv(α) =
∏≺

t∈F=d(α)

v(t).

It is clear that Pv is a monomial mapping. Indeed, let < be a linear order on S. Then

F=d(S) can be embedded into Sd by {s1, . . . , sd} −→ (s1, . . . , sd) under the assumption

s1 < s2 < . . . < sd (this embedding is responsible for the term “triangular”). Now, put

u(s) = v(s) for s ∈ F=d(S) and u(s) = 1G for s ∈ Sd \ F=d(S), and lift the order ≺ from

F(Sd) to a linear order on Sd. Then the obtained monomial (u,≺) induces the mapping

Pv.

On the other hand, any monomial mapping can be represented as the product of

monomial mappings induced by triangular monomials. Indeed, let (u,≺) be a monomial

of degree d and let Pu be the corresponding monomial mapping. For s ∈ Sd, let ts be the

set of entries of s (for example, t(1,2,2,1) = {1, 2}). Let, for each i = d, d − 1, . . . , 0, ≺i be

a linear order on F=i(S). Introduce a new linear order ≺′ on Sd in the following way:

(i) if |ts1 | > |ts2 | then s1 ≺′ s2;

(ii) if |ts1 | = |ts2 | = i and ts1 ≺i ts2 , then s1 ≺′ s2;

(iii) if ts1 = ts2 , then s1 ≺′ s2 iff s1 ≺ s2. Let P ′
u be the monomial mapping induced by
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the monomial (u,≺′). Then for α ∈ F(S),

P ′
u(α) =

∏≺′

s∈αd

u(s) =
∏≺′

s∈αd

|ts|=d

u(s)
∏≺′

s∈αd

|ts|=d−1

u(s) . . .
∏≺′

s∈αd

|ts|=0

u(s)

=
∏≺d

t∈F=d(α)

∏≺′

s:ts=t

u(s)
∏≺d−1

t∈F=d−1(α)

∏≺′

s:ts=t

u(s) . . .
∏≺0

t∈F=0(α)

∏≺′

s:ts=t

u(s).

For t ∈ F=i(S) put vi(t) =
∏≺′

s|ts=t u(s), i = d, d−1, . . . , 0. Then the triangular monomials

(vi,≺i), i = d, d − 1, . . . , 0, induce monomial mappings Pi such that P ′
u = PdPd−1 . . . P0.

By Proposition 1.12, Pu = P ′
uQ where Q is a polynomial mapping with l(Q) > l(u). We

arrive at the following fact:

2.2. Proposition. Every polynomial mapping P , w(P ) = (l, d), is representable in the

form P = PdPd−1 . . . P0Q, where for each i = d, d − 1, . . . , 0, Pi is either the monomial

mapping induced by a triangular monomial of weight (l, i) or is trivial, and Q is a polyno-

mial mapping of level > l.

Proof. By Corollary 1.18 P can be represented in the form P = PuP ′, where Pu is the

monomial mapping induced by a monomial of weight (l, d), and P ′ is a polynomial mapping

of weight < (l, d). Write Pu = PvP ′′, where Pv is the monomial mapping induced by a

triangular monomial of degree d, and w(P ′′) < (l, d). So, P = PvP ′′P ′, with w(P ′′P ′) <

(l, d), and we may apply induction on the weight of P . Moreover, w(Pv) = (l, d), since we

would have w(P ) < (l, d) otherwise.

2.3. The representation of a polynomial mapping P in the form P = PdPd−1 . . . P0Q,

where for each i = d, d − 1, . . . , 0, Pi is the monomial mapping induced by a triangular

monomial vi of degree i and Q is a polynomial mapping of a higher level, is still not

unique. The reason for this is the freedom in choosing an order on F=i(S): if we change

the order on F=i(S) corresponding to some of vi, it will affect the mapping Q. However,

this representation is uniquely defined if we deal with an abelian group, because in this

case Q is trivial:

Proposition. Let S be a set, H be an abelian group and P :F(S) −→ H be a polynomial

mapping of weight (l, d). Then P is uniquely representable in the form P = PdPd−1 . . . P0,

where Pi is the monomial mapping induced by a triangular monomial of degree i, i =

d, d − 1, . . . , 0.

