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PREFACE 

Recent years have seen a great deal of progress in the field of orthogonal 
polynomials, a subject closely related to many important branches of analysis. 
Orthogonal polynomials are connected with trigonometric, hypergeometric, 
Bessel, and elliptic functions, are related to the theory of continued fractions 
and to important problems of interpolation and mechanical quadrature, and 
are of occasional occurrence in the theories of differential and integral equations. 
In addition, they furnish comparatively general and instructive illustrations of 
certain situations in the theory of orthogonal systems. Recently, some of these 
polynomials have been shown to be of significance in quantum mechanics and 
in mathematical statistics. 

The origins of the subject are to be found in the investigation of a certain 
type of continued fractions, bearing the name of Stieltjes. Special cases of these 
fractions were studied by Gauss, Jacobi, Christoffel, and Mehler, among others, 
while more general aspects of their theory were given by Tchebichef, Heine, 
Stieltjes, and A. Markoff. 

Despite the close relationship between continued fractions and the problem 
of moments, and notwithstanding recent important advances in this latter 
subject, continued fractions have been gradually abandoned as a starting point 
for the theory of orthogonal polynomials. In their place, the orthogonal 
property itself has been taken as basic, and it is this point of view which has been 
adopted in the following exposition of the subject. Choosing this same basic 
property, we discuss certain special orthogonal polynomials, which have been 
treated in great detail independently of the general theory, and indeed, even 
before this theory existed at all. In this connection we add the names of La
place, Legendre, Fourier, Abel, Laguerre, and Hermite to those previously 
mentioned. 

As regards treatises on the subject, we note that the only systematic treat
ment thus far given is found in J. Shohat's monograph, Theorie Generale des 
Polynomes Orthogonaux de Tchebichef, Memorial des Sciences Mathematiques, 
Paris, 1934. Limitations of space have compelled that work to be brief, and 
consequently, it does not enter into a detailed treatment of many problems 
which have been especially advanced in recent years. It has therefore seemed 
desirable to attempt a new and detailed development of the main ideas of this 
field, devoting, in particular, some space to recent investigations of the distribu
tion of the zeros, of asymptotic representations, of expansion problems, and of 
certain questions of interpolation and mechanical quadrature. 

In what follows, \Ve are concerned partly with the general theory of orthogonal 
polynomials, and partly with the study of special classes of these polynomials. 
As might be expected, we have more exhaustive results for these special classes, 
and we cite as an instance the classical polynomials satisfying linear differential 
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Vl PREFACE 

equations of the second order. Also, when the primary importance of these 
special classes in applications is taken into account, it should not be at all sur
prising that the present book is mainly devoted to their study. The general 
theory, however, as developed in Chapters XII and XIII, doubtless represents 
the most important progress made in recent years. 

In the present work, no claim is made for completeness of treatment. On the 
contrary, the aim has purposely been to make the material suggestive rather 
than exhaustive. An attempt has been made to indicate the main and charac
teristic methods and to point out the relation of these to some general ideas in 
modern analysis. As a rule, preference has been given to those topics to which 
we were able to make some new, though modest, contributions, or which we 
could present in a new setting. Thus the book contains a number of results not 
previously published, some of which originated several years ago. For instance, 
we have included a discussion of the Cesaro summability of the Jacobi series at 
the end-points of the orthogonality interval (the method used here is of interest 
even in the classical case of Legendre series). Further, a new and simpler ap
proach has been given to S. Bernstein's asymptotic formula for orthogonal 
polynomials. We also refer to certain details of minor importance, such as: 
simplifications and additions in the asymptotic investigation of Jacobi and 
Laguerre polynomials and in the discussion of the expansions in terms of these 
polynomials; the discussion of the cases in which the Jacobi differential equation 
has only polynomial solutions; the evaluation of the number of zeros of general 
Jacobi polynomials in the intervals [- oo, - 1], [- 1, + 1], [ + 1, + oo J; a new 
proof of the Heine-Stieltjes theorem on linear differential equations of the second 
order with polynomial coefficients and polynomial solutions, and so on. 

In general, we have preferred to discuss problems which may be stated and 
treated simply, and which could be presented in a more or less complete form. 
This was the main reason for devoting no space to the extremely interesting 
urithmetic and algebraic properties of orthogonal polynomials, such as, for 
instance, the recent important investigations of I. Schur concerning the irre
ducibility and related properties of Laguerre and Hermite polynomials. Fur
thermore, we hav~ attached great importance to the idea of replacing incomplete 
and overlapping theorems, scattered in the literature, by complete results 
involving only intrinsic or necessary restrictions. We have also tried to exploit, 
as far as seemed to be at all possible, definite methods, such as, for instance, 
Sturm's methods in differential equations (see §§6.3, 6.31, 6.32, 6.83). 

A complete treatment of Legendre polynomials was not feasible, and probably 
not desirable, in the framework of the general theory. Besides, there are al
ready complete treatises on spherical and other harmonics. 1 We have selected 
and considered only those properties of Legendre polynomials which are the 
starting points of generalizations to ultraspherical, Jacobi, or to more general 
polynomials. Another subject which could not be included was Stieltjes' 

1 For instance, E. W. Hobson 1 (see bibliography). 
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problem of moments, which has been omitted in spite of its great interest; 
for this subject would have necessitated the development of a complicated 
apparatus of results and methods. Orthogonal polynomials of more than one 
variable also have not been treated.2 

The book is based on a course given at Washington University during the 
academic year 1935-1936. Acquaintance with the general ideas __ and methods 
of the theory of functions of real and complex variables is naturally required. 
Occasionally, Stieltjes-Lebesgue and Lebesgue integrals are considered. In the 
greater part of the book, however, these integrals have been avoided, and, except 
in a very few places, no detailed properties of them were used. 

The problems at the end of this book are, with few exceptions, not new, and 
they are not interconnected as are, for instance, those in P6lya-Szego's A ufgaben 
und Lehrsatze. They are more or less supplementary in character and serve as 
illustrations and exercises; they sometimes differ widely from one another both 
as to subject and method. 

The list of references is not complete; it contains only original memoirs, a few 
text books of primary importance, and monographs to which references are made 
in the text. 

For the suggestion of preparing a book on orthogonal polynomials for the 
Colloquium Publications, I am indebted to Professor J. D. Tamarkin, who has 
also participated in the present work by offering a great number of valuable 
suggestions. It is with the greatest gratitude that I mention his friendly 
interest. 

I have also received valuable advice from my friends and teachers L. Fejer 
(Budapest), and G. P6lya (Zurich). My colleagues P. Erdos (Manchester), 
G. Grunwald (Budapest), vV. H. Roever (St. Louis), A. Ross (St. Louis), J. 
Shohat (Philadelphia), and P. Turan (Budapest) gave generously and unstint
ingly of their time. F. A. Butter, Jr. (at present in Los Angeles) collaborated 
with me in the preparation of the manuscript. This last aid was made possible 
through a grant from the Rockefeller Research Fund of Washington University 
(1936-1937). My student L. H. Kanter also rendered valuable assistance in 
the preparation of the manuseript. 

My gratitude for the encouragement and help of these friends, colleagues, and 
institutions can hardly be measured by any formal acknovvledgment. Lastly, 
I wish to express to the American Mathematical Society my great appreciation 
for the inclusion of the present book in its Colloquium Series. 

G. SzEGO 

vVASHINGTON UNIVERSITY, 1938. 

2 Cf. the bibliography in Jackson 8, p. 423. 



PREFACE TO THE REVISED EDITION 

The first printing of this book published in 1939 was about exhausted in 1948. 
Reprinting was arranged then but for various reasons no change in the text was 
made. During the past twenty years since the preparation of the original 
edition was completed, considerable progess was made in this field. A glance 
at the pertinent section of the Mathematical Reviews suggests that the interest 
in this topic is still very much alive. Systematic treatment of orthogonal 
polynomials has been incorporated in various modern texts published in the 
meantime. We refer only to the Higher Transcendental Functions published by 
the Bateman Manuscript Project Staff ( cf. in particular, vol. 2, Chapter X, 
edited by Professor A. Erdelyi), and to the book of F. Tricomi, Vorlesungen 
iiber Orlhogonalreihen (Chapters IV-VI). 

Recently the council of the American Mathematical Society has authorized 
the author to prepare a revised edition of the book, adding a moderate amount 
of material in order to bring it up to date. Naturally, limitations of space and 
time did not allow including all new results (or, for that matter, the old ones 
which were missing from the original edition). Only a few particularly interest
ing new items have been added as well as some details which deserve attention 
because of elegance of the method or originality of ideas. We mention here in 
particular the important Pollaczek polynomials; they are treated in an Appendix. 
Further new material was incorporated in the form of Problems and Exercises. 
New bibliographic items have been included, again in a rather selective way. 
Finally, misprints have been corrected and numerous minor improvements and 
additions made. 

The author recollects again, as was stated in the Preface of 1938, that the prep
aration of this book was suggested to him by the late Professor J. D. Tamarkin. 
Since his untimely death in 1945 his name is not too frequently mentioned. It is 
justified and probably necessary to remind the younger mathematical gener
ation, in the rush of modern developments, how much American mathematics 
owes to his great energy and far-sighted intelligence. 

STANFORD UNIVERSITY, 1958 G. SZEGO 

ix 



PREFACE TO THE THIRD EDITION 

The interest of the mathematical community for orthogonal polynomials, 
classical and non-classical, is still not entirely exhausted. During the past 
years I lectured about this subject several times at Stanford. The attendants 
of the course were upper division and graduate students, specializing in 
mathematics, mathematical statistics, calculus of probability, etc. 

Only minor changes have been made in the text. I owe numerous im
provements and corrections to various friends and colleagues. I mention 
particularly Professor Paul Tur{m (Budapest, Hungary) and Professor 
Lee Lorch (Edmonton, Canada). New references, published in the time 
interval 1958-1966, have been included. 

STANFORD UNIVERSITY, 1966 G. SzEGO 

PREFACE TO THE FOURTH EDITION 

Again the American Mathematical Society has taken the initiative to 
reprint the present book, allowing some minor changes and new material. 
Among the persons interested in the field of orthogonal polynomials who 
have contributed to these changes and additions, I mention with particular 
indebtedness my friend and colleague Professor Richard Askey (Madison, 
Wisconsin) and the very active and original group of mathematicians. around 
him. A very important set of lectures by Askey entitled, "Orthogonal 
Polynomials and Special Functions," reached me too late to be incorporated 
in the present edition. 

Further material has been furnished by Professor Paul Tur{m (Budapest, 
Hungary) and Professor Lee Lorch (Toronto, Canada). New problems and 
exercises have also been included. Peter Szego (Redwood City, California) 
gave me valuable assistance in preparing the present manuscript. 

My gratitude goes to aJJ these friends and colleagues. 

STANFORD UNIVERSITY, 1975 
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G. SZEGO 
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CHAPTER I 

PRELIMINARIES 

1.1. Notation 

Numbers in bold face type, like 1, refer to the bibliography at the end of the 
book. The system of section numbering used is Peano's decimal system, and 
the numeration of formulas starts anew in each section. Thus, reference to §9.5 
and (9.5.2) means section 9.5 in Chapter IX and formula (9.5.2) in the same 
section, respectively. A similar numeration has been used for the theorems. 

We use the symbol: Onm = 0 or 1, according as n ~ m, or n = m. 
The closed real interval a ~ x ;£ b (a and b finite) will be denoted by [a, b]. 

The same symbol is used if either a orb is infinite or if both are; in this case the 
equality sign is excluded. 

We often write for a real x 

(1.1.1) sgn x = - 1, 0, + 1, 

according as x is negative, zero, or positive; more generally, for arbitrary com
plex x, x ~ 0, we write 

(1.1.2) sgn x = I x l-1 x. 

The symbol i denotes the conjugate complex value, ~(x) the real part, and 
3(x) the imaginary part of the complex number x. 

If two sequences Zn and Wn of complex numbers have the property that Wn ,= 0 
and Zn/Wn ----+ 1 as n ----+ oo, we write Zn ""' Wn. If Zn and Wn are complex, Wn ~ 0, 
and the sequence I Zn l/1 Wn I has finite positive limits of indetermination, we 
Write Zn r-...~ Wn . 

Occasionally we make use of the notation 

(1.1.3) 

if an > 0, to state that Zn/an is bounded, or tend~ to 0, respectively, as n----+ oo. 

A similar notation is used for a passage of limit other than n ----+ oc. 

A function f(x) is called increasing (strictly increasing) if x1 < X2 implies 
f(xt) < j(x2); it is called non-decreasing if Xt < X2 implies J(xt) ~ j(1:2). An 
analogous terminology '"ill be used for decreasing functions. 

Let p ~ 1, and let a(x) be a non-decreasing function in [a, b] which is not 
constant. The class of functions f(x) whieh are measurable with respect to 
a(x) and for which the Stieltjes-Lebesgue integral f~ J f(x) JP da(x) exists (see 
§1.4) is called L~(a, b). In case a(x) = x we use the notationLv(a, b); in case 
p = 1, a(x) arbitrary, the notation La(a, b) is used. If f(x) and g(x) belong to 
the class L~(a, b), the same is true for f(x) + g(x). (Cf. Kaczmarz-Steinhaus 1. 
pp. 10-11.) 

1 



2 PRELIMINARIES [I l 

1.11. Inequalities 

(1) Cauchy's inequality. Let ( a.l, { b.l, v = I, 2, . · . , n, be two systems of 
complex numbers. Then 

(1.11.1) 

The equality sign holds if and only if two numbers >-., IJ., not both zero, exist 
such that >-.a.+ ~J.b. = 0, v = 1, 2, ... , n. 

