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Abstract. In this partly expository paper we study van der Corput
sets in Zd, with a focus on connections with harmonic analysis and re-
currence properties of measure preserving dynamical systems. We prove
multidimensional versions of some classical results obtained for d = 1
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various notions of recurrence, provide numerous examples and formulate
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Introduction

The main topic of our paper is the intriguing connection between positive-

definite sequences, recurrence properties of measure preserving dynamical

systems, and the theory of uniform distribution mod 1.

Let (X,A, µ, T ) be an invertible probability measure preserving dynami-

cal system1. Given a set A ∈ A with µ(A) > 0, let RA = {n ∈ Z, n 6= 0 :

µ (A ∩ T nA) > 0}. While the classical Poincaré recurrence theorem, which

states that the set RA is non-empty (and hence infinite), is nowadays an

easy exercise, quite a few of the more subtle properties of sets of returns

RA and of related sets RA,ε = {n ∈ Z, n 6= 0 : µ (A ∩ T nA) > ε} are still

not fully understood.

Following Furstenberg ([Fu2]), let us call a set of integers D a set of

recurrence, if for any m.p.s. (X,A, µ, T ) and any A ∈ A with µ(A) > 0

one has D ∩ RA 6= ∅. For example, for any k ∈ N, the set kN is a set of

recurrence (just consider the system (X,A, µ, T k)) and any set of recurrence

has a non-empty intersection with the set kN (just consider a permutation

of a finite set). A more general (and still rather trivial) example is provided

by the set of differences {ni − nj : i > j}, where (ni)i≥1 is an increasing

sequence of integers. (To see that this is a set of recurrence, just observe

that if µ(A) > 0, then the sets T niA cannot be pairwise disjoint, µ(X) being

finite.) The following generalization of the Poincaré recurrence theorem

obtained by Furstenberg (see [Fu1], [Fu2]) gives a much less trivial example

of a set of recurrence.

Theorem 0.1. For any polynomial p(n) ∈ Z[n], satisfying p(0) = 0, for

any m.p.s. (X,A, µ, T ) and for any A ∈ A with µ(A) > 0, there exists

n ∈ N such that p(n) 6= 0 and µ
(
A ∩ T p(n)A

)
> 0.

Following Ruzsa ([Ruz]), let us call a set D ⊂ N intersective, if for any

S ⊂ N of positive upper density2 there exist x, y ∈ S such that x− y ∈ D.

1Unless explicitly stated otherwise, we will assume in this paper that the measure
preserving transformations we are dealing with are invertible and that invariant mea-
sures are normalized. We will write m.p.s. for invertible probability measure preserving
dynamical system.

2The subset S of N has positive upper density if

d(S) := lim sup
N→+∞

1
N
|S ∩ {1, 2, . . . , N}| > 0.
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It is not hard to show that a set D is intersective if and only if it is a set of

combinatorial recurrence, that is, such that for any S ⊂ N with d(S) > 0,

there exists n ∈ D such that d (S ∩ (S − n)) > 0. This hints that the

notions “set of recurrence” and “intersective set” are related and, indeed,

it turns out that these notions coincide. (The fact that intersectivity im-

plies measure-theoretic recurrence has been remarked by several authors,

see for example [BM] and [Berg.1]. The fact that measure-theoretic re-

currence implies combinatorial recurrence is a consequence of Furstenberg’s

correspondence principle, see for example [Berg.3].)

Thus, for example, Theorem 0.1 implies Sàrközy’s theorem ([S]), which

states that for any polynomial p(n) ∈ Z[n] satisfying p(0) = 0 and any set

S ⊂ N with d(S) > 0 there exist x, y ∈ S and n ∈ N such that x−y = p(n).

We remark that it was shown in [Kam-MF] that a necessary and sufficient

condition for a polynomial p(n) ∈ Z[n] to satisfy the Furstenberg-Sàrközy

theorem is that for any positive integer k there exists an integer n such that

p(n) is divisible by k. Actually, Kamae and Mendès France in [Kam-MF]

showed that many sets of recurrence, including the mentioned above sets

have a stronger property which they called the van der Corput property.

Definition. A set D of positive integers is a van der Corput set (or vdC

set) if it has the following property : given a real sequence (xn)n∈N, if all

the sequences (xn+d−xn)n∈N, d ∈ D, are uniformly distributed mod 1, then

the sequence (xn)n∈N is itself uniformly distributed mod 1.

This concept and terminology3 come from the van der Corput inequality,

which is presented at the beginning of the next section, and which motivates

the following van der Corput trick : if for a given real sequence (xn)n∈N and

any h ∈ N the sequence (xn+h − xn)n∈N is uniformly distributed mod 1,

then the sequence (xn)n∈N is uniformly distributed mod 1. Van der Corput’s

inequality and its application to uniform distribution appeared for the first

time in [vdC], under the name Dritte Haupteigenschaft (third principal

property).

3Ruzsa uses the name correlative set instead of van der Corput set.
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Kamae and Mendès France showed in [Kam-MF] that every vdC set is a

set of recurrence. The other implication is false : Bourgain has constructed

in [Bou] an example of a set of recurrence which is not a vdC set.

The notions introduced above are connected via the notion of positive-

definiteness. Indeed, it is easy to check that the sequence (µ(A ∩ T nA)) is

positive-definite4, which establishes the connection between sets of recur-

rence and properties of positive-definite sequences. As for the vdC prop-

erty, let us first note that in light of Weyl’s criterion (see [Ku-N]), the

sequence (xn+d − xn)n∈N is uniformly distributed mod 1 if and only if, for

any k ∈ Z, k 6= 0, one has

(1) lim
N→+∞

1

N

N∑
n=1

e2πik(xn+d−xn) = lim
N→+∞

1

N

N∑
n=1

e2πikxn+de2πikxn = 0.

Now, given a bounded sequence α : N → C, it is not hard to see that for

some increasing sequence of integers (Nj)j∈N the limit

(2) lim
j→+∞

1

Nj

Nj∑
n=1

α(n + d)α(n) = γ(d)

exists for all d ∈ Z and that, moreover, the sequence γ is positive-definite

(see [Bert]). Juxtaposing (1) and (2) we see that the vdC property is also

connected to the properties of positive-definite sequences.

By the Bochner-Herglotz theorem (see for example [Rud], Subsection

1.4.3), any positive-definite sequence ϕ is given by the Fourier coefficients

of a positive measure νϕ on the circle :

ϕ(n) =

∫
T
e2πinx dνϕ(x) ,

and the properties of this measure play a crucial role in verifying that certain

sets are vdC and in establishing the connections between (various versions

of) vdC sets and sets of recurrence (see in particular Section 3 below ).

The following fact is also useful for a better understanding of the link

between vdC sets and sets of recurrence. Let D ⊂ Z. We prove (see Corol-

lary 1.31) that D is a vdC set if and only if the following is true : given

a bounded sequence of complex numbers (un)n∈N, if for all d ∈ D, the se-

quence (un+dun) converges to zero in the Cesàro sense, then the sequence

4This fact was first noticed and utilized by Khintchine in [Kh].
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(un) also converges to zero in the Cesàro sense. We also prove (see Theo-

rem 3.1) that D is a set of recurrence if and only if the analagous property

holds with “(un) is a bounded sequence of complex numbers” replaced by

“(un) is a bounded sequence of positive real numbers”.

Driven by the desire to obtain new applications to combinatorics and

to better understand the recurrence properties of measure-preserving Zd-

actions, we focus in this paper on Zd versions of vdC sets. As we will

see, many known properties extend from Z to Zd with relative ease. Still,

some properties turn out to be more recalcitrant and their extensions to Zd

demand more work.

The definition of vdC set in Zd is given in Subsection 1.2. Here are some

examples of facts/theorems which will be obtained in subsequent sections.

• The class of vdC sets has the Ramsey property. Namely, If D is a

vdC set in Zd and if D = D1 ∪ D2 then at least one of the Di is a

vdC set.

• Let p1, p2, . . . , pd be a finite family of polynomials with integer coeffi-

cients, to which we associate the subset S = {(p1(n), p2(n), . . ., pd(n)) :

n ∈ N} of Zd. The following properties are equivalent :

- The set S is a set of recurrence for Zd-actions5.

- The set S is a vdC set in Zd.

- The set S is a set of multiple recurrence for Z-actions6.

- For any q ∈ N, there exists n ∈ N such that p1(n), p2(n), . . . , pd(n)

are all divisible by q.

Moreover these equivalent properties are also necessary and suffi-

cient for the set S to be an enhanced vdC set (see Definition 3 in

Subsection 2.2) and a set of strong recurrence (see Definition 5 in

Subsection 3.1).

5A subset S of Zd is called a set of recurrence for Zd-actions if, given any measure
preserving Zd-action (Tn)n∈Zd on a probability space (X,A, µ) and any A ∈ A with
µ(A) > 0, there exists n ∈ S, n 6= 0 such that µ (A ∩ TnA) > 0.

6A subset S of Zd is called a set of multiple recurrence for Z-actions if, given any
m.p.s. (X,A, µ, T ) and any A ∈ A with µ(A) > 0, there exists (n1, n2, . . . , nd) ∈
S \ {(0, 0, . . . , 0)} such that µ (A ∩ Tn1A ∩ Tn2A ∩ . . . ∩ TndA) > 0.
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• Let P be the set of prime numbers. For any finite family f1, f2, . . . fd

of polynomials with integer coefficients and with zero constant terms

the set {f1(p−1), f2(p−1), . . . , fd(p−1) : p ∈ P} is a vdC set in Zd.

(It can also be proved that it is an enhanced vdC set; see below.)

• The Cartesian product of two vdC sets is a vdC set in the corre-

sponding product of parameters space.

• A subset D of Z is a vdC set if and only if any positive measure σ

on the torus T such that
∑

d∈D |σ̂(d)| < +∞ is continuous.

• We establish a generalized van der Corput inequality for multipa-

rameter sequences in a Hilbert space (Proposition 1.30).

In order to make the paper more readable we will restrict discussion

mainly to dimension d = 2. The reader should have no problem verifying

that our proofs work for general d ∈ N.

In Section 2, we introduce the notion of “enhanced vdC set”. We show

that the enhanced vdC property is equivalent to the FC+ property (which

appears in [Kam-MF], with a reference to Y. Katznelson). Moreover, the

enhanced vdC property is related to the notion of strong recurrence in the

same way as vdC sets are related to sets of recurrence. In Subsection 2.4

we collect some natural open questions.

In Section 3 we discuss links between recurrence and vdC properties. We

also introduce and discuss the notions of density vdC set and nice vdC set.

In Section 4 we briefly discuss some modifications of the notion of vdC

set which are connected to various notions of uniform distribution.

It is worth mentioning that in practically every paper in the area of

Ergodic Ramsey Theory, some version of the van der Corput trick for se-

quences in Hilbert spaces is used. See for example [Fu-Kat-O], [Berg-Lei.1],

[Berg-Lei-McC], [Berg-McC], [Fr-Les-Wi] dealing with multiple recurrence,

and [Berg.2], [Berg-Lei.2], [Ho-Kr], [Z] and [Lei] dealing with mean conver-

gence of multiple ergodic averages. The van der Corput trick is also useful

in establishing results pertaining to pointwise convergence : see for example

[Les] and [Fr].

The influence on our work of the above-mentioned paper of Kamae and

Mendès France, and of the fundamental ideas developed by Ruzsa in [Ruz],

cannot be exaggerated. We are especially grateful to Randall McCutcheon
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for numerous useful suggestions, and would like to thank Inger H̊aland-

Knutson, Anthony Quas and Máté Wierdl for pertinent communications.

Throughout the paper, we will use the classical notation e(t) := e2πit for

t ∈ R or t ∈ T = R/Z.

1. Van der Corput sets in Zd

In this section we develop a theory of van der Corput sets in the mul-

tidimensional lattice Zd, which is parallel to the known theory in Z (see

[Kam-MF], [Ruz], [Mo]). As we have already mentioned in the introduc-

tion, we limit our presentation to the case d = 2. Definitions, results and

arguments in this section follow the one dimensional case, except at one

point : in order to obtain a generalized van der Corput inequality, Ruzsa

uses in [Ruz] a theorem of Fejer stating that any positive trigonometric

polynomial in one variable is the square modulus of another trigonomet-

ric polynomial ; this fact is no longer true for trigonometric polynomial of

several variables, hence we are forced to use a different argument to derive

the generalized van der Corput inequality in the multidimensional case (cf.

Subsection 1.4).

1.1. Van der Corput’s inequality and van der Corput’s principle.

1.1.1. Van der Corput’s inequality in Z2.

For a, b, c, d ∈ Z, we write (a, b) ≤ (c, d) if a ≤ c and b ≤ d. (Similarly for

<, ≥ and >.) We write 0 for (0, 0) ∈ Z2.

Theorem 1.1. Let N = (N1, N2) ∈ N2, and (un)0<n≤N be a finite family of

complex numbers indexed by ([1, N1]× [1, N2]) ∩ Z2.

For h = (h1, h2) ∈ Z2, we define

γ(N, h) :=
∑

0<n≤N
0<n+h≤N

un+h · un .

For any H = (H1, H2) ∈ N2, we have∣∣∣ ∑
0<n≤N

un

∣∣∣2 ≤ (N1 + H1)(N2 + H2)

H2
1H

2
2

∑
−H<h<H

(H1 − |h1|)(H2 − |h2|)γ(N, h) .
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The preceding inequality is usually used in the following form

(3)
∣∣∣ ∑

0<n≤N

un

∣∣∣2 ≤ (N1 + H1)(N2 + H2)

H1H2

∑
−H<h<H

|γ(N, h)| .