Proof. The uniqueness of this representation follows by induction on i from the formula

P (α) = vi(α)
∏

β⊂α

(

Pi−1(β) . . . P0(β)
)

(2.1)

for α ∈ F=i(S).
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2.4. It follows that, in the case of an abelian group G, any polynomial mapping of degree

d from F(S) to G is defined by its values at subsets of S of cardinality ≤ d:

Corollary. Let S be a set and H be an abelian group. If polynomial mappings P, P ′:F(S)

−→ H coincide on F≤d(S), then P = P ′.

Proof. Write P = Pd . . . P0, P ′ = P ′
dP

′
d−1 . . . P ′

0, where for each i = d, d − 1, . . . , 0, Pi, P
′
i

are the monomial mappings induced by, respectively, triangular monomials vi, v
′
i of degree

i. Now, it follows from (2.1) by induction on i that vi = v′
i for all i = 0, 1, . . . , d.

2.5. Let us return to the case of a general (nonabelian) nilpotent group. We have defined

the weight w(P ) of a polynomial mapping P as the minimal possible weight of the “senior”

monomial in a representation of P as a product of monomials mappings. If w(P ) = (l, d),

we have P (F(S)) ⊆ Gl. But we may not be sure that, in fact, P (F(S)) is not contained

in Gl+1. (Compare with convenient polynomials: for p(x) = x2 + x − x2 + 1 the degree

of p is less than 2, though its senior term has degree 2.) We will now show that the

representation of P described in Proposition 2.2 gives the “real” weight of P . We fix a set

S and a nilpotent group G of class q and consider polynomial mappings F(S) −→ G.

Lemma. If P is a nontrivial polynomial mapping of level l ≤ q, then P (F(S)) ⊆ Gl\Gl+1.

Proof. Write P = Pvd
Pvd−1

. . . Pv0Q, where Pvi
, i = d, d − 1, . . . , 0, is the monomial

mapping induced by a triangular monomial vi of weight (l, i), and Q is a polynomial

mapping of level > l. We may assume that vd has level l. Let ϕ:Gl −→ Gl/Gl+1 be

the mapping of factorization. Assume that P (F(S)) ⊆ Gl+1. Then we have 1Gl/Gl+1
=

Pϕ◦vd
Pϕ◦vd−1

. . . Pϕ◦v0 for the monomial mappings Pϕ◦vi
= ϕ ◦ Pvi

, i = d, d − 1, . . . , 0,

induced by the triangular monomials ϕ ◦ vi, taking values in the abelian group Gl/Gl+1.

Since ϕ ◦ vd is nontrivial, this is impossible by Proposition 2.3.

2.6. Corollary. Let P = Pvd
P ′, where Pvd

is the monomial mapping induced by a tri-

angular monomial vd of weight (l, d), and P ′ is a polynomial mapping of weight < (l, d).

Then w(P ) = (l, d).

Proof. We have w(P ) ≤ (l, d) by definition. Assume that w(P ) < (l, d), then w(Pvd
) =

w(PP ′−1) < (l, d) as well. Write Pvd
= Pvd−1

Pvd−2
. . . Pv0Q, where Pvi

, i = d − 1, d −

2, . . . , 0, is the monomial mapping induced by a triangular monomial vi of weight (l, i),

and Q is a polynomial mapping of level > l. Let ϕ:Gl −→ Gl/Gl+1 be the mapping

of factorization. Then we have Pϕ◦vd
= Pϕ◦vd−1

Pϕ◦vd−2
. . . Pϕ◦v0 , which is impossible by

Proposition 2.3 since ϕ ◦ vd is nontrivial.
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3. The main part of a polynomial mapping, systems and PET-induction

In this section, we fix a set S and a nilpotent group G of class q.

3.1. Let P :F(S) −→ G be a polynomial mapping of weight (l, d). Represent P in the

form P = PvQ, where Pv is the monomial mapping induced by a triangular monomial v,

w(v) = (l, d), and Q is a polynomial mapping of weight < (l, d). Let ϕ:Gl −→ Gl/Gl+1 be

the mapping of factorization. We call the mapping ϕ ◦ v:Sd −→ Gl/Gl+1 the main part of

P and denote it by M(P ). We will say that polynomial mappings P and P ′ are equivalent

and write P ∼ P ′ if w(P ) = w(P ′) and their main parts coincide: M(P ) = M(P ′). We

define the weight of an equivalence class of polynomial mappings as the weight of any of

its members.

3.2. Proposition. Let P, P ′:F(S) −→ G be polynomial mappings. Then P ∼ P ′ if and

only if w(P−1P ′) < w(P ).