(2) Schwarz's inequality. Letf(x) and g(x) be two functions of class L'!(a, b). 
Thenf(x)g(x) is of class La(a, b), and 

(1.11.2) I ib f(x)g(x) da(x) 1

2 

~ [b I f(x) f da(x) [b I g(x) 12 da(x). 

(3) Inequality for the arithmetic and geometric mean. If f(x) > 0, we have 

(1.11.3) 
lb f(x) da(x) > {ib log f(x) da(x)} 

J.' da(x) ~ exp f.' da(x) ' 

provided all integrals exist, and f~ da(x) > 0. (Cf. Hardy-Littlewood-P6lya 
1, pp. 137-138.) 

(4) Abel's transformation and Abel's inequality. From 

(1.11.4) 
fogo + f1g1 + · · · + fngn 

= (Jo - f1)Go + (!1 - f2)G1 + · · · + CJn-1 - fn)Gn-1 + fnGn 
1 

where 

(1.11.5) G. = go + g1 + · · · + g. , v = 0, 1, 2, · .. , n, 

we obtain, assuming fo ~ f1 ~ · · · ~ fn ~ 0, and I G. I ~ G, v = 0, 1, · · · , n, 
the inequality 

(1.11.6) 

(5) Second mean-value theorem of the integral calculus. Let f(x) ~ 0 be a 
non-increasing function, and let g(x) be continuous, a ~ x ~ b, a and b finite. 
Then 

(1.11.7) [b f(x)g(x) dx = f(a + 0) 1~ g(x) dx, 

1.12. Polynomials and trigonometric polynomials 

We shall consider polynomials in x of the form 

(1.12.1) 
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with arbitrary complex coefficients Co, c1, c2 , ... , cm. Here m is called the 
degree; and if Cm =;t. 0, the precise degree of p(x). In what follows an arbitrary 
polynomial of degree m will be denoted by 11"m. If p0(x)

1 
p1(x), ... , Pn(x) are 

arbitrary polynomials such that Pm(x) has the precise degree m, every 7rn can be 
represented as a linear combination of these polynomials with coefficients which 
are uniquely determined. 

A trigonometric polynomial in 0 of degree m has the form 

(I.I2.2) g(O) = ao + a1 cos 0 + b1 sin 0 + · · · + am cosmO+ bm sin mO, 

with arbitrary complex coefficients. Here m is again called the degree of g(O); 
m is the precise degree if I am I + I bm I > 0. According as all the b~< or all the a~< 
vanish, g(O) is referred to as a cosine or a sine polynomial. 

The functions cosmO and sin (m + 1)0/sin 0 are polynomials in cos 0 = x of 
the precise degree m and are called Tchebichef polynomials of the first and second 
kind, respectively. These polynomials play a fundamental role in subsequent 
considerations. Setting 

(l.I2.3) cosmo= T m (cos 0) = T m(x), sin ( m + I) 0 _ U ( O) _ U ( ) 
• - m COS - m X 1 sm 0 

we see that any cosine polynomial of degree m is a polynomial of the same degree 
in cos 0 = x, and conversely. Any sine polynomial of degree m, divided by 
sin 0, furnishes a cosine polynomial of degree m - I. Thus, a sine polynomial 
can be represented as the product of sin 0 = (1 - x2

)
112 by a polynomial in 

COS 0 = X. 

The polynomials (I.I2.3) are special cases of the so-called Jacobi polynomials 
( cf. Chapter IV). They contain only even or only odd powers of x according 
as m is even or odd. Thus cos (m + !)O/cos (0/2) and sin (m + !)O/sin(0/2) 
are cosine polynomials in 0 of degree m; they are also connected with the 
Jacobi polynomials (see (4.1.8)). 

We define the "reciprocal" polynomial of (l.I2.I) by 

(l.I2.4) 

If the zeros of p(x) are x1 , X2, · · · , Xm, those of p*(x) are x't, x:, . · · , x!, where 
x: == x;;-1 is the point which is obtair.ed from x~< by inversion with respect to the 
unit circle I x I = I in the complex x-plane. The zeros must be counted accord
ing to their multiplicity, and O* = oo, oo * = 0; oo as a zero of order k means 
that the coefficients of the k highest powers vanish. 

1.2. Representation of non-negative trigonometric polynomials 

THEOREM 1.2.1. Let g(O) be a trigonometric polynomial with real coefficients 
which is non-negative for all real values of 0. Then there exists a polynomial p(z) 
of the same degree as g(O) such that g(O) = I p(z) 1

2
, where z = e;8

• Conversely, if 
z = e;8

, the expression I p(z) 1
2 always represents a non-negative trigonometric poly

nomial-in 0 of the same degree as the polynomial p(z). 
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See Fejer 6. The second part of the statement is obvious. The first part is 
easily derived from (I.I2.2) by introducing l + z-k for 2 cos kO and l - z-k 
for2isink0. Wethenfindg(O) = z-"'G(z),whereG(z)isa1r2,.forwhichG*(z) = 
G(z). Now those zeros of G(z) which are different from 0 and oo, and which 
do not have the absolute value I, can be combined in pairs of the form z,., z"t, 
0 < I z~-' I < I, where z"t has a meaning similar to that in §I.I2. Furthermore, 
every real zero Oo of g(O) is of even multiplicity, and e.-80 is a zero of G(z) of the 
same multiplicity. Thus 

U T 

(l.2.I) G(z) = cz· II (z - zJ.I)(z - zt) II (z - rY, 
J.<=l •-1 

0 < I ZJ.I I < I, 1 r.l = I; K + (1 + T = m. 

Since g(O) = I g(O) I = I G(z) I, z = / 8
, and I z - z~-' I = I z~-' II z - z! j, z = e.-8

, 

the theorem is established. 
The representation in question is, however, not unique. Indeed, if a denotes 

an arbitrary zero of p(z), the polynomial p(z) (I - az)/(z - a) furnishes another 
representation. Hence assuming g(O) :/= 0, we can gradually remove all the 
zeros from I z I < I and obtain the following theorem: 

THEOREM 1.2.2. Let g(O) satisfy the condition of Theorem l.2.I and g(O) :/= 0. 
Then a representation g(O) = I h(e.-8

) 1
2 exists such that h(z) is a polynomial of 

the same degree as g(O), with h(z) :;e 0 in I z I < I, and h(O) > 0. This polynomial 
is uniquely determined. If g(O) is a cosine polynomial, h(z) is a polynomial with 
real coefficients. 

A generalization of this normalized representation (its extension to a certain 
class of non-negative functions g(O)) is of great importance in the discussion of 
the asymptotic behavior of orthogonal polynomials. (See Chapters X-XIII.) 

1.21. Theorem of Lukacs concerning non-negative polynomials 

(I) THEOREM l.2I.I (Theorem of Lukacs). Let p(x) be a 11"m non-negative in 
[-I, +I]. Then p(x) can be represented in the form 

(I.2l.I) {

IA(x)) 2 +(I- x2)!B(x)J 2 

p(x) = 2 2 

(I + x)IC(x)) + (I - x)ID(x)) 

if m is even, 

if m is odd. 

Here A (x), B (x), C (x), and D (x) are real polynomials such that the degrees of the 
single terms on the right-hand side do not exceed m. 

The proof can be based on Theorem 1.2.2. We have 

p(cos 0) = I h(e;o) 12 = I e-im0/2 h(/s) 12, 

where h(z) is a 7rm with real coefficients. Now the expressions 

(1.21.2) 
sin (m + I)O cos (m + !)O sin (m + !)O 

cosmO, sin 0 ' cos (0/2) ' sin (0/2) 
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are all1rm in cos(} (see §I.I2), so that 

e -•uw h(e' ) = ._.12 .8 {A(cos 0) + i sin(} B(cos o) if m is even, 

2t cos (0/2) C(cos 0) + i21 sin (0/2)D(cos 0) if m is odd: 

where the degrees of A(x), B(x), C(x), D(x) are, respectively, m/2, m/2 _ I, 
(m - 1)/2, (m - 1)/2. 

(2) The following theorem has a simpler character: 

THEOREM 1.21.2. Every polynomial in x, which is non-negative for all real 
values of x, can be represented in the form !A(x)) 2 + !B(x)) 2

• Every poly
nomial which is non-negative for x ~ 0, can be represented in the form 
!A(x) )

2 + !B(x) )
2 + x[!C(x) )

2 + !D(x) )
2
]. Here A(x), B(x), C(x), D(x) are 

all real polynomials, and the degree of each term does not exceed the degree of the 
given polynomial. 

These representations can also be written in the form I P(x) 1
2 and 

I P(x) 1

2 + x I Q(x) 1
2

, respectively, where P(x) and Q(x) are polynomials with 
complex coefficients; for the degrees the same remark holds as before. In the 
case when x ~ 0, B(x) and D(x) can be chosen to vanish identically. See 
Achieser 4, [2.54], and Karlin-Studden 1, Chapter V, Corollary 8.1. 

In connection with this section see P6lya-Szego 1, vol. 2, pp. 82, 275, 276, 
problems 44, 45, 47. 

1.22. Theorems of S. Bernstein 

THEOREM 1.22.1. If g(O) is a trigonometric polynomial of degree m satisfying 
the condition I g ( 0) I ~ 1, (} arbitrary and real, then I g' ( 0) I ~ m. 

This theorem is due to S. Bernstein. (Cf. M. Riesz 1.) The upper bound m 
cannot be replaced by a smaller one as is readily seen by taking g(O) = cos mO. 
The following special case is worthy of notice: 

THEOREM 1.22.2. Let p(z) be an arbitrary 11"m satisfying the condition 
I p(z) I ~ I, where z is complex, and I z I ~ I; then I p'(z) I ~ m, I z I ~ I. 

With regard to this theorem see also Szasz 1, pp. 5I6-5I7. Finally we 
mention the following ·consequence of Theorem 1.22.1: 

THEOREM 1.22.3. Let p(x) be a 11"m satisfying the condition I p(x) I ~ I in 
- 1 ~ x ~ + 1. Then 

I p'(x) I ~ (1 - x2)-im. 

This follows by applying Theorem 1.22.1 to g(O) = p(cos 0). 

1.3. Approximation by polynomials 

(I) THEOREM 1.3.1 (Theorem of Weierstrass). A function, continuous in a 
finite closed interval, can be approximated with a preassigned accuracy by poly
nomials. A function of a real variable which is continuous and has the period 21r, 
can be approximated by trigonometric polynomials. 
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For information concerning this theorem we refer to Jackson 4. In the second 
part of the theorem let the function in question be even (odd)· th th · t · · , en e approxt-
ma mg tngonometric polynomials can be chosen as cosine (sine) polynomials. 

THEOR~M 1.3.~. Let w(o) be the modulus of continuity of a given function 

f(x), contmuous m the finite interval [a, b], 

(1.3.1) w(o) = max I f(x') - f(x") I if I x' - x"l ~ o. 

Then for each m we can find a polynomial p(x) of degree m, such that in the given 

interval of length l we have 

(1.3.2) I f(x) - p(x) I < Aw(l/m). 

In the case of a periodic function f(O) with period 21r, a trigonometric polynomial 

g(O) of degree m can be found such that 

(1.3.3) I f(O) - g(O) I < Bw(21rjm). 

Here A and B are absolute constants. 

In this connection see Jackson 4, pp. 7, 15. 

THEOREM 1.3 .3. Let f(x) have a continuous derivative of order 11. in the finite 
irdcrvalla, b), 11. ~ 1, and let wio) be the modulus of continuity of f~>>(x). Then 

a polynomial p(x) of degree m + 11. exists such that 

I f(x) - p(x) I < C(l/mY'wp.(l/m), 

(1.3.4) I f'(x) - p'(x) I < C(l/m)r
1
wp.(l/m), l = b - a. 

Here C is a constant depending only on 11.· 

Analogous inequalities can be obtained for all the derivatives f(x), f'(x), 

· · · ,lP.>(x). 
For the first inequality see Jackson 4 (p. 18, Theorem VIII). To prove the 

second inequality we first establish the following lemma: 

LEMMA. Let f(O) be a function of period 21r satisfying the Lipschitz condition 

(1.3.5) 

where A is a positive constant. Then there exist for each m trigonometric poly

nomials g( 0) of degree m such that 

(1.3.6) 
D'A 

1 f(o) - g(o) 1 < -m, I g'(O) I < D"A' 

where D' and D" are absolute constants. 

For the first inequality (1.3.6) see Jackson 4, pp. 2-6. When we use his 
notation and argument, it suffice:s to show that I A -l 1~(0) I is less than an abso-

lute constant. But 
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(1.3.7) 
h i+r/2 

1~(0) = -
2
"' IJ(O + 2u) - f(O) }F;n(u) du 

-r/2 

and 

rr/2 u I F~(u) I du = 4 rr/2 u I sin.mu 131 !!:._ sin.mu I du 
}o }o msmu dumsmu 

(1.3.8) = O(I) rr/2 u I sin mu 131 !I_ sin mu I du 
}o mu du mu 

+ O(l) u sm mu sm mu du 1r/2 I • 131 • j 
mu mu ' 

since ujsin u is analytic in the closed interval [0, 1rj2]. On writing mu x, 

O(m-1) 1"" X l.si~ X rId~ si~ X I dx + O(m-2) 1"' X I si~ X 14 dx = O(m-1). 

Now we use (cf. loc. cit.) hm = O(m). 
The analogue of the lemma for polynomials can be derived in the usual way. 

Then in the upper bound of the first inequality of (1.3.6) the factor b - a = l 
appears. It is convenient to transform the interval a ~ x ~ b into - t ~ y ~ ! 
(instead of -I ;£ y ~ I, cf. Jackson, loc. cit., p. I4), defining the function in 
[ -1, - !] and [!, 1] by a constant. 