(The proof of Theorem 1.1 is an elementary application of Cauchy’s in-

equality. It is a particular case of the calculations presented in Subsection

1.1.3.)

1.1.2. Van der Corput’s principle in Z2. Let (un)n∈N2 be a family of

complex numbers. Starting from inequality (3), dividing by (N1N2)
2, then

letting N1 and N2 go to infinity, we obtain that, for any H ∈ N2,

lim sup
N1,N2→+∞

∣∣∣ 1

N1N2

∑
0<n≤N

un

∣∣∣2 ≤ 1

H1H2

∑
−H<h<H

(
lim sup

N1,N2→+∞

1

N1N2

|γ(N, h)|
)

.

As a direct consequence we obtain the following proposition.

Proposition 1.2. If (un)n∈N2 is a family of complex numbers such that

inf
H>0

1

H1H2

∑
−H<h<H

(
lim sup

N1,N2→+∞

1

N1N2

|γ(N, h)|
)

= 0

then

lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

un = 0 .

We use the following notion of uniform distribution for a family indexed

by N2.

Definition 1. A family (xn)n∈N2 of real numbers is uniformly distributed

mod 1 if for any continuous function f on R, invariant under translations

by elements of Z, we have

(4) lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

f(xn) =

∫
[0,1]

f(t) dt .

Other useful notions of uniform distribution can be introduced : for ex-

ample, one can replace in (4) the averages
(

1
N1N2

∑
0<n≤N . . .

)
N1,N2→+∞

by(
1

(N1−M1)(N2−M2)

∑
M≤n<N . . .

)
N1−M1,N2−M2→+∞

; this leads to the notion of

well distributed sequences. Or, one can consider averages defined by a given

Følner sequence. We postpone remarks on these variations to Section 4.
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Note that since property (4) has an asymptotic nature, it makes sense

even if the entries in the sequence (xn) are defined only for indices n =

(n1, n2) for n1, n2 large enough. We tacitly utilize this observation in the

formulation of Corollary 1.3 below and throughout the paper.

Let us recall the classical Weyl’s criterion for uniform distribution (see

[We], [Ku-N]). A family (xn)n∈N2 of real numbers is u.d. mod 1 if and only

if, for any k ∈ Z \ {0},

lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

e(kxn) = 0 .

As in dimension 1, van der Corput’s principle in Zd has a useful corollary

pertaining to uniform distribution.

Corollary 1.3. Let (xn)n∈N2 be a family of real numbers. If for any h ∈
Z2 \ {0} the family (xn+h − xn)n∈N2 is u.d. mod 1, then the family (xn)n∈N2

is u.d. mod 1.

When we apply Proposition 1.2 in order to prove Corollary 1.3, we see

that it is sufficient to let only one of H1, H2 go to infinity. The following

definition will allow us to give a more general version of this corollary.

Let D be a subset of Z2. We define

δ(D) := sup
H1,H2≥0

1

(2H1 + 1)(2H2 + 1)
card (D ∩ [−H1, H1]× [−H2, H2]) .

(Note that δ(D) is not the ordinary notion of density, which corresponds to

lim supmin{H1,H2}→+∞.)

Corollary 1.4. Let (xn)n∈N2 be a family of real numbers, and D ⊂ Z2\{0}.
If δ(D) = 1 and if, for any d ∈ D, the family (xn+d − xn) is u.d. mod 1,

then the family (xn) is u.d. mod 1.

Proof. There exists a sequence
(
H(k)

)
(with H(k) := (H

(k)
1 , H

(k)
2 )) in (N ∪ {0})2

such that

lim
k→+∞

1

(2H
(k)
1 + 1)(2H

(k)
2 + 1)

card
(
D ∩ [−H

(k)
1 , H

(k)
1 ]× [−H

(k)
2 , H

(k)
2 ]
)

= 1 .

Let (un)n∈N2 be a family of complex numbers of modulus 1 such that, for

any d ∈ D,

lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

un+dun = 0 .
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For any d ∈ D, we have

lim
N1,N2→+∞

1

N1N2

γ(N, d) = 0 .

We deduce from van der Corput’s inequality that∣∣∣ 1

N1N2

∑
0<n≤N

un

∣∣∣2 ≤ (N1 + H1 + 1)(N2 + H2 + 1)

N1N2(H1 + 1)(H2 + 1)

∑
−H≤d≤H

1

N1N2

|γ(N, d)| .

Using the fact that |γ(N, d)| ≤ N1N2, we obtain

lim sup
N1,N2→+∞

∣∣∣ 1

N1N2

∑
0<n≤N

un

∣∣∣2
≤ 1

(H1 + 1)(H2 + 1)
card (Dc ∩ [−H1, H1]× [−H2, H2]) .

The right hand side of the last inequality goes to zero along the sequence(
H(k)

)
. This argument can be applied to un = e(kxn) (no matter how xn

is defined for n ∈ Z2 \ N2) for any choice of k ∈ Z, k 6= 0. Thus, the result

follows from Weyl’s criterion. �

Example. If, for any positive integer j, the family (xn+(j,0)−xn) is u.d. mod

1, then the family (xn) is u.d. mod 1.

Example. The first application of van der Corput’s inequality was to Weyl’s

equidistribution theorem for polynomial sequences ([We], [vdC]). The two-

parameter version of this theorem says the following : if P ∈ R[X, Y ] is

a real polynomial in two variables and if at least one coefficient of a non

constant monomial in P is irrational, then the family (P (n1, n2))(n1,n2)∈N2

is uniformly distributed mod 1. (This result has a straightforward gener-

alization to polynomials in more than two variables.) This multiparameter

equidistribution theorem is a direct consequence of either Corollary 1.3, or

Corollary 1.4 applied to sets D = 0× N and D = N× 0.

1.1.3. An abstract version of van der Corput’s principle.

Proposition 1.5. Let (G, ·) be a group, and E, D two finite subsets of G.

Let u be a complex-valued function defined on E. We have

(5)

∣∣∣∣∣∑
n∈E

u(n)

∣∣∣∣∣
2

≤ |E ·D−1|
|D|

∑
d∈D·D−1

∣∣∣∣∣∣∣
∑

n∈E
n∈E·d−1

u(n · d)u(n)

∣∣∣∣∣∣∣ .
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Proof. Define u(n) to be zero if n /∈ E. We have∣∣∣∣∣∑
n∈E

u(n)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

|D|
∑
d∈D

∑
n∈E·d−1

u(n · d)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

|D|
∑

n∈E·D−1

∑
d∈D

u(n · d)

∣∣∣∣∣
2

.

Using Cauchy’s inequality, we obtain∣∣∣∣∣∑
n∈E

u(n)

∣∣∣∣∣
2

≤ |E ·D−1|
|D|2

∑
n∈G

∣∣∣∣∣∑
d∈D

u(n · d)

∣∣∣∣∣
2

,

and this last expression is equal to

|E ·D−1|
|D|2

∑
d,d′∈D

∑
n∈G

u(n · d)u(n · d′)

=
|E ·D−1|
|D|2

∑
d′∈D

∑
d∈D·d′−1

∑
n∈G

u(n · d)u(n)

≤ |E ·D−1|
|D|2

∑
d′∈D

∑
d∈D·D−1

∣∣∣∣∣∑
n∈G

u(n · d)u(n)

∣∣∣∣∣ .

�

Note that inequality (5) contains inequality (3) as a special case corre-

sponding to

G = Z2, E = ([1, N1]× [1, N2]) ∩ Z2 and D = ([1, H1]× [1, H2]) ∩ Z2.

Remark 1.6. The vdC inequality that has been stated above for a family

of complex numbers can be extended verbatim to any family of vectors in

a linear complex space equipped with a scalar product. This fact is very

useful in many applications to mean convergence theorems or recurrence

theorems in Ergodic Theory (see for example Lemma A6 and the references

in [Berg-McC]).

1.2. Van der Corput sets.

1.2.1. Definition.

Definition 2. A subset D of Z2 \ {0} is a van der Corput set (vdC-set) if

for any family (un)n∈Z2 of complex numbers of modulus 1 such that

∀d ∈ D, lim
N1,N2→+∞

1

N1N2

∑
0≤n<(N1,N2)

un+dun = 0
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we have

(6) lim
N1,N2→+∞

1

N1N2

∑
0≤n<(N1,N2)

un = 0 .

Equivalently, D is a vdC-set if any family (xn)n∈N2 of real numbers having

the property that for all d ∈ D the family (xn+d − xn)n∈N2 is u.d. mod 1, is

itself u.d. mod 1.

(A natural Cesàro summation method is also given by “bilateral aver-

ages”. One obtains an equivalent definition of vdC set if we replace in

Definition 2 sums
∑

0≤n<(N1,N2) by sums
∑

(−N1,−N2)<n<(N1,N2). See Section

4.)

Example 1.7. If δ(D) = 1, the set D is a vdC-set (see Corollary 1.4).

Note that various modifications of the notion of uniform distribution (for

example, considering other types of averages) lead, generally speaking, to

different notions of vdC set. See Section 4 for some remarks and open

questions.

1.2.2. Spectral characterization. If σ is a finite measure on the 2-torus T2,

we define its Fourier transform σ̂ by σ̂(n) =
∫

T2 e(n1x1 + n2x2) dσ(x1, x2),

for any n = (n1, n2) ∈ Z2.

Theorem 1.8. Let D ⊂ Z2 \ {0}. The following statements are equivalent

(S1) D is a van der Corput set.

(S2) If σ is a positive measure on the 2-torus T2 such that, for all d ∈ D,

σ̂(d) = 0, then σ ({(0, 0)}) = 0.

(S3) If σ is a positive measure on the 2-torus T2 such that, for all d ∈ D,

σ̂(d) = 0, then σ is continuous.

(Note that we prove in the sequel (Subsection 1.5) that (S1), (S2) and

(S3) are equivalent to the following property : any positive measure σ on

the 2-torus T2 such that
∑

d∈D |σ̂(d)| < +∞ is continuous.)

The equivalence of (S2) and (S3) is clear, since a translation of a measure

does not change the modulus of its Fourier coefficients. For one dimensional

space of parameters the implication (S2)⇒(S1) is proved in [Kam-MF] and

the implication (S1)⇒(S2) can be found in [Ruz].
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Lemma 1.9. Let (un)n∈Z2 be a bounded family of complex numbers and

(N (j))j∈N =
(
(N

(j)
1 , N

(j)
2 )
)

j∈N be a sequence in N2 such that min(N
(j)
1 , N

(j)
2 ) →

+∞ when j → +∞. If, for all h ∈ Z2,

γ(h) := lim
j→+∞

1

N
(j)
1 N

(j)
2

∑
0≤n<N(j)

un+hun exists ,

then there exists a positive measure σ on the 2-torus T2 such that, for all

h ∈ Z2,

σ̂(h) = γ(h)

and this measure satisfies

lim sup
j→+∞

1

N
(j)
1 N

(j)
2

∣∣∣∣∣∣
∑

0≤n<N(j)

un

∣∣∣∣∣∣ ≤√σ ({(0, 0)}) .

Sketch of the proof of Lemma 1.9. We denote x = (x1, x2), n = (n1, n2),

etc. . .

The family (γh)h∈Z2 is positive-definite and the Bochner-Herglotz The-

orem guarantees the existence of the positive measure σ (see for example

[Rud], Subsection 1.4.3). This measure is the weak limit of the sequence of

absolutely continuous measures (σN(j)) where σN has density

gN(x) :=
1

N1N2

∣∣∣∣∣ ∑
0≤n<N

une(−n1x1 − n2x2)

∣∣∣∣∣
2

with respect to Lebesgue measure dx1dx2.

We define

hN(x) :=
1

N1N2

∣∣∣∣∣ ∑
0≤n<N

e(−n1x1 − n2x2)

∣∣∣∣∣
2

.

The sequence of measures with density hN converges weakly to the Dirac

delta measure at (0, 0), denoted by δ.
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We follow the method of [Co-Kam-MF], in particular their Theorem 2,

which utilizes the connection between the affinity7 of two probability mea-

sures and weak convergence. Denoting by ρ(µ, ν) the affinity of two proba-

bility measures on T2, we have

ρ (gN(x)dx, hN(x)dx) =

∫
T2

√
gN(x)hN(x) dx1dx2 ,

ρ(σ, δ) =
√

σ({(0, 0)}) ,

and

lim sup
j→+∞

∫
T2

√
gN(j)(x)hN(j)(x) dx1dx2 ≤

√
σ ({(0, 0)}) .

The conclusion of the lemma then follows from the inequality

1

N
(j)
1 N

(j)
2

∣∣∣∣∣∣
∑

0≤n<N(j)

un

∣∣∣∣∣∣ ≤
∫

T2

√
gN(j)(x)hN(j)(x) dx1dx2 .

�

Proof of Theorem 1.8. Let us first prove that (S2)⇒(S1). Let (un)n∈Z2 be

a bounded family of complex numbers such that, for all d ∈ D,

lim
N1,N2→+∞

1

N1N2

∑
0≤n<(N1,N2)

un+dun = 0 .