(For comparison: if p and ′ are conventional polynomials, then p and p′ have equal senior

terms if and only if deg(p − p′) < deg(p).)

Proof. Let P ∼ P ′. Write P = PvQ, P ′ = Pv′Q′, where Pv and Pv′ are the mono-

mial mappings induced by triangular monomials v and v′ of weight (l, d) and Q,Q′ are

polynomial mappings of weights < (l, d). Then by Proposition 1.12, P−1P ′ = Pv−1v′Q′′,

where Pv−1v′ is the monomial mapping induced by the monomial v−1v′ and Q′′ has weight

< (l, d). But since ϕ ◦ (v−1v′) = (ϕ ◦ v)−1(ϕ ◦ v′) = 1Gl/Gl+1
, the range of v−1v′ lies in

Gl+1 and so, v−1v′ has level ≥ l + 1.

Now, let w(P−1P ′) < w(P ) = (l, d). By Lemma 1.10(iii), w(P ′) = (l, d) as well.

As before, represent P = PvQ and P ′ = Pv′Q′, w(v) = w(v′) = (l, d) and w(Q) <

(l, d), w(Q′) < (l, d). Then P−1P ′ = Pv−1v′Q′′, where w(Q′′) < (l, d) and v−1v′ is a

monomial mapping of degree d. Since we are given that w(P−1P ′) < (l, d), it follows from

Corollary 2.6 that l(v−1v′) > l. Hence, v−1v′ is trivial modulo Gl+1.

3.3. Proposition. (i) If P,Q:F(S) −→ G are polynomial mappings with w(Q) < w(P ),

then PQ ∼ P .

(ii) If P1, P2, Q:F(S) −→ G are polynomial mappings such that P1 ∼ P2 and P1 6∼ Q, then

Q−1P1 ∼ Q−1P2.

(iii) For any polynomial mappings P,Q:F(S) −→ G one has Q−1PQ ∼ P .

(For comparison: (i) if p, q are polynomials with deg(q) < deg(p), then the senior terms of

p + q and p coincide; (ii) if the senior terms of polynomials p1 and p2 are equal but differ

from the senior term of a polynomial q, then the senior terms of the polynomials p1 + q
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and p2 + q are equal.)

Proof. (i) is obvious: multiplying by Q does not affect the main part of P . Under the

assumptions of (ii), if w(Q) 6= w(P1), then (ii) follows from (i). If w(Q) = w(P1) = w(P2),

we have M(Q−1P1) = M(Q)−1M(P1) = M(Q)−1M(P2) = M(Q−1P2), since this mapping

is nontrivial.

To prove (iii), write Q−1PQ = PQ−1QQ′ = PQ′, where w(Q′) < w(P ) by Corol-

lary 1.16, and use (i).

3.4. Let γ ∈ F(S), let P be a mapping F(S) −→ G. Define UγP :F(S \ γ) −→ G by

UγP (α) = P (α ∪ γ).

Proposition. Let P be a polynomial mapping and γ ∈ F(S). Then UγP is a polynomial

mapping and UγP ∼ P |F(S\γ)
.

(For comparison: if p is a conventional polynomial, then p(x) and p(x + c) have equal

senior terms.)

Proof. We may assume that P is the monomial mapping induced by a triangular monomial

(v,≺) of weight (l, d). Moreover, we may assume that the order ≺ on F=d(S) is such that

(i) |s1 ∩ γ| < |s2 ∩ γ| implies s1 ≺ s2, and (ii) elements of F=d(S) whose intersections

with γ are equal “arise in succession”, that is, if s1 ∩ γ = s2 ∩ γ and s1 ≺ s3 ≺ s2, then

s3 ∩ γ = s1 ∩ γ. Then for any α ∈ F(S \ γ),

UγP (α) = P (α ∪ γ)

=
∏≺

t∈F=d(α)

v(t)
(

∏≺

r∈F=1(γ)

∏≺

t∈F=d−1(α)

v(r ∪ t)
∏≺

r∈F=2(γ)

∏≺

t∈F=d−2(α)

v(r ∪ t) . . .
∏≺

r∈F=d(γ)

v(r)
)

.

We have
∏≺

t∈F=d(α) v(α) = P (α), and the expression in the large parentheses is a polyno-

mial mapping of weight < (l, d).

3.5. Corollary. w(P−1UγP ) < w(P ).

3.6. Remark. Given γ ∈ F(S), define on the set of polynomial mappings P :F(S) −→ G

an operator of “differentiation” Dγ by DγP = P−1UγP . It follows from Corollary 3.5 that

every polynomial mapping P cancels out after applying to P several differential operators of

the form Dγ , γ ∈ F(S): there exist k ∈ N such that for any pairwise disjoint γ1, γ2, . . . , γk ∈

F(S), Dγk
Dγk−1

. . . Dγ1P ≡ 1G. In fact, polynomial mappings are characterized by this

property.
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3.7. Given a set S and a nilpotent group G, we call a nonempty finite set of polynomial

mappings F(S) −→ G a system.

Denote by W the set of weights of polynomials F(S) −→ G, that is, the set of pairs

(l, d) with l, d ∈ Z, 1 ≤ l ≤ q, d ≥ 0. Let A be a system; the weight vector ω(A) of

A is a function W −→ {0, 1, 2, . . .} defined by ω(A)(w) = the number of equivalence

classes of polynomial mappings F(S) −→ G of weight w having its representatives in A.

Since A is finite, ω(A) has a finite support. We order the weight vector lexicographically:

ω(A) < ω(A′) if for some w ∈ W one has ω(A)(w) < ω(A′)(w) and ω(A)(w′) = ω(A′)(w′)

for all w′ > w. We say that a system A precedes a system A′ if ω(A) < ω(A′).

3.8. We will prove our main result, Theorem 4.1 below, by utilizing the so-called PET-

induction, the induction on the well ordered set of weight vectors. Our application of the

PET-induction is based on the following lemma:

Lemma. Let S be a set, let G be a nilpotent group and let A be a system of polynomial

mappings F(S) −→ G.

(i) If γ ∈ F(S) and a system A′ of polynomial mappings F(S \ γ) −→ G is such that each

element of A′ is equivalent to P |F(S\γ)
for some P ∈ A, then ω(A′) ≤ ω(A).

(ii) If a system A′ consists of polynomial mappings of the form Q−1PQ where P ∈ A and

Q is a polynomial mapping F(S) −→ G, then ω(A′) ≤ ω(A).

(iii) If A′ is formed by polynomial mappings of the form PQ and QP where P ∈ A and Q

is a polynomial mapping F(S) −→ G with w(Q) < w(P ), then ω(A′) ≤ ω(A).

d) Let Q ∈ A be a nontrivial polynomial mapping with w(Q) ≤ w(P ) for all P ∈ A. If A′

is a system of polynomial mappings of the form Q−1P and PQ−1, then ω(A′) < ω(A).

Proof. (i) is clear from the definition. (ii) and (iii) easily follow from Proposition 3.3 (iii)

and (i) respectively. In d), the equivalence classes in A change when we pass to A′, but

the equivalence of elements is preserved and their weights remain the same by Proposi-

tion 3.3 (ii) and Proposition 3.2. The only exception is the equivalence class containing Q:

it splits into equivalence classes having smaller weights.

4. The multiple recurrence theorem

4.1. Our main result is the following theorem:

Theorem. Let G be a nilpotent group of self-homeomorphisms of a compact metric space

(X, ρ). For any weight w ∈ W , any k ∈ N and any ε > 0 there is N ∈ N such that if S is a

set of cardinality ≥ N and A is a system of k polynomial mappings F(S) −→ G satisfying

w(P ) ≤ w and P (∅) = IdX , P ∈ A, then there exist a point x ∈ X and a nonempty
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α ∈ F(S) such that ρ
(

P (α)x, x
)

< ε for all P ∈ A.

Proof. We may assume that X is minimal with respect to the action of G, that is, that

X does not contain closed G-invariant proper subsets. Note that, under the assumption

of minimality of X, we can strengthen the theorem: we can claim that the set of points

x ∈ X satisfying the requirement of the theorem is dense in X. Indeed, let ε > 0 be given

and let U ⊆ X be an open set. Since X is minimal under the action of G, the G-invariant

closed subset X \
⋃

g∈G g−1(U) is empty. Thus one can choose g1, . . . , gn ∈ G such that
⋃n

i=1 g−1
i (U) = X. Let δ > 0 be such that ρ(x1, x2) < δ implies ρ(gix1, gix2) < ε for all

i = 1, . . . , n. Now, given a system A, let x ∈ X and n ∈ F(S) satisfy the conclusion of the

theorem for the system
⋃n

i=1 giAg−1
i (which has the same weight as A) and δ, that is, for

all P ∈ A and all 1 ≤ i ≤ n, let ρ(g−1
i P (n)gix, x) < δ. Then ρ(P (n)gix, gix) < ε for all

P ∈ A and i = 1, . . . , n, and one of the points g1x, . . . , gnx lies in U .

We will prove the theorem by PET-induction, the induction on the weight vector of

the system. The statement of the theorem is trivial for the system A = {I}, where I is

the trivial mapping; this gives the basis of the PET-induction. Assume that we are given

w, k and ε, that A is a k-element system of polynomial mappings with w(P ) ≤ w and

P (∅) = I for all P ∈ A, and that the theorem holds for all systems preceding A. We may

also assume that A does not contain constant mappings.

Let Q ∈ A be an element of the minimal weight in A. By Lemma 3.8, the system

A1 =
{

PQ−1
∣

∣ P ∈ A
}

precedes A. The PET-induction hypothesis implies that there

is N1 ∈ N such that whenever |S| ≥ N1, there exist y0 ∈ X and a nonempty α1 ∈ F(S)

satisfying ρ
(

P (α1)Q
−1(α1)y0, y0

)

< ε/2 for all P ∈ A. Assuming |S| > N1, choose a

subset S1 ⊆ S with |S1| = N1, and find such y0 ∈ X and α1 ∈ F(S1). Put x0 = y0 and

x1 = Q(α1)
−1y0, then ρ

(

P (α1)x1, x0

)

< ε/2 for all P ∈ A.

Now, let δ1, 0 < δ1 < ε/4, be such that ρ(x, x1) < δ1 implies ρ
(

P (α1)x, x0

)

< ε/2 for

all P ∈ A. By Lemma 3.8 and Proposition 3.4, the system

A2 =
{

PQ−1, P (α1)
−1(Uα1P )Q−1

∣

∣ P ∈ A
}

precedes A. Thus, by induction hypothesis there is N2 ∈ N such that if |S \ S1| ≥ N2,

then there are y1 ∈ X and a nonempty α2 ∈ F(S \ S1) such that ρ
(

R(α2)y1, y1) < ε/4.

Furthermore, since we assume X to be minimal under the action of G, y1 can be found in the

δ1-neighborhood U of x1. Choose S2 ⊆ S \S1 with |S2| = N2, find y1 ∈ U and α2 ∈ F(S2),

and put x2 = Q(α2)
−1y1. Then ρ

(

P (α2)x2, y1

)

< ε/4 and so, ρ
(

P (α2)x2, x1

)

< ε/2 for

all P ∈ A. Also, ρ
(

P (α1)
−1P (α1 ∪ α2)x2, x1

)

< δ1, and hence, by the choice of δ1,

ρ
(

P (α1 ∪ α2)x2, x0

)

< ε/2 for all P ∈ A.

Continuing this process, we find N1, N2, . . . ∈ N, disjoint S1, S2, . . . ⊆ S with |Sj | =

Nj , x0, x1, x2, . . . ∈ X and a nonempty α1 ∈ F(S1), α2 ∈ F(S2), . . . such that for any
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0 ≤ l < m,

ρ
(

P (αl+1 ∪ . . . ∪ αm)xm, xl

)

< ε/2

for all P ∈ A. Let K be the cardinality of a finite ε
2 -net in X. Then there exist 0 ≤ l <

m ≤ K for which ρ(xl, xm) < ε/2. For x = xm and α = αl+1 ∪ . . . ∪ αm we will have

ρ(P (α)x, x) < ε, and for all this to be done it is enough to have |S| ≥ N1 + . . . + NK .

4.2. In order to derive a “coloring” version of Theorem 4.1, fix r ∈ N and consider the

set Ω of all r-colorings of a nilpotent group G, that is, the set of all mappings from G

to a fixed r-element set. Without loss of generality we may assume that G is countable,

G = {g1, g2, . . .}. A metric ρ on Ω is introduced by ρ(χ1, χ2) = 1/k, where k is the minimal

integer for which χ1(gk) 6= χ2(gk); this turns Ω into a compact metric space. G acts on Ω

by (gχ)(h) = χ(hg).

Given an r-coloring χ of G, denote by X the closure of its orbit Gχ in Ω. Let S be a set

and let P1, . . . , Pk:F(S) −→ G be polynomial mappings satisfying Pi(∅) = 1G, i = 1, . . . , k.

Applying Theorem 4.1 to X (under the assumption that S is large enough) find a coloring

χ′ ∈ X and a nonempty set α ∈ F(S) such that the colorings P1(α)χ′, . . . , Pk(α)χ′ are all

close to χ′:

χ′(1G) = Pi(α)χ′(1G) = χ′
(

Pi(α)
)

, i = 1, . . . , k.

Then find h ∈ G for which hχ is close enough to χ′: hχ
(

Pi(α)
)

= χ′
(

Pi(α)
)

, i = 1, . . . , k.

This gives that χ
(

Pi(α)h
)

, i = 1, . . . , k, do all coincide.

Also notice that if G is infinite, then hχ is close to χ′ for infinitely many h ∈ G. This

implies that, in the case of infinite G, one can find a nonempty α ∈ F(S) and infinitely

many h ∈ G for which Pi(α)h, i = 1, . . . , k, have the same color.

4.3. We have obtained the following theorem:

Theorem. Let G be an infinite nilpotent group. For any w ∈ W and any k, r ∈ N there is

N ∈ N such that if S is a set of cardinality ≥ N and P1, . . . , Pk are polynomial mappings

F(S) −→ G which satisfy w(Pi) ≤ w and Pi(∅) = 1G, i = 1, . . . , k, then for any r-coloring

of G there exist a nonempty α ∈ F(S) and infinitely many h ∈ G such that the elements

P1(α)h, . . . , Pk(α)h have the same color.

4.4. Of course, in the formulation of Theorem 4.3 the element h can be placed to the left

of Pi:

Theorem. Let G be an infinite nilpotent group. For any w ∈ W and any k, r ∈ N there is

N ∈ N such that if S is a set of cardinality ≥ N and P1, . . . , Pk are polynomial mappings

F(S) −→ G which satisfy w(Pi) ≤ w and Pi(∅) = 1G, i = 1, . . . , k, then for any r-coloring
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of G there exist a nonempty α ∈ F(S) and infinitely many h ∈ G such that the elements

hP1(α), . . . , hPk(α) have the same color.

Proof. Let χ be a finite coloring of G. Put P ′
i = P−1

i , i = 1, . . . , k, and consider

the coloring χ′ of G defined by χ′(g) = χ(g−1). Find h′ ∈ G and n ∈ F(S) such

that P ′
1(n)h′, . . . , P ′

k(n)h′ have the same color with respect to χ′. Then for h = h′−1,

hP1(n), . . . , hPk(n) have the same color with respect to χ.

4.5. Proof of Theorem 0.22. Let F be the free group generated by {z1, . . . , zm}, let E

be a finite subset of F and let χ be an r-coloring of G. Let N satisfy the conclusion of

Theorem 4.3 for w = (1, 1), k = |E| and the given r. Put S = {1, . . . , N}. Given g
(i)
j ∈ G,

1 ≤ i ≤ m, 1 ≤ j ≤ N , for each i = 1, . . . ,m define a monomial ui:S −→ G by ui(j) = g
(i)
j ,

and let Pi be the monomial mapping induced by ui. Then every element z ∈ F defines

a polynomial mapping Pz:S −→ G in the following way: for z =
∏l

t=1 zǫt

it
, ǫk = ±1, let

Pz =
∏l

t=1 P ǫt

it
. Now Theorem 4.4, applied to the system A = {Pz, z ∈ E}, gives the

desired result.

5. Concluding remarks

5.1. The nil-IP-multiple recurrence results proved in this paper naturally extend all known

to us results pertaining to the multiple recurrence for actions of abelian groups by homeo-

morphisms of compact spaces to the nilpotent setup. Taking into account that analogous

statements are in general no longer true if the homeomorphisms involved generate a solv-

able group (see, for example, [F], p. 40), it is perhaps of interest to inquire about the

general framework for multiple recurrence and to discuss some new potential directions of

research.

5.2. The most natural question which has to be raised is the following: what about the

validity of the corresponding measurable nil-IP-multiple recurrence statements? This ques-

tion leads us to the following conjecture, which is a measurable counterpart of our Theo-

rem 4.1:

5.3. Conjecture. Let G be a nilpotent group of measure preserving transformations of a

probability measure space (X,B, µ), let S be an infinite set and let P1, . . . , Pk:F(S) −→ G

be polynomial mappings. Then for any A ∈ B with µ(A) > 0 there exists a nonempty

α ∈ F(S) such that µ
(

A ∩ P1(α)A ∩ . . . ∩ Pk(α)A
)

> 0.

Conjecture 5.3, if true, will give a simultaneous extension of the results recently ob-

tained in [L2] and [BM1]. The results in [L2] and [BM1] deal with finitely generated

nilpotent groups and abelian IP-systems respectively; the proof of the above conjecture in
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full generality will almost certainly demand introduction of new ideas and methods.

5.4. Like with some other proofs in the theory of measurable multiple recurrence (see,

for example, [FK1], [FK2], [BL1], [L2], [BM1]) an important auxiliary role in the proof of

Conjecture 5.3 will very likely be played by partition results extending our Theorem 4.1.

While Theorem 4.1 can be viewed as a nilpotent version of our recent “PHJ”, the poly-

nomial Hales-Jewett theorem ([BL2]), and moreover, gives nilpotent extensions of those

corollaries of PHJ which deal with abelian groups, it still lacks certain subtlety which the

full-fledged Nil-PHJ should have. To explain this point better, let us formulate first the

“abelian” PHJ:

5.5. Theorem. ([BL2]) Let G be a commutative semigroup. For any k, d, r ∈ N there

exists N such that if S is a set of cardinality ≥ N and P1, . . . , Pk are monomial mappings

induced, respectively, by monomials u1, . . . , uk:Sd −→ G, then for any r-coloring of G

there exist β1, . . . , βk ∈ F(Sd) and a nonempty α ∈ F(S) with βi ∩ αd = ∅, i = 1, . . . , k,

such that for h = u1(β1) . . . uk(βk) the elements hP1(α), . . . , hPk(α) have the same color.

In comparison with our main combinatorial result, Theorem 4.4, Theorem 5.5 has two

additional features. First, in its formulation one deals with a semigroup, whereas G is

assumed to be a group in Theorem 4.4. Second, in the PHJ we have control over “the shift

parameter” h: h is chosen from an a priori given finite set. While the requirement that G

is a group rather than a semigroup does not seem to be a crucial one, the second feature,

namely, the a priori condition on the range of the “shifting” element h, plays a key role in

the known proofs of results similar to the one conjectured in 5.3. So, the general Nil-PHJ

theorem is still ahead.

5.6. We want to conclude this section by discussing a nilpotent version of another important

partition result, Hindman’s finite sums theorem.

Theorem. ([Hi]) Let r ∈ N. If N =
⋃r

m=1 Cm, then there exist m ∈ {1, . . . , r} and an

infinite set {nj}
∞
j=1 ⊆ Cm such that FS

(

{nj}
∞
j=1

)

\ {0} ⊆ Cm.

Hindman’s theorem, similarly to its rather special corollary, Hilbert’s theorem (Corol-

lary 0.28 above) has a version which makes sense in any semigroup. Namely, given a finite

coloring of an infinite semigroup G, one can always find an infinite sequence {hi}
∞
i=1 ⊆ G

such that all the finite products of the form hi1 . . . hik
, i1 < . . . < ik, k ∈ N, will be in

the same color. However, a much more interesting and subtle question is whether one

can obtain a noncommutative extension of Hindman’s theorem, which would guarantee

the existence of monochromatic products of elements of a sequence {hi}
∞
i=1 taken in dif-

ferent orders. The only known nontrivial general result of this nature says that if G is an
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amenable group, then for any finite coloring of G one can always find a monochromatic

quadruple {x, y, xy, yx} where, for a large class of noncommutative amenable groups, one

can guarantee xy 6= yx ([BM2]).

5.7. Encouraged by the nilpotent Hilbert theorem (Corollary 0.28 above), we formulate

the following conjecture:

Conjecture. Let G be an infinite nilpotent group of nilpotency class q. Then for any

finite coloring of G there exist an infinite sequence {hi}
∞
i=1 and K ∈ N such that every

K distinct elements of {hi}
∞
i=1 generate a subgroup of G of nilpotency class q, and all the

products of the form hi1 . . . hik
, for k ∈ N and distinct i1, . . . , ik ∈ N, are in the same color.
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