In order to prove Theorem 1.3.3, we apply Theorem VIII of Jackson (loc. 
cit., p. I8) to f'(x). (For this argwnent cf. loc. cit., p. I6.) Thus 

I f'(x) - q(x) I < K(ljm)i'- 1w14 (l/m), 

where q(x) is a proper 7rm+~<-l. Applying the lemma to f(x) - f~ q(t)dt, 
which satisfies a Lipschitz condition with 

>-. = K(l/m)"- 1w14 (l/m), 

we obtain a 7rm, say u(x), such that 

k(x) - i"' q(t) dt- u(x) I < K'(l/m)"w14 (l/m), 

If we write J: q(t).dt + u(x) = p(x), the statement is established. 
The constants K, K', K" in the last three inequalities depend only on p.. 

(2) THEOREM 1.3.4 (Theorem of Runge-Walsh). Let f(x) be an analytic 
function regular in the interior of a Jordan curve C and continuous in the closed 
domain bounded by C. Thenf(x) can be approximated with an arbitrary accuracy 
by polynomials. 

See Walsh 1, p. 36. This theorem has been proved by Runge in case f(x) 
is analytic on C; the general case is due to ·walsh. 

We need also a supplement to the former theorem, due to Walsh (1, 

-----------------------------------------------------------------
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pp. 75-76). Let C be again a Jordan curve in the complex x-plane. Let 
x = ct>(z) be the map function carrying over the exterior of C into I z I > 1 
and preserving x = z = CXJ. Then the circles I z I = R, R > 1, correspond to 
certain curves CR, called level curves. 'Ve have 

THEOREM 1.3.5. Let f(x) be analytic within and on C, and let CR be the largest 
level curve in the interior of which f(x) is regular. Then to an arbitrary r, 
0 < r < R, there corresponds a constant M > 0 such that, for each m, a polynomial 
Pm(x) of degree m ex£sts satisfying the inequality 

(1.3.9) lf(x) - Pm(X) I < llfr-m, x on C. 

This holds also if Cis a Jordan arc, for example, the interval - 1 ;;£ x ;;£ + 1. 
In the latter case CR is an ellipse with foci at ± 1, and R is the sum of the semi
axes (§1.9). 

1.4. Orthogonality; weight function; vectors in function spaces 

(I) Let a(x) be a non-decreasing function in [a, b] which is not constant. If 
a = - CXJ (or b = + CXJ ), we require that a(- CXJ) = limx--oc a(x) (a(+ CXJ) 

limx-+oc a(x)) should be finite. The scalar product of two real functions f(x) 
and g(x), where x ranges over the real interval [a, b], is defined by the Stieltjes
Lebesgue integral 

(1.4.1) (f, g) = lb f(x)g(x) da(x), 

where we assume that f(x)g(x) is of the class La(a, b). This is certainly the 
case if f(x) and g(x) are both continuous, or both of bounded variation, and 
[a, b] is a finite interval. For a fixed function a(x) the orthogonality with 
respect to the "distribution" da(x) may be defined by the relation 

(1.4.2) (f, g) = 0. 

We shall also use the expression "f(x) is orthogonal to g(x)." 
If we permit f(x) and g(x) to be complex functions in general, definition 

(1.4.1) must be modified to read 

(1.4.3) (f, g) = lb f(x)g(x) da(x). 

With this change in the definition of (f, g), we retain (1.4.2) as the definition of 
orthogonality. 

[For the definition of Stieltjes-Lebesgue integrals see, for instance, Hildebrandt 
1, pp. 185-194. This definition, given originally for a monotonic a(x), can 
easily be extended to the case where a(x) is of bounded variation. Hildebrandt 
1, pp. 177-178, may also be consulted for the definition of Riemann-Stieltjes 
integrals. 
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In what follows we sometimes need the formula for integration by parts: 

(1.4.4) ib f(x) da(x) + ib a(x) df(x) = f(b)a(b) - f(a)a(a), 

where a and b are finite, a(x) 'is of bounded variation, and f(x) is continuous. 
The integrals are taken as Riemann-Stieltjes integrals. 

The expression "distribution" used above arises from the classical inter
pretation of da(x) as a continuous or discontinuous mass distribution in the 
interval [a, b], the mass contributed by the interval [x1 , x2 ] of [a, b] being 
a(x2) - a(xi).] 

(2) If a(x) is absolutely continuous, the scalar product (I.4.I) reduces to 

(1.4.5) (f, g) = ib f(x)g(x)w(x) dx, 

where the integral is assumed to exist in Lebesgue's sense. Here w(x) is a non
negative function measurable in Lebesgue's sense for which f~ w(x) dx > 0. 
We shall call w(x) the weight function, referring to a weight function of, or on, 
the given interval. Instead of "weight function" the term "norm function" 
is sometimes used in the 1iterature.3 In the case of a distribution w(x) dx the 
total mass corresponding to the interval [x1 , x2] is obviously f~~ w(x) dx. 
In what follows we refer to distributions of the form da(x) as distributions of 
Stieltjes type. 

\Ve use the same concept of distribution and weight function on a curve or on 
an arc in the complex plane, for example, on the unit circle. Then we replace 
the variable x by the real parameter which is used for the definition of the curve 
or arc in question. (See Chapters XI and XVI.) 

(3) Let da(x), or w(x) dx, a ~ x ~ b, be a fixed distribution, and consider a 
space of "vectors" defined by the set of real functions f(x) which belong to the 
class L!(a, b). The scalar product of two vectors (functions) f(x) and g(x) is 
defined by (1.4.I) and the length (magnitude, norm) of a vector f(x) by II! II = 
(f, J)*. Vectors (functions) with II f II = 0 are called zero-vectors (zero-func
tions); vectors (functions) with II f II = I are said to be normalized. When 
f(x) is not a zero-function, Af(x) will be normalized provided >-. :;e 0 is a proper 
constant, uniquely determined save possibly for sign. If the functions a(x) and 
w(x) satisfy the conditions mentioned in (I) and (2), there exist functions of 
positive length for both cases. In the second case f(x) is a zero-function if and 
only if lf(x) )2w(x), or what amounts to the same thing, f(x)w(x), vanishes 
everywhere in [a, b] except on a set of measure zero. If w(x) and f(x) are 
integrable in Riemann's sense, f(x) is a zero-function providedf(x)w(x) vanishes 
at every point of continuity. 

We note the inequality of Schwarz (cf. (l.I1.2)) 

(1.4.6) II fg II ~ II f II II g II , 
a Some corresponding German and French terms are: Belegungsfunktion, Gewichts

funktion, fonction caracteristique (Stekloff), poids (S. Bernstein). 

-------- ·------·---------------------------
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the equality sign holding if and only if Af(x) + IJ.g(x) is a zero-function with 
A and IJ. proper constants not both zero. 

A finite set of functions fo(x), f1(x), , f 1(x) is said to be linearly inde-
pendent if the equation 

II Aofo(x) + Ad1(x) + · · · + Az/z(x) II = 0 

can be true only for 

Ao = A1 = · · · = Az = 0. 

Evidently no zero-function can be contained in such a system. An enumerable 
set of functions (l = CXJ) is called linearly independent..if the preceding condi
tion is satisfied for every finite subset of the given set. 

The extension of these considerations to complex vector spaces is not difficult. 
The scalar product is then defined as in (1.4.3). 

Concerning the axiomatic foundation of these concepts see Stone 1, Chapter I. 

1.6. Closure; integral approximations 

(I) DEFINITION. Let p ~ I, and let a(x) be a non-decreasing function in [a, b] 
which is not constant.4 Let the functions 

(1.5.1) fo(x), f1(x), /2(x), · · · , fn(x), · · · 

be of the class L~(a, b). The system (1.5.1) is called closed in L~(a, b) if for every 
f(x) of L~(a, b) and for every E > 0 a function of the form 

(1.5.2) k(x) = Cofo(x) + cd1(x) + · · · + Cnfn(x) 

exists such that 

(1.5.3) [b lf(x) - k(x) IP da(x) < E. 

With regard to this definition see Kaczmarz-Steinhaus 1, p. 49. These authors 
use the term "Abgeschlossenheit" for "closure." 

(2) THEOREM 1.5.1. Let p and a(x) have the same meaning as in the previous 
definition, and let the function f(x) be of the class L~ (a, b), a and b finite. Then 
for every E > 0 a continuous function F(x) can be determined such that 

(1.5.4) [b lf(x) - F(x) IP da(x) < E. 

For a Riemann-integrable function with a(x) = x, this follows by a well
known argument from the definition of the integral. In the general case, it is 
convenient to use the method of W. H. Young of approximating Stieltjes
Lebesgue integrals. (See Hildebrandt 1, p. 190.) 

Applying Weierstrass' theorem, we obtain the following: 

4 See the remark at the beginning of §1.4 (1). 
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THEOREM 1.5.2. Let p, a, b, a(x), f(x) satisfy the conditionsofTheorem 1.5.1. 
For every E > 0 there exists a polynomial p(x) such that 

(1.5.5) lb Jf(x) - p(x) IP da(x) < E. 

This means the closure of the system 

(1.5.6) n = 0, 1, 2, ·. · , 

in the elas~ L~(a, b). In what follows, we shall use in particular the rases p = 1 
and p = 2. 

An analogous statement holds for the "mean approximation" of f(x) hy 
trigonometric polynomials, which is equivalent to the property of closure of 
the system 

(1.5.7) 1 , cos x, sin x, cos 2x, sin 2x, · . · , cos nx, sin nx, 

in L~( -1r, +1r). 
(3) A more precise form of Theorem 1.5.2 is often useful. 

THEOREM 1.5.3. Let p, a, b, a(x),J(x) satisfy the conditions of Theorem 1.5.1 
and let f(x) be real-valued. Then we can find a polynomial p(x) which satisfies 
(1.5.5) and is such that p(x) remains between the upper and lower bounds of f(x). 

We refer also to the following property of Riemann-Stieltjes integrals which 
plays a role in Chapter X. 

THEOREM 1.5.4. Let the real-valued function f(x) be bounded in [a, b], a and b 
finite, a(x) non-decreasing, and let the Riemann-Stieltjes integral f~ f(x) da(x) 
exist. For every E > 0 there exist polynomials p(x) and P(x) sttch that 

(1.5.8) inf f(x) -E ~ p(x) ~ f(x) ~ P(x) ~ sup f(x) +E, 

and 

(1.5.9) lb I P(x) - p(x) l da(x) < E. 

See (for a(x) = x) P6lya-Szegi) 1, vol. 1, pp. 65,228, problem 137. 
Similar statements hold for approximations by trigonometrie polynomials. 

If f(x) is an even function, - 1r ~ x ~ + 1r, the approximating trigonometric 
polynomials can be chosen as cosine polynomials. 

1.6. Linear functional operations 

(I) Let U(f) be an operation which makes a number U(f) correspond to 
every function f(x), continuous in the finite interval [a, b]. This operation is 

called additive if 

(1.6.1) 
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whenever c1 and c2 are constants and J1(x) and f2(x) are arbitrary continuous 
functions in [a, b]. It is called continuous if U(fn) ~ U(f) whenever fn(x) ~ f(x) 
uniformly in [a, b]. Additive and continuous operations are called linear. 

An operation U(f) is called limited if there exists a constant M such that 
I U(f) I ~ M max I f I . The greatest lower bound of these constants M is the 
norm of U(f). The class of additive and limited operations U(f) coincides with 
that of the linear operations. 

According to a theorem of F. Riesz (1), any linear operation can be written 
in the form 

(1.6.2) U(f) = lb f(x) da(x), 

where a(x) is of bounded variation, defined in [a, b] and independent of j(x). 
It is obvious that (1.6.2) always represents a linear operation. In (1.6.2) the 
function a(x) can always be so normalized that a(x - O) ~ a(x) ~ a(x + O) 
or a(x + 0) ~ a(x) ~ a(x - 0) for a < x < b. Then the norm of U(f) is 
given by J~ I da(x) I, which is the total variation of a(x). 

(2) Let K(x) be a given function continuous in [a, b]. Then 

(1.6.3) lb f(x)K(x) dx 

defines a linear operation. Dirichlet's integral 

(1.6.4) ]:__ l+r J( ) sin { (2n + 1) (x- Xo)/21 d 
27r -r X sin { (x - Xo)/21 x, 

where n is a non-negative integer and Xo arbitrary, is a special case of (1.6.3). 
It represents the nth partial sum of the Fourier expansion of f(x) at x = xo . 
Another important example is Fejer's integral 

(1.6.5) 1 l+r f() (sin {(n + 1) (x- x0)/2J)
2 

d 
27r(n+1) -r x sin {(x-x0)/2l x, 

which represents the nth Cesaro mean of the Fourier expansion of f(x). A 
further illustration of linear· operations is furnished by Lagrange's interpolation 
polynomial 

(1.6.6) L(x) = L(f; x) = j(xo)lo(x) + f(xi)li(x) + · · · + f(xn)ln(x), 

where l0(x), l1(x), · · · , ln(x) are the fundamental polynomials associated with the 
interpolation points Xo, X1, • • • , Xn (see Chapter XIV). For a fixed value 
x = ~~ the expression L(f; ~) represents a linear operation on f(x). Finally, the 
general mechanical quadrature formula, 

(1.6.7) 

is also an example; here Ao , A1 , ••• , An are the so-called Cotes numbers (see 
Chapter XV). 
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(3) We consider the sequence of linear uperations 

(1.6.8) n = 0, 1, 2, · · · , 

and the operation 

(1.6.9) U(f) = 16 

f(x)da(x), 

where an(x) are normalized as in (1.6.2). Then we have the following theorem: 

THEOREM 1.6. A necessary and sufficient condition that limn_,ooUn(f) = U(f), 
where f(x) is an arbitrary continuous function, is that the following two relations 
be satisfied simultaneously: 

k = 0, 1, 2, ... ' 
n->oo 

(1.6.10) 

n = 0, 1, 2, · · · . 