There exists a sequence (N (j))j∈N in N2 such that

• min(N
(j)
1 , N

(j)
2 ) → +∞ ,

• lim
j→+∞

1

N
(j)
1 N

(j)
2

∣∣∣∣∣∣
∑

0≤n<N(j)

un

∣∣∣∣∣∣ = lim sup
N1,N2→+∞

1

N1N2

∣∣∣∣∣ ∑
0≤n<N

un

∣∣∣∣∣ ,
• ∀h ∈ Z2, γ(h) := lim

j→+∞

1

N
(j)
1 N

(j)
2

∑
0≤n<N(j)

un+hun exists .

7Let µ and ν be two probability measures on T2. The affinity ρ(µ, ν) is defined as

ρ(µ, ν) =
∫

T2

(
dµ

dm

)1/2( dν

dm

)1/2

dm ,

where m is any measure with respect to which both µ and ν are absolutely continuous.
Note that affinity is also called the Hellinger integral by probabilists. It is proved in
[Co-Kam-MF] that if (µn) and (νn) are two weakly convergent sequences of probability
measures, then

lim sup
n→+∞

ρ(µn, νn) ≤ ρ(lim µn, lim νn).
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The map γ is the Fourier transform of a positive measure σ on the 2-torus.

We have σ̂(d) = 0 for all d ∈ D. By condition (S2), the measure σ has no

point mass at (0, 0), and, using Lemma 1.9, we conclude that the family

(un)n∈Z2 converges to zero in the sense of (6). We have proved that D is a

vdC-set.

Following Ruzsa ([Ruz]), we will use a probabilistic argument in order to

prove that (S1)⇒(S2). The next two lemmas are routine variations on the

theme of the law of large numbers.

Lemma 1.10. Let (θ(n))n∈N2 be an i.i.d. family of random variables with

values in the 2-torus T2. We write θ(n) = (θ1(n), θ2(n)). We define a family

of complex random variables (Y (n))n∈N2 by

Y (n1, n2) := e (r1θ1(m1, m2) + r2θ2(m1, m2)) ,

if ni = m2
i + ri, with 0 ≤ ri ≤ 2mi, i = 1, 2.

We have, almost surely,

lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

Y (n) = P (θ = 0) .

Lemma 1.11. Let (X(n))n∈N2 be an i.i.d. family of bounded complex

random variables. We define a new family of complex random variables

(Z(n))n∈N2 by

Z(n1, n2) := X(m1, m2)

if ni = m2
i + ri, with 0 ≤ ri ≤ 2mi, i = 1, 2.

We have, almost surely,

lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

Z(n) = E [X] .

Let us explain briefly how (S1)⇒(S2) follows from these lemmas.

Suppose that a vdC set D ⊂ Z2 and a measure σ on T2 are given. We

suppose that the Fourier transform of σ is null on D. Without loss of

generality, we can suppose that σ is a probability measure, and we consider

a family of random variables (θ(n))n∈N2 independent and of law σ. We

define, as in Lemma 1.10, a family of complex random variables (Y (n))n∈N2 .

A slight modification8 of Lemma 1.11 gives us the following result: for all

8Details are provided after Lemma 2.4 in Section 2.2 .
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h ∈ Z2, almost surely,

lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

Y (n + h)Y (n) = E [e(h1θ1 + h2θ2)] .

This last quantity is exactly σ̂(h) and, by hypothesis, it is null for h ∈ D.

Since D is a vdC set, we conclude that

lim
N1,N2→+∞

1

N1N2

∑
0<n≤N

Y (n) = 0 .

By Lemma 1.10, this means that P (θ = 0) = 0, i.e. σ ({(0, 0)}) = 0. �

1.2.3. Some corollaries. Here are some direct applications of the spectral

characterization.

Corollary 1.12 (Ramsey property. Cf. [Ruz], Corollary 1.). If D = D1∪D2

is a vdC set in Z2, then at least one of the sets D1 or D2 is a vdC set. (In

particular, if D is a vdC set in Z2 and E is a finite subset of D, then D \E

is still a vdC set in Z2.)

Proof. If σ1 and σ2 are positive measures on T2 such that σ̂i is null on Di,

then the Fourier transform of their convolution σ1 ?σ2 vanishes on D1∪D2.

And σ1 ? σ2({0}) ≥ σ1({0})× σ2({0}). �

If F is a family of subsets of Z2, we denote by F∗ its dual family, that

is the family of all sets G ⊂ Z2 such that G ∩ F 6= ∅ for all F ∈ F . The

Ramsey property described in Corollary 1.12 has a remarkable consequence

for the family of vdC∗ sets : if A is a vdC set and if B is a vdC∗ set, then

A ∩B is a vdC set ; this impies that the family of vdC∗ sets is stable with

respect to finite intersections, hence is a filter.

Corollary 1.13 (Sets of differences). If I is an infinite subset of Z2, then

the set of differences D := {n−m : n, m ∈ I and n 6= m} is a vdC set.

Proof. Suppose that σ is a probability measure on T2, whose Fourier trans-

form vanishes on D. This means that the characters x 7→ e(n · x), with

n ∈ I, form an orthonormal family in L2(σ). For any finite subset J of I,

we have

(cardJ)2σ({(0, 0)}) ≤
∫

T2

∣∣∣∣∣∑
n∈J

e(n · x)

∣∣∣∣∣
2

dσ(x) = cardJ .
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This implies that σ has no point mass at zero. �

Remark 1.14. The preceding proof gives, in fact, more. Namely, any set

D which contains sets of differences of arbitrarily large finite sets is a vdC

set.

Corollary 1.15 (Linear transformations of vdC sets). Let d and e be posi-

tive integers, and let L be a linear transformation from Zd into Ze (i.e. an

e× d matrix with integers entries).

(1) If D is a vdC set in Zd and if 0 /∈ L(D), then L(D) is a vdC set in

Ze.

(2) Let D ⊂ Zd. If the linear map L is one to one, and if L(D) is a vdC

set in Ze, then D is a vdC set in Zd.

Proof. Let D be vdC set in Zd and σ a positive measure on the e-torus such

that σ̂ vanishes on L(D). Let us denote by tL the map from Te into Td

defined by k ·tL(x) = L(k) · x for k ∈ Zd and x ∈ Te. Denoting by σ′ the

image of σ under the linear transformation tL, we see that, for all k ∈ Zd,

σ̂′(k) = σ̂(L(k)). Hence the Fourier transform σ̂′ vanishes on the vdC set

D. The measure σ′ has no mass at zero, and hence σ also has no mass at

zero. This proves the first assertion.

Suppose now that L is one to one and that L(D) is a vdC set in Ze.

Consider the lattice L(Zd) in Ze. By a classical lemma (see for example

[G], Exercise 8 of Chapter 31), there exist n1, n2, . . . , ne in Ze and positive

integers p1, p2, . . . , pd such that Ze = Zn1 + Zn2 + . . . + Zne and L(Zd) =

p1Zn1 + p2Zn2 + . . . + pdZnd. This allows us to view L(D) as a vdC set in

Zd ' Zn1 + Zn2 + . . . + Znd and L as an endomorphism of Zd.

Let σ′ be a positive measure on the d-torus such that σ̂′ vanishes on D.

The linear map tL from Td into Td is finite to one and onto. Since it is

onto, it posseses an inverse on the right and we can see σ′ as the image of a

positive measure σ on the d-torus, under the map tL. The Fourier transform

σ̂ vanishes on L(D), hence the measure σ is continuous. Since the map tL

is finite to one, we conclude that the measure σ′ is also continuous. This

proves the second assertion. �

Corollary 1.16 (Lattices are vdC*). If G is any d-dimensional lattice in

Zd, and if D is a vdC set in Zd, then G ∩D is a vdC set in Zd.
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Proof. To begin, we remark that if G is a lattice in Zd, and if z ∈ Zd, z /∈ G,

then the translate z + G is not a vdC set in Zd (test the definition of a vdC

set on the indicator function of the set G). Since G is a d-dimensional lattice

in Zd, there exist finitely many points z1, z2, . . . , zk in Zd and outside G such

that

Zd = G ∪
(
∪k

i=1 (zi + G)
)

.

Let D be a vdC set in Zd. We have

D = (G ∩D) ∪
(
∪k

i=1 (zi + G) ∩D
)

.

Since none of the sets (zi + G) ∩D is vdC, Corollary 1.12 tells us that the

set (G ∩D) is vdC. �

Remark 1.17. As a consequence of the last two statements, we note the

following fact, which is the direct extension of Corollary 2 in [Ruz].

Let L be a one to one linear transformation from Zd into itself; let D be

a vdC set in Zd; the set of n ∈ Zd such that L(n) ∈ D is a vdC set in Zd.

Indeed, by Corollary 1.16, D ∩ L(Zd) is a vdC set in Zd and, by Corol-

lary 1.15, its inverse image by L is a vdC set.

The spectral characterization also implies that various formulations of

the vdC property, associated to different averaging methods, are in fact

equivalent (see Section 4).

1.3. The Kamae - Mendès France criterion.

1.3.1. The criterion. Let D ⊂ Z2 and let P be a real trigonometric polyno-

mial on T2. We say that the spectrum of P is contained in D if P is a linear

combination of the characters (x1, x2) 7→ e(d1x1 +d2x2) with (d1, d2) ∈ ±D.

In the case of a one dimensional space of parameters, the following propo-

sition appears in Ruzsa’s article [Ruz], with the same proof.

Proposition 1.18. A subset D of Z2 \ {0} is a van der Corput set if and

only if for all ε > 0, there exists a real trigonometric polynomial P on the

2-torus T2 whose spectrum is contained in D and which satisfies P (0) = 1,

P ≥ −ε.
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Proof. Let us assume that there exists such a trigonometric polynomial. Let

σ be a positive measure on T2 whose Fourier transform σ̂ is null on D. Then

we have ∫
T2

P dσ = 0 .

But from P (0) = 1 and P ≥ −ε we deduce that∫
T2

P dσ ≥ σ ({0})− εσ
(
T2 \ {0}

)
.

Thus we necessarily have σ ({0}) = 0, and we deduce from Theorem 1.8

that D is a vdC set.

For the proof of the inverse implication, we follow Ruzsa’s argument

([Ruz], Section 5). We will denote m ·x := m1x1 +m2x2 if x = (x1, x2) ∈ T2

and m = (m1, m2) ∈ Z2.

Let us suppose that D is a subset of Z2 and that there exists 0 < ε < 1

such that, for any real trigonometric polynomial P with spectrum in D

and such that P (0) = 1, we have min(P + ε) ≤ 0. In the Banach space

CR(T2) of real continuous functions on T2, equipped with the uniform norm,

we consider the set F of strictly positive functions and the set Q of real

trigonometric polynomials P , with spectrum in D and such that P (0) = 1.

By hypothesis, the convex sets F and ε +Q are disjoint. By Hahn-Banach

Theorem, there exists a non-zero real-valued continuous linear functional

L on CR(T2), which takes nonnegative values on F and nonpositive values

on ε +Q. Let us denote by σ the measure on T2 associated to L by Riesz

representation theorem : L(f) =
∫

T2 f dσ, for all f ∈ CR(T2). Since L ≥ 0

on F , this measure is positive and we can assume that it is normalized.

Let m, n ∈ ±D. If P ∈ Q, then, for all λ ∈ R, the function x 7→ ε +

P + λ(cos 2π(m · x) − cos 2π(n · x)) is still in ε + Q. This implies that∫
cos 2π(m · x) dσ(x) =

∫
cos 2π(n · x) dσ(x). Similarly, for all λ ∈ R, the

function x 7→ ε + P + λ sin 2π(m · x) is still in ε +Q, and this implies that∫
sin 2π(m · x) dσ(x) = 0.

We define r :=
∫

cos 2π(m · x) dσ(x), for m ∈ ±D. If P ∈ Q, we have∫
T2

(ε + P ) dσ ≤ 0
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and, writing

P (x) =
∑

m∈±D

am cos 2π(m · x) + bm sin 2π(m · x) ,

we have ∫
T2

P dσ = r
∑

m∈±D

am = rP (0) = r .

Hence r ≤ −ε < 0. Denoting by δ the Dirac mass at 0, we consider a new

probability measure σ′ defined by

σ′ :=
1

1− r
(σ − rδ) .

We have σ′({0}) ≥ −r
1−r

> 0.

But this probability satisfies σ̂′(m) = 0 for all m ∈ D, and, using Theo-

rem 1.8, we conclude that D is not a vdC set. �

1.3.2. Application to polynomial sequences and sequences of shifted primes.

The following proposition is the two-dimensional extension of Example 3 in

[Kam-MF].

Proposition 1.19. Let D ⊂ Z2. For each q ∈ N, we denote

Dq := {(d1, d2) ∈ D : q! divides d1 and d2} .

Suppose that, for every q, there exists a sequence (hq,n)n∈N in Dq such

that, for every x = (x1, x2) ∈ R2, if x1 or x2 is irrational, the sequence

(hq,n · x)n∈N is uniformly distributed mod 1. Then D is a vdC set.

Proof. Let us define a family of trigonometric polynomials with spectrum

contained in D, by the formula

(7) Pq,N(x) :=
1

N

N∑
n=1

e (hq,n · x) ,

where q and N are positive integers and x ∈ R2. By hypothesis, if x /∈ Q2

then limN→+∞ Pq,N(x) = 0. For each q, there exists a subsequence (Pq,N ′)

which is pointwise convergent to a function gq. For all x ∈ Q2, we have

gq(x) = 1 for all large enough q, and for all x /∈ Q2, we have gq(x) = 0.

The sequence (gq) is pointwise convergent to the characteristic function of

Q2. Consider now a positive measure σ on T2 whose Fourier transform σ̂

vanishes on D. We have
∫

Pq,N dσ = 0 for all q, N . Applying the dominated
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convergence theorem twice, we conclude that σ(Q2) = 0. In particular

σ({0}) = 0, and we are done. �

A sequence (dn)n∈N in Z2 will be called a vdC sequence if the set of its

values {dn : n ∈ N} is a vdC set.

The (d-dimensional version of the) following proposition extends Theo-

rem 4.2 in [Berg.1].

Proposition 1.20. Let p1 and p2 be two polynomials with integer coeffi-

cients. The sequence (p1(n), p2(n))n∈N is a vdC sequence in Z2 if and only

if for all positive integers q, there exists n ≥ 1 such that q divides p1(n) and

p2(n).

Note that the divisibility condition is satisfied if p1 and p2 have zero

constant term.

Proof of Proposition 1.20. By Corollary 1.16, the divisibility condition is

necessary for the sequence (p1(n), p2(n)) to be vdC. Let us prove that this

condition is sufficient. We are going to distinguish two cases: either p1 and

p2 are proportional, or not.

In the first case, there exists a polynomial p ∈ Z[X], and integers a, b

such that p1 = ap and p2 = bp. The polynomial p satisfies the divisibility

property, which ensures that (p(n)) is a vdC sequence in Z (it is a direct con-

sequence of the one-dimensional version of Proposition 1.19, cf. [Kam-MF]).

By the first statement of Corollary 1.15, this implies that (ap(n), bp(n)) is

a vdC sequence in Z2.

Consider now the second case, in which polynomials p1 and p2 are not

proportional. Let q be a positive integer and (x1, x2) ∈ R2\Q2 ; there exists

n ≥ 1 such that q!|p1(n) and q!|p2(n) ; for all k ∈ Z, we have q!|p1(n + kq!)

and q!|p2(n + kq!). We claim that the sequence

(8) (p1(n + kq!)x1 + p2(n + kq!)x2)k∈N

is uniformly distributed mod 1. This fact implies, by Proposition 1.19, that

(p1(n), p2(n)) is a vdC sequence in Z2. In order to prove the claim, we

consider first the case when 1, x1 and x2 are linearly independent over Q ;

in this case the sequence (8) is u.d. mod 1 by Weyl’s theorem. Let us

consider now the case in which 1, x1 and x2 are linearly dependent over Q
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and x1 is irrational ; in this case we have x2 = rx1 + s, with r, s ∈ Q, and,

if q has been chosen enough large, the sequence (8) has (mod 1) the form

((p1(n + kq!) + rp2(n + kq!))x1)k∈N ;

we conclude once more by Weyl’s theorem since the polynomial p1 + rp2 is

not constant. Finally, if x1 is rational, then x2 is irrational and the argument

is similar. �

Remark 1.21. (See Appendix) There exist pairs of polynomials p1, p2 sat-

isfying:

- for all integers a and b and for all positive integers q, there exists n such

that q | ap1(n) + bp2(n) (hence (ap1(n) + bp2(n))n∈N is a vdC sequence in

Z).

- there exists a positive integer q such that for no n are the numbers

p1(n) and p2(n) simultaneously multiples of q (hence (p1(n), p2(n))n∈N is

not a vdC sequence in Z2).

Let P be the set of prime numbers. It is shown in [Kam-MF] that P − 1

and P + 1 are vdC sets, and that no other translate of P is a vdC set.

This can be extended to polynomials along P − 1 and P + 1, and to the

multidimensional setting. For example, we have the following result.

Proposition 1.22. Let f, g be two (non zero) polynomials with integer co-

efficients and zero constant term. The set {(f(p− 1), g(p− 1)) : p ∈ P} is

a vdC set in Z2.

The proof of this proposition relies on Proposition 1.19 and on the fol-

lowing Vinogradov-type theorem.

Theorem 1.23. Let q be a positive integer and h be a real polynomial

such that the polynomial h − h(0) has at least one irrational coefficient.

The sequence (h(p)) is uniformly distributed mod 1, where p describes the

increasing sequence of prime numbers in the congruence class 1 + qN.

The proof of this theorem can be given in a few sentences, by “quotation”.

It is proved in [Rh] (see also [N]) that if a real polynomial h̃ is such that

h̃− h̃(0) has at least one irrational coefficient, then

(9) the sequence (h̃(p))p∈P is u.d. mod 1.
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Now we can use the following simple trick (cf. [Mo], p.34) :∑
p≤n

p≡1[q]

e(h(p)) =
1

q

q∑
j=1

e

(
−j

q

)∑
p≤n

e(h(p) + pj/q) .

After division by π(n), the right term goes to zero as n goes to infinity

because (9) can be applied to h̃(p) = h(p) + pj/q.

Moreover it is well known that the Prime Number Theorem has a natural

extension to the distribution of primes in arithmetic progressions : the

number of primes less than n in 1 + qN is asymptotically equivalent to

π(n)/ϕ(q) as n goes to infinity.

We obtain that

lim
n→+∞

1

#{p ≤ n, p ≡ 1[q]}
∑
p≤n

p≡1[q]

e(h(p)) = 0 .

This is still true when we replace h by a non zero integer multiple of h, which,

via Weyl’s criterion, gives uniform distribution (mod 1) of the sequence(
(h(p))p∈P, p≡1[q]

)
.

Proof of Proposition 1.22. This proof is parallel to the proof of Proposition

1.20. If f and g are proportional, we use the fact that (f(p−1))p∈P is a vdC

sequence (which is a direct consequence of the one-dimensional version of

Proposition 1.19 and of Theorem 1.23). If f and g are not proportional, we

deduce from Theorem 1.23 that for all large enough positive integers q, and

for all (x1, x2) ∈ R2 \Q2, the sequence (f(p− 1)x1 + g(p− 1)x2)p∈P, p≡1[q] is

u.d. mod 1. We conclude by Proposition 1.19. �

Several other examples of vdC sets are presented in Subsection 2.5.

1.3.3. One more corollary à la Ruzsa. Following [Ruz], we deduce from

Proposition 1.18 a new combinatorial property of vdC sets.

Corollary 1.24 (Cf. [Ruz], Corollary 3). Any vdC set in Z2 can be parti-

tionned into infinitely many pairwise disjoint vdC sets.

Proof. Let D be a vdC set in Z2. There exists a sequence (Ik)k≥1 of pairwise

disjoint finite subsets of D, and for each k, a trigonometric polynomial Pk

with spectrum in Ik and such that Pk(0) = 1, Pk + 1
k

> 0. The existence

of Ik and Pk can be proved by induction using the direct implication in
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Proposition 1.18 and the fact that, for each k, the set D\(I1 ∪ I2 ∪ . . . ∪ Ik)

is vdC (see Corollary 1.12). From the inverse implication in Proposition

1.18, we deduce that any infinite union of the Ik’s is a vdC set. We can

consider an infinite family of pairwise disjoint such sets. �

1.4. Positive-definite multiparameter sequences and generalized

vdC inequality.

1.4.1. The inequality. We show in this subsection that the Kamae-Mendès

France criterion can be formulated in terms of positive-definite sequences.

This will allow us, for a given vdC set D, to obtain a quantitative van der

Corput type inequality in which only correlations γ(N, d) for d ∈ D are

involved.

Proposition 1.25. Let (ah)h∈Z2 be a family of complex numbers such that

all but finitely many of ah are zero. This family is positive-definite if and

only if the trigonometric polynomial T (x) :=
∑

h ahe(h · x), x ∈ R2, takes

only nonnegative values.

Proof. Recall that the family (ah) of complex numbers is positive-definite

if, for any family (zh)h∈Z2 of complex numbers, all zero but finitely many,∑
h,h′∈Z2

ah−h′zhzh′ ≥ 0 .

We will denote h = (h1, h2).

The family (ah) is the Fourier transform of the measure having density

T with respect to Lebesgue measure on the 2-torus. Thus it is clear that if

the trigonometric polynomial is positive, then the family is positive-definite.

In the opposite direction, suppose that (ah) is positive-definite (and that

ah = 0 for all h but finitely many). For x ∈ R2 and for all positive integers

c, ∑
0≤h,h′<(c,c)

ah−h′e(h · x)e(−h′ · x) ≥ 0 .

This can be written∑
(−c,−c)<h<(c,c)

(c− |h1|)(c− |h2|)ahe(h · x) ≥ 0 .
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Dividing this expression by c2, and letting c go to infinity, we obtain∑
h

ahe(h · x) ≥ 0 .

�

Remark 1.26. The Kamae - Mendès France criterion (Proposition 1.18)

can now be rewritten as follows : a subset D of Z2 \ {0} is a vdC set if and

only if, for all ε > 0, there exists a positive-definite family (ad)d∈Z2 such

that :

• all but finitely many ad are zero;

• ad = 0 whenever d 6= 0 and d /∈ D ∪ (−D);

• a0 ≤ ε and
∑

d ad = 1.

As in the first section, we will denote

γ(N, h) :=
∑

0<n≤N
0<n+h≤N

un+h · un ,

if h ∈ Z2, N ∈ N2 and (un)0≤n<N is a family of complex numbers. We will

write also

‖u‖∞ := max
n
|un| .

Theorem 1.27. Let H ∈ N2 and (ah)−H<h<H be a finite positive-definite

family of complex numbers, with
∑

h ah = 1. Let N ∈ N2 and (un)0<n≤N be

a finite family of complex numbers. We have∣∣∣ ∑
0<n≤N

un

∣∣∣2 ≤ N1N2

(∑
h

ahγ(N, h)+5‖u‖2
∞

∑
h

(|h1|N2+|h2|N1+|h1h2|)|ah|
)
.

This inequality should be compared to the “generalized van der Corput

Lemma” stated in [Mo] (Chap.2, Lemma 1).

If we consider a bounded family of complex numbers (un)n∈N2 , we deduce

from Theorem 1.27 the following inequality∣∣∣∣∣ 1

N1N2

∑
0<n≤N

un

∣∣∣∣∣
2

≤
∑

h

ah
1

N1N2

γ(N, h) + O

(
max

(
1

N1

,
1

N2

))
,

which will be utilized when describing the vdC property of Cartesian prod-

ucts of vdC sets.
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Corollary 1.28 below, which is a direct consequence of Theorem 1.27, gives

what one might call a quantitative version of the van der Corput trick. The

“if” part of the Kamae-Mendès France criterion is a direct consequence of

this corollary.

Corollary 1.28. Let (ah)−H<h<H be a positive-definite family of complex

numbers, and (un)n∈N2 be a family of complex numbers. If, for any h such

that h 6= 0 and ah 6= 0 we have

lim
N1,N2→+∞

1

N1N2

γ(N, h) = 0

then

lim sup
N1,N2→+∞

∣∣∣∣∣ 1

N1N2

∑
0<n≤N

un

∣∣∣∣∣ ≤ ‖u‖∞
√

a0 .

Proof of Theorem 1.27. Let us define

m :=
1

N1N2

∑
0<n≤N

un and vn := un −m .

We have

γ(N, h) =
∑

0<n≤N
0<n+h≤N

(vn+h + m)(vn + m) = Ah + Bh + Ch + Dh ,

where :

Ah :=
∑

0<n≤N
0<n+h≤N

vn+h · vn , Bh := m
∑

0<n≤N
0<n+h≤N

vn ,

Ch := m
∑

0<n≤N
0<n+h≤N

vn+h , Dh := |m|2
∑

0<n≤N
0<n+h≤N

1 .

Since the family (ah) is positive-definite, we have∑
h

ahAh ≥ 0 .

The number of points n in the square [1, N1]× [1, N2], such that we do not

have 0 < n+h ≤ N , is less or equal than |h1|N2+|h2|N1. Since
∑

0<n≤N

vn = 0

we deduce that

|Bh| ≤ |m| (|h1|N2 + |h2|N1) ‖v‖∞ ≤ 2|m| (|h1|N2 + |h2|N1) ‖u‖∞
≤ 2 (|h1|N2 + |h2|N1) ‖u‖2

∞ .
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The same inequality holds for |Ch|.
We have also

Dh = (N1 − |h1|)(N2 − |h2|)|m|2

≥ 1

N1N2

∣∣∣ ∑
0<n≤N

un

∣∣∣2 − (|h1|N2 + |h2|N1 + |h1h2|) ‖u‖2
∞ .

From these inequalities, we deduce that∑
h

ahγ(N, h) ≥
∑

h

ahAh +
∑

h

ahDh −
∑

h

ah (|Bh|+ |Ch|)

≥ 1

N1N2

∣∣∣ ∑
0<n≤N

un

∣∣∣2 − 5
∑

h

|ah| (|h1|N2 + |h2|N1 + |h1h2|) ‖u‖2
∞ .

and the result follows. �

In the next two subsections we present corollaries of Theorem 1.27.

1.4.2. Cartesian products of vdC sets.

Corollary 1.29. Let k, ` be positive integers, and D, E be vdC sets in,

respectively, Zk and Z`. The product set D × E is a vdC set in Zk+`.

Proof. Let us consider, as a typical example, the case k = ` = 2. We

consider two vdC sets D and E in Z2. Let (un,m)n,m∈Z2 be a family of

complex numbers of modulus one indexed by Z4, and satisfying : for all

d ∈ D and all e ∈ E,

(10) lim
N1,N2→+∞
M1,M2→+∞

1

N1N2M1M2

∑
0≤n<(N1,N2)
0≤m<(M1,M2)

un+d,m+e · un,m = 0 .

It is not hard to verify that (10) is still true when d ∈ (−D) or e ∈ (−E).

Let us fix ε > 0. By Remark 1.26, there exist two positive-definite families

(ad) and (be) indexed by Z2 such that ad (resp. be) is zero whenever d (resp.

e) is outside a finite subset of D∪ (−D)∪{0} (resp. E ∪ (−E)∪{0}), with

a0 < ε, b0 < ε and
∑

d ad =
∑

e be = 1.

It is clear from Proposition 1.25 (or from the Bochner-Herglotz Theo-

rem) that the family (adbe)(d,e)∈Z4 is positive definite. Let us denote P :=

N1N2M1M2 and p := min{N1, N2, M1, M2}. The generalized vdC inequality
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(Theorem 1.27) applied to Z4 gives∣∣∣∣∣∣∣∣
∑

0≤n<(N1,N2)
0≤m<(M1,M2)

un,m

∣∣∣∣∣∣∣∣
2

≤ P
∑
d,e

adbe

∑
0≤n,n+d<(N1,N2)
0≤m,m+e<(M1,M2)

un+d,m+e·un,m+P 2O (1/p) .

Dividing by P 2, letting p go to infinity and using (10), we obtain

lim sup
N1,N2→+∞
M1,M2→+∞

∣∣∣∣∣∣∣∣
1

N1N2M1M2

∑
0≤n<(N1,N2)
0≤m<(M1,M2)

un,m

∣∣∣∣∣∣∣∣
2

≤
∑

d or e=0

adbe .

Since
∑

d or e=0

adbe = a0

∑
e

be + b0

∑
d

ad − a0b0 ≤ 2ε, we conclude that the

last limsup is zero. �

1.4.3. Sequences in Hilbert space. The goal of this short subsection is to

point out that generalized van der Corput inequalities can be extended

from numerical sequence to sequences of vectors in a Hilbert space. One

of the reasons to be interested in such extensions is that they provide use-

ful convergence criteria for multiple ergodic averages (see for example the

references mentioned at the end of the introduction).

Let H be a Hilbert space and (un)n∈N2 be a doubly indexed family of

vectors in this space. We will denote, for any h ∈ Z2,

γ(N, h) :=
∑

0<n≤N
0<n+h≤N

< un+h, un > ,

and

‖u‖∞ := sup
n
‖un‖ .

Proposition 1.30. Let H ∈ N2 and (ah)−H<h<H be a finite positive-definite

family of complex numbers, with
∑

h ah = 1. We have∥∥∥ ∑
0<n≤N

un

∥∥∥2

≤ N1N2

(∑
h

ahγ(N, h)+5‖u‖2
∞

∑
h

(|h1|N2+|h2|N1+|h1h2|)|ah|
)
.

The proof of Proposition 1.30 is similar to the scalar case and will be omit-

ted. Combined with Remark 1.26, this proposition leads to the following

extension of the notion of vdC set to families in Hilbert space.
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Corollary 1.31. Let D be a vdC set in Z2 and (un)n∈Z2 be a bounded family

in H. If

∀d ∈ D, lim
N1,N2→+∞

1

N1N2

∑
0<n≤(N1,N2)

< un+d, un >= 0

then

lim
N1,N2→+∞

1

N1N2

∑
0<n≤(N1,N2)

un = 0 .

1.5. A new spectral characterization. We work in this subsection with

ordinary sequences indexed by Z. The extension to the multidimensional

case is straightforward. We have the following spectral characterization of

vdC sets, which completes the classical Theorem 1.8.

Theorem 1.32. Let D ⊂ Z. Then D is a van der Corput set if and only

if any positive measure σ on the torus T such that
∑

d∈D |σ̂(d)| < +∞ is

continuous.

This result is not surprising. Why? Because we have a “parallel” fact

pertaining to recurrence properties. It is not difficult to prove that if a

set D is a set of recurrence, then, for any m.p.s. (X,A, µ, T ) and any set

A in A such that µ(A) > 0, not only does there exist d ∈ D such that

µ(A ∩ T dA) > 0, but also
∑

d∈D µ(A ∩ T dA) = +∞.

Proof of Theorem 1.32. Let D be a vdC set in Z, and fix ε > 0. By Re-

mark 1.26, we know that there exists a positive-definite sequence (ah)h∈Z

such that :

• all but finitely many ah are zero;

• ah = 0 whenever h 6= 0 and h /∈ D ∪ (−D);

• a0 ≤ ε and
∑

d ad = 1.

Moreover, for any positive-definite sequence (bh)h∈Z with support in {−H +

1, . . . , H−1} and such that
∑

h bh = 1, we have the following vdC inequality

(simply the one-dimensional version of Theorem 1.27): for any complex

numbers u1, u2, . . . , uN ,∣∣∣∣∣
N∑

n=1

un

∣∣∣∣∣
2

≤ N

(∑
h

bhγ(N, h) + 5‖u‖2
∞

∑
h

|hbh|

)
.
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We apply this inequality to the sequence (ah) after noticing that since the

sequence is positive-definite, we have |ah| ≤ a0. We obtain∣∣∣∣∣
N∑

n=1

un

∣∣∣∣∣
2

≤ Na0

γ(N, 0) +
∑

d∈D∪(−D)
|d|≤H

|γ(N, d)|+ 5‖u‖2
∞H2

 ,

Hence

(11)

∣∣∣∣∣ 1

N

N∑
n=1

un

∣∣∣∣∣
2

≤ ε

 1

N

N∑
n=1

|un|2 +
∑

d∈D∪(−D)
|d|≤H

∣∣∣∣ 1

N
γ(N, d)

∣∣∣∣+ 5

N
‖u‖2

∞H2


Let σ be a probability measure on the torus such that

∑
d∈D |σ̂(d)| < +∞.

Following Ruzsa ([Ruz]), we consider a sequence (Yn)n∈N of complex ran-

dom variables of modulus one such that almost surely,

1

N

∑
0<n≤N

Yn → σ({0}) and
1

N

∑
0<n≤N

Yn+hYn → σ̂(h) .

(Details of a construction of such a sequence (Yn) are given below, in Lem-

mas 2.3 and 2.4 and in the text which follows these lemmas.)

We apply (11) to un = Yn and let N go to infinity. After noticing that

1

N
γ(N, d) =

1

N

∑
0<n≤N
0<n+d≤N

Yn+dYn → σ̂(d) ,

we obtain

|σ({0})|2 ≤ ε

(
1 + 2

∑
d∈D

|σ̂(d)|

)
.

This proves that σ({0}) = 0. �

2. Enhanced van der Corput sets

2.1. Introduction. In this section, we introduce a new property which we

call enhanced vdC. It is a natural concept for several reasons :

• the set of all integers is enhanced vdC, and it is often this prop-

erty which is classicaly used in equidistribution theory and ergodic

theory;
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• the spectral characterization of enhanced vdC sets is given by the

FC+ property (Theorem 2.1);

• in the manner that the notion of vdC set is linked to the notion of

set of recurrence, the notion of enhanced vdC set is linked to the

notion of set of strong recurrence (see Subsection 3.3).

We give here the definition and the spectral characterization of enhanced

vdC sets in Z, extension to Zd being completely routine.

2.2. Definitions and a spectral characterization.

Definition 3. An infinite set of integers D is enhanced van der Corput if,

for any sequence (un)n∈Z of complex numbers of modulus 1 such that

(12) ∀d ∈ D, γ(d) := lim
N→+∞

1

N

N−1∑
n=0

un+dun exists

and

lim
|d|→+∞,d∈D

γ(d) = 0 ,

we have

lim
N→+∞

1

N

N−1∑
n=0

un = 0 .

(Note that we obtain an equivalent definition if we replace lim by limsup

in (12). See Proposition 2.5.)

Definition 4. An infinite set of integers D is FC+ if every positive mea-

sure σ on the torus T having the property that lim
|d|→+∞,d∈D

σ̂(d) = 0 is

continuous.

This definition appears in [Kam-MF] and in [Bou]. We remark that in

[Pe], Peres uses the notation FC+ for sets satisfying the apparently weaker

Condition (S3) of Theorem 1.8. We ask in Question 1 whether Condition

(S3) is actually strictly weaker than Condition FC+.

Theorem 2.1. The notions of enhanced vdC set and FC+ set coincide.

Proof. The proof of this proposition follows the lines of the spectral char-

acterization of vdC sets. In order to prove that FC+ sets are enhanced

vdC, we use the following lemma, which is the one parameter version of

Lemma 1.9.
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Lemma 2.2. Let (un)n∈N be a bounded sequence of complex numbers and

(Nj)j∈N be an increasing sequence of positive integers. If for all h ∈ N

γ(h) := lim
j→+∞

1

Nj

Nj∑
n=1

un+hun exists ,

then there exists a positive measure σ on the torus such that, for all h ∈ N,

σ̂(h) = γ(h)

and this measure satisfies

lim sup
j→+∞

1

Nj

∣∣∣∣∣∣
Nj∑

n=1

un

∣∣∣∣∣∣ ≤√σ ({0}) .

Let D be an FC+ set. Let (un) be a bounded sequence of complex numbers

such that

lim
|d|→+∞,d∈D

lim
N→+∞

1

N

N∑
n=1

un+dun = 0 .

There exists an increasing sequence (Nj)j∈N of positive integers such that

• lim
j→+∞

1

Nj

∣∣∣∣∣∣
Nj∑

n=1

un

∣∣∣∣∣∣ = lim sup
N→+∞

1

N

∣∣∣∣∣
N∑

n=1

un

∣∣∣∣∣ ,
• ∀h ∈ N, γ(h) := lim

j→+∞

1

Nj

Nj∑
n=1

un+hun exists .

The map γ is the Fourier transform of a positive measure σ on the torus.

We have lim|d|→+∞,d∈D σ̂(d) = 0. By hypothesis, this forces the measure σ

to be continuous. We have σ ({0}) = 0 and, using the above lemma, we

obtain the Cesàro convergence of (un) to zero. The set D is enhanced vdC.

In order to prove that any enhanced vdC set is FC+, the arguments of

Ruzsa ([Ruz]) can be adapted and we use the following probabilistic lemmas.

Lemma 2.3. Let (θn)n∈N be an i.i.d. sequence of random variables with val-

ues in the torus T. We define a new sequence of complex random variables

(Yn) by

Yn := e (rθm) ,

if n = m2 + r, with 0 ≤ r ≤ 2m.
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We have, almost surely,

lim
N→+∞

1

N

N∑
n=1

Yn = P (θ = 0) .

Lemma 2.4. Let (Xn)n∈N be an i.i.d. sequence of bounded complex random

variables. We define a new sequence of complex random variables (Zn) by

Zn := Xm

if n = m2 + r, with 0 ≤ r ≤ 2m.

We have, almost surely,

lim
N→+∞

1

N

N∑
n=1

Zn = E [X] .

Let D be an enhanced vdC set, and let σ be a positive measure on T.

We suppose that the Fourier coefficient σ̂(d) goes to zero when d goes to

infinity in D. Without loss of generality, we can suppose that σ is a prob-

ability measure, and we consider a sequence of independent random vari-

ables (θn) of law σ. We define, as in Lemma 2.3, the family of complex

random variables (Yn). Let us fix h ∈ N. We define Zn = e(hθm) for

n = m2 + r and 0 ≤ r ≤ 2m. By Lemma 2.4 we know that, almost surely,

limN→+∞
1
N

∑N
n=1 Zn = E [e(hθ)]. Furthermore, the set of positive integers

n such that Yn+hYn = Zn has full density. Thus, almost surely,

lim
N→+∞

1

N

N∑
n=1

Yn+hYn = E [e(hθ)] .

This last quantity is exactly σ̂(h) and, by hypothesis, it goes to zero when

h goes to infinity in D. Since the set D is enhanced vdC, we conclude that

lim
N→+∞

1

N

N∑
n=1

Yn = 0 .

By Lemma 2.3, this means that P (θ = 0) = 0, that is to say σ ({0}) = 0.

The same argument can be applied to all the images of σ by translations

of the torus, and we conclude that σ is a continuous measure. Hence D is

FC+. �

The spectral characterization makes it possible to give an alternative

definition of enhanced vdC sets.



VAN DER CORPUT SETS IN Zd 35

Proposition 2.5. An infinite set of integers D is enhanced vdC if and only

if for any sequence (un)n∈Z of complex numbers of modulus 1 such that

lim
|d|→+∞,d∈D

lim sup
N→+∞

∣∣∣∣∣ 1

N

N−1∑
n=0

un+dun

∣∣∣∣∣ = 0 ,

one has

lim
N→+∞

1

N

N−1∑
n=0

un = 0 .

2.3. Some properties of enhanced vdC sets. From the spectral char-

acterization we deduce various corollaries. We omit detailed proofs since

they are similar to proofs of the corresponding statements for vdC sets (see

Subsection 1.2.3).

Corollary 2.6 (Ramsey property). If D = D1 ∪ D2 is an enhanced vdC

set, then at least one of the sets D1 or D2 is enhanced vdC.

Corollary 2.7 (Sets of differences). Let D ⊂ N. Suppose that, for all n > 0

there exist a1 < a2 < . . . < an such that {aj − ai : 1 ≤ i < j ≤ n} ⊂ D.

Then D is an enhanced vdC set.

Corollary 2.8 (Linear transformations). Let d and e be positive integers,

and L be a linear transformation from Zd into Ze (i.e. an e×d matrix with

integers entries).

(1) If D is an enhanced vdC set in Zd and if 0 /∈ L(D), then L(D) is

an enhanced vdC set in Ze.

(2) Let D ⊂ Zd. If the linear map L is one to one, and if L(D) is an

enhanced vdC set in Ze, then D is an enhanced vdC set in Zd.

Corollary 2.9 (Lattices are (enhanced vdC)*). If G is any d-dimensional

lattice in Zd, and if D is an enhanced vdC set in Zd, then G ∩ D is an

enhanced vdC set in Zd.

2.4. Questions.

Question 1. Our intuition is that there exist vdC sets which are not en-

hanced vdC. Is it true? Is it possible to exhibit a particular example?
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Question 2. We know (Corollary 1.31) that the notions of vdC set for

families in a Hilbert space and of vdC set coincide. Is the analogous fact

true for enhanced vdC sets?

Question 3. We know (Corollary 1.24) that any vdC set can be parti-

tionned into infinitely many vdC sets. Is the analogous fact true for en-

hanced vdC sets?

Question 4. We know (Corollary 1.29) that the Cartesian product of two

vdC sets is a vdC set. Is the analogous fact true for enhanced vdC sets?

2.5. Examples.

2.5.1. Ergodic sequences. A sequence of integers (dn)n∈N is called ergodic

if the following mean ergodic theorem is valid : given an ergodic m.p.s.

(X,A, µ, T ) and f ∈ L2(µ), the averages 1
N

∑N
n=1 f ◦ T dn converge in L2 to∫

f dµ when N goes to infinity.

It follows from the spectral theorem that the sequence (dn) is ergodic if

and only if, for all x ∈ R \ Z,

(13) lim
N→+∞

1

N

N∑
n=1

e(dnx) = 0 .

Proposition 2.10. Any ergodic sequence is an enhanced vdC sequence.

Proof. Let (dn) be an ergodic sequence and σ a finite measure on the torus.

Using the dominated convergence theorem we deduce from (13) that

lim
N→+∞

1

N

N∑
n=1

σ̂(dn) = σ ({0}) .

Hence it is immediate that the sequence (dn) is FC+. �

Propostion 2.10 can be used to exhibit many examples of enhanced vdC

sets.

(i) In [Bos-Ko-Q-Wi] the authors consider sequences of the form dn =

[a(n)] where the function a belongs to some Hardy field. They characterize

those of them which are ergodic. See Theorems 3.2, 3.3, 3.4, 3.5 and 3.8 in

[Bos-Ko-Q-Wi]. Here are some examples of ergodic sequences, coming from

[Bos-Ko-Q-Wi].
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• {[bnc] : n ∈ N}, where c is irrational > 1 and b 6= 0.

• {[bnc + dna] : n ∈ N}, where b, d 6= 0, b/d is irrational, c ≥ 1, a > 0

and a 6= c.

• {[bnc(log n)d] : n ∈ N}, where b 6= 0, c is irrational > 1 and d is any

number.

• {[bnc(log n)d] : n ∈ N}, where b 6= 0, c is rational > 1 and d 6= 0.

• {[bnc + d(log n)a] : n ∈ N}, where b, d 6= 0, c ≥ 1, and a > 1.

The paper [Bos-Ko-Q-Wi] contains also interesting examples of non er-

godic sequences. For example the sequence [
√

2n3/2 + log n] is not ergodic,

whereas sequences [
√

2n3/2 + (log n)2] and [
√

2nπ/2 + log n] are ergodic. Is

{[
√

2n3/2 +log n] : n ∈ N} an enhanced vdC set ? We leave this as an open

question.

(ii) In [Berg-Ha2] a mean ergodic theorem along a tempered sequence

is proved. More precisely, it is shown (see Theorem 8.1 in [Berg-Ha2])

that, for any tempered function9 g, the sequence ([g(n)]) is ergodic. This

gives a new large class of examples. For example, the function g(x) =

xa
(
cos((log x)b) + 2

)
, where a > 0 and 0 < b < 1 is a tempered function

(which does not belong to any Hardy field).

(iii) A different type of example is provided by so-called “automatic se-

quences”. Characterizations of ergodic automatic sequences are well known

(see for example [Ma]). A typical example of such a sequence is the Morse

sequence (0, 3, 5, 6, 9, 10, . . .), which is the sequence of integers the sum of

whose digits in base two is even.

(iv) As a consequence of the Wiener-Wintner ergodic theorem, we know

that for any weakly mixing m.p.s. (X,A, µ, T ) and for any A ∈ A with

µ(A) > 0, for almost every x ∈ X the sequence {n ∈ N : T nx ∈ A} is

ergodic.

In [Lem-Les-Pa-V-Wi] other types of random sequences that are almost

surely ergodic are constructed, namely sequences of the form
(∑N−1

n=0 f ◦ T n
)

9A real valued function g defined on a half line [α, +∞) is called a tempered function
if there exist k ∈ N such that g is k times continuously differentiable, g(k)(x) tends
monotonically to zero as x → +∞, and limx→+∞ x

∣∣g(k)(x)
∣∣ = +∞. This notion is

classical in the theory of uniform distribution, see [Ci].
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where f is an integer valued function on a m.p.s. (X,A, µ, T ), under con-

ditions on the m.p.s. and the function.

2.5.2. Polynomial sequences. The examples given in Subsection 1.3.2 not

only have the ordinary vdC-property, but they have also the enhanced vdC

property (in Zd). We restrict ourselves here to the one-parameter case.

The following criterion, which generalizes Proposition 2.10, is useful in

obtaining additional interesting examples.

Proposition 2.11. Let D = (dn)n∈N be a sequence of nonzero integers.

Suppose that

(i) For all q ∈ N, D ∩ qZ has positive upper density in D;

(ii) For all irrational real numbers x, the sequence (dnx) is uniformly

distributed mod 1.

Then D is an enhanced vdC sequence.

Proof. Fix q ∈ N. There exists an increasing sequence of positive integers(
N

(q)
k

)
k∈N

such that

(14) lim inf
k→+∞

1

N
(q)
k

#
{

n ∈
[
1, N

(q)
k

]
: q! divides dn

}
> 0 .

Let us define a family of uniformly bounded trigonometric polynomials

with spectrum contained in D, by the formula

(15) Pq,k(x) :=
1

#{n ≤ N
(q)
k , q!|dn}

∑
n≤N

(q)
k , q!|dn

e (dnx) .

Replacing if necessary the sequence
(
N

(q)
k

)
by a subsequence, we can

suppose that, for all rational numbers y, the sequence (Pq,k(y)) converges

as k → +∞.

Consider now an irrational real number x. We have

Pq,k(x) =
1

#{n ≤ N
(q)
k , q!|dn}

∑
n≤N

(q)
k

e (dnx)
1

q!

q!−1∑
j=0

e(dnj/q!)

=
N

(q)
k

#{n ≤ N
(q)
k , q!|dn}

1

q!

q!−1∑
j=0

1

N
(q)
k

∑
n≤N

(q)
k

e

(
dn

(
x +

j

q!

))
.

Using (14) and hypothesis (ii), we see that limk→+∞ Pq,k(x) = 0.
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We denote by gq the pointwise limit of the sequence (Pk,q)k∈N. For all

rational numbers y, we have Pq,k(y) = 1 for all large enough q.

Letting q go to infinity, we see that the sequence (gq) converges everywhere

to the characteristic function of the rationals. Applying the dominated

convergence theorem twice, we observe that, for all finite measures σ on T,

lim
q→+∞

lim
k→+∞

∫
T
Pq,k dσ = σ (Q/Z) .

Let σ be a positive measure on T such that limn→+∞ σ̂(dn) = 0. From

(15), we deduce that limk→+∞
∫

T Pq,k dσ = 0, hence σ (Q/Z) = 0, and in

particular σ({0}) = 0.

We have proved that D is an FC+ set.

�

From Proposition 2.11, one can deduce the following (not too surprising)

corollaries.

Corollary 2.12. Let p be a polynomial with integer coefficients. The se-

quence (p(n))n∈N is enhanced vdC if and only if for all positive integers q,

there exists n ≥ 1 such that q divides p(n).

Corollary 2.13. Let f be a (non zero) polynomial with integer coefficients

and zero constant term. Sequences {(f(p − 1)) : p ∈ P} and {(f(p + 1)) :

p ∈ P} are enhanced vdC.

Let us describe one more family of examples, coming from generalized

polynomials10, dealt with in [Berg-Ha]. Let q be an integer valued gener-

alized polynomial. Corollary 3.5 of [Berg-Ha] gives a sufficient condition

for the sequence (q(n)) to be an averaging sequence of recurrence and this

condition is the same as the hypothesis of our Proposition 2.11. In partic-

ular averaging sequences of recurrence in [Berg-Ha] (see page 106), provide

examples of enhanced vdC sets. Here are two of these examples.

• For α1, α2, . . . , αk non zero real numbers and k ≥ 3,

{[α1n][α2n] . . . [αkn] : n ∈ N} is an enhanced vdC-set.

10The class of polynomial functions is obtained, starting from the constants and the
identity function x 7→ x, by the use of addition and multiplication. To define the class of
generalized polynomials just add the greatest integer function as an allowed operation.
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• For α a non zero real number, {[αn]n2 : n ∈ N} is an enhanced

vdC-set.

3. Van der Corput sets and sets of recurrence

In this section we discuss some links between the vdC property and re-

currence in dynamical systems.

3.1. Sets of strong recurrence. Recall that a subset D of Z is a set

of recurrence if, given any m.p.s. (X,A, µ, T ) and any subset A in A of

positive µ-measure, there exists d ∈ D, d 6= 0 such that µ
(
A ∩ T dA

)
> 0.

Definition 5. An infinite subset D of Z is a set of strong recurrence if,

given any m.p.s. (X,A, µ, T ) and any subset A in A of positive µ-measure,

lim sup
d∈D,|d|→+∞

µ
(
A ∩ T dA

)
> 0 .

One of the reasons to be interested in sets of strong recurrence is that

they naturally appear in combinatorial applications. See for example The-

orem 4.1 in [Berg.1].

Alan Forrest ([Fo]) gave an example of a set of recurrence which is not a

set of strong recurrence.

3.2. VdC sets and sets of recurrence. Recall once more the definition

of a vdC set (cf. Definition 2).

A set of non zero integers D is a van der Corput set if, for any sequence

(un)n∈N of complex numbers of modulus 1 such that

∀d ∈ D, γ(d) := lim
N→+∞

1

N

N∑
n=1

un+dun = 0 ,

we have

lim
N→+∞

1

N

N∑
n=1

un = 0 .

We know that we obtain an equivalent definition if we replace in the last

sentence “any sequence (un)n∈N of complex numbers of modulus 1” by “any

bounded sequence (un)n∈N of complex numbers”. (This is a consequence

of the generalized vdC inequality, as Corollary 1.31 follows from Proposi-

tion 1.30.)
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A set D is a set of recurrence if and only if it is intersective, namely

satisfies the following condition: for any set of integers E of positive upper

density, one has D ∩ (E − E) 6= ∅. This fact is well known (see [BM] and

[Berg.1]). This fact is utilized in the proof of the following theorem.

Theorem 3.1. Let D ⊂ Z \ {0}. The set D is a set of recurrence if and

only if it satisfies the following van der Corput’s type property : for any

sequence (un)n∈N of 0’s and 1’s such that

∀d ∈ D, γ(d) := lim
N→+∞

1

N

N∑
n=1

un+dun = 0

we have

lim
N→+∞

1

N

N∑
n=1

un = 0 .

It is an exercise to verify that we obtain an equivalent statement if we

replace in the preceding sentence “for any sequence (un)n∈N of 0’s and 1’s”

by “for any bounded sequence (un)n∈N of positive real numbers”.

As a consequence of Theorem 3.1, we obtain the well known fact that any

van der Corput set is a set of recurrence ([Kam-MF]). Answering a question

of Ruzsa, Bourgain proved in [Bou] that there exist sets of recurrence which

are not vdC.

Proof of Theorem 3.1. If D is not a set of recurrence, then there exists a

set E ⊂ N such that

d(E) := lim sup
N→+∞

1

N
|E ∩ [1, N ]| > 0 and D ∩ (E − E) = ∅ .

If we consider the sequence (un) defined by

un = 1 if n ∈ E , un = 0 if n /∈ E ,

we see that

∀d ∈ D,
1

N

N∑
n=1

un+dun = 0 , but lim sup
1

N

N∑
n=1

un > 0 .

This proves the “if” part of the Theorem.

Suppose now that D is a set of recurrence. The fact that if E is a set

of positive upper density, then there exists d ∈ D such that {n ∈ E :

n + d ∈ E} 6= ∅ is a consequence of Furstenberg’s correspondence principle.
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But this principle gives more11 : there exists d ∈ D such that the set

{n ∈ E : n + d ∈ E} has positive upper density.

Hence if a sequence (un) is the indicator of a set E of positive upper

density, then there exists d ∈ D such that

lim sup
N→+∞

1

N

N∑
n=1

un+dun > 0 .

�

The similarity and the distinction between the recurrence property and

the vdC property is also illustrated by the next proposition (to be compared

with the spectral characterization of vdC sets - Theorem 1.8).

If (X,A, µ, T ) is a m.p.s. and if A ∈ A, we denote by σA the spectral

measure of A, which is defined by µ (A ∩ T−nA) = σ̂A(n), for any n ∈ Z. If

f is a square integrable function on X, we denote by σf the spectral measure

of f , which is defined by
∫

f ◦T n ·f dµ = σ̂f (n) , for any n ∈ Z. (Of course,

we have σA = σ1A
.)

Proposition 3.2. Let D ⊂ Z \ {0}. The set D is a set of recurrence if and

only if one of the two equivalent following properties is satisfied:

• In any ergodic m.p.s., if the Fourier transform σ̂A of a set A vanishes

on D, then σA = 0.

• In any ergodic m.p.s., if the Fourier transform σ̂f of a bounded pos-

itive function f vanishes on D, then σf = 0.

Proof. Suppose that D is not a set of recurrence. There exists an ergodic

m.p.s. (X,A, µ, T ) and a set A in A, with positive measure such that, for

all d ∈ D, µ
(
A ∩ T dA

)
= 0. The spectral measure σA of the set A satisfies

σ̂(d) = 0 for all d ∈ D, and σA({0}) = µ(A) 6= 0.

Suppose that D is a set of recurrence. Let σf be the spectral measure of

a bounded positive function f . Suppose that for all d ∈ D, σ̂f (d) = 0. By

the ergodic theorem, we have almost surely, for all d ∈ D,

0 =

∫
f · f ◦ T d dµ = lim

N→+∞

1

N

N−1∑
n=0

f ◦ T n · f ◦ T n−d.

11For a statement of Furstenberg’s correspondence principle in the form we utilize
here, see for example Theorem 1.1 in [Berg.3].
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Using Theorem 3.1 (and more precisely the remark immediately following

the theorem), we obtain that, almost surely,

lim
N→+∞

1

N

N−1∑
n=0

f ◦ T n = 0 .

The ergodic theorem gives
∫

f dµ = 0, hence σf = 0. �

3.3. Enhanced vdC sets and strong recurrence. The results in this

subsection indicate that the link between enhanced van der Corput sets

and sets of strong recurrence is parallel to the link between van der Corput

sets and sets of recurrence. However, we don’t know if there exists here any

example of Bourgain’s type ([Bou]). Such an example would give a negative

answer to the following question.

Question 5. (perhaps very difficult) Is every set of strong recurrence an

FC+ set (or, equivalently, an enhanced van der Corput set)?

The following question also comes naturally.

Question 6. Is there any inclusion between the collection of sets of strong

recurrence and the collection of van der Corput sets ?

The next theorem gives an equivalence between strong recurrence and

strong intersectivity (which is defined by (SR2) below).

Theorem 3.3. Let D ⊂ Z. There is equivalence between the following

assertions.

(SR1) D is a set of strong recurrence.

(SR2) For any E ⊂ N of upper density d(E) > 0, there exists ε > 0 and

infinitely many d ∈ D such that

d (E ∩ (E + d)) > ε .

(SR3) For any sequence (un)n∈N of 0’s and 1’s such that

lim
|d|→+∞,d∈D

lim sup
N→+∞

1

N

N∑
n=1

un+dun = 0

we have

lim
N→+∞

1

N

N∑
n=1

un = 0 .
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Proof of Theorem 3.3. It is clear that properties (SR2) and (SR3) are the

same. The fact that (SR1)⇒(SR2) follows directly from Furstenberg’s cor-

respondence principle. The following proof of (SR2)⇒(SR1) has been com-

municated to us by Anthony Quas . Let (X,A, µ, T ) be a m.p.s. and A ∈ A,

with µ(A) > 0. Let (xn)n≥1 be a sequence of random points in X chosen

independently and with the law µ. We consider a new sequence in X defined

by

(yn) := (x1, x2, Tx2, x3, Tx3, T
2x3, x4, . . . , T

3x4, x5, . . . , T
4x5, . . .) ,

and the random set E of numbers n such that yn ∈ A. We claim that,

almost surely,

(16) lim
N→+∞

1

N

N∑
n=1

1E(n) = µ(A) .

This claim can be justified by the following law of large numbers, applied

to the mutually independent random variables

Yk :=

(
1

k

k−1∑
j=0

1A(T jxk)

)
− µ(A) .

Lemma 3.4 (law of large numbers). Let (Yk) be a sequence of random

variables such that supk E(Y 2
k ) < +∞, E(Yk) = 0, and E(YkY`) = 0 if

k 6= `. Almost surely we have

(17) lim
n→+∞

1

n2

n∑
k=1

kYk = 0 .

(The convergence (17) is a direct consequence of some easy L2 estimates.

It can be also deduced from the convergence of ordinary Cesàro averages.

We omit the proof.)

Using the block structure of the sequence (yn) a similar argument gives

(almost surely)

(18) lim
N→+∞

1

N

N∑
n=1

1E(n)1E(n + d) = µ(A ∩ T−dA) .

Assume now that condition (SR2) is satisfied. From (16) we deduce that

d(E) > 0, hence there exists ε > 0 and infinitely many d ∈ D such that

d (E ∩ (E + d)) > ε ,
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which means (by (18)) that µ(A ∩ T−dA) > ε. �

Proposition 3.5. Any enhanced vdC set is a set of strong recurrence.

Proof. Let D ⊂ Z be an enhanced vdC set, let (X,A, µ, T ) be a m.p.s. and

A ∈ A, with µ(A) > 0. There exists a positive measure σ on the torus such

that, for all n ∈ Z,

σ̂(n) = µ(A ∩ T nA) .

This measure has a point mass at zero : σ({0}) ≥ µ(A)2. Since the set D

is FC+, this implies that there exists ε > 0 such that σ̂(d) > ε for infinitely

many d ∈ D. �

3.4. Density notions of vdC sets and sets of recurrence. A new nat-

ural notion of vdC-type set, which we will call density vdC can be obtained

by replacing in Definition 3 the convergence of γ to zero along the set D by

the convergence of γ to zero along a subset of D which has full density in

D. We will associate to it a notion of density FC+ set. These notions are

related to averaging sets of recurrence, as we will see below. Here are the

formal definitions.

If D is an infinite set of integers, we will write D = {dm : m ∈ N}
with the convention that the numbers dm are pairwise distinct and the se-

quence (|dm|) is nondecreasing. Let us recall that for any bounded sequence

(v(dm))m∈N of positive numbers the two following properties are equivalent:

• lim
M→+∞

1

M

M∑
m=1

v(dm) = 0,

• There exists D′ ⊂ D such that

lim
M→+∞

#D′ ∩ [−M, M ]

#D ∩ [−M, M ]
= 1 and lim

m→+∞,dm∈D′
v(dm) = 0.

Definition 6. An infinite set of integers D is a density vdC set if for any

sequence (un)n∈Z of complex numbers of modulus 1 such that

lim
M→+∞

1

M

M∑
m=1

lim sup
N→+∞

∣∣∣∣∣ 1

N

N−1∑
n=0

un+dmun

∣∣∣∣∣ = 0 ,

one has

lim
N→+∞

1

N

N−1∑
n=0

un = 0 .
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(Compare this definition with Proposition 2.5.)

Definition 7. An infinite set of integers D is a density FC+ set if every

positive measure σ on the torus T such that lim
M→+∞

1

M

M∑
m=1

σ̂(dm) = 0 is

continuous.

(Compare with Definition 4. Any density FC+ set is a FC+ set.)

Definition 8. An infinite set of integers D is an averaging set of recurrence

if for any m.p.s. (X,A, µ, T ) and A ∈ A, with µ(A) > 0,

lim sup
M→+∞

1

M

M∑
m=1

µ
(
A ∩ T−dmA

)
> 0 .

Note that this definition differs slightly from the one given in [Berg-Ha]

where the limsup is replaced by a lim.

Any averaging set of recurrence is a set of srong recurrence.

Theorem 3.6. The notions of a density vdC set and of a density FC+ sets

coincide.

The proof of this theorem is similar to the proof of Theorem 2.1 and is

omitted.

From Theorem 3.6 one can deduce for example that the class of density

vdC sets has the Ramsey property.

Of course every density vdC set is an enhanced vdC set. We do not know

whether the reverse implication holds.

Question 7. Do the notions of density vdC set and enhanced vdC set

coincide ?

Questions 2, 3 and 4 that we asked about enhanced vdC sets have obvious

density vdC sets analogues.

Note also that the examples described in Subsection 2.5 can also be uti-

lized to illustrate the notion of density vdC set. In particular we have:

• If (dn) is an increasing ergodic sequence of integers, then the set

{dn} is a density vdC set. This leads to the examples presented in

Subsection 2.5.1.
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• If an increasing sequence of integers (dn) satisfies hypotheses (i) and

(ii) of Proposition 2.11, then the set {dn} is a density vdC set. This

leads to the “polynomial examples” presented in Subsection 2.5.2.

The following proposition establishes a link with recurrence.

Proposition 3.7. Any density vdC set is an averaging set of recurrence.

The proof of this proposition is similar to the proof of Proposition 3.5,

and is omitted.

3.5. Nice vdC sets and nice recurrence. Another natural notion of

recurrence is that of nice recurrence.

Definition 9. A set D of integers is a set of nice recurrence if given any

m.p.s. (X,A, µ, T ) and A ∈ A, with µ(A) > 0, given any ε > 0, we have

µ
(
A ∩ T−dA

)
≥ µ(A)2 − ε ,

for infinitely many d ∈ D.

The following proposition provides an equivalent definition for sets of nice

recurrence.

Proposition 3.8. A set D of integers is a set of nice recurrence if and only

if the following is true:

(C) given any m.p.s. (X,A, µ, T ) and A ∈ A, with µ(A) > 0, given any

ε > 0, there exists d ∈ D, d 6= 0 such that µ
(
A ∩ T−dA

)
≥ µ(A)2 − ε .

Proof. We have to prove that the integer d appearing in Condition (C) can

be chosen arbitrarily large. We suppose that Condition (C) is satisfied. We

consider a m.p.s. (X,A, µ, T ) and a set A ∈ A, with µ(A) > 0. Denote by

(Y,B, ν, S) a Bernoulli scheme on two letters (Y is the set of sequences of

0’s and 1’s, ν is a non trivial product measure, and S is the shift). Let k be

a positive integer and B be the cylinder set in Y of all sequences beginning

by a 1 followed by k 0’s. We have ν(B) > 0, ν(B∩S−dB) = 0 if |d| ≤ k, and

ν(B ∩ S−dB) = ν(B)2 if |d| > k. Applying the hypothesis to the product

T ×S of the two dynamical systems, we affirm that there exists d ∈ D such

that

µ⊗ ν
(
(A×B) ∩ (T × S)−d(A×B)

)
≥
(
µ⊗ ν(A×B)

)2 − εν(B)2 ,
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hence there exists d ∈ D, |d| > k, such that

µ
(
A ∩ T−dA

)
≥ µ(A)2 − ε .

�

The notion of sets of nice recurrence seems to be naturally related to the

following definitions.

Definition 10. An infinite set D of integers is a nice vdC set if, for any

sequence (un)n∈N of complex numbers of modulus one,

lim sup
N→+∞

∣∣∣∣∣ 1

N

N∑
n=1

un

∣∣∣∣∣
2

≤ lim sup
|d|→+∞, d∈D

lim sup
N→+∞

∣∣∣∣∣ 1

N

N∑
n=1

un+dun

∣∣∣∣∣ .

Definition 11. A infinite set D of integers is a nice FC+ set if, for any

positive measure σ on the torus,

σ({0}) ≤ lim sup
|d|→+∞, d∈D

|σ̂(d)| .

The following proposition is similar in spirit to Proposition 3.8.

Proposition 3.9. A set D of integers is a nice FC+ set if and only if the

following is true:

(C’) for any positive measure σ on the torus and any ε > 0, there exists

d ∈ D, d 6= 0 such that |σ̂(d)| > σ({0})− ε .

Proof. We have to prove that the integer d appearing in Condition (C’) can

be chosen arbitrarily large. We suppose that Condition (C’) is satisfied.

Let k be a positive integer. There exists a positive measure ρ on the torus

such that ρ̂(n) = 0 if |n| ≤ k and ρ̂(n) = ρ({0}) > 0 if |n| > k. (Choose

the spectral measure of the indicator of the set B in the Bernoulli scheme

considered in the proof of Proposition 3.8.) We apply our hypothesis to the

measure σ ? ρ. There exists d ∈ D such that

|σ̂(d)ρ̂(d)| = |σ̂ ? ρ(d)| > σ ? ρ({0})− ερ({0}) ≥ σ({0})ρ({0})− ερ({0}) ,

hence there exists d ∈ D, |d| > k, such that

|σ̂(d)| > σ({0})− ε .

�
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Question 8. What are the implications between the three properties : nice

vdC, nice FC+ and nice recurrence ?

Here is what we know:

(N1) Nice FC+ ⇒ nice recurrence.

(N2) Nice FC+ ⇒ nice vdC.

(N3) Nice vdC ⇒ a weak form of nice recurrence.

Here is what this last assertion means. Let D is a nice vdC set; for

any probability measure σ on the torus,

σ({0})2 ≤ lim sup
|d|→∞,d∈D

|σ̂(d)| ,

and, consequently, we have the following recurrence property:

given any m.p.s. (X,A, µ, T ) and A ∈ A, with µ(A) > 0, given any

ε > 0, we have

(19) µ
(
A ∩ T−dA

)
≥ µ(A)4 − ε ,

for infinitely many d ∈ D.

(Note that the exponent 4 in (19) is not a typo. It would be “nice”

to better understand the meaning of inequality (19).)

The proof of (N1) is a direct application of the spectral theorem : let

(X,A, µ, T ) be a m.p.s. and A ∈ A. There exists a positive measure σ on

the torus such that

∀n ∈ N, σ̂(n) = µ
(
A ∩ T−nA

)
and σ({0}) =

∫
A

µ (A|I) dµ ≥ µ(A)2 .

The proof of (N2) follows the line of the spectral characterization de-

scribed in Subsections 1.2.2 and 2.2. Let (un) be a sequence of complex

numbers of modulus one and

M := lim sup
|d|→∞,d∈D

lim sup
N→+∞

∣∣∣∣∣ 1

N

N∑
n=1

un+dun

∣∣∣∣∣ .

There exists an increasing sequence (Nj)j≥0 of positive integers such that

• lim
j→+∞

1

Nj

∣∣∣∣∣∣
Nj∑

n=1

un

∣∣∣∣∣∣ = lim sup
N→+∞

1

N

∣∣∣∣∣
N∑

n=1

un

∣∣∣∣∣ ,
• ∀h ∈ Z, γ(h) := lim

j→+∞

1

Nj

Nj∑
n=1

un+hun exists .
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The map γ is the Fourier transform of a positive measure σ on the torus.

Suppose that D is a nice vdC set. By Lemma 2.2 we have

lim sup
N→+∞

∣∣∣∣∣ 1

N

N∑
n=1

un

∣∣∣∣∣
2

≤ σ({0}) ≤ lim sup
|d|→∞,d∈D

|σ̂(d)| ≤ M .

Claim (N3) can be proved using Lemmas 2.3 and 2.4. Following the

method described in Subsection 2.2, we have

lim
N→+∞

1

N

N∑
n=1

Yn+hYn = σ̂(h) and lim
N→+∞

1

N

N∑
n=1

Yn = σ({0}) .

Hence, if D is nice vdC, then,

σ({0})2 ≤ lim sup
|d|→∞,d∈D

|σ̂(d)| .

And the claim (N3) is verified.

One more natural question concerns the Ramsey property.

Using product dynamical systems, it is easy to verify that the class of

sets of recurrence and the class of sets of strong recurrence have the Ramsey

property. We saw that the class of vdC sets and the class of enhanced vdC

sets have this property. The other notions of vdC sets and of recurrence

could be studied from this point of view.

Question 9. Do the class of sets of nice recurrence and the class of nice

vdC sets have the Ramsey property ?

Note that the class of sets of nice recurrence has the Ramsey property if

and only if the following property of simultaneous nice recurrence is valid :

given any set D ⊂ Z \ {0} of nice recurrence, any m.p.s. (X,A, µ, T ), any

sets A and B in A, and any ε > 0, there exists d ∈ D such that

µ
(
A ∩ T−dA

)
> µ(A)2 − ε and µ

(
B ∩ T−dB

)
> µ(B)2 − ε .

4. Variations on the averaging method

In this short final section we provide additional remarks on some of the

possible variations on the vdC theme which are related to different notions

of averaging which naturally appear in the theory of uniform distribution

and ergodic theory. For simplicity and in order to be able to more easily

stress the important points, we restrict our discussion to subsets of Z. We
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do want, however, to remark that many of the results in this paper can

be extended to much a wider setup involving general groups and various

methods of summation. (See for example [Pe], where some directions of

extensions are indicated.)

4.1. Well distribution. Recall that a sequence (xn)n∈N of real numbers is

well distributed mod 1 if, for any continuous function f on the torus T, we

have

lim
N−M→+∞

1

N −M

N−1∑
n=M

f(xn) =

∫
T
f(t) dt.

To this notion of well distribution is naturally associated a notion of van

der Corput set. Let us call it w-vdC set: a set D of positive integers is a

w-vdC set if, for any sequence (un)n∈N of complex numbers of modulus 1

such that

∀d ∈ D, γ(d) := lim
N−M→+∞

1

N −M

N−1∑
n=M

un+dun = 0

we have

lim
N−M→+∞

1

N −M

N−1∑
n=M

un = 0 .

The spectral characterization of vdC sets given in Theorem 1.8 immedi-

ately implies that any vdC set is a w-vdC set.

But the proof, coming from Ruzsa ([Ruz]), of the fact that spectral

properties (S1) and (S2) are necessary for vdC sets cannot be applied

to w-vdC. This comes from the fact that the law of large numbers fails

dramatically when we replace averages 1/N
∑

0≤n<N by moving averages

1/(N −M)
∑

M≤n<N .

Question 10. Is every w-vdC set a vdC set ?

4.2. Følner sequences. Let F = (FN)N≥1 be a Følner sequence in the

space of parameters (which in this section is Z). Let us say that a real

sequence (xn)n∈Z is F -u.d. mod 1 if, for any continuous function f on the
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torus T, we have

(20) lim
N→+∞

1

|FN |
∑

n∈FN

f(xn) =

∫
T
f(x) dx .

(We say that the sequence (f(xn)) converges to the integral of f in the

F -sense when (20) is satisfied.)

One can naturally define also the notion of F -vdC. A set D of non zero

integers is F -vdC set if any sequence (xn) such that, for all d ∈ D, the

sequence xn+d − xn is F -u.d. mod 1, is itself F -u.d. mod 1.

In order to compare the notion of F -vdC set with the notion of vdC set,

it would be of interest to obtain a spectral characterization of F -vdC sets

similar to Theorem 1.8.

Note that the sequence of correlations

γ(h) := lim sup
N→+∞

1

|FN |
∑

n∈FN

un+hun

is positive-definite, and the Følner property is exactly what is needed in

order to prove a result similar to Lemma 1.9. An argument similar to the

one used in the proof of implication (S2)⇒(S3) allows one to establish the

fact that any vdC-set is an F -vdC set.

In the other direction we don’t know any general result, but, keeping in

mind the argument we used in the proof of Theorems 1.8 and 2.1, we can

state the following sufficient condition : suppose that for any probability

measure on the torus T there exists a sequence (Yn)n∈N of complex numbers

of modulus one such that, for all h ∈ Z,

lim
N→+∞

1

|FN |
∑

n∈FN

Yn = σ({0}) and lim
N→+∞

1

|FN |
∑

n∈FN

Yn+hYn = σ̂(h);

then any F -vdC set is a vdC set.

We have in particular the following result (and its multiparameter exten-

sions).

Proposition 4.1. If a Følner sequence F is such that any bounded sequence

which converges in the Cesàro sense also converges in the F -sense12 then

the notions of vdC set and F -vdC set coincide.

12If any bounded sequence which converges in the Cesàro sense also converges in the
F -sense then the limits in the Cesàro sense and in the F -sense coincide (when they exist).
This fact is left as an exercise for the reader.
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5. Appendix. A remark on divisibility of polynomials

Definitions.

• A polynomial p ∈ Z[X] is divisible by an integer d if there exits

n ∈ Z such that d divides p(n).

• A polynomial p ∈ Z[X] is divisible if it is divisible by any integer.

• Polynomials p1, p2, . . . , pr ∈ Z[X] are simultaneously divisible by an

integer d if there exists n ∈ Z such that d divides pi(n), 1 ≤ i ≤ r.

• Polynomials p1, p2, . . . , pr ∈ Z[X] are simultaneously divisible if they

are simultaneously divisible by any integer.

(Trivial examples : if p(0) = 0 then p is divisible ; the polynomial 2X +1

is not divisible ; polynomials X and X + 1 are divisible but not simultane-

ously divisible.)

Known facts. Let p1, p2, . . . , pr ∈ Z[X]. There is equivalence between the

following assertions

• The sequence (p1(n), p2(n), . . . , pr(n))n∈N is a Poincaré recurrence

sequence for finite measure preserving Zr actions;

• The sequence (p1(n), p2(n), . . . , pr(n))n∈N is a van der Corput se-

quence in Zr;

• p1, p2, . . . , pr are simultaneously divisible.

In [Berg-Lei-Les], we prove that the simultaneous divisibility of polyno-

mials p1, p2, . . . , pr is also a necessary and sufficient condition for multiple

recurrence of the type

µ(A ∩ T p1(n)A ∩ T p2(n)A ∩ . . . ∩ T pr(n)A) > 0 .

Claim. The simultaneous divisibility of a family of polynomials is a prop-

erty strictly stronger than the divisibility of any of their linear combinations.

In other words, there exist two polynomials p and q in Z[X] such that, for

any integers a and b, the polynomial ap+bq is divisible but the polynomials

p and q are not simultaneously divisible.
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Here are two facts which seem to go against the previous claim. Let

p, q ∈ Z[X].

• Let d be a prime number. If for all pairs (a, b) of integers, the

polynomial ap+ bq is divisible by d, then p and q are simultaneously

divisible by d.

• Let d and e be two relatively prime integers. If p and q are simulta-

neously divisible by d and simultaneously divisible by e, then they

are simultaneously divisible by de.

These facts indicate that the key to the distinction between the simultaneous

divisibility and the divisibility of linear combinations of polynomials lies

with the divisibility by dk where d is a prime number and k > 1.

Proof of the Claim. Let us show that the polynomials

p(X) = (2 + X2 + X3)(1 + 2X) and q(X) = X(1 + X)(1 + 2X)

are not simultaneously divisible by 4 although the polynomial ap + bq is

divisible for all a, b in Z.

Modulo 4, we have p(0) = 2 and q(0) = 0, p(1) = 0 and q(1) = 2,

p(2) = q(2) = 2, p(3) = 2 and q(3) = 0. This shows that p and q are not

simultaneously divisible by 4.

Let us fix a and b in Z and show that ap + bq is divisible. It is of

course enough to consider the case when a and b are relatively prime. The

divisibility of ap + bq by odd integers is directly given by the presence of

the common factor 1 + 2X. Let us examine divisibility by the powers of 2.

We will distinguish the case when one of the two numbers a and b is even,

and the case when both are odd.

First case : a or b is even (and the other is odd). Let us show by induction

on k that, for all k ≥ 0, there exists an odd number nk such that 2k |
ap(nk)+ bq(nk). We can choose any number n0, and n1 = 1 is OK. Suppose

that the result is true for an integer k ≥ 1. Define ` := max{i ≥ k : 2i |
ap(nk) + bq(nk)}. We have ` ≥ k and ap(nk) + bq(nk) = 2`α, with α odd.

Define a new odd number by nk+1 = nk + 2`. Using

ap(X) + bq(X) = 2aX4 + (3a + 2b)X3 + (a + 3b)X2 + (4a + b)X + 2a ,
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we note that, modulo 2`+1,

ap(nk+1) + bq(nk+1) =

ap(nk)+bq(nk)+2a(4·2`n3
k)+(3a+2b)(3·2`n2

k)+(a+3b)(2·2`nk)+(4a+b)2` =

2`α + a2`n2
k + 2`b = 2`(α + an2

k + b) ,

Since α + an2
k + b is even, this shows that 2`+1 | ap(nk+1) + bq(nk+1). We

have ` + 1 ≥ k + 1, and nk+1 is odd. This concludes the induction.

Second case : a and b are odd. Let us show by induction on k that, for

all k ≥ 0, there exists an even number nk such that 2k | ap(nk) + bq(nk).

We can choose any number n0, and n1 = 2 is OK. Suppose that the result

is true for an integer k ≥ 1. We define ` and nk+1 = nk + 2` as in the first

case, but now the number nk is even, hence we have still

ap(nk+1) + bq(nk+1) = 2`(α + an2
k + b) = 0 modulo 2`+1 ,

and the induction process works.

In any case, we have proved that ap + bq is divisible by all the powers of

2. We know also that the polynomial ap+bq is divisible by any odd integer.

Let us prove that it is divisible by any integer 2kα, where α is odd. We

write ap(X) + bq(X) = (2X + 1)r(X). We know that 2k | r(nk). By the

Bézout identity, there exist integers u and v such that

2nk + 1 = −u2k+1 + vα .

We have α | 2(nk + 2ku) + 1 and 2k | r(nk + 2ku), hence

2kα | ap(nk + 2ku) + bq(nk + 2ku) .

This proves that the polynomial ap + bq is divisible.
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Theorem, Memoirs of the AMS 695, 2000.

[BM] A. Bertrand-Mathis, Ensembles intersectifs et récurrence de Poincaré, Israel J.
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[Rh] G. Rhin Sur la répartition modulo 1 des suites f(p), Acta Arith. 23, p.217–248,
1973.

[Rud] W. Rudin, Fourier Analysis on Groups, Wiley, 1962.
[Ruz] I.Z. Ruzsa, Connections between the uniform distribution of a sequence and its

differences, Topics in classical number theory, Vol. I, II (Budapest, 1981), p.1419-
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[S] A. Sàrközy, On difference sets of sequences of integers. I. Acta Math. Acad. Sci.
Hungar. 31, p.125-149, 1978.

[Z] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math.
Soc. 20, p.53-97, 2007.

[vdC] G. van der Corput, Diophantische Ungleichungen. I. Zur Gleichverteilung modulo
Eins, Acta Math. 56, p.373-456, 1931.
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