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1 Introduction

The topic of these notes is the interplay between ergodic theory, some dio-
phantine problems, and the area of combinatorics called Ramsey Theory.



The first section deals with some classical and well-known diophantine
results and their connections with topological and measure-preserving dy-
namics. Some of the proofs offered in Section 2 are very elementary, while
some use ergodic-theoretic machinery which is actually much more sophis-
ticated than the results it gives us as applications. This should not in any
way discourage the reader since the author’s intention was not to produce
proofs that are as elementary as possible (see Appendix), but to show how
intertwined the different and seemingly remote areas of mathematics may be.

The combinatorial results discussed in Sections 3, 4, and 5 are more
recent, but they are as beautiful and, in our opinion, as important as the
diophantine facts dealt with in Section 2.

It was H. Furstenberg, who, with his publication in 1977 of the ergodic-
theoretic proof of Szemerédi’s theorem (see Section 4), established the link
between Ramsey theory and the theory of multiple recurrence. Since then,
many open problems of combinatorics and number theory have been solved
by the methods of ergodic theory and topological dynamics (see for example,
[15], [16], [17], [5], and [6]). As it happens, the developments brought to light
many new and intriguing problems which are of interest to both the ergodic
theory and combinatorics. (See for example, Section 5 in [3].)

The author hopes that after reading these notes, the reader will develop
enough of an interest and curiosity to undertake an in-depth study of Ergodic
Ramsey Theory. Such a reader is especially encouraged to look into the book
[13] and the recent survey [3].

We conclude this introduction with some general terminological and no-
tational remarks.

An abstract dynamical system is a space endowed with some structure and
a group or a semigroup of its self-mappings which preserves this structure.
Topological dynamics concerns itself with compact metric spaces and semi-
groups of continuous mappings. Measure-preserving dynamics, or ergodic
theory, works with measure spaces and semigroups of measure-preserving
transformations.

Because we are going to be mostly interested in applications to and con-
nections with number theory and combinatorics, the semigroups of structure-
preserving mappings we encounter will usually be countable and abelian.
However, some material in Section 4 will be developed for the general set-up
of countable amenable groups, partly because confining ourselves to abelian
groups would not make the presentation easier and partly because countable
amenable groups seem to be the rightly general object for developing Ergodic



Ramsey Theory.

We shall denote topological dynamical systems by (X, {7} }4ecq) or (X, G)
where X will always mean a compact metric space on which a (countable)
semigroup G' acts by continuous mappings T,,¢9 € G. In case G is either N
or Z (i.e. G is generated by a single continuous mapping 7 : X — X), we
shall denote the topological dynamical system by (X, 7).

Similarly, a typical notation for a measure-preserving system will be
(X, B, u, {Ty}gec), where (X, B, p) is a probability measure space and the
transformations 7T}, g € G are measure-preserving (i.e. VA € B and Vg € G
one has (T, A) = pu(A)). Again, if G is generated by a single, not neces-
sarily invertible, measure-preserving transformation 7", we shall denote the
measure-preserving system by (X, B, u,T).

Given a point x € X, its orbit under the action {7}},c¢ is defined by
{T,x}4ec. In both the topological and measure-preserving situations, it is
important to know how the points of an orbit are distributed in X, what can
be said about the orbit of a typical point (in this or that sense), how massive
is the set of semigroup elements g for which the images T,z of the point x
are close to z, etc.

Finally, we want to emphasize the following important point: even in
the purely topological set-up, it is often helpful to introduce an invariant
measure. For example, the Bogoliouboff-Kryloff theorem (see Theorem 2.21
below) tells us that for any topological dynamical system (X,G) with G
abelian (or, more generally, amenable), an invariant measure exists. When
it is unique, the system (X,G) is called uniquely ergodic, and one is then
able to make strong statements about the uniform distribution of orbits in
X. See the discussion at the end of Section 2.

Still another setting that warrants the introduction of an invariant mea-
sure is discussed in Section 4 (see Theorems 4.4 and 4.17).

2 Some Diophantine Problems Related to Po-
lynomials and their Connections with Com-
binatorics and Dynamics

We start this section by giving a simple, “dynamically flavored” proof of the
one-dimensional case of Kronecker’s theorem on diophantine approximation.



Theorem 2.1 ([24], Theorem 438). If 6 is irrational, o arbitrary, and N
and € are positive, then there are integers n and p such that n > N and
Inf —p—a| <e.

Proof. Let T = R/Z be the one-dimensional torus, and let Tp:z — = +
6 (mod 1) be the “rotation” defined by 6. It is easy to see that Kronecker’s
theorem is equivalent to the following.

Statement. The forward semiorbit of 0, {nf(mod 1)},¢n, is dense in T.
Indeed, let o — [a] = o/ € (0,1), and assume without loss of generality
that o/ +¢ < 1. If for some n € N nf (mod 1) € (¢/,& + ¢), then for
p = [nf] + o] one has
O<nd—p—a<e. (1)

Clearly, if the semiorbit {nf (mod 1)},cn is dense, then inequality (1) is
satisfied for infinitely many n € N (in particular for some n > N).

The proof of the Statement is very short. Note that if for some ny € N one
has either 0 < ngf (mod 1) < e or 1 —e < mpf (mod 1) < 1, then the set of
multiples {nngf (mod 1)},en is e-dense in [0,1]. But, any set of M > [1]+1
points in [0, 1] contains a pair of points at a distance < . (Just use the
pigeon hole principle!). Applying this remark to the set {nf (mod 1)}
we find 1 < ny < ny < M so that either 0 < (ny — ny)f (mod 1) < ¢ or
l—e<(nyg—mny)f (mod 1) <1. g

Question. Where exactly was the irrationality of # used in the proof?

Definition 2.2 A set S C R is called relatively dense, or syndetic, if there
exists an L > 0 such that any interval of length L contains at least one
element from S.

Exercise 2.3 Derive from the proof of Kronecker’s theorem above that for
any irrational # and any 0 < a < b < 1theset {n € Z:a <nf (mod 1) < b}
is syndetic.

We now formulate Kronecker’s theorem in its general form. Recall that

the numbers x4, ..., z,, € R are called rationally independent if the relation
m

> nux; = 0 with n; € Q is possible only if n; =0 for all 1 < i < m.

i=1



Theorem 2.4 ([24], Theorem 442). Suppose 6,0, ...,0, are rationally in-
dependent, oy, ao, ..., are arbitrary, and N and € are positive, then there

are integers n > N and p1,pa, ..., P such that |nb, — Py — @y < e (m =
1,2, ... k).

Exercise 2.5 Let f(z) = sinz + sin /22 + siny/3z, z € R.
(i) Prove that f is not periodic.
(ii) Prove that for any € > 0 the set

{TeR:|f(z+7)— f(z)] <eVzeR}

is syndetic.
(iii) Functions satisfying (ii) are called almost periodic. Prove that if f and
g are almost periodic, then f + ¢ is also almost periodic.

Exercise 2.6 Prove that Theorem 2.4 is equivalent to the following:
Statement. Let T = R¥/Z* and for § = (04, ...,0;) € RF define
Tg . Tk — Tk by Tg(ﬂ?l, ,Ik) = (331 + (91, vy T + Ok) (mod 1).

If 64, ...,0;, and 1 are rationally independent, then for any z = (z1,...,x%) €
T* the forward semiorbit {73z },cn is dense in T*.

One can give a proof of Theorem 2.4 by refining the argument of the proof
of Theorem 2.1 above. We prefer to indicate a different and, in a sense, more
fruitful approach.

Let X be a compact metric space and p a probability measure on Bx (the
o-algebra generated by open sets in X). We say that a sequence {z, }nen of
points in X is uniformly distributed with respect to p if for any f € C(X)
one has

| XN
N2 () — | fdp. 2)
n=1 X

A useful observation is that if ® is a countable family of functions in
C(X), such that linear combinations of elements of ® are dense in C(X),
then in order to verify the uniform distribution of a sequence {z,}nen it
suffices to check that (2) holds for any f € ®.

Specifying X = T*, y = m (the Lebesgue measure), and taking into
account the fact that finite linear combinations (with complex coefficients) of
functions of the form e?"“"? where h = (hy, ..., ht) € ZF and t = (t1,...,1;) €
T*, are dense in C(T*), we obtain the following.
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Theorem 2.7 (Weyl criterion). A sequence {x, }neny C TF is uniformly dis-
tributed if and only if for any nonzero h = (hy, ..., hy) € Z* one has

1 & )
— ihen) s 0.
v

N—o0
Exercise 2.8 Give a detailed proof of Theorem 2.7.

Exercise 2.9 Prove that a sequence {Z, }nen C T is uniformly distributed
if and only if for any nonzero h € Z¥, the sequence {(h,z,)(mod 1)},en is
uniformly distributed in T.

Exercise 2.10 Prove that a sequence {x, }nen is uniformly distributed in T
if and only if for any 0 < a < b < 1 one has
. #{1<n<N:a<uz, <b}
lim
N—00 N

As Hardy and Wright ([24], 23.10) put it, {2, }nen is uniformly distributed
in T “if every subinterval contains its proper quota of points.”

=b—a.

Note that even for £ = 1 Theorem 2.7 gives significantly more than
Theorem 2.1. Indeed, since for any irrational @ and h € Z, h # 0,

2mth N0

2mihnd _ 2mihg € —1 N
— e e Smind > 0,
emh — 1 Noo

we have for any f € C(T)

f(nO (mod 1)) — [ fdm .
N—oo
T

M=

1
N

This implies (cf. Exercise 2.10) that not only does the sequence
{nf (mod 1)},en visit any subinterval [a,b] C [0, 1], but it does so with the
right frequency. In other words, the sequence {nf (mod 1)} is uniformly
dense in [0, 1].

Now let 61, 0,,...,0,,and 1 be rationally independent. To see that the
sequence x, = (nb,...,nl;) (mod 1), n = 1,2, ... is uniformly distributed
in T*, it is enough (in accordance with Exercise 2.9) to show that for any
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nonzero h = (hy, hy, ..., hy) € ZF the sequence {(h,z,) (mod 1)},en is uni-

formly distributed in T. Observe that if (hq, ho, ..., hx) # (0,0,...,0), then
k
the number v = Y h;6; is irrational. Hence, the sequence {ny (mod 1)},en

=1
is uniformly distributed in T. The identity

ny(mod 1) = (Zhe)mom (Zth)modl) (h, z,)(mod 1)

implies that we are done.

Exercise 2.11 Let T,, where a = (o, ...,a) € RF be the rotation of T*
defined by T, (x1,...,xzx) = (x1 + a1, ..., 2 + ) (mod 1). For a fixed z €

T*, let X = {T"z,n € Z}. Prove that there exists a unique, T,-invariant
Borel measure on X. (T,-invariance means that for any Borel set A C
X, w(T;1A) = u(A).) Show that the sequence x, = Tlz,n = 1,2, ..., is
uniformly distributed with respect to p.

We will now turn our attention to another refinement of Kronecker’s
theorem.

Theorem 2.12 ([33]). If p(z) = as2® + as12° '+ ... + uz + ap s a
polynomaial with at least one of its coefficients other than the constant term
irrational, then the sequence {p(n) (mod 1)}nen is dense in T.

We shall discuss several different approaches to the proof of Theorem
2.12.

The first possibility is to polynomialize the simple combinatorial proof of
Theorem 2.1 above. We illustrate the ideas involved on the special case of
p(r) = 0z, where 6 is irrational, and indicate how to extend the proof to the
general case. First notice that to show that the sequence {n*0 (mod 1)},en
is dense in T, it is enough to prove that for any € > 0 there exists ng satisfying
either 0 < nff (mod 1) <eor 1 —e < nkh (mod 1) < 1

Indeed, let 0 < a < . Assuming that ¢ is close enough to a, let N =
max{n € N : nfa < 1} (so that, under our assumption, N < £7%). The
largest possible distance between consecutive numbers of the form n*a, 1 <
n < N, is not greater than N*a— (N —1)%a < kN*le < kex. Also, it follows
from the definition of N that 1 — N*a < (N +1)ka— N*a < 28 N*¥~1g < 2kex,
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We see that if for some ng € N, 0 < nff (mod 1) = a < &, then the
multiples n¥nt0 (mod 1) = (nng)*0 (mod 1), n = 1,2, ..., N, with N = [¢7%],
are 2¥¢x-dense in [0,1]. Since k is fixed and ¢ is arbitrary, it gives the desired
density of {n*# (mod 1)},cn. Now, to show that for any & > 0 there exists an
ny, satisfying either 0 < nk# (mod 1) < e or 1—¢ < nkh (mod 1) < 1, we shall
employ the multidimensional version of the celebrated Van der Waerden’s
theorem on arithmetic progressions, which will be proved in the next section.
(An alternative, more elementary approach is offered in the Appendix.)

Theorem 2.13 (Gallai). If k € N and N* = |J C; is an arbitrary finite
i=1
partition of N¥, then one of the C; contains an “affine k-cube” of the form

Q(n1,n9, ..y ng; h) = {(ng + d1h, ng + d2h, ..., ng + dh) :
5 € {0,1}, i=1,2,...,k}.

To apply Theorem 2.13 to our situation, let us, given € > 0, induce a
partition of N into r = [%] + 1 subsets by the following rule:

1—1 1
(n1,na,...,nx) € C; & ny -ng -+ -ngb (mod 1)6[ " ,;), i=1,2,..,r.

We shall need the following identity:

=3 > k}(—l)dHniH(ni +h).

d=0 DC{1.2,..., i€D  igD
|D|=d
(The identity looks frightening, but it is just a concise form of writing down
a simple counting procedure. The reader is invited to gain some insight by
reflecting on the following special case:

h3 = (Tll + h)(TLQ + h)(n3 + h) - nl(ng + h)(ng + h)
—(7’L1 + h)nz(ng + h) - (7’L1 + h)(n2 + h)n3 + n1n2(n3 + h)
+n1(ng + h)ng + (n1 + h)ngng — ningng).

Let Q(n1,na, ..., ng; h) be the cube generated by Theorem 2.13. For any ver-

tex of this cube of the form (ny +d1h, ng+d2h, ..., ng +h), where 6; € {0,1},
k o
i=1,2,....,k, one has ([](n; + 6;h))6 (mod 1) € [=*, %). Since the sum of

: r
=1



k
the coefficients > Y. (—1)? equals zero (there are precisely 2* coeffi-
d=0 DC{1,2,...k}
|D|=d

cients), one has either 0 < h*¥§ (mod 1) < % <egorl—e < h*) (mod 1) <1
This finishes the proof.

Exercise 2.14 Extend the previous proof to general polynomials by using
the following strengthened form of Theorem 2.13: Given ki, ks, ..., ks € N,

suppose NFi = U C’(J 1 < ¢ < s, are arbitrary finite partitions of the

lattices. There ex1sts h € N so that the cubes @;, i = 1,2,..., s, whose
existence is promised by Theorem 2.13, all have h as the same “edge length”.

We now show how one can replace the use of Theorem 2.13 by a simple
dynamical argument due to H. Furstenberg (see [13]).

Definition 2.15 Let (X, {T,},cc) be a topological dynamical system. A
point x € X is called recurrent if for any neighborhood V' containing z there
exists g € G, g # e so that T,z € V.

Exercise 2.16 Show that every point z € T is recurrent with respect to the
transformation T, : ¢ — x + « (mod 1). (This follows from the discussion in
the beginning of this section. Note that it is immaterial whether « is rational
or irrational.)

Now, fix an irrational number § and consider the dynamical system on T?
defined by T : (z,y) = (x + 6,y + 22 + ) (mod 1). Following Furstenberg,
we show that every point in T? is recurrent under T. It is easy to verify
by induction that for any integer n, 77(0,0) = (nf,n?0) (mod 1), and so
the fact that (0,0) is a recurrent point will imply, in particular, that for
any ¢, there is an integer n # 0 such that |n?0 — m| < &, or, equivalently,
0 — 73| < e. As it was explained above, this implies, in its turn, that the
sequence {n?# (mod 1)}, is dense in [0, 1].

We remark that the argument below applies actually to a much wider
class of dynamical systems; namely, the so-called group extensions (see [13]).

To show that a point (z,y) € T? is recurrent, it is enough to show that
(x,0) is recurrent. Indeed, denoting the transformation (z,y) — (z,y +t)
(mod 1) by S;, we see that if T"(x,0) — (z,0) as k — oo, then

T (z,y) = T™Sy(z,0) = S, T (x,0) = Sy(z,0) = (z,y).

9



Now, to prove that the point (z,0) is recurrent, one argues as follows:

Let O((z,0)) denote the (forward) orbit closure of (z,0): O((z,0)) =
{T™(z,0),n > 1}. Since every point z € T is a recurrent point for the trans-
formation Ty : © — x + 6 (mod 1) (see Exercise 2.16), there exists yo € T
so that (z,y0) € O((x,0)). Using the fact that for any z € T, O(Syz) =
Sy(O(2)), one gets (x,2yy) € O((z,y0)) (we are suppressing the (mod 1)
sign), which implies (z,2yy) € O((z,0)). Repeating this argument, we get
that for every n > 1 ,(z,nyy) € O((x,0)). Applying again the result of
Exercise 2.16 to yo and using the fact that O((z,0)) is closed, we obtain
(z,0) € O((#,0)). m

Exercise 2.17 (i) Define 7': T®> — T3 by
T(z,y,2) = (zr+ 0,y + 22+ 0,2+ 3y + 3z + 0) (mod 1).

Check that for any n € Z, T"(0,0,0) = (nf,n?0,n*0) (mod 1). Generalize
this to arbitrarily many dimensions.

(ii) Using (i), show that {n* (mod 1)},en is dense in [0, 1] for any k € N
and irrational 6.

It turns out that the sequence {p(n) (mod 1)},cn, where the polynomial
p(t) € R[t] has at least one “non-constant”coefficient irrational, is actually
uniformly distributed in [0, 1].

We shall now describe two approaches to the proof of this fact. The first
one, due to Weyl, is based on the fact that if p(n) is a polynomial of degree
d > 1, then for any h # 0, the polynomial p(n + h) — p(n) has degree d — 1.
The principle behind the Weyl proof was succinctly formulated by van der
Corput in the form of the following proposition (cf. [27]; see also Proposition
4.27 and Exercise 5.5 (i), (ii) below).

Theorem 2.18 (van der Corput’s Difference Theorem). Let {z,}nen be a
sequence of real numbers. If for any h € N, h # 0, the sequence {T,—Zn1p fneN
is uniformly distributed (mod 1), then the sequence {x,, }nen is uniformly dis-
tributed (mod 1).

Exercise 2.19 Use Theorem 2.18 to prove that if the polynomial p(n) has at

least one “non-constant” coefficient irrational, then the sequence {p(n)}nen
is uniformly distributed (mod 1).
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The ergodic approach to equidistribution of polynomials, due to Fursten-
berg, relies on the notion of unique ergodicity. We give here only some general
explanations (see [13], Chapter 3 for the details).

Definition 2.20 Let X be a compact metric space and T : X — X a
continuous mapping. The dynamical system (X, T) is called uniquely ergodic
if there exists only one T-invariant Borel probability measure on X.

To be able to talk about the uniqueness of invariant measures, one should
first make sure that the set of invariant probability measures is non-empty.
This is guaranteed by the following:

Theorem 2.21 (Bogoliouboff-Kryloff, [26]). For any continuous self-map
T : X — X of a compact metric space, there exists a T-invariant Borel
probability measure.

The following exercise indicates a way of proving Theorem 2.21. Recall
that given a compact metric space X, the set M(X) of Borel probability
measures on X is non-empty, in particular, it contains the point masses
(namely, the measures .,z € X, defined for any Borel set A by p,(A) =1
if z € A and 0 otherwise), and is compact in the weak*-topology.

n—1
Exercise 2.22 Given a measure v € M (X), define p, = L 3~ T*v. Let p be
k=0

any weak* limit point of the sequence {1, }>° ;. Show that ,uiis T-invariant.

Exercise 2.23 Let T(z) = ax be a rotation of a compact metrizable group
(G, -). Prove that the Haar measure is the unique invariant measure for (G, T')
if and only if the sequence {a"},en is dense in G.

The uniquely ergodic systems are characterized by the following theorem
(for a proof see for example [32], Theorem 6.19).

Theorem 2.24 Let T : X — X be a continuous self-mapping of a compact
metric space X. The dynamical system (X, T) is uniquely ergodic if and only

N-1
if % Zo f(T"zx) converges uniformly to a constant.
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Return now to the transformation on T? defined by T'(z,y) = (v +a,y +
2z +0) (mod 1) which we dealt with above. One can show that the normal-
ized Lebesgue measure m on T? is the unique invariant measure with respect
to T. (See, for example, Proposition 3.10 in [13].) It follows from Theorem
2.24 that for any continuous function f € C(T?)

N-1
1

— f(T™(z,y)) — | fdm uniformly.

N 0 N—o0

n= T2

In particular, taking (z,y) = (0,0) and remembering that 77(0,0) =
(na, n?a) (mod 1), one obtains the following result:

Proposition 2.25 The sequence {(na, n’«) (mod 1)}>7 | is uniformly dis-
tributed in T?.

Exercise 2.26 Taking for granted the unique ergodicity of the transforma-
tions suggested in Exercise 2.17 (i) and (ii), prove, with the help of Exercise
2.9, the Weyl’s theorem on equidistribution of polynomials.

3 Ramsey Theory and Topological Dynamics

We start this section by formulating several combinatorial results (cf. [21]).
The first of them, van der Waerden’s theorem, is actually a 1-dimensional
special case of Theorem 2.13.

T

Theorem 3.1 IfZ = |J C; is an arbitrary finite partitioning of Z, then one
i=1

of the C; contains arbitrarily long arithmetic progressions.

Exercise 3.2 Call a set S C Z AP-rich if S contains arbitrarily long arith-
metic progressions. Prove that Theorem 3.1 is equivalent to the following

statement: If S C Z is AP-rich, then for any finite partition of S, S = |J C;,
i=1
one of the C; is also AP-rich.

Now let F' be a finite field and Vy an infinite vector space over F. (Ex-
ample: F' = Z, and Vp = Z5° = {(21,%2,...) : T; € Zp,i € N, and all but
finitely many z; = 0}.) A set A C Vp is a d-dimensional affine subspace
of Vi if for some v, x1,...,xq € V, where x4, ..., x4 are linearly independent,
A =wv+ Span{z, ..., x4}

12



Theorem 3.3 (Geometric Ramsey Theorem, [20]). If r € N and Vi =
U Ci, then one of the C; contains affine subspaces of arbitrarily large (finite)

i=1
dimension.

Exercise 3.4 Call a subset S C Vr AS-rich (AS stands for affine subspace)
if S contains affine subspaces of arbitrarily high dimension. Prove that The-
orem 3.3 is equivalent to the following statement: If S C Vg is AS-rich and,

for some r € N;S = J C; is a finite partitioning, then one of the C; is also
i=1
AS-rich.

Exercise 3.5 Give an example of a finite partition of Z:° (where p is a prime
bigger than 2) so that none of the cells of the partition contains an infinite
affine subspace. (When p = 2 the situation is different. See Exercise 3.7 (ii)
below.)

The last combinatorial result we want to discuss is the celebrated Hind-
man’s theorem. To formulate it we first introduce some notation that will
be used throughout this section.

Let F denote the set of all non-empty finite sets in N. If o, 8 € F, then
we write @ < (8 if the maximal element in « is smaller than the minimal
element of 5. We shall say that {o;}°, is an increasing sequence in F if
o < g < ...

Given an increasing sequence {o; }2°, in F, we shall denote by FU ({c; }2,)
the set of all finite unions of “atoms” «;,7 € N. Note that the set FU({c;}52,)
has, in a sense, the same structure as F (the atoms «; play the same role as
the singletons {i} in N).

Theorem 3.6 ([22]). If F = |J C; is an arbitrary finite partition of F, then

i=1
one of the C; contains FU({c;}52,) for some increasing sequence {a;}52, in

F.
Exercise 3.7 For an infinite subset {z, 25, ...} CN, let
FS({.’L’Z}Zoil) = {.’L’il + Ty + .o+ Ty, 1 < g < ..o < g, k€ N}

In other words, F'S({x;}$2,) is the set of all finite sums of elements of the
set {x1, X2, ...} having distinct indices.

13



(i) Prove that Theorem 3.6 is equivalent to the following statement: If r € N

and N = |J C;, then one of the C; contains F'S({z;}$°,) for some infinite
i=1
subset {x1, s, ...}

(ii) Prove that for any finite partition of the vector space Z3°, one of the
cells must contain an infinite subspace with the possible exception of the zero
vector.

The combinatorial results above have a common feature: they all state
that certain structures are undestroyable by finite partitioning. Theorems
3.1, and 3.3 belong to a vast variety of results which form the body of Ram-
sey Theory and which have the following general form: if a highly organized
structure (complete graph, ordered set, vector space, etc.) is finitely parti-
tioned (or as they say, finitely colored), then one of the pieces will still be
highly organized.

We are not going to give a proof of Hindman’s theorem here. There are
many interesting proofs of this theorem in the literature, each of them lending
some new insights (see for example [23], [18], [13], or [3]).

We are now going to formulate and prove a dynamical theorem which has
Theorems 3.1 and 3.3 as corollaries. Before formulating it, we introduce a
few more definitions and some notation.

An F-sequence in an arbitrary space Y is a sequence {y,}acr indexed
by the set F of the finite non-empty subsets of N. If Y is a (multiplicative)
semigroup, one says that an F-sequence defines an IP-system if for any o =
{i1,99, ...,k } € F, one has yo = Vi, Vi, - - - ¥i,- 1P-systems should be viewed
as generalized semigroups. Indeed, if N g =0, then yaus = yays. We shall
often use this formula for sets «, 8 satisfying a < .

We will be working with IP-systems generated by homeomorphisms be-
longing to a commutative group G' acting minimally on a compact space X.
Recall that (X, G) is a minimal dynamical system if for each non-empty open

set V C X there exist Sy, ..., S, € G so that |J S;V = X.
i=1
The following theorem was first proved in [18]; the proof that we give

here is based on a proof of its special case in [10].

Theorem 3.8 Let X be a compact topological space and G a commuta-
tive group of its homeomorphisms such that the dynamical system (X, Q)
is minimal. For any non-empty open set V C X, k € N, any IP-systems
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{To(él)}aef, ey {To(tk)}aef in G and any ag € F, there exists a € F,a > g
such that VN TV N .. TPV £ 9.

Proof. We fix a non-empty open V' C X and Sy, ..., S, € G with the property
that S;V U SV U...US,V = X. (The existence of Sy, ..., Sk is guaranteed
by the minimality of (X, G).) The proof proceeds by induction on k. The
case k = 1 is almost trivial, but we shall do it in detail to set up the notation
in a way that indicates the general idea.

So, let {T;}2, be a fixed sequence of elements in G and {7, },cx the
IP-system generated by {7;}2,. (This means of course that for any finite
non-empty set o = {iy, %9, ..., %} CN, one has T, = T;,T;, - - - T}, .)

Now we construct a sequence Wy, Wy, ... of non-empty open sets in X so
that:

(i) T7'W, € Wy 1,Vn > 1;

(iii) each W,,n > 1, is contained in one of the sets SV, S,V ..., S, V. (We
recall that S;V U S,V U...US,V =X.)

To define Wy, let t1, 1 < t; < r, besuch that T3V NS,V =T1WoNS,V #
0; let Wy = T1WoNS, V. If W, was already defined, then let ¢, be such that
1 <tpp1 <rand T, W,NS,, ,V #0, and let W,y =T, ., W,,NS,,., V. By
the construction, each W, is contained in one of the S,V ..., 5.V, so there will
necessarily be two natural numbers ¢ < j and 1 < ¢ < r such that W;UW; C
S;V (pigeon hole principle!). Let U = S;'W; and o = {i + 1,i +2,..., 5 }.
We have

T,V =TTy T Sy Wy = Sy T T, - T W €
C S Ty Wi © . C S T Wi € S ' W C V.

So, U C T,V and U C V which implies V N T,V # 0.

Notice that since the pair ¢ < j for which there exists ¢ with the property
Wi UW; C 5,V could be chosen with arbitrarily large 4, it follows that the
set « = {i+1,...,7} for which V NT,V # () could be chosen so that o > .

Assume now that the theorem holds for any k£ IP-systems in . Fix a
non-empty set V and k + 1 IP-systems {Tc(yl)}aef., v {Tékﬂ)}aep We shall
also fix the homeomorphisms S, ..., S, € G (whose existence is guaranteed by
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minimality) satisfying S;V U...U S,V = G. We shall inductively construct a
sequence Wy, Wi, ... of non-empty open sets in X and an increasing sequence
a1 < o < ...in F so that

(a) Wo =1V,

) (T W, U (T) W, U... U (T WU € W,y for all n > 1,
and

(c) each W,,n > 1 is contained in one of the sets S,V ..., S, V.

To define Wy, apply the induction assumption to the non-empty open set
Wy =V and IP-systems

{(TFNTT N aer, o {(TEN TP} ger
There exists a; € F such that
VA TENATOV AL (@)Y Py
= Wo N (TENATOW, N 0 (T2 TEW, £ 0.
Applying Tng), we get
TEOWoNTIWon ... TEW, £ 0.
It follows that for some 1 <¢; <r
Wy =TOWonTOW, N ... TEDW, N S,V £ 0.

Clearly, Wy and W; satisfy (b) and (c) above for n =1
If W,_1 and «,,_1 € F have already been defined, apply the induction
assumption to the non-empty open set W, ; (and the IP-systems

{(T§k+1))*1T(§1)}ae; N {(To(tkﬂ))*ch(yk)}ae;) to get ay, > oy, such that
Wos 0 (T80 TOW, 01 (TS TOW, ., £,
and hence, for some 1 <t, <7,
W, :=TOW, 1N ..nTEDW, NS,V 0.

Again, this W, clearly satisfies the conditions (b) and (c).
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Since, by the construction, each W, is contained in one of the sets
SV, ..., SV, there is 1 < t < r such that infinitely many of the W, are
contained in S;V'. In particular, there exists 7 as large as we please and j > 7
so that W; UW; C S;V. Let U = S{IWj and a = oj11 U ... Uq;.

Notice that U C V, and for any 1 <m < k + 1, (To(tm))*lU C V. Indeed,

(TN U = (T8 LJa]) LWy = SN (TS ) L (T w,
C S TE) ™ (T ) Wy C L C ST ) T Wiy € ST C V

It follows that U U (T4™) U U ... U (TS"Y)=1U C V, and this, in turn,
implies VN TPV ... THEHY V;é(Z]. .

Corollary 3.9 If X is a compact metric space and G a group of its home-
omorphisms, then for any k IP-systems {T }ae?; .. {T }ae}‘ in G, any
ag € F, and a (ye > 0 there exists a > oy and x € X such that the diameter
of the set {z, Tz, ..., To(ék):v} is smaller than e.

Proof. If (X, G) is minimal, then the claim follows immediately from Theo-
rem 3.8. If not, then pass to a minimal, non-empty, closed G-invariant subset
of X. (It always exists by Zorn’s lemma.)

Exercise 3.10 Under the conditions of Corollary 3.9, show that for any
m € N one can always find a; < ay < ... < «;, and x such that the set

{TSOTE) Tz w by, i € {1, ., k)
has diameter smaller than «.

Let us now show how to derive Theorems 3.1 and 3.3 from Corollary 3.9.
We start with Theorem 3.1. Let r € N;r > 2, and let Q = {1,2,...,r}?
be the (compact) space of all bilateral sequences with entries from the set
{1,2,...,7} with the product topology. We shall use the standard metric on
Q) defined by

0, ifx=y

L if z(0) # (0)
otheriwise, where £ is the maximal natural number with
the property z(i) = y(i) for all |i| < k.

d(z,y) =

k—{—l
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The points of €2 are in a natural one-to-one correspondence with the
partitions of Z into r sets: if x = z(n) € Q, set C;={n € Z: z(n) =i},
1= 1,2,...,7. Let T : © — € be the shift homeomorphism defined by

T

(Tz)(n) = z(n + 1). Fix a partition Z = |J C;, and let £ = £(n) be the
i=1

corresponding sequence in (2. Finally, let X C € be the orbital closure of &:
X ={T¢,neZ}

Let {n;}$°; be an arbitrary sequence in Z. For a € F define n, = ). n;,
i€
and consider IP-systems

T = Tmne m =1,2, ..., k.

By Corollary 3.9, for any € > 0 there exist € F and z € X such that
the diameter of {x,T™x, ..., T*"z} is less than . Let n > 0 be such that
d(z,y) < n implies that the sequences z(n) and y(n) coincide for |n| < k|ng|-
Since the orbit {T™¢,n € Z} is dense in X, there exists mg € Z such that
T™¢ and z agree on the interval [—k|ng|, k|ng|].

It follows that &(myg) = £(mo + ng) = ... = E(mg + kng). If this common
value is j, then clearly C; contains an arithmetic progression of length £.
Note that as a by-product, we showed that the difference of the length &
arithmetic progression always to be found in one cell of the partition can be
chosen from any prescribed IP-set.

Exercise 3.11 Prove that van der Waerden’s theorem is equivalent to the
following:

Statement. Let Z = |J C; be an arbitrary finite partition of the integers
i=1
and F' € F. One of the C; necessarily contains an affine image of F'. In other
words, one of the C; contains a set of the form a +nF = {a +nz : z € F}

for some ¢ € Z and n € N.

The above statement is a special case of the following multidimensional
version of van der Waerden’s theorem which also follows from Theorem 3.8.

T

Theorem 3.12 For any d € N and finite subset F C Z%, if Z¢ = |J C;
i=1

is a finite partition of Z¢, then one of the C; contains a set of the form

a+nF ={a+nx:xeF} for somea€ Z%neN.

18



Exercise 3.13 Prove that Theorems 3.12 and 2.13 are equivalent.

We move now to the derivation of Theorem 3.3. Let Vr be a vector
space over a finite field F' of characteristic p. Without loss of generality, we
shall assume that Vg is countable. As an abelian group, Vr has a natural
representation as the direct sum of countably many copies of F':

F* ={g = (ay,as,...,) : a; € F and all but finitely many a; = 0}.

Fix an IP-system {g,}ecr such that Span{g,,a € F} is an infinite sub-
set in Vr. We will show a stronger fact that if Vg is partitioned into r
subsets C1,Cy, ..., C,, then one of the C; contains an affine subspace of ar-
bitrarily large dimension which is generated by elements of {g,}acr. Let
Q =1{1,2,..r}'7. In other words, € is the set of all functions defined on Vs
which take values in {1,2,...,7}. With its product topology, € is a compact
topological space. Introduce a metric on 2 analogous to the one used for
{1,...,7}% above. For g = (ai,as,...) € Vi, let |g| be the minimal natural
number such that a; = 0 for all 4 > |g|. For x = z(g) and y = y(g) in Q,
define

0, ifx=y
dony) — | 12 i2(0) 7 4(0)
’ kil otheriwise, where k is the maximal natural number with
the property z(g) = y(g) for all |g| < k

T

(where 0 denotes the element (0,0, ...) € V). Let Vp = [J C; be a partition

=1
of Vi, and define £ € Q by £(g9) =i < g € C.

We show first that one of the C; contains an affine line (i.e. a one-
dimensional affine subspace). For h € Vg, define T}, : Q2 — Q by (Thx)(g9) =
x(gh). Clearly T}, is a homeomorphism of Q for every h € Vp. Let X C Q
be the orbital closure of £(g): X = {Tn&, h € Vr}.

Use now the IP-system {g,}acr to define an IP-system of homeomor-
phisms of X. Put T, := T, ,a € F, and for each ¢ € F,c # 0, define an
IP-system by To? = T,,., o € F. This way we get ¢ — 1 (where ¢ = |F|) IP-
systems of commuting homeomorphisms of 2 (and of X). Applying Corol-
lary 3.9 to the space X and these IP-systems and taking ¢ < 1, we get a
point z € X and «; € F such that the diameter of {T,,z,c € F} is less
than 1. This implies that 2(0) = x(cga,) for every ¢ € F. Since the orbit
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{Tn&, h € Vp} is dense in X, there exists hy € Vp such that (7,,£)(g) and
z(g) agree on all g satisfying |g| < |ga,|- If £(hy) = @ then C; contains the
affine line {hg + ¢ga,,c € F'} (in view of our assumptions on {g,}acr, we, of
course, took care to choose «; so that g,, # 0.) The statement about affine
spaces of arbitrary dimension follows by iteration (cf. Exercise 3.10) and is
left to the reader.

4 Density Ramsey Theory and Ergodic The-
ory of Multiple Recurrence

In this section, we concern ourselves with density Ramsey Theory and its links
to ergodic theory. While the main theme of partition Ramsey theory is to look
for nontrivial patterns in one cell of an arbitrary finite partition, the typical
density Ramsey theory statement concerns an appropriately defined notion
of largeness: any large subset of a highly organized structure contains large,
highly organized substructures. Two basic properties are usually required
from the notion of largeness:

(i) if A is large and A = | C}, then at least one of the C; is large;

=1

(ii) the family of large subsets of a given set with a particular structure is
invariant under some natural semigroup of structure preserving trans-
formations.

We shall discuss now the density version of Theorems 3.1 and 3.3. (As for
the density version of Theorem 3.6, see the discussion in [3], Section 4.) As
Graham, Rothschild and Spencer put it in [21], “for all Ramsey theorems, one
can express (but not always prove) the corresponding density statements.”
For a set E C Z define its upper density by

d(F) = lim sup w
N—00 2N + 1
Clearly the property of a set of integers to have positive upper density satisfies
property (i) above. It is also invariant with respect to the shift: for any
k€ Z,d(E+k)=d(E), where E+k = {z+k,x € E}.
We formulate now a density version of van der Waerden’s theorem. We
say a density rather than the density version since d is not the only notion
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of largeness which leads to a density generalization of van der Waerden’s
theorem. See Exercise 4.2 below.

Theorem 4.1 (Szemerédi, [31]). If a set E C Z has positive upper density,
then it contains arbitrarily long arithmetic progressions.

Exercise 4.2 (i) Derive from Theorem 4.1 the following finitistic version

of it: For any € > 0 and k£ € N there exists N = N(e, k) € N such that if

I = [a,b] C Z is an interval with [b — a| > N and F C [ satisfies % > g,

then E contains a k-term arithmetic progression.

(ii) For any E C Z, let the quantity d*(F) = lim sup
N—-M—o0

its upper Banach density. Call a set E C Z d*large if d*(E) > 0. Clearly,
E is d*-large if and only if for some sequence of intervals

|En{M,M+1,...,

N}
N M1 denote

EnlI
IN = [aN;bN] - Z with |bN - GN‘ — 00, liIIlSI,lpu > (.
(In other words, each such sequence Iy, N = 1,2, ..., defines a notion of

largeness (check!), and to be d*-large means to be large with respect to some
sequence of intervals of increasing length). Prove that Theorem 4.1 implies
that a d*-large set contains arbitrarily long arithmetic progressions.

The original proof of Theorem 4.1 in [31] is a brilliant and highly non-
trivial piece of combinatorial reasoning. A different, ergodic theoretical proof
was given by Furstenberg in [12], thereby starting a new branch of mathe-
matics, Ergodic Ramsey Theory. Soon the methods of ergodic theory turned
out to be very useful in proving some natural density conjectures and have
led to some strong results, which so far have no conventional combinatorial
proofs (cf. [15], [16], [17], [4], [5], [6], [29], [7], [8])-

Furstenberg derived Szemerédi’s theorem from a beautiful, far-reaching
extension of the classical Poincaré recurrence theorem which corresponds to
the case k =1 in the following:

Theorem 4.3 (Furstenberg, [12]). Let (X,B,u,T) be an invertible proba-
bility measure preserving system. For any k € N and A € B with u(A) > 0
there exists n € N such that

wWANT "AN..NT *4) > 0.
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To see that Theorem 4.1 follows from Theorem 4.3, one needs the following:

Theorem 4.4 (Furstenberg’s Correspondence Principle.) Let E C Z with
d*(E) > 0. Then there erxist an invertible probability measure preserving
system (X, B, u,T) and a set A € B with u(A) = d*(E) such that for any
k € N and ni,na,...,ng € Z one has:

d(EN(E-m)N...0(E—mn)) 2 p(ANT™AN...NT™A).
Exercise 4.5 Prove that Theorem 4.1, in its turn, implies Theorem 4.3.

We shall formulate now a density version of Theorem 3.3. Let Vr be a
countable vector space over a finite field F'. As before, it will be convenient

to work with the realization of Vx as a direct sum of countably many copies
of F"

F* ={g=(aj,as,...):a; € F,i € N and a; = 0 for all but finitely many 4}.

Let I}, = {g = (a1,0a2,...) : a; = 0 Vi > n}. For aset S C Vp define its
upper density, d(s) by

i} F,
() = lim sup |2 (0!

Theorem 4.6 Let S C Vi with d(S) > 0. Then S contains affine subspaces
of arbitrarily high dimension.

Exercise 4.7 Define in Vy = F'* the notion of upper Banach density similar
to that defined in Exercise 4.2 (ii) for subsets of Z. Derive from 4.6 a finitistic
statement similar to that of Exercise 4.2 (i) and a statement obtained by
replacing in the formulation of Theorem 4.6 the upper density by the upper
Banach density.

Similarly to the situation with Szemerédi’s theorem, Theorem 4.6 follows
from a measure theoretical theorem dealing with multiple recurrence:

Theorem 4.8 Let {T,},cv, be a measure preserving action of Vg = F* on
a probability measure space (X, B, ). Let A € B,u(A) > 0. Then for some
g € Vp,g# e one has p( () T4A) > 0.

celF

22



Corollary 4.9 Under the assumptions of Theorem 4.8, for any k there exist
k

Ji,- .., gk 1 Vg such that dim(Span{gl, ... ,gk}) =k and p(( ) Teg;A) > 0.

i=1ceF

Exercise 4.10 Derive Corollary 4.9 from Theorem 4.8.
Hint: if ¢q,..., gr have already been found, apply Theorem 4.8 to the set
k

Ay = N Ty, A and to the (sub) action {Tg}gev(k), where, for some fixed
i=1cEF F
m satisfying m > maxi<i<x |9il,

VF(k):{gz(al,aza---)EVF Lap=ay=...= ay, =0}

To derive Theorem 4.6 from Theorem 4.8 (or, rather, from Corollary 4.9) one
utilizes the Furstenberg correspondence principle for Vi:

Theorem 4.11 Let S C Vi with d(S) > 0. Then there erist a measure
preserving system with “time” Vi, (X, B, 1, {T,}4evy) and a set A € B with
w(A) = d(S) such that for any k € N and any g1, go, --., g € VF one has:

dSN(S—g)N...N(S—ge)) > wANT, I AN...NT, A).

The apparent similarity of Theorems 4.4 and 4.11 hints that there is a gen-
eral Furstenberg correspondence principle which encompasses both theorems.
This is indeed so and the “right” class of groups to which it applies are count-
able amenable groups. Among the many equivalent definitions of amenability
the one of major importance to ergodic theory is the following one.

Definition 4.12 A countable group G is called amenable, if it has a (left)
Folner sequence, namely, a sequence of finite sets ®, C G,n € N with

|®,,| = oo and such that % — 1 for all g € G.

Remark 4.13 Strictly speaking, Definition 4.12 is a definition of left
amenability. Right amenability is defined as the property of group G of pos-
sessing a right Folner sequence, i.e. a sequence of finite sets &, C G,n € N
with |®,| — oo such that w — 1 for all g € G. It is known, however,
that the notions of right and Heft amenability coincide. At the same time one
should be aware of the fact that in non-abelian groups not every right Fglner
sequence is necessarily a left Fglner sequence and vice versa. Since in these
notes we are mostly concerned with abelian groups, these subtleties will not
bother us too much.
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Exercise 4.14 (i) Let M, = [at”,b"] x ... x [¢{?,6Y] c Z¢,n € N, and
assume that |b,(f) —a(ni)| —00,i=1,2,...,d. Show that M,,n € N is a Fglner
sequence in Z¢.

(ii) Check that the sets F,,n € N defined before the formulation of Theorem
4.6 form a Fglner sequence in V.

(iii) Give an example of a left Fglner sequence in a non-abelian group which
is not a right Fglner sequence.

The set of countable amenable groups is quite rich and includes all count-
able abelian groups and many classes of non-abelian ones, for example, solv-
able, locally finite, etc. On the other hand, the free group on two or more
generators and the groups SL(n,Z),n > 2 are not amenable.

The following version of the classical von Neumann ergodic theorem for
amenable groups is merely an illustration of the principle that many results
of conventional ergodic theory of one-parameter actions extend naturally to
amenable groups.

Theorem 4.15 Let H be a Hilbert space and let {Uy}qec be an antirepre-
sentation of a countable amenable group G as a group of unitary operators
on H (i.e. Uy Uy, = Uy, for all g1,9. € G). Let H.={f € H :U,f = f
Vg € G} and let P be the orthogonal projection on Hi,,. For any left Folner
sequence ®,,n € N in G one has:

lim H
n—oo

1
5 > Ugf—PfH ~ 0.
9€®n
Proof. In complete analogy with the case of a single operator (or rather
the Z-action generated by a single unitary operator) one checks that the
orthogonal complement of Hi,, € H, call it H,,,, coincides with the space
Span{f —U,f : f € H,g € G}. It remains to show that on H,,, the limit in

question is zero. It is enough to prove it for the elements of the form f—U,, f.
We have:

1 1
(I)n| Z{)Ug(f_Ugof)H:H‘(b Z g |(I) | ZUgogf
IS 2 n
P, Ngo®,
ZUf |(I)| Z | 90®,|

ged, 9EGPn |@n]

171
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Since the definition of left Fglner sequence clearly implies @,
n

— 0,

we are done.

Exercise 4.16 Recall that a measure preserving action {7}, },cc on a proba-
bility space (X, B, p) is ergodic if any set A € B which satisfies u(T,AAA) =0
for all ¢ € G has measure zero or measure one. Derive from Theorem 4.15
the following statement:

If {T,}4ec is an ergodic measure preserving action of an amenable group
G, then for any (left or left) Fglner sequence ®,,,n € N and any A, A, € B

one has:
1

||

D (A N T Az) — (A1) p(As).

geP,

We shall formulate and prove now the Furstenberg correspondence prin-
ciple for countable amenable groups.

Theorem 4.17 Let G be a countable amenable group and ®,,n € N a left
Fyalner sequence in G. Let E C G have positive upper density with respect to

D, d(E) = limsu B 0 (for convenience we are Suppressing in
n=1 P73, g
n—oo

the notation d(E) the dependence on {®,}). Then there exists a probability
measure preserving system with “‘time” G, (X, B, 1, {T,}4cc) and a set A € B

with w(A) = d(E) such that for any k € N and g1, go, -.., gr € G one has
dENg'EN..Ng'E) > w(ANT,'An..NT, A).

Before giving a proof of Theorem 4.17 we shall need a crucial fact linking sets
of positive upper density in G with invariant linear functionals on the space
B(G) of all complex-valued bounded functions on G. We recall first some
definitions. Let G be a group and Y a closed subset of the space B(G) of all
bounded complex valued functions equipped with the uniform norm || - |-
Assume additionally that Y is closed under complex conjugation and contains
all the constants. A linear functional L : B(G) — C is a left-invariant mean,
if it has the following additional properties:

() L(f) = L(f) VfeY.
(ii) if f > 0 then L(f) > 0 and L(1) = 1.
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(iii) Forallg e G and f €Y L(,f) = L(f) where ,f(t) = f(g?).

Exercise 4.18 For f € Y define f(t) = f(t!). Show that, if L is a left-
invariant mean on Y, the functional L defined on Y = {f : f € Y} by
l}(f) = VL(f) is a right-invariant mean, i.e. for all ¢ € G and f € Y,
L(f9) = L(f), where f9(t) = f(tg).

One can show that a countable group G is amenable if and only if the
space B(G) admits a left-invariant mean. We shall need this fact only in one
direction; it follows from the following result.

Proposition 4.19 Let G be a countable group and ®,,n € N a left Folner

sequence in G. Assume that a set E C G has positive upper density with

respect to {®,} : d(E) = limsup 'E|Qf|“‘
n—,oo

> 0. There exists a left-invariant

mean L on B(QG) satisfying the following conditions:
(i) L(1g) = d(E)
(ii) for any k € N and any g1, 92,-.,9x € G

dENG 'EN..Ng 'E)>Llp-1y1p- - 1p).

Proof. Let P be the (countable!) family of subsets of G having the form

k
N g;'E, where g; € G, i = 1,..., k. By using the diagonal procedure we
i=1

arrive at a subsequence {®,,}°, of our Fglner sequence such that for our

fixed set E we have d(E) = lim “i]g@"”' and for any S € P the limit L(S) =
1—00 g
li ‘S‘gq)"‘i' = lim ﬁ > 1g(g) exists. Notice that for any g1,...,9x € G
1—>00 i 1—o0 |77 geq,ni
this gives
A L
k Ng'Bne|  |(Ng'Bne,
d(()¢7'E) = limsup —= > lim —=
jg I n—o00 ‘(I)n| =00 |(I)nl‘
k
= L(()1,:15)
7j=1
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Extending out by linearity we get a linear functional L on the subspace
Yy C Br(G) of finite linear combinations of characteristic functions of sets
in P. To extend L from Y; to Bgr(G) define Minkowski functional p(¢) by

p(p) = limsup ﬁ > (g). Clearly, for all p1,ps € Br(G), p(¢1 + p2) <
b geEDn,;

1— 00
p(p1) + p(p2) and for any non-negative t, p(tp) = tp(p). Also, on Yy,
L(¢) = p(¢). By Hahn-Banach theorem there is an extension of L (which
we denote by L as well) to Bgr(G) satisfying L(y) < p(¢) V¢ € Br(G). This
L naturally extends to a functional on the space B(G) of complex-valued
bounded functions and we are done.

Remark 4.20 For the proof of the Furstenberg correspondence principle we
shall need only the existence of linear functional satisfying the conditions (i)
and (ii) and defined on the uniformly closed and closed under conjugation
algebra of functions on G which is generated by the characteristic function
1g and its shifts. As the first half of the proof above shows this could be
achieved without involving the Hahn-Banach theorem.

Proof of Theorem 4.17. Let f(h) = 1g(h) be the characteristic function
of E. Let A be the uniformly closed and closed under the conjugation alge-
bra generated by the function f and its shifts of the form ,f(h) = f(gh). A
is a separable (linear combinations with rational coefficients are dense in A),
commutative C*-algebra with respect to sup norm. By Gelfand represen-
tation theorem, A is isomorphic to the space C(X) of continuous functions
on a compact metric space X. Let L be a right invariant mean on B(G)
satisfying the condition (i) and (ii) of the Proposition 4.19 above. The linear
functional L induces a positive linear functional L on C(X). By the Riesz
representation theorem there exists a regular Borel measure p on the Borel
o-algebra B of X such that for any ¢ € A

Lip) = L(3) = / B,

X

where @ denotes the image of ¢ in C(X). Now, since the Gelfand transform
establishing the isomorphism between A and C(X) preserves the algebraic
operations and since the characteristic functions of sets are the only idempo-
tents in C(X), it follows that the function f in C'(X) which corresponds to

f(h) = 1g(h) is the characteristic function of a set A C X : f(z) = 14(z).
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This gives

d(F) = L(1z) = L(10) = [ Lad = u(4)

Finally, notice that the shift operators p(h) — ¢(gh), ¢ € A, g € G,
form an anti-action of G on A, which induces an anti-action {7,},cc on
C(X) defined for ¢ € A by (T,)¢ = ¢, where ,0(h) = p(gh).

Now, the transformations T,, g € G are C*-isomorphisms of C(X) (since
they are induced by C*-isomorphisms ¢ — ;¢ of A). It is known that algebra
isomorphisms of C'(X) are induced by homeomorphisms of X which we will,
by slight abuse of notation, also denote by T}, g € G. The homeomorphisms
Ty: X — X form an action of G' and preserve the measure p. Indeed, let
C € B and let ¢ € A be the preimage of 1¢ (so that ¢ = 1¢). Then we have:

W@ = [1e@duta) =17 = Liv) = Lipw) = L(P)

X

= LE(T) = [ 16(T)duta) = [ 15 10(0)dn(z) = T, 'C)

X X

Notice also that since L(1) = 1, u(X) = L(1x) = 1. It follows that {7} },cc
is a measure preserving action on the probability space (X, B, pu). Taking
into account that the functional L satisfies the conditions of the Proposition
4.19, we have for f = 15,99 = e and any gy, ..., gx € G-

(o B) > L [ o) = Eq o) = LA LT 5)
= /H Ly qdp = ,u(m T,'A)

We are done. g

Remark 4.21 Let us describe an alternative way of proving Theorem 4.17
which avoids the use of Gelfand transform (cf. [14]). Given a Fglner sequence
®,, n € N and F C G having positive upper density d(E) with respect to
{®,}, identity E with 1z = £ € Q = {0,1}“ and take the orbital closure
X = {T,£, g € G}, where the shift transformations 7, : Q@ — Q, g € G,
are defined by T,f(h) = f(gh). By utilizing a procedure similar to that
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employed in the proof of Proposition 4.19, one constructs a functional L on
C(X) which, in addition to L(14) = d(E) (where A = {p € X : p(e) = 1};
notice that 14 € C(X)), satisfies the conditions (i) L(F) > 0 for F' > 0,
(i) L(1) = 1, (iii)) L(F o T,) = L(F) Vg € G. It is admittedly somewhat
confusing to deal with functions F' € C'(X) which are defined on the space
X which itself consists of functions, mapping G into {0, 1}, but one has to
get used to that! Now, by Riesz representation theorem such a (positive,
normalized) linear functional is given by a probability measure p on Borel
sets of X. The condition L(1,4) = d(E) implies u(A) = d(E) and condition
(iii) implies that p is T invariant for every g € G.

Unfortunately, the scope of these notes does not allow us to present full
proofs of Theorems 4.3 and 4.8. The reader is referred to Furstenberg’s
original paper [12] which contains the proof of Theorem 4.3 and to [16] where
both theorems are derived from a very general ergodic IP-Szemerédi theorem.
We shall, however, be able to give a proof of the following result which
contains among its corollaries some nontrivial cases of Theorems 4.3 and 4.8.

Theorem 4.22 Let (G,+) be a countable abelian group and (X,B,u,{T,}4cc)
a probability measure preserving system. For any Fglner sequence {®,}2
in G and any A € B with u(A) > 0 one has

7ggéj§:umngAmnm>w.
S

Corollary 4.23 Under the conditions and notation of Theorem 4.22, the set
Ri={g€eG: un(ANT_jANT,A) > 0}

is syndetic. In other words, for some finite set F C G one has:
F+Ry={z+y:z€Fye Ry} =G.

Corollary 4.24 Let E C Z be d*-large, and let A C Z? be defined by

A={(a,d):{a,a+d,a+2d} C E}.

A is a large subset of Z? in the sense that for some sequence of rectangles

M, = [a(nl),b(nl)] X [ag),bg)], n € N with |b7(f) — asf)| —00,1=1,2 one has

lim A0Mal -
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Corollary 4.25 (cf. [1]). Let E C Z with d(E) > 0. Then E is AS-rich,
i.e. contains affine subspaces of arbitrarily high dimension.

Exercise 4.26 Derive Corollaries 4.23, 4.24 and 4.25 from Theorem 4.22.

We shall preface the proof of Theorem 4.22 with some remarks regarding
the machinery that one needs for the proof.

First of all, we are going to take for granted the theorem about er-
godic decomposition. Recall that a probability measure preserving system
(X, B, 1, {Ty}4ec) is called ergodic, if there are no nontrivial invariant sets:
u(T,ANA) =0 for all g € G implies p(A) = 0 or p(A) = 1.

Under some mild regularity assumptions (which are satisfied for the spaces
we are working with like those featured in the proof(s) of Theorem 4.17) one
can assume that if our measure preserving system (X, B, u, {T,}4ec) is not
ergodic, then there exists a family of invariant probability measures {1, }ueq
indexed by another probability space (£2,D,v) such that with respect to
each p, the measure preserving system (X, B, p, {Ty}sec) is ergodic and
such that for any f € L'(X, B, 1) one has:

/fdu=/(/fduw)dl/(w)

To illustrate the usefulness of the theorem about the ergodic decomposition,
let us show that Theorem 4.22 follows from its special, ergodic case.

Fix A € B with p(A) > 0 and a Fglner sequence ®,,,n € N. Let {1, }wen
be the ergodic decomposition of the measure y and assume that Theorem
4.22 is valid for each p,,w € Q. Since

() = [ adi = [([ Ladiw)avie) = [ m(aivte)

X Q X Q

there exist § > 0 and a measurable set C C €2, v(C) > 0, such that for any
w € C one has p,(A) > 9.
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We have:

1
nlglc}o T, Z p(ANT_,ANT,A)
g€<I>n1
= lim 5. > [ m(ANT_ AN T,A)dv(w)
"l gedn g
1
:/711320 5 D m(ANT_ AN T,A)dv(w)
0 n g€,
1
> /JLTO % Y m(ANT AN T,A)dv(w) > 0.
C n ged,

Another useful tool that we shall employ in the proof is a version of van
der Corput trick:

Proposition 4.27 ([9]). Let H be a Hilbert space and let {vy} be a bounded
family of elements of H indexed by a countable abelian group G. Let {®,}nen
be a Fglner sequence in G. If

lim; Z

mMm—00 ‘(I)m|2 i

. 1
Jim T, > (Wi, Ug—Hc)‘ =0,
m 9€Pn

then
=0.

. 1
i gy 2o v

9€®n
Finally, we shall need the following splitting theorem (see, for example, [25]).

Proposition 4.28 Let H be a Hilbert space and Uy, : H — H, g € G, a
unitary action of a countable abelian group G. Then H = H. €D Hym, where
the orthogonal, {U,}-invariant spaces H. and Hy., are characterized in the
following way:

H. = {v € H : the orbit {U,v, g € G} is precompact in the norm topology}
= Span{v € H : there exist A\, € C with U, = A\v,g € G},

H,.. = {v € H: for any Fglner sequence {®,} and any v' € H,

lim —— 3" Uy, ') = 0}.

n—00 ‘(I)n| gedn
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Exercise 4.29 Prove that the following statements are equivalent:
(i) v € Hyn,

1
(ii) for any v' € H one has lim N Z (U, Upt")” = 0.

n—0oQ
h,ke®,

Exercise 4.30 Prove that a non-zero v € H, if and only if for any € > 0 the
set {g € G : ||Uyv —v|| < ¢||} is syndetic in G.

Proof of Theorem 4.22. We shall give the detailed proof for the special
case when 2G = {2g : ¢ € G} = G. The same proof works with only minor
changes for the case when 2@ is a subgroup of finite index in G (this condition
is clearly satisfied by the groups Z and Z$°, dealt with in Corollaries 4.24
and 4.25). We leave the treatment of the case when 2G has infinite index in
G to the reader.

In light of the remarks above, we may and will assume that the action
{T5g}4eq is ergodic (remembering that we work under the assumption 2G =
Q). Let H = L*(X,B, 1) and f = 14. We shall show first that the limit

Jim ﬁ S F(T- ) f(Ty2)
"l gea,

exists in the norm of H = L?(X, B, u). It will follow then that the limit

> wANTANT,A) =

geED,

neo [ @) n00 [ @, / @) (T-g2) (Tyz)dp
also exists and we will be left only with showing that it is positive.

Denote by Uy, g € G the unitary action on H induced by T, g € G :
(Ugp)(z) = ¢(T,x), ¢ € H, and utilize the splitting H = H. D Hym de-
scribed in the Proposition 4.28 above.

Let f = f. + fwm be the decomposition of f = 1,4 corresponding to
this splitting. We shall show first that f., and hence f,.,, are bounded
functions. First of all, notice that since f is a real-valued function, and
since the operators Uy, g € G send real-valued functions into real-valued
functions, the components f, and f,n are also real-valued. We claim that
fe = 0. Indeed, f. minimizes the distance from H. to f and the function
f = max{f.,0} (which also has precompact orbit and hence belongs to H.)
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would do as well in minimizing this distance. Similarly one shows that f, < 1.
Consider now the average

= 3] = 2 Unaflpfet g = 72 U-gflsfum

gE<I> gE@

|q> | j{: (]—gj}nn[] f; “b | ji: l]—gj;unl],fwm

9e®y gED,

g€¢

Note that the limits of the first three expressions (namely, those involving
fe) exist in view of Theorem 4.15. Consider, for example, the expression

Ug fam-

gE@

Since f. is a linear combination (potentially infinite) of eigenfunctions, namely,
functions ¢, satisfying, for some A\, € C, g € G, the equation Uy = A\, g €
G, it is enough to prove that for each such ¢ the limit

n—00 |(I> Z U—gpUs Frem
ged,
exists in norm. But
. 1
Jggo@gez@ U_g0Ug from = 11m |<I> | Z AU foom

n—oo

= ¢ lim @ g ZUfwm ¢ Pfom

where P is the orthogonal projection on the space of invariant functions of
the action Uy = A\_,U,, g9 € G.

It is easy to see that since ﬁgw = 1 implies Ugp = A2, the projection
Pf.n belongs to H.. But f,. L H. and we get Pf,n, = 0. In complete
analogy one shows that

lim H
n—oo

1
|(p ‘ Z Ufgfmegfc
" gea,

We shall show now that
. 1
Jim |7 3 VoslonmUafon| =0
geEd,
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This will follow from the van der Corput trick (Proposition 4.27) and
from Exercise 4.29.
Let vy = U_y fumUy fwm- We have, using the ergodicity of {Us,}:

‘(D | Z ,Ug-f-havg-i-k) | Z /U—g hfwm g+hfme—g kfwm g-Hwamd,u‘
geED), ged,
-5 Z [ Vs eV o) Uy U fm) i
1 ged,
DD [ U fanU o) Uy U famUeFrm)
nl e

— /U—hfme—kfwmd,u/Uhfmek‘fwmd,Uf

o - (/ UhmekaWmdﬂ>2 = |(Un fuvms Uk frem) "

Now use the characterization of H,,, (and Exercise 4.29):

2
nh_)IEo |(I) ‘2 Z ‘(Uhfwma kawmﬂ =0.
hkE®,
So, it follows that
) 1
tim || 5 U s hanl | =0
ged,

and that

lim > U_ fUf = hm — Z U_yfUyfe.

n—00 |CI) |
gedD, gE‘I)
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Noticing that the products of bounded functions from H, belong to H, and
that f,m L H., we have:

> wANT_,ANT,A)

geED,

=i 1 32 [ @10 0 oy

gE<I>nX
:)[f. lim — |<I> ‘ ZUfU_gf)du
- [ fwm>(ggrgo ERPILALOLY

X
> / LU LU o fodis

9E®

n—»00 |(I) |

n—»00 |CI)

Now, the positivity of the last expression follows from Exercise 4.30. g

5 Polynomial Ergodic Theorems and Ramsey
Theory

This section’s intention is to give a glimpse of a relatively new subject: er-
godic theorems along polynomials. The natural limitations allow us only to
discuss a few results and applications, but the interested reader is referred,
for the details, to the recent survey [3], as well as to the papers [2], [4], [5],
6], [7), [8], [11, [19], [28], [29].

The following theorem, due to Furstenberg (see [12], [13], [14]), shows
that measure preserving systems exhibit regular behavior along polynomials.

Theorem 5.1 Ifp(t) € Q[t], p(Z) C Z, and p(0) = 0, then for any invertible
measure preserving system (X, B, u, T) and A € B, with u(A) > 0, one has:

N—oo N

N—
lim —Z AﬂTp(" > 0.
n=0

Applying Furstenberg’s correspondence principle, one gets the following
corollary, independently obtained by Sarkozy using methods of analytic num-
ber theory.
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Theorem 5.2 ([12], [15], [14], [30]). If p(t) € QIt], p(Z) € Z, p(0) = O,
and E C Z has positive upper Banach density, then for some x,y € FE and
n € N one has x —y = p(n).

Both Theorems 5.1 and 5.2 are quite striking if one takes into account
that the set of values of p(n) is a “small” subset of Z for any polynomial p(n)
whose degree is larger than 1. One can view Theorem 5.1 as a polynomial
refinement of the classical Poincaré recurrence theorem.

The next natural question is whether Theorem 4.3 has a polynomial gen-
eralization. The answer is yes (see [5]). We shall formulate here a special
case of the main result from [5].

Theorem 5.3 Assume that (X, B, u,T) is an invertible probability measure-
preserving system, k € N, A € B with u(A) > 0, and p;(t) € QJt] are
polynomials satisfying p;(Z) C Z and p;(0) =0, 1 <i < k. Then

N-1

1
imi 2 : p1(n) Pk (1)
hmlan O,LL(AHT An...NnT A) > 0.

Remark 5.4 Actually, one can show ([7]) that:

N-1
im i p1(n) pk(n)
]\ITIHJ\I/II—IEON—M_ZNIM(AOT AN...NTPYA) > 0.

This result is itself a special case of two different and far-reaching extensions.
See [8] and [29].

We now return to Theorem 5.1. The original proof of Furstenberg was
based on the spectral theorem and Weyl’s theorem on the equidistribution
of polynomials (see Section 2). Later, a few more proofs appeared based on
different ideas. See [2], [4] and [3].

The following sequence of exercises, supplied with hints, leads to a proof
of Theorem 5.1 in stages.

Exercise 5.5 (i) Let H be a Hilbert space and U: H — H a unitary oper-
ator. Let

H... = Span{f € H : there exists ¢ € N with U'f = f},

Huoorg = {f € H:forall i € N, | £ 205t 0ing|| = 0.
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Show that H = Hrat ¥ Htot.erg-

(ii) Prove the following version of the van der Corput trick: If {v,},en is a
N
1
bounded sequence in H such that for any h € N lim N E (Vnan, V) =0,

N—oo
n=1

then
1 XN
Iy Sl 40

Hint: for any € > 0 and M € N, if N is large enough, then one has

1 N 1 N M
|5 o = g 2o D | <
n=1 n=1 h=1

(iii) (Aside.) Derive from (ii) the van der Corput difference theorem (The-
orem 2.18).
Hint: take H = C and use the Weyl criterion (2.7).

(iv) Prove that for any polynomial p(t) € Q[t] with p(Z) C Z and any
N

1
. . . - p(”) .
f € H, the limit ]\}I_I)I;OHN E UP™ || exists.

n=1
Hint: use (ii) to show that if degp(n) > 0, and f € Hiot.erg, then the limit
in question is 0. If f € H,,, verify that it is enough to check the existence
of the limit for f satisfying U*f = f for some i.
(v) Let H = L*(X,B,u), (Up)(z) := ¢o(Tx), ¢ € H. Let f = 14 (where
A € B with p(A) > 0). Let f,, a € N, be the orthogonal projection of f
onto the subspace

Ha:{QEH:Uag:g}gHrat

Notice that each H, contains the constants and show that f, > 0, f, # 0.
(vi) Assume that p(0) = 0 in addition to the assumptions of (iv). Conclude
the proof by showing that for any a € N

N

1
im p(n)
NILIEONZRJU Jar Ja) > 0.

and that it implies

N N
1 1
: E: p(n) A) — i _§ prn)
Nhi%oNn_lu(AmT A) zéllnoon( f:1r >0
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(vii) Prove that Theorem 5.1 remains true if one replaces the condition
p(0) = 0 by the following, weaker one: {p(n) : n € Z}NaZ # @ for all a € N.

We conclude this section with an application of the polynomial theorem
to partition Ramsey theory (cf. [3], p. 53 and [7], Theorem 0.4).

Theorem 5.6 Let p(t) € Q[t], p(Z) C Z, p(0) = 0. For any finite partition

of N, N = |JCj, one can find i, 1 < i < r, and z,y,z € C; so that
i=1

z—y=p(2)

Remark 5.7 By Theorem 5.2 any set of positive upper Banach density in
N contains z,y with x —y = p(n) for some n. The crux of Theorem 5.6 is
that for any finite partition of N one cell has the additional property that in
the equation z — y = p(z), all three parameters are from the same set.

Proof of Theorem 5.6. Let N = [ J C; be a given partition. Reindexing if
i=1
necessary, we may assume that the first k£ sets Cy, Cy, ..., are such that
_ _k
d(C;) > 0,4 =1,2,...,k, and d(|J C;) = 1. Let (X;,B;,;,T;) and A; €
i=1

B; with u(A;) = d(C;), i = 1,2,...,k, be the measure preserving systems
and sets guaranteed by the Furstenberg correspondence principle (Theorem
4.4). Form the product system (X,B,u,T) where X = X; X ... x X,
B is the o-algebra generated by By x ... X By, T = T} x ... x Ty, and
U= ®...Qu. Finally,let A= A; x...x A, € B. Applying Theorem 5.1
to the system (X, B, u,T) and the set A, we obtain that the set R = {n €

. n .. . . .. ‘Rﬁ[—n,n]
N : u(ANTPM™A) > 0} has positive lower density (i.e. hérig}fTﬂ > 0).

k
It follows that RN (| C;) # 0. Let ig, 1 < iy < k, be such that for some

=1
n e Cio

(AN TP A) = ,L((A1 X AR N (TP % x TP™Y (A x . x Ak)>
- u((A1 ATP™A) x ... x (AN T,f(”)Ak)> > 0.
Applying again Furstenberg’s correspondence principle, we get
d(Ci, N (Ciy — p(n))) > 0.
If y € Ci, N (Cyy — p(n)), then x = y + p(n) € C;,, and this establishes the

partition regularity of the equation x —y = p(2). »
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6 Appendix

In this appendix, we shall give an elementary proof of Theorem 2.12 which
makes the claim to be, in Erdos’ terminology, from THE BOOK, or at least
from THE BOOK OF ELEMENTARY PROOFS. Actually, since the readers
of these notes surely have no problem with the method of mathematical
induction, we shall confine ourself to the following special case, whose proof
has all the ingredients of the proof of the general case.

Theorem 6.1 For any irrational o, the sequence {n’*a (mod 1)},  is dense
in [0, 1].

In light of the (elementary!) discussion in Section 2, Theorem 6.1 clearly
follows from the following.

Theorem 6.2 For any o € R there is a sequence {ny} C N such that
nZa (mod 1) — 0.
k—o00

Before giving the promised elementary proof of Theorem 6.2, we shall re-
veal the source of our inspiration. It is AN, the Stone-Cech compactification
of N, and, specifically, those elements of SN which are called idempotents.
Section 4 of [3] contains all information about SN and idempotent ultrafilters
that we are going to need. (Readers who for this or that reason do not like
the ultrafilters can skip the following ultrafilter proof of Theorem 6.2 and
go straight to the elementary proof below.) Let p € SN be any idempotent
ultrafilter. The only property of p that we are interested in is given by the
following easy proposition.

Theorem 6.3 (Theorem 3.8in [3]). Let X be a compact Hausdorff space and
let {z,}nen be a sequence in X. Let p € SN be an idempotent ultrafilter.
Then
p-limx, = p-limp-limz,..
reN teN seN
Ultrafilter Proof of Theorem 6.2. Let X = [0, 1] with the conventional
metric. (Another possibility would be to work with X = T.) Fix an idempo-
tent p € BN. All we have to do is to show that either p-lim(n*a (mod 1)) =0
neN

or p-lim(n®a (mod 1)) = 1. (The reader is invited to check that the latter
neN

39



case is possible and is as good for our purposes.) Let us show first that for

any v € R one has either p-lim(ny (mod 1)) = 0 or p-lim(ny (mod 1)) = 1.
neN neN
Indeed, if p-limny (mod 1) = ¢, then we have
neN

¢ = plim e (7 (mod 1)) = prlim, ey plimg g (0 -+ £ (mod 1)
= p-lim, . ((ny + ¢) (mod 1)) = 2¢ (mod 1).

So, ¢ = 2c (mod 1) and hence ¢ € {0,1}. But the same proof works for any

polynomial! Indeed, let p-limn?a (mod 1) = ¢. We have:
neN

¢ = p-lim, . (n?a (mod 1)) = p-lim,, . p-limy . ((n + £)2a (mod 1))
= p-lim,,  p-limy e ((R?a + k(2na) + k%a) (mod 1))
= p-lim, .n((n?a + ¢) (mod 1)) = 2¢ (mod 1).

So, again, ¢ = 2¢ (mod 1) which implies ¢ € {0,1} and we are done.

Now we shall show how this proof may be elementarized. The most
important hint which the perspicacious reader may extract from this proof is
that if for some sequence {n;} C N one has nia (mod 1) — ¢, then, along

k—o0
the finite sums of elements from {n;}, one can approach lc (mod 1) for any
I € N. This is all that one needs since the sequence {lc (mod 1)},. has 0
as a limit point.

Elementary Proof of Theorem 6.2. Let {n,} be an increasing sequence

of positive integers satisfying nya (mod 1) — 0. Passing, if needed, to
k—o0

a subsequence, assume that simultaneously nic (mod 1) — ¢ € [0,1]. If

k—o00
¢ =0, we are done. If ¢ = 1, we are also done, since it is easy to see that for

appropriately chosen my, one will have (myn;)?a (mod 1) — 0. So assume

that ¢ € (0,1). Again, if ¢ = r/s is a rational number, kt?lcéon replacing ny
by sny we are done, so assume without loss of generality that c is irrational,
and let us show how, for any [ € N and any ¢ > 0, to find m € N with
lc (mod 1) — ¢ < m?a (mod 1) < lc (mod 1) + . Assuming, as we may,
that € is so small that ¢ < lc (mod 1) < 1 — ¢, let us show that such an
m can be found among the numbers of the form ny, + ng, + ... 4+ ng, with
k1 < ky < ... < k. Let us do it, for simplicity, for [ = 3. Let k&1 € N be

such that for any k£ > ki one has ¢ — £ < nja (mod 1) < ¢+ £. Choose
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now k3 > ke > ki so that, in addition, 0 < ny,a (mod 1) < —5— and

12’!’Lkl
0 < ng,a (mod 1) < 1275% . One trivially checks that such a choice of k1, ko,
2
and k3 guarantees that

3¢ (mod 1) — % < (ngy, + Ngy + Mgy )2 (mod 1) < 3¢ (mod 1) +¢. g
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