Moreover, if the second condition (1.6.10) is not satisfied, a continuous func
tion f(x) exists such that the sequence 1 Un(f) l is unbounded. 

This important theorem is due to E. Reily (1, pp. 268-271). See also 
Banacb 1, p. 123. The first condition (1.6.10) expresses the validity of the 
limiting relation for an arbitrary polynomial. The second condition (1.6.10) 
states that the total variations of the functions an(x) are bounded. 

(4) Let b - a = 21r, and suppose thatf(x), an(x), and a(x) are functions with 
period 21r. Then the first condition (1.6.10) must be replaced by the following: 

lim Un(cos kx) = U(cos kx), 

(1.6.11) 
n-ooo 

lim Un(sin kx) = U(sin kx), 
k = 0, 1, 2, ... 

n->oo 

One of the most important applications of the preceding considerations is 
to the theory of "singular integrals" of Lebesgue: 

(1.6.12) 

where ! Kn(x) l is a given sequence of continuous functions. In this case we 
are mainly interested in finding a necessary and sufficient condition that 
UnCf). ~ f(xo), where :ro is a fixed point in [a, b] t>1d f(x) an arbitrary continuous 
function. According to Reily's theorem, this must hold if f(x) is an arbitrary 
polynomial (or trigonometric polynomial in the periodic case) and the so-called 
Lebesgue constants (which arc the norms of Un(f)) are bounded: 

(1.6.13) lb I Kn(x) I dx < A. 
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See Lebesgue 1, 2; in particular articles 45, 46, pp. 86-88. See also Haar 1. 
For Dirichlet's integral (1.6.4) this condition (1.6.13) is not satisfied; hence 

there exist continuous functions whose Fourier expansions are di,·ergent at a 
preassigned point. (Du Bois-Reymond 1; Lebesgue 2, chapter IY, pp. 84-89.) 
This condition is, ho\\·enr, satisfied in the case of Fejrr's integral (1.6.5) v•hich 
implies the Cesaro ~ummability of the Fourier expansion of a continuous func
tion (Fejer 2, in fJarticular p. 60). The same holds for the Cesaro means of 
second order of the Legendre series (Fejer 4). 

Regarding applications of Reily's theorem to the theory of interpolation and 
mechanical quaJrature, see Chapters XI\" anJ XV. 

1.7. The Gamma function 

The Euler integral of the sf'<~ond kind 

r(z) = 1"" e -tr·-l dt 
0 

(1.7.1) 

defines the Gamma function r(z) for m(z) > 0. By analytic continuation \Ve 
obtain a meromorphic function without zeros and with 1-'imple pole:;; at z = 0, 
-1, -2, . . . . The functional equations 

(I. 7 .2) r(z + 1) = zr(z), r(z)r(1 - z) = 1r/sin 1rZ 

hold. Another important formula is 

r(z)r(z + 1/n) ... r(z + (n - 1)/n) 
(I. 7.3) 

i-nz(2 )(n-Il/2r( ) =n 1r nz, 

In what follows we use mainly the cases n = 2 and n = 3. 
The Euler integral of the first kind 

(1.7.4) B(p, q) = 11 

xP-1(1 - x)q-I dx, 

can be expressed in terms of the Gamma function thus: 

(1.7.5) B( ) = !'(p)r(q) 
p, q r(p + q). 

n a positive integer. 

p > 0, q > 0, 

The integral (1.7.4) exists also for complex p and q with positive real parts for 
which (1.7.5) remains valid. By means of (1.7.5) the definition of B(p, q) can be 
extended to arbitrary complex p and q. (See \Vhittaker-Watson 1, Chapter 12, 
pp. 237, 239, 240, 254.) 

The special case n = 2 of ( 1.7 .3) is as follows: 

(1.7.6) r(z) r(z + l/2) = 21
-

2
'7r

112 r(2z). 

We mention also the formula 

(1.7.7) --=- e1l-'dl 
l l f

(O+l 

r(z) 21ri -00 • 

1. 71. Bessel functions 

(1) The Bessel function of the first kind of order a can he defined by 
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(1.7l.I) 
"" ( -I)"(z/2),+2

• 

J a(z) = L 1 ( )" 
•-0 II. r II + a + I 

Obviously, z -a J a(z) is an even integral function. Here a is arbitrary real. 
If a is a negative integer, l r(11 + a + 1) l-1 must be replaced by 0 whenever 
11+ a+ I~ 0. \Vethenobtain therelationJa(z) = (-l)aJ_a(z). Ifais 
not an integer, J a(z) and J -a(z) are linearly independent. We notice the 
special casei:l 

(1.71.2) 

The function (1.71.I) satisfies Bessel's differential equation 

(1.71.3) , -1 , (I 2 -•) y + z y + - a z - y = 0, Y = .J a(z). 

For non-negative integral values of a we introduce the Bessel functions of the 
second kind 

Y ( ) _ 2 ( + I z) J ( ) I ~ (a - 11 - I)! (z/2) 2•-a 
a z - - 'Y og - a z - - L..... -

-rr 2 1r •-o_ 11! 

(1.71.4) - ! f ( -l)'(z/2)2•+a II/I + I/2 + ... 
1r .-o 11! (11 +a)! 

+ I/11 + I/I + I/2 + · · · + I/(11 +a) J, a = 0, I, 2, · · · . 

Here 'Y is Euler's constant. The fhst sum is to be suppressed for a = 0, and the 
curly brackets in the second sum are to be replaced by I for 11 = 0, a = 0, and by 
I/I + I/2 + · · · + I/a for 11 = 0, a > 0. This function furnishes a second 
solution of (1.71.3) independent of (1.71.1). (See Whittaker-Watson 1, Chap
ter I7, pp. 370, 372.) 

The formulas 

follow directly from (1.71.1) on comparing the corresponding coefficients on 
both sides. The integral representation 

(1.71.6) 

holds for a > !. This can be verified by introducing the development of 
ei" and integrating by means of (1.7.5). 

(2) The following important asymptotic formula is used in various appli
cations: 

(1.71.7) z ~ + ao. 

This is only a special case (p = I) of the asymptotic expansion (see Whittaker
Watson 1, p. 368): 

~~---- ------------------------------
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Ja(z) = - cos (z- a7r/2- 7r/4) L a.z-2" + O(z-2P) ( 
2 )! {P-1 } 

7rZ v=O 
(1.71.8) l 

+ (~) sin (z - a7r/2- 7r/4) {~ b.z-2
"-

1 + O(z-2P-
1
)}; 

7rZ v=O 

here p is an arbitrary positive number, a. and b. certain constants depending 
only on v, and z ~ + ao. Also, ao = 1. 

This expansion holds also if z is complex, I arg z I ~ 1r - o, o > 0, if we agree 
that z1 = exp (! log z) with I S(log z) I ~ 1r - o. \Ve notice the following 
important consequence of this formula, valid for -7r/2 + o ~ arg z ~ 37r/2- o, 
0 > 0: 

eari/2J a(e -ir/2z) = (27rz)-lez II + O(l z 1-1) l 

+ (27rz)-l exp [- z + (a + !)1ri] II + OCI z ~-1) ). 
(1.71.9) 

An asymptotic formula similar to (1.71.7) holds for Bessel functions Y a(z) 
of the second kind, with the only change that cosine is to be replaced by sine. 
(See Whittaker-\Vatson 1, p. 371.) 

(3) It may be useful to notice th.:: order of magnitude. of J a(z) and Y a(z) for 
z ~ + 0 and z ~ + ao. From the preceding formulas we see that when z ~ + 0, 

(1.71.10) 

J a(z) ~ za, 

Ya(z) ~ z-a, 

Yo(z) ~ log (1/z), 

a real, a ~ -1, -2, -3, · · · , 

a = 1, 2, 3, · · · , 

while when z ~ + ao, 

(1.71.11) 

1.8. Differential equations 

We shall make frequent use of certain elementary transformations of homo
geneous linear differential equations of the second order. 

(1) Let K(x), M(x), N(x) be functions defined in the interval a < x < b 
in which K(x) and M(x) have continuous derivatives and K(x) ~ 0; let N(x) 

be continuous. If in 

(1.8.1) K(x)y" + M(x)y' + N(x)y = 0 

we introduce y = s(x)u(x), u(x) being the new unknown function, s(x) can be 
determined so that u(x) satisfies an equation of the form 

(1.8.2) u" + X(x)u = 0. 

Direct calculation gives 

(1.8.3) 2Ks' + Ms = 0; { f Mdx} s(x) = exp -
2
K , 
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where the integration is extended from an arbitrary point x0 to x. Then 

(1.8.4) d (M) (M)2 

N X(x) = - dx 2K - 2K + K" 

(2) If we introduce into (1.8.1) the new independent variable 0 defined by 
x = u( 0), we obtain 

(1.8.5) K(x)u'(O) ~:~ + /M(x)[u'(0)]
2 

- K(x)u"(O) l ~~ + N(x)[u'(0)] 3 y = 0. 

If we apply the process in (I) to (1.8.5), the first derivative can be removed. 
We write y = s*u; here, in view of (1.8.3), 

(1.8.6) { ! M'
2 K"} s* = exp - u 
2
;_u' u dO = (u') 1 s, 

where s has the same meaning as in (1.8.3). Hence, y = (u') 1su, and u satisfies 

( 8 7) d2u * - 0 
1. . d02 +X u - ' 

with 

(1.8.8) * = _!!_ (Mu'
2 

- Ku") _ (Mu'
2 

- Ku")
2 

N ,2 

X dO 2Ku' 2Ku' + K u . 

As an application of the above, we note the following transformations of 
Bessel's differential equation (1.71.3), k ~ 0, 

(1.8.9) ~ + k2 + 4 - a = o· 2 ( 1 2) 
dx2 x2 u ' 

(1.8.10) d
2
u (k I - a

2
) 

dx2 + x + 4x2 u = 0 ; 

Another elementary formula, important for further exposition is the repre
sentation of a solution y = y.(x) of the non-homogeneous equation 

(1.8.11) K(x)y" + M(x)y' + N(x)y = f(x) 

in terms of a fundamental system lYI(x), Y2(x) l of the corresponding homo
geneous equation (1.8.1). We have 

l z Y1(x)y2(t) - Y2(x)y1(t) f(t) 
(1.8.12) y(x) = CIYI(x) + D.!Y2(x) + o yf(t)y2(t) - y~(t)yi(t) K(t) dt, 

where x0 is a fixed value and c1 , c2 proper constants. Now 

(1.8.13) y~(x)y2(x) - y~(x)yi(x) = const. exp {-J ~ dx }. 

When we take M = 0, this expression becomes a constant. 

-------- ---------------------------------------------------------------
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Applying this last remark to (1.8.9), we obtain the important formulas 

(1.8.I4) 

, ( ) ( ) , ( ) 2 sin ct1r Ja X J_a X - J_a x)Ja(X = 
1 

7rX 
a non-integral, 

J:(x)Ya(x)- v:(x)Ja(x) = -~, 
7rX 

a= 0, 1, 2, · · ·. 

As regards the evaluation of the constants on the right side, see \Vatson 3, 
p. 43, (2), p. 76, (I). 

1.81. Airy's function 

An interesting transformation of Bessel's differential equation (1.71.3) can 
be obtained in the special cases a = ±1/3. If we use (1.8.7) and (1.8.8), there 
is no difficulty in showing that both integral functionS' 

(1.8l.I) 
k(x) = j (x/3)

1 
J -d2(x/3)!} = j" ~ v! ~C~~x~3~

3

;~), 

l(x) = j" (x/3)
1 
Ji l2(x/3)! l = i § ~ 

11
! ~C~~x~3~

3

;3), 
satisfy the equation 

(1.81.2) 
2 

dy+.l -0 dx2 aXY - . 

For negative x we have k(x) > 0, l(x) < 0. Using (1.71.9),5 we obtain for 
X< 0, X~- ao 

(1.81.3) 

Thus, but for a constant factor, the function 

(1.81.4) A(x) = k(x) + l(x) 

is the only possible particular solution of (1.81.2) which remains bounded if 
x ~ - ao . Indeed, 

(I.8I.5) 
X~- ao. 

(See \Vatson 3, pp. 188-I90, 202.) This function A(x) is called Airy's function; 
it can be considered as the standard solution of (1.81.2) and plays an important 
part in numerous questions in mathematical physics. The function l(x)/k(x) 
is increasing (see Fig. I) so that an arbitrary real solution of (1.81.2) has at 
most one negative zero and infinitely many positive zeros. In particular, A (x) 

6 If x is negative, we have 



[ 1.82 J THEOREMS OF STURl\I'S TYPE 19 

has no negative zero and infinitely many positive zeros. Since A (x) > 0 for 
x < 0, we see from (1.81.2) that A"(x) > 0 for x < 0; therefore A'(x) ~ 0 
asx~ -ao. 

FIG. 1 

1.82. Theorems of Sturm's type 

The following "comparison theorems" of Sturm's type can be proved in the 
usual way (see Szego 20, pp. 3-4) : 

THEOREM 1.82.1. Let f(x) and F(x) be functions continuous in Xo < x < Xo 
with f(x) ~ F(x). Let the functions y(x) and Y(x), both not identically zero, 
satisfy the differential equations 

(1.82.1) y" + f(x)y = 0, Y" + F(x)Y = 0, 

respectively. Let x' and x", x' < x", be two consecutive zeros of y(x). Then the 
function Y(x) has at least one variation of sign in the interval x' < x < x" provided 
f(x) ¢ F(x) in [x', x"]. 

The statement holds also for x' = Xo [y(xo + O) = O] if the additional condition 

(1.82.2) lim 1 y'(x) Y(x) - y(x) Y'(x) l = 0 
:-:ro+O 

is satisfied (similarly for x" = Xo). 

From Theorem 1.82.1 we readily derive (loc. cit., p. 4) the following theorem: 



20 PRELIM IN ARIES l I I 

'THEOREM 1.82.2. Let cp(x) be continuous and dec1·easing in x0 < x < X
0

, 

and let y be a solution of 

(1.82.3) y" + cp(x)y = 0 

which £s not identically zero. Then x' < x" < x'" being three consecutive zeros 
of y(x), we have x" - x' < x'" - x"; that is, the sequence of the zeros of y(x) 
zs convex. 

The last inequality holds also under the following more general cmulition: 

(1.82.4) cp(x) > cp(x") > cp(y), forx < x" < y < x"'. 

In addition, it holds also tf x' = Xo [y(xo + O) = 0] provided that 

(1.82.5) lim (x - xo)y'(x) = 0. 
z-zo+O 

In order to prove x" - x' = h < x"' - x", we compare (1.82.3) with 

Y" + cp(x - h)Y = 0, 

which has the solution Y(x) = y(x - h) in the interval x" 5 x 5 x"'. 
Another very elementary remark of a related nature is the following: 

THEOREM 1.82.3. Let f(x) be continuous and negative in x0 < x < Xo . Then 
an arbitrary solution y of y" + f(x)y = 0, for which y ~ 0 if x ~ Xo, cannot 
vanish in Xo ~ x < X o • 

Suppose the contrary. Now between two consecutive zeros sgn y" = sgn y 
is constant, say positive; then y is positive and convex, which is a contradiction. 

A further remarkable result of Sturm's type is the following (Watson 3, p. 518, 
Makai 2): 

THEOREM 1.82.4. Let f(x), F(x), y(x), Y(x), Xo, X 0 , x', x" have the same 
meaning and satisfy the same conditions as in Theorem 1.82.1. We denote by ~ 
the first zero of Y (x) to the right of x', x' < ~ < x". 

Assuming that y(x) > 0; Y(x) > 0 in x' < x < ~~and 

( ) I. y (x) > 1 
1.82.6 1m Y( ) = , 

x->x' +0 X 

we have y(x) > Y(x) in x' < x < ~-
We conclude as usual that the function y' (x) Y (x) - y (x) Y' (x) is increasing 

in [x', ~];it is zero at x = x'(Y(x') = 0), thus positive in x' < x < ~- Hence 
y(x) I Y (x) is increasing. In view of (1.82.6) the assertion follows. 

The statement holds also for x' = x0 provided the condition (1.82.2) is satisfied. 
We prove now the following important consequence of the last theorem 

(Hartman-Wintner 1; Makai 2): 

---· ---------------------------------------··---
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THEORE:\-1 1.82.5. Let <P(x), x', X
11

, X
111 have the same meaning as in Theorem 

(1.82.2): X
11

- x' < X 11
'- X

11
• Let y(x) describe a negative "wave" in [x', X 11 ] and 

a positive one in [x", x'
11

]. The .first "wave" is then entirely contained in the 
second one. 

The meaning of the last assertion is the inequality: 

0 < -y(2x" - x) < y(x), X
11 < x < 2x 11 

- x'. 

The proof proceeds as usual, taking into account that, Y(x) = -y(2x11 
- x), 

r y(x) - I. y'(x) 
1m (2 11 ) - 1m 1 ( 2 11 ) = l. 

x ->x" - Y X - X x -+x" Y X - X 

1.9. An elementary conformal mapping 

Let the complex variables x and z be connected by the relations 

(1.9.1) z = x + (x2 
- 1)1. 

The exterior of the unit circle, I z I > 1, as well as its interior, is mapped onto 
the whole x-plane except the closed interval [ -1, +I] (the so-called cut plane), 
with z = oo and z = 0, respectively, corresponding to x = oo. If we take that 
branch of x + (x2 

- 1)1 which becomes infinite at x = oo, we obtain I z I > 1; 
if we take the other branch, which vanishes at x = oo, we obtain I z I < 1. 

The unit circle z = ei
8 

is carried over into the closed segment - 1 ~ x ~ + 1 
described twice since x = cos 0. 

The circle I z I = r, or I z I = r-
1

, 0 < r ~ 1, corresponds to the ellipse with 
foci at -1, +I and with semi-axes 

1 I -1 I 2 r- r . 

Upon replacing z by i or bye -r, we obtain the representation 

(I. 9.2) 

It maps the half-strip 

(1.9.3) 

X = COSh S. 

~(S) > 0, - 7r < s (S) ~ 7r 

onto the same x-plane cut along [ -1, + 1] as before; now, however, the point 
x = oo has to be removed. 

1.91. The principle of argument; Rouche's theorem; sequences of 
analytic functions 

THEOREM 1.91.1 (Principle of argument). Let f(x) be analytic both inside and 
on a Jordan curve C, and letf(x) ~ 0 on C. Then the variation of Sllogf(x) l = 
argf(x), as x describes C in the positive sense is 21rim, where m is the number of 
the zeros of f(x) in the interior of C, counted with the proper multiplicity. 
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THEOREM 1.91.2 (Rouche's theorem). Let f(x) and g(x) be analytic inside 
and on C, and let I g(x) I < I f(x) I on C. Thrn f(x) + g(:r) and f(x) have no 
zeros on C and the same number of zeros in the interior of C. 

THEOREM 1.91.3 (Theorem of Hurwitz). Let Un(x) l be a sequrnce of analytic 
functions regular in a region G, and let this sequence be umformly convergent in 
every closed subset of G. Suppose the analytic function limn ..... oofn(x) = f(x) does 
not vanish identically. Then if x = a is a zero of f(x) of order k, a ne1"ghborhood 
I x - a I < o of x = a and a number N exist such that if n > N, fn(x) has exactly 
k zeros in I x - a I < o. 

The last theorem followR immediately from Theorem 1.91.2. Concerning 
the preceding theorems Ree P6lya-Szego 1, vol. 1, pp. 120-124. 

In Theorem 1.91.3, let G be symmetric relative to the real axiR, and let fn(x) 
be real if xis real. If .-r = a is a Rimplc real zero of f(x), then for n > N each 
fn(x) has exactly one real zero in I x - a I < o. For if fn(:ro) = 0, then fn(io) 
is also 0. 



CHAPTER II 

DEFINITION OF ORTHOGONAL POLYNOMIALS; 
PRINCIPAL EXAMPLES 

2.1. Orthogonality 

(1) In what follows a(x) is a fixed non-decreasing function which is not con
stant in the interval a ~ x ~ b. (See the remark at the beginning of §1.4 (1).) 

DEFINITION. An orthonormal set of functions cl>o(x), c1>1(x), · · · , cl>t(x), l finite 
or infinite, is defined by the relations 

(2.1.1) (c/>n, c/>m) = 1b cl>n(X)c/>m(x) da(x) = Dnm, n, m = 0, 1, 2, · · ·, l. 

Here cl>n(x) is real-valued and belongs to the class L~(a, b). 

Functions of this kind are necessarily linearly independent. If a(x) has 
only a finite number N of points of increase (that is, points in the neighborhood 
of which a(x) is not constant), l is necessarily finite and l < N. 

THEOREM 2.1.1. Let the real-valued functions 

(2.1.2) l fim'te or infinite, 

be of the class L! (a, b) and linearly independent. Then an orthonormal set 

(2.1.3) 

exists such that, for n = 0, 1, 2, · · · , l, 

Ann> 0. 

The set (2.1.3) is uniquely determined. 

The procedure of deriving (2.1.3) from (2.1.2) is called orthogonalization. 
(Cf. Stone 1, pp. 12-13.) 

(2) For the orthonormal functions (2.1.4) the,following explicit representation 
holds: 

(2.1.5) 

where, for n ~ 1, 

Uo, fo) 

(fl, fo) 

n = 0, 1, 2, · · · , 

(2.1.6) D (X) - ................•.............. n ' -

fo(x) ft(x) 
23 
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and, for n ~ 0, 

(2.1.7) Dn = [(fv, fi')Jv. 11=0,1,2, .. •,n > 0. 

\Ve write D-1 = 1 and Do(x) = fo(x). The determinant (2.1.7) corresponds 
to the positive definite quadratic form 

II 'U{)fo + ud1 + ... + Unfn 11
2 

(2.1.8) 

so that Dn > 0 for each n. 
Furthermore, the following integral representations can be established: 

(2.1.9) 

(2.1.10) 

D.(x) ~ ~! t t ... f.' :(0~~1?.) ... ~1~~1? ........ /n.(~1:. 
JO Xn-1 f1(Xn-1) fn(Xn-1) 

fo(Xn-1) f1(Xn-1) 

1 
Dn = (n + 1)! 

n 

fo(x) f1(x) fn(x) 

fn-1(xo) 

fn-1(x1) da(x0) da(x1) · · · da(Xn-1), n ~ 1, 

fo(xo) f1 (xo) · · · fn (xo) 2 

·1b [b .. ·1b ~o~~1? .. !~~~1~ .. .' .· .' .. ~:~~1: da(x0)da(x1) · · · da(xn). 

n+1___., lfo(Xn) f1(Xn) • •' fn(Xn) 

(Cf. Kowalewski 1, p. 326; P6lya-Szeg6 1, pp. 48-49, 208, problem 68.) 

(3) DEFINITION. Let {<Pn(x) l be a given orthonormal set, finite or infinite. 
To an arbitrary real-valued function f(x) let there correspond the formal Fourier 
expansion 

(2.1.11) f(x) ""fo<Po(x) + f1<P1(x) + · · · + fn<Pn(x) + · · · . 
The coefficients f n , called the Fourier coefficients of f(x) with respect to the given 
system, are defined by 

(2.1.12) n = 0, 1, 2, · · ·. 

Every finite section of the series (2.1.11) has the following important minimum 
property: 
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THEOHEM 2.1.2. Let cl>n(x), f(x), fn have the same meaning as in the previous 
definition. Let l ;;=; 0 be a fixed integer, and a0 , a1 , • • • , a1 arbitrary real con
stants. If we write 

(2.1.13) g(x) = aocl>o(x) + atcl>t(x) + · · · + atcl>t(x), 

and the coefficients a, are variable, the integral 

(2.1.14) lb {f(x) - g(x) l 2 da(x) 

becomes a minimum zf and only if av = fv , v = 0, 1, 2, · · . , l. 

The minimum itself is 

(2.1.15) 

so that 

(2.1.16) f~ + Ji + · · · + f~ ~ II! W, 
and (Bessel's inequality) 

(2.1.17) f~ +f~ +J~ + · ·· ~ IIJW = lb lf(x)l 2 da(x). 

If the left-hand side of (2.1.17) is an infinite series, it is convergent. The dis
cusRion of the equality sign in (2.1.17) leads to the concept of closure (§1.5). 

A classical example of Fourier expansions of this kind is the ordinary Fourier 
series in terms of the trigonometric functions 1, cos nx, sin nx, n = 1, 2, 3, .. · ; 
-7r ~ X ~ +7r. 

(4) Another important characterization of the orthonormal set (2.1.4) can 
be based on the preceding minimum property of the partial sumR. Indeed, for 
variable real values of Xo , At , · · · , An-I the expression 

(2.1.18) II Xofo(x) + Xtft(x) + · · · + An-dn-l(x) + fn(x) II 
becomes a minimum if and only if 

(2.1.19) Xofo(x) + Xtft(x) + · · · + An-tfn-t(x) + fn(x) = X~~c/>n(x). 

The extension of these considerations to complex function spaces is not 
difficult. The scalar product of the functions f(x) and g(x) is then defined as 
in (1.4.3). 

2.2. Orthogonal polynomials 

(1) DEFINITION. Let a(x) be a fixed non-decreasing function with infinitely 
many points of increase in the finite or infinite interval [a, b], and let the "moments" 

(2.2.1) Cn =·lb x" da(.r), n = 0, 1, 2, · · · , 
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exist. If we orthogonalize the set of non-negative powers of x: 

(2.2.2) 1, x, x2
, ••• 'xn, ... ' 

in the sensr; explained £n §2.1 (the linear independence IS shown below), we 
obtain a set of polynomials 

(2.2.3) Po(x), Pt(x), P2(x), · · · , Pn(x), · · · 

uniquely detrrmined by the following conditions: 
(a) Pn(x) is a polynomial of precise degree n in which the coefficient of xn is 

positive; 
(b) the system lPn(x) l is orthonormal, that is, 

(2.2.4) n, m, = 0, 1, 2, · · ·. 

The existence of the moments (2.2.1) is equivalent to the fact that the func
tions xn are of the class La(a, b). 

A similar definition holds in the special case of a distribution of the type 
w(x) dx. Here we assume that w(x) is non-negative and measurable in 
Lebesgue's sense and that J! w(x) dx > 0. Moreover, the moments must 
exist again. 

We call Pn(x) the orthogonal polynomials6 associated with the distributions 
da(x) and w(x) dx, respectively; in the latter case we also speak of the or
thogonal polynomials associated with the weight function w(x). The following 
chapters are devoted to the ~tudy of these polynomials. Evidently if the 
distribution is of the type w(x) dx, the system 

(2.2.5) n = 0, 1, 2, · ·. , 

is orthonormal in the usual sense. 
The linear independence of the functions (2.2.2) can readily be shown. In 

fact if p(x) is an arbitrary real polynomial, the relation 

liP W = lb {p(x)) 2da(x) = 0 

is possible only if p(x) vanishes at all points of increase of a(x). Since there 
are infinitely many such points, p(x) must vanish identically. 

If cv.(x) has only a finite number, say N, of points of increase, the functions 
1, x, i, ... , xN-J are still linearly independent. Through orthogonaJization 
we obtain a finite system of polynomials· lPn(x) l, n = 0, 1, 2, · · · , N :_ 1, 
~atisfying similar conditions as required in the previous Definition. See §2.8 
and §2.82. 

(2) Using the general formulas (2.1.5) to (2.1.8), we obtain, for n ;;=;; 1, 

6 Sometimes these are called Tchebichef polynomials. We shall reserve this terminology 
for the important special cases (1.12.3). 
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(2.2.6) 

where for n ~ 0 

(2.2.7) 

ORTHOGONAL POLYNOMIALS 

...................... 

1 X 
2 

X 
n 

X 
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In addition to (2.2.6) we have Po(x) = Do' = c()t. The determinant (2.2.7) is 
associated with the positive definite quadratic form 

(2.2.8) t t Cv+14 UvU14 = 1b (uo + U1X + U2X
2 + · · · + Unxn?da(x), 

v-0 J.&=O a . 

which is called a form of Hankel or of recurrent type. (See Szego 1.) 
The determinant in (2.2.6) can be transformed by multiplying the next to the 

last column by x, subtracting it from the last column, and repeating this opera
tion for each of the preceding columns. In this way we obtain, n ~ 1, 

CoX - C1 Cn-lX - Cn 

....................................... 
Cn-1X - Cn CnX - Cn+l 

Furthermore, according to (2.1.9) and (2.1.10), we have the following integral 
representations: 

(D D )_, lb lb lb Pn(x) = n-
1 n . . . (x - Xo)(x - xl) ... (x - Xn-t) 
n! a a a 

(2.2.10) n 

and 

(2.2.11) 

II (xv - x14)
2 da(xo) da(xl) · · · da(Xn-1), 

"~J.&-0,1,• · ·,n-1 
v<l' 

For (2.2.10) and (2.2.11) see, for example, Heine 3, vol. 1, p. 288. Formulas 
(2.2.6), (2.2.9), (2.2.10) are not suitable in general for derivation of properties 
of the polynomials in question. To this end we shall generally prefer the 
orthogonality property itself, or other representations derived by means of the 
orthogonality property. 

-------,~----·-------------------
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(3) The Fourier expansion of an arbitrary function .f(x) m terms of the 
polynomials I Pn(x) l has -the form 

(2.2.12) f(x) "'-' foPo(x) + f1P1(x) + · · · + fnPn(x) + 
with 

(2.2.13) fn = lb f(x)pn(x) da(x), n = 0, 1, 2, .... 

The partial sumt1 have the minimum property formulated in Theorem 2.1.2. 
We notice as an important special case the following direct characterization of 
the orthogonal polynomials (see §2.1 (4)). Considering the set of all poly
nomials p(x) of degree n with the coefficient of x'" unity, we find that the integral 

(2.2.14) lb (p(x)) 2 da(x) 

becomes a minimum if and only if p(x) = const. Pn(x). Here the constant 
factor is determined by normalizing p(x). If kn denotes the highest coefficient 
of Pn(x), the minimum is obviously k-;. 2

• From (2.2.8) we find for this minimum 
the value Dn/ Dn-1 , so that 

(2.2.15) 

which also follows directly from (2.2.6). 

2.3. Further remarks 

(1) The restriction (a) in the definition in §2.2 (1) concerning the highest 
coefficient, and the restriction (b) concerning the integral of the square, is 
only one of various possible wayR of normalizing the polynomials in question. 
Sometimes other kinds of normalization are appropriate, such as fixing the 
value of Pn(x) at x = a or at x = b/ or fixing the highest coefficient of Pn(x), 
and so on. Since Pn(x) has the precise degree n, every 'Trn can be represented 
as a linear combination of po(x), p1(x), · · · , Pn(x) (see §1.12). Therefore 
Pn(x), n ;:_::: 1, is orthogonal to any 'Trn-1 . In particular, 

(2.3.1) lb Pn(x)xv da(x) = 0, v = 0, 1, 2, · · ·, n - 1. 

This condition determines Pn(x) save for a constant factor. Frequently, this 
wider formulation of the orthogonality property is used. Observe also that 
if p(x) is a 7rn and 

(2.3.2) lb Pn(x)p(x) da(x) = c, 

then the coefficient of x" in p(x) is ckn . 

7 We have Pn(a) ,e. 0, Pn(b) ,e. 0 (see §3.3). 

·-,·--------------------------------------------------------------
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(2) Let [a, b] be an interval sym!lletric with respect to the origin, that is, 
a = -b, and let us consider a distribution of the type w(x) dx with an even 
weight function, that is, w( -x) = w(x). Then Pn(x) is an even or an odd 
polynomial according as n is even or odd: 

(2.3.3) 

It can contain only those powers of x which are congruent to n (mod 2). In
deed, we have for v = 0, 1, 2, · · · , n - 1 

~~ Pn( -x)xv w(x) dx = ( -1Y ~~ Pn(x)xv w(x) dx = 0. 

Consequently, Pn(- x) possesses the same orthogonality property as Pn(x) (in 
the wider sense). Therefore, comparing the coefficients of x", we obtain 
Pn( -x) = const. Pn(x) = ( -1) 11 Pn(x). 

The linear transformation x = kx' + l, k ~ 0, carries over the interval 
[a, b] into an interval [a', b'] (or [b', a']), and the weight function w(x) into 
w(kx' + l). Then the polynomials 

(2.3.4) (sgn k)" I k I! Pn(kx' + l) 

are orthonormal on [a', b'] (or [b', a']) with the weight function w(kx' + l). 

2.4. The classical orthogonal polynomials 

1. Let a= -1, b = +1, w(:r) = (1 - x)a(l + x)~, a> -1, {3 > -1. 
Then, except for a constant factor, the orthogonal polynomial Pn(x) is the 
Jacobi polynomial P~a,f3J(x) (see §4.1). 

2. Let a = 0, b = + oo, w(x) = e-xxa, a > -1. In this case Pn(x) is, 
except for a constant factor, the Laguerre polynomial L~al(x) (see §5.1). 

3. Let a= -oo, b = +oo, w(x) = e-x
2

• In this case Pn(x) is, save for a 
constant factor, the Hermite polynomial Hn(x) (see §5.5). 

Some special cases of 1, except for constant factors, are: 

The ultraspherical polynomials,. for a = {3. 

The Tchebichef polynomials of the first kind, T n(x) = cos ne, X = cos e, 
for a = {3 = -! (see (1.12.3)). 

The Tchebichef polynomials of the second kind, Un(x) = sin.(n + 1)8/(sin e), 
X = COS 8, for a = {3 = +! (see (1.12.3)). 

The polynomials U2n (cos (8/2)) = sin (n + !)8/sin (8/2) of cos e = x, for 
a = -{3 = ! (see §1.12). 

The Legendre polynomials Pn(x), for a = {3 = 0. 

A detailed investigation of these polynomials will be given in later chapters. 

2.5. A formula of Christoffel 

(1) THEOREM 2.5. Let I Pn(x) l be the orthonormal polynomials associated 
with the distribution da(x) on the interval [a, b}. Also let 

~---·-----------·----------·------·-···· 
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(2.5.1) c =;e 0, 

be a 1r t which is non-negative in this interval. Then the orthogonal polynomials 
\qn(x)}, associated with the distribution p(x) da(x), can be reprrsr:nted in terms 
of the polynomials Pn(x) as follows: 

(2.5.2) 

Pn (x) Pn+l (x) 

p(x)qn(x) = Pn(xl) Pn+l(xl) 

Pn+l(x) 

Pn+t(XJ) 

In case of a zero xk , of multiplicity m, m > 1, we replace the corresponding 
rows of (2.5.2) by the derivatives of order 0, 1, 2, · · · , m - 1 of the polynomials 
Pn(x), Pn+l(x), ... 'Pn+t(X) at X = Xk. 

This important result is due to.Christoffel (see 1, actually only in the special 
case a(x) = x). The polynomials qn(x) are in general not normalized. 

The proof is almost obvious. The ri'ght-hand member of (2.5.2) is a 7rn+t 
which is evidently· divisible by p(x). Hence it has the form p(x)qn(x), where 
qn(x) is a 7rn. Moreover, it is a linear combination of the polynomials Pn(x), 
Pn+l(x), · · · , Pn+t(x), so that if q(x) is an arbitrary 7rn-l, then 

(2.5.3) ib p(x)qn(x)q(x) da(x) = [b qn(x)q(x)p(x) da(x) = 0. 

Finally, the right side of (2.5.2) is not identically zero. To show this, it suffices 
to prove that the coefficient of Pn+t(x), that is, the determinant [Pn+v(x~'~ 1)], 
v, tJ. = 0, 1, 2, .. · , l - 1, does not vanish. Suppose it to vanish; then certain 
real constants Xo, X1, X2, · · · , >--1-1 exist, not all zero, such that 

(2.5.4) 

vanishes for x = x1, x2, · · · , x1. Hence (2.5.4) is of the form p(x)G(x), 
where G(x) is a 7rn~l. Since (2.5.4) is orthogonal to an arbitrary 11"n-l, we have 
the relation 

[b p(x)G(x) · G(x) da(x) = 0; 

whence G(x) = 0, a contradiction. 
(2) The representation (2.5.2) enables us, for instance, to reduce ultra

spherical polynomials with a = {3 = an integer, or with a + ! = {3 + ! = 
an integer, to Legendre and Tchebichef polynomials, respectively [cf. §4.21 (3)]. 
Another illustration may be obtained in connection with the polynomials con
sidered in §2.6. 

By using some special properties of da(x) or of p(x), formula (2.5.2) can be 
simplified. For example, let da(x) = w(x) dx, w(x) and p(x) be even func
tions, and a = - !J. Then, instead of (2.5.2), we have the representation (l cvC'n) 
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Pn(x) Pn+4(x) 

where ( ±x1, ±x2 , · · · , ±xt12l is the total set of zeros of p(x). For instance, 
the orthogonal polynomials qn(x) associated with the weight function 1 - x2 

in [ -1, + 1] can be determined from 

P n(x) P n+2(x) 
(1 - x2)qn(x) = = Pn(x) - Pn+2(x). 

P n(l) P n+2(1) 

(Cf. (4.7.27), 'A = !.) 

2.6. A class of polynomials considered by S. Bernstein and G. Szego 

Let p(x) be a polynomial of precise degree land positive in [ -1, +1]. Then 
the orthonormal polynomials Pn(x), which are associated with the weight func
tions 

(1 - x2)-! (p(x) l-\ 

(2.6.1) w(x) -
(1- x2)!(p(x)l-\ 

(~ - x)' {p(x) l-1 
1 + X 

can be calculated explicitly provided l < 2n in the first case, l < 2(n + 1) in 
the second, and l < 2n + 1 in the third. The polynomials of the first case 
play an important role in the proof of Szegi/s equiconvergence theorem (9; cf. 
Theorem 13.1.2). All three cases were later investigated by S. Bernstein (3) 
in connection with his asymptotic formula (2; cf. Theorem 12.1.4). 

THEOREM 2.6. Let p(x) be a 1r 1 of precise degree l and positive in [ -1, +1]. 
Let p(cos e) = l h(ci8

) \
2 be the normalized representation of p (cos e) in the sense 

of Theorem 1.2.2. Writing h(ei8) = c(e) + is(e), c(e) and s(e) real, we have the 
following formulas: 

(2.6.2) 

(2.6.3) 

Pn(cos e)- (2/7r)!ffi(eineh(ei8)l 

- (2/7r)! ( c(e) cos ne + s(e) sin nel, 

w(x) - (1 - x2)-!(p(x) l-\ 

Pn(cos e) = (2/7r)!(sin e)-13(ei<n+ll8h(eiB)l 

= (2/71' )! {c(e) sin (~ + 1)e _ s(e) cos(~ + 1)e}, 
sm e sm 0 

l < 2n; 

w(x) = (1 - x2)! (p(x) l-\ l < 2(n + 1); 
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Pn(cos 0) = 71'-!(sin (0/2))-13(ei(n+!)Bh(eiB)) 

(2.6.4) 
= 71' -! {c(O) sin (n + ! )0 _ s(O) cos (n + ! )0} 

· sin (0/2) sin (8/2) ' 

w(x) = (~ + ~)! (p(x) l-1
, l < 2n + 1. 

These formulas must be modified fo?· l = 2n, l = 2(n + 1), and l = 2n + 1, 
respectively, by rn·ultiplying t.he right-hand member of (2.6.2) by (1 + h1/ho)-!, 
and those of (2.6.3) and (2.6.4) by (1 - ht/ho)-!, where h0 = h(O) and ht is the 
coefficient of z1 in h(z). 

First we observe that the right-hand members of (2.~.2), (2.6.3), (2.6.4) are 
cosine polynomials with the highest terms 

(2.6.5) (2/71' )! ho sin (~ + 1)_~ 
sm 0 ' 

-! h sin (n + !)O 
71' 

0 
sin (0/2) ' 

respectively. In the first of these expressions, if l = 2n > 0, ho must be re
placed by ho + h1 ; in the second and last, if l = 2(n + 1) and l = 2n + 1, 
respectively, v.•e have ho - hz in place of ho. 

We give the proof of (2.6.2). First we show that 

1
+1 

_
1 

Pn(x)x"(1 - x2)-! (p(x) )-1 dx = 0, v = 0, 1, ... , n - 1, 

or, what amounts to the same thing, 

!a .. Pn (cos 0) cos vO(p (cos 8))-1 d0 = 0, v = 0, 1, 2, ... , n - 1. 

Now, 

(2~71')! ffi {1 ... eine h(eiBj (e;.e + e-;.e) I h(e'e) 1-2 do} 

= (2/71')! {1+ ... ei(n+•)6 + ei(n-•)6 } = ~/71't {~ 1 Zn+• + Zn-• } = 
- 4 ffi h( iB) dO 4 ffi . h( ) dz 0, -... e 1, JzJ-1 z z 

since the function (zn+• + zn-•) (zh(z) l-1 is regular for I z I ~ 1. Furthermore, 

1~
1 

(pn(x)) 2(1- X
2)-!(p(x)l-1 dx = 1 ... (pn(cos0)) 2 (p(cos0))-1 d8 

= Ia .. Pn(cos0)(2/71')!hocosnO(p(cos0))-1 dO 

= ~ (2/71')! ho(2/71')! ffi {~ r inh7)
1 

dz} = -4
1 

(2/71')ho(271'/ho) = 1. 
4 1, }JzJ=1 Z Z 

The proofs of (2.6.3) and (2.6.4) are similar. In place of cos vO we use 
sin (v + 1)0/sin 0 and sin (v + !)O/sin (0/2), respectively. The modifications 
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necessary for l = 2n, l = 2(n + 1), and l = 2n + 1, in (2.6.2), (2.6.3), and 
(2.6.4), respectively, are also obvious. Finally, we notice that (2.6.2) arises 
from (2.6.4), (2.6.4) from (2.6.3), and (2.6.2) from (2.6.3) by replacing p(x) 
by (1 - x)p(x), (1 + x)p(x), and (1 - x2)p(x), respectively. 

2.7. Stieltjes-Wigert polynomials 

Wigert (2, p. 7; also Stieltjes 11, pp. 507-508) found a very elegant explicit 
representation for the orthonormal polynomials p,.(x) associated with the 
weight function 

(2.7.1) w(x) = 1r-!k exp (-e log2 x) = 7r-!kx-k 2 
Iogx, 0 < x < +oo; k > 0. 

Using the notation (cf. Gauss 1, p. 16) 

[n] (1 - q")(1 - q"-1
) • • • (1- q"-•+1) 

(2.7.2) Jl = (1- q)(1- q2) ... (1 - q•) ' 0 < v < n, [~] = [~] = 1, 

where 

(2.7.3) 

we have 

(2.7.4) p,.(x) = (- 1)"q"12
H I (1 - q)(1 - q2

) • • • (1 - q")} -! f [n] q"\- q!xr. 
•=0 Jl 

For n = 0 the product in the braces must be replaced by 1. 
The proof can be based on the identity of Gauss; 

(2.7.5) f [n] q•<•+1)/2u" = (1 + qu)(1 + q2u) · · · (1 + q"u). 
•=0 Jl 

See Szego 12, where· other similar polynomials (related to the theory of theta 
functions) are also considered. Also see Hahn 5. 

2.8. Distributions of Stieltjes type; an analogue of Legendre polynomials 

Tchebichef (4) investigated a remarkable finite set of orthogonal polynomials 
associated with the distribution da(x) of Stieltjes type, where a(x) is a step 
function with jumps of one unit at the points x = 0, 1, 2, ... , N - 1 (N is a 
fixed positive integer). This is a distribution of the type mentioned at the 
end of §2.2 (1). The as:-;ociated polynomials are, except ·for constant factors 
(see (2.8.3)), 

(2.8.1) (x)(x- N) t,.(x) = n! !l" n n , n=012 ... N-1 ' ' ' ' . 

Indeed, Tchebichef shows (4, pp. 547, 552; see also A. Markoff 1, pp. 21-22) that 

(2.8.2) 1-:00 

t,.(x)lm(x) da(x) = x=O,l. ~ .. ,N-
1 

t,.(x)tm(x) = 0, if n ¢. m, 
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and 

1-:00 

I ln(X)} 
2 

da(x) = x=0.
1

, 2~ ·, N-
1 

I ln(X)} 
2 

(2.8.3) N(N2 
- 12)(N2 - 22) · · · (N2 

- 1/) 
= 

2n + 1 

n, m = 0, 1, 2, · · ·, N - 1. 

These formulas hold for all non-negative values of n and m, but they are trivial 
for n ~ N or m ~ N, since tn(x) = 0 for x = 0, 1, 2~ · · · , N - 1, if n ~ N. 

In (2.8.1) we used the symbols 

!:J.f(x) = f(x + 1) - f(x), 

(2.8.4) t:J."f(x) = t:J.It:J."-1/(x)} 

=f(x + n)- (~)f(x + n- 1) + ... + (-1)"f(x). 

By the mean-value theorem 

(2.8.5) 0 < () < 1, 

(see, for example, P6lya-Szego 1, vol. 2, pp. 55, 241, problem 98), we obtain 
for a fixed value of n the remarkable formula 

(2.8.6) lim N-"t,.(Nx) = Pn(2x- 1), 
N-+oo 

where Pn(x) is the Legendre polynomial of degree n (see §4.1 (3)). The repre
sentation (2.8.1) is the "difference" analogue of (4.3.1), a = {3 = 0. The 
proofs of (2.8.2) and (2.8.3) are analogous to those in §4.3. 

Tchebichef also considers (1, 2) the more general case in which the points 
0, 1, 2, ... , N - 1 are replaced by an arbitrary set of N distinct points. In 
this connection he obtains an interpolation formula having a certain significance 
in mathematical statistics. (See Jordan 1.) 

2.81. Poisson-Charlier polynomials 

These polynomials have become important in some recent investigation~ con
nected with the calculus of probability and statistics (see DoetBrh 2 and the 
literature quoted in E. Schmidt 1, also Meixner 1, 2). They bdong to the 
distribution da(x) where a(x) is a step function \\'ith the jump 

(2.81.1) j(x) = e-aax(x!)-1 at the point x, x = 0, 1, 2, · · · ; a > 0. 

Obviously, the total variation of a(x) is 
00 

a(+ oo) - a(- oo) = L j(:r) = 1. 
x=O 

The corresponding orthonormal polynomials are: 
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(2.81.2) 
Pn(x) = an12(n!)-! f ( -1r-·(n) v! a-·(x) 

•=0 Jl Jl 

= an12(n!)-!(-1rU(x)}-l~nj(x- n). 

A simple proof of (2.81.2) can be given by means of the method of generating· 
functions (see §4.4; cf. Doetsch 2, p. 260, and Meixner 1, 2). Let, for a suf
ficiently small I w I , 

G(x, w) = f a-n12(n!)-!pn(x)wn = f :t (- 1t-• (n)v!a-•(x)wn 
n=O n=O •=0 n. Jl Jl 

(2.81.3) = f f (- 1r-· (n)v!a-·(x)wn 
•=0 n=• n! Jl Jl 

~ -• (X) • -w -w( 1 + -1 )x = L.Ja we =e a w. 
·-0 Jl 

Then 

L j(x)G(x, u)G(x,· v) 
x=0,1.2,· · · 

(2.81.4) 
x=0,1,2,• • • 

so that 

(2.81.5) 

n, m = 0, 1, 2, · · · . 

The polynomials (2.81.2) are connected with Laguerre polynomials (§5.1) 
by the relation 

(2.81.6) 

Concerning the expansion problem af'ROciat.ed with Charlier-Poisson poly
nomials, we refer to E. Schmidt 1. 

2.82. Krawtchouk's polynomials 

Considerations in the calculus of probability lead also to the following dis
tribution da(x). 

Let a(x) be a step function with the jump, at the point x, of 

(2.82.1) '( ) (N) x N-x 
JX= X pq' X = 0, 1, 2, ... 'N. 

Here N is a positive integer, p > 0, q > 0, and p + q = 1. 
See Krawtchouk 1. The total variation of a(x) is 1. The associated set 

of orthogonal polynomials is again finite as in §2.8. 
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(1) The method of generating functions yields the formula 

n = 0, 1, 2, · · · , N. 

In case xis an integer, 0 ~ x ~ N, the last summation can be extended over 
all values of v, n = 0, 1, 2, · · · ; v ~ n, since the general term vanishes if 
N- x < n- v or if x < v. (From N- x ~ n- v, x ~ v, we haveN ~ n.) 
Thus 

K(x, w) = '£ (x) q•w• £ ( -1)"-• (N - x) p"-•wn-• 
•-0 Jl n-· n - Jl (2.82.4) 

= £(X) q"w"(1 - pw)N-z = (1 + qwY(l - pw)N-z, 
•-0 Jl 

from which 

(2.82.5) 

L j(x)K(x, u)K(x, v) 
x=O,l. 2. · · ·.N 

= L ( ~) pzqN-z(1 + qu)z(I _ pu)N-z(l + qvY(l _ pv)N-z 

= I p(1 + qu)(1 + qv) + q(1 - pu)(1 - pv) l N = (1 + pquv)N, 

so that in fact 

L j(x){(N)}i (pq)"
12

pn(x){(N)}i (pq)m12pm(x) = (N) (pq)nOnm, (2.82.6) x=o.u ... ·.N n m n 

n, m = 0, 1, 2, · · · , N. 

If n > N, obviously Pn(x) = 0 for x = 0, 1, 2, · · · , N. 
(2) Two other classes of polynomials can be derived from the polynomials 

(2.82.2) by two different limiting processes. 

(a) Let z be real and let x denote the greatest integer less than or equal 
to pN + z(2pqN)~ where p, q, z are fixed, and N ~ ((). Then for a fixed n 

(2.82.7) lim Pn(x) = (2nn!)-1Hn(z) 
N-+oo 

if H n(z) denotes the nth Hermite polynomial (§5.5). This follows readily from 
(2.82.3) and (2.82.4), since for x an integer, 0 < x < N, 
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li~ to { (~) }\pqr12pn(:r) I (2/N)twl n 

=lim (1 + (2/N)tqw}x(l- (2/N)tpw}N--x 
N-+CO 

(Use Titchmarsh 1, p. 95; sec (5.5.7).) It is instrueth·c to obsf'rvc that the 
same limiting process applied to the given distribution rla(x) kads to the di;.;tri
bution e-z 2 

dz of the Hermite polynomials; more precisely, 

(2.82.8) 

(b) Let pN = a, where a is a fixed positive number, N - oo, p - 0, q -----) 1. 
Then for a fixed n and a fixed integer x ~ 0, we find that. llms~oo Pn(.r) exists 
and is identical with the Poisson-Charlicr polynomial (2.R 1.2). In fad ( (2.81.:))) 

lim (1 + qwY(1 - pw).v--r = lim (1 + qwY(l - pwr-r(l - pw)'' t,. 

(2.82.9) 
N-~ p~o 

2.9. Further special cases 
Concerning other dif-ltrihutions da(x) of Stieltj0s type, sec A. lVIarkoff 1, pp. 

7-18; Sticltjes 11, pp. 546 5.')5; and Gottlieb 1. 
Markoff considers the case for whieh a(:r) is a st<'P funrt ion with the jump, 

atthepointqX,ofj(x) = qX, x = 0, 1,2, ···, N -1,and q > O,q ~ 1. This 
distribution is very much similar to that in §2.8. Analogues of (2.8. I) and 
(2.8.6) hold. 

Stieltjes and Gottlieb investigate the eas.<~ for which a(x) is a st<·p function 
with the jump q:r at tlw point..x, x = 0, 1, 2, · · · , 0 < q < 1. 

In addition to these "discrete" distributions as well as to those studied in 
§2.8 and §2.82, see Karlin-McGregor 2, Eagleson 1, and Gasper 6, 7. 

A remarkable distribution can be defined by the weight function 

(2.9.1) w(x) = (x(a - x)({3 - .r) }-l, 0 < x ~ a, cv < {3. 

Heine (3, vol. 1, pp. 294-296) derives a second ord<~r linear cliffcrelltial cquat iou 
for the associated orthogonal polynomials which arc related to the .Jarobian 
elliptic functions. Recently Achieser (1) investigated the orthogonal poly
nomials associated with the wright function 

1
1 ( 1 - x2

) (a - i) (b - x)} -ll c - x I, - 1 ~ x ~ a, b ;;£ x ;;£ + 1, 
(2.9.2) w(x) = 

. 0, a < x < b, 

where -1 < a < b < + 1 and c depends in a proper way on a and b. These 
polynomials are also related to the cllipti(' funrtions. 

In some cases the condi~ion of the positiveness of the wright function <~an be 
removed to a certain extent. ( Cf. Szegi> 19.) 

Concemiug the pol~·uominls of Poll:l<'zl'k (1-4 ), s<'<' .\p]wudi.-.;. 



CHAPTER III 

GENERAL PROPERTIES OF ORTHOGONAL POLYNOMIALS 

In this chapter we shall deal with properties of orthogonal polynomials 
which hold for distributions restricted only by certain conditions of integrability. 
Usually, we shall consider distributions of the Stieltjes type da(x), but at times 
we shall be concerned with distributions of the special type w(x) dx. However, 
a(x) and w(x) will alway:-; Le taken subject to the conditions formulated in 
§2.2 (1). 

3.1. Extremum properties; closure 

(1) Let f(x) be a given function of the class L!(a, b), and let xn belong to 
La(a, b) for n = 0, 1, 2, · · · . Then it is evident that the integrals 

(3.1.1) 1b lf(x) 12 da(x), 1b f(x)xn da(x), n = 0, 1, 2, · · · , 

exist in the Stieltjes-Lebesgue sense. Next, denoting by IPn(x)} the ortho
normal set of polynomials associated with the distribution da(x) in [a, b], we 
state the following theorem: 

THEOREM 3.1.1. The weighted quadrat£c deviation 

(3.1.2) 1° lf(x) - p(x) 12 da(x), 

where p(x) ranges over the set of all 11'n, becomes a minimum if and only if p(x) 
is the nth partial sum of the Fourier expansion 

J(x) "-' foPo(x) + f1P1(x) + f~p2(x) + · · · + fnp,.(x) + · · · , 
(3.1.3) 

fn = 1° f(x)pn(x) da(x), n = 0, 1, 2, · · · 

See Theorem 2.1.2 and §2.2 (3). The minimum itself is 

(:-U .4) 

This implies Bessel's inequality, that is, 

(3.1.5) 

(2) On replacing n by n - 1 and taking f(x) = xn, we obtain the following 
direct characterization of Pn(x): 

38 
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THEOREM 3.1.2. The integral 

(3.1.6) 1b I p(x) 1
2 da(x), 

where p(x) ranges over the set of all1rn with the highest term xn, becomes a minimum 
if and only if p(x) = const. Pn(x). 

See §2.2 (3). If kn is the coefficient of xn in Pn(x), the minimum of (3.1.6) 
is attained for p(x) = k";/pn(x). 

(3) THEOREM 3.1.3. Let Xo be an arbitrary complex constant, p(x) an arbitrary 
11"n with complex coefficients, normalized by the condition 

(3.1.7) 1b I p(x) 1
2 da(x) = 1. 

The maximum of I p(xo) 1
2 is given by the polynomials 

(3.1.8) p(x) = e(Kn(Xo, Xo) }-! Kn(Xo, x), 

where 

(3.1.9) 
Kn(Xo, x) = Po(Xo)po(x) + Pt(Xo)Pt(X) + · · · + Pn(Xo)Pn(x). 

= Po(io)po(x) + Pt(io)Pt(X) + · · · +Pn(io)Pn(x). 

The maximum itself is Kn(Xo, xo). 

IE I = 1, 

If we write p(x) = Aopo(x) + AtPt(x) + · · · + AnPn(x), condition (3.1.7) 
becomes I Ao 1

2 + I At 1
2 + · · · + I An 1

2 = 1, and by Cauchy's inequality it 
follows that 

n n 

(3.1.10) I p(xo) 1
2 ~ L I A, 1

2 L I p,(xo) 1
2 = Kn(Xo, Xo). 

v=O v=O 

The latter bound is attained for A, = Ap,(x0), where A is to be determined 
according to the condition 

n 

. I A 1
2 L I p,(xo) 1

2 = 1. 
v=O 

Thus the statement is established. 
The "kernel polynomials'; Kn(Xo, x) = Kn(x, xo) = Kn(i, io) can be used 

for the representation of the nth partial sum sn(x) of the Fourier expansion 
(3.1.3) in the form of an integral. In fact we have 

Sn(X) = fopo(x) + ftPt(X) + · · · + fnPn(X) 

(3.1.11) n 1b 1b = ~ p,(x) a j(t)p,(t) da(t) = a f(t)Kn(t, x) da(t). 

As a consequence of (3.1.11) we obtain 
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(3.1.12) 1b Kn(t, x)p(t) da(t) = p(x), 

where p(x) is an arbitrary 7rn. We may easily show that this is a characteristic 
property of Kn(t, x) as a 7rn in l. As a further consequence we notice the 
following theorem: 

THEOREM 3.1.4. Let a and Xo be fint'te, xo ~ a. Then the polynomt'als 
{Kn(xo, x) l are orthogonal with respect to the dt'stn'bution (x - x0) da(x). 

This follows immediately from (3.1.12) by writing x = x0 , p(t) = (t - x0)r(t), 
where r(t) is an arbitrary 7rn-l. A similar result holds if b is finite. 

(4) According to the previous results the expression (3.1.4) decreases as n 
increases, and consequently it tends to a non-negative limit as n ----t oo. We 
have Parseval's formula 

(3.1.13) I fo 1
2 + I fi 1

2 + I h 1
2 + · · · + I fn 1

2 + · · · = 1b I f(x) 1
2 da(x) 

when and only when this limit is zero. 
The validity of (3.1.13) is evidently equivalent to the fact that the integral 

(3.1.2) can be made arbitrarily small by a proper choice of the polynomial p(x). 
This is, however, the same as the closure in L!(a, b) of the system (pn(x) l or 
of the system (xn} (see the definition in §1.5 (1)). Thus, according to Theorem 
1.5.2 we have the following: 

THEOREM3.1.5. Thesetoftheorthogonalpolynomt'als {pn(x)},n = 0, 1,2, · · ·, 
assoct'ated wt'th the distribution da(x) on afint'te t'nterval [a, b], is closed in L!(a, b). 
More generally it is closed in L~(a, b), p E;; 1. 

For a function f(x) of the class L!(a, b) Parseval's formula (3.1.13) holds. 
A function f(x) of the class L!(a, b), for which fn = 0, n = 0, 1, 2, · · · , is 

necessarily a zero-function. 

The finiteness of the interval considered is an essential restriction. Some 
cases of infinite intervals will be studied later. (See §5.7.) 

The assumption fn - 0 in the last part of Theorem 3.1.5 is equivalent to 
the fact that 

(3.1.14) n = 0, 1, 2, .. · . 

The discussion of this condition is closely connected with the uniqueness of 
Stieltjes' problem of moments. An example showing that Theorem 3.1.5 does 
not hold generally in case of an i'nfinite interval is the following: 

(3.1.15) da(x) = exp (- x'" cos p.1r) dx, f(x) = sin (I'" sin p.1r), 0 < p. < 1/2. 

Here (3.1.14) is satisfied (cf. P6lya-Szego 1, vol. 1, pp. 114, 285, 286, problem 
153), and yet f(x) is not a zero-function. In the same case, if p(x) is an arbitrary 
polynomial, 
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A = 1oo lf(x)} 2 da(x) = 1oo f(x) lf(x) - p(x)} da(x) 

:ii f 1/(x) - p(x) I da(x) :ii {f 1/(x) - p(x) I' da(x)}'{{ da(x)Y, 

which shows that the integrals 

1r.o lf(x) - p(x) I da(x) and 1oolf(x)- p(x)l 2 da(x) 

cannot be made arbitrarily small. 

3.11. Generalizations 

Numerous analogous problems arise if the weighted quadratic deviation 
(3.1.2) is replaced by other types of deviations. The most interesting cases are 

(3.11.1) 

p being a fixed positive number, and the limiting case p ~ oo 8 (called also the 
"Tchebichef deviation"): 

(3.11.2) max llf(x) - p(x) I w(x)}. 
a~x~b 

In the last case we assume that f(x) and w(x) are continuous. Similarly, the 
integral (3.1.6) might be replaced by the expression 

(3.11.3) 

or by 

(3.11.4) 

1b 1. p(x) IP da(x), 

max {I p(x) I w(x)}. 
a~x~b 

The polynomials of fixed degree which minimize (3.11.1) and (3.11.2) represent 
a generalization of the nth partial sum of the expansion of f(x) in terms of the 
orthogonal polynomials associated with da(x) or w(x) dx. The polynomials 
of fixed degree, and with highest coefficient unity, which minimize (3.11.3) 
and (3.11.4) represent a generalization of the orthogonal polynomials them
selves. 

Since the number of investigations which can be classified under this general 
point of view is very considerable, only the most important aspects can be 
indicated here. 

(1) For p = 2 the polynomials minimizing (3.11.1) are the partial sums of the 

8 Replacing da(x) by {w(x)lP dx, we have (a and b finite, f(x) and w(x) continuous) 

lim I f(x) - p(x) jP { w(x) l P dx = max ll f(x) - p(x) I w(x)}. [1 b ]1/P 
p-oo a a~x~b 
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expansion of a given function f(x) in a series of orthogonal polynomials (Theorem 
3.1.1). In case a= -1, b = +1, w(x) = (1 - x2)-t, we obtain the expansion 
of f(x) = f (cos e) in a cosine series; in cat>e a = -1, b = + 1, w(x) = 1, we 
obtain the Legendre series. (Cf. Chapters IX and XIII.) 

(2) In the general case (3.11.1) the existence and uniqueness of the minimizing 
polynomials have been investigated. See Jackson 1, 2, 3; Shohat 1, pp. 509-513, 
4, pp. 160-161. Both authors consider only distributions of the type w(x) dx. 
For general distributions see Tamarkin 1, p. 118. 

(3) Let a, b be finite, da(x) = dx, and p = 1. For problems (3.11.1) and 
(3.11.3) see S. Bernstein 2, in particular pp. 135-137, where references arc also 
given to the earlier literature. (Cf. also Geronimus 5.) Recently Achycscr (2) 
discussed the problem of minimizing 

(3.11.5) 1q I p(x) I dx + j" I p(x) I dx, 

where [p, q] and [r, s] are given disjoint finite intervals and p(x) ranges over 
all 11"n with the highest term xn. The minimizing polynomials can be repre
sented in terms of elliptic functions. 

( 4) In the case where a and b are finite, f(x) continuous, and w(x) = 1, the 
minimum problem corresponding to (3.11.2) leads to the closest approximation 
of continuous functions by polynomials. The connection between the closeness 
of this approximation (as n ~ oo) and the continuity properties of f(x) has been 
investigated in great detail. (See Jackson 4.) 

(5) If a, bare finite, f(x) continuous, and da(x) = dx, the minimizing polJno
mials of (3.11.1) (for a fixed n) tend to the minimizing polynomial of (3.11.2) as 
p ~ oo. (We have existence and uniqueness in both cases.) See P6lya 2; 
also Shohat 1, pp. 513--514, 4, p. 171. Both authors consider only distributions 
of the form w(x) dx. For general distributions, see Tamarkin 1, p. 125. 

(6) If a = -1, b = +1, w(x) = 1, then problem (3.11.4) has the solution 
p(x) = 21--nTn(x) (see the notation in (1.12.3)). This is a classical result due to 
Tchebichef and is the starting point of various investigations of the highest 
interest. (Cf. S. Bernstein 1.) 

3.2. Recurrence formula; Christoffel-Darboux formula 

(1) THEOREM 3.2.1. The following relation holds for any three consecutive 
orthogonal polynomials: 

(3.2.1) Pn(x) = (Anx + Bn)Pn-1(x) - CnPn-z(x), n = 2, 3, 4, · · · . 

Here An, Bn, and Cn are constants, An > 0 and Cn > 0. If the highest coeffi
cient of Pn(x) is denoted by kn, we have 

(3.2.2) 
kn 

An= k-, 
n-1 

For the proof, we first determine An so that Pn(x) - AnXPn-1(x) is a 'll"n-1 • 
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This can be represented as a linear combination 'X0p0(x) + 'A1p1(x) + . · · + 
An-tPn-t(x), and beca~se of the orthogonality it is readily seen that 'A. = 0 
if v < n - 2. Therefore (3.2.1) follows. The first part of (3.2.2) is a conse
quence of (3.2.1); the second par:t follows from 

1b Pn(X)Pn-2(x) da(x) = 0 = An 1b XPn-t(X)Pn-2(x) da(x) - Cn, 

since the integral of the right-hand member is equal to 

1b Pn-t(x)(kn-2Xn-l + · · ·) da(x) = ~:=: 1b (Pn-t(x)} 2da(x). 

'The recurrence formula (3.2.1) is valid also for n = 1 if we write P-t(x) = 0, 
with the understanding that C1 it> arbitrary. The first formula in (3.2.2) then 
holds for n = 1. 

Concerning a converse of Theorem 3.2.1, see Favard 1. 

(2) THEOREM 3.2.2. We have 

Po(x)po(y) + Pl(x)pt(y) + · · · + Pn(x)pn(y) 

(3.2.3) 
kn Pn+l (x )pn (y) - Pn (x )Pn+l (y) 

- kn+l X- y 

For the special case da(x) = dx, see Christoffel!; see also Darboux 1. This 
important identity can be easily derived from the recurrence formula. For 
we have 

Pn+t(X)Pn(Y) - Pn(X)Pn+l(y) 

= ( (An+tX + Bn+t)Pn(X) - Cn+lPn-t(X) }pn(Y) 

- Pn(x) ( (AnHY + Bn+t)Pn(Y) - Cn+tPn-t(Y)}, 

= An+t(X - y)pn(x)pn(Y) + Cn+d Pn(X)Pn-t(Y) - Pn-t(X)pn(Y)} · 

By (3.2.2), this becomes 

kn Pn+l(x)pn(y) - Pn(X)Pn+l(y) 
X- y 

_ ( ) (· ) + kn-1 Pn(X)Pn-l(y) - Pn-t(X)pn(y) - Pn X Pn Y -k --- , 
n X - Y 

which holds also for n = 0, with the understanding that k_1 is arbitrary. On 
replacing n by 0, 1, 2, · · · , nand adding, we obtain (3.2.3). 

We notice the special case x = y: 

(po(x) }2 + (pt(x) )2 + · · · + (pn(x) )2 

(3.2.4) 
= kkn (p~+t(x)pn(x) - P: (x)Pn+t(x)}. 

n+l 
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(3) The left-hand member of (3.2.3) is identical with the "kernel" Kn(i, y) = 
Kn(Y, x) introduced in (3.1.9). Using (3.1.12), we may derive (3.2.3) in a 
different way by showing that the right-hand member of (3.2.3) (replacing y 
by t) satisfies (3.1.12). For we have 

~ (b Pnn(x)pn(t) - Pn(x)Pn+l(t) p(t) da(t) 
kn+l }a X - t 

kn [b ( ) ( p(t) - p(x) = k- lPn+l X Pn t) - Pn(X)Pn+l(t)} t da(t) 
n+l a X -

+ ~ p(x) 1b Pn(t) Pn+I(X) - Pn+l(t) da(t) 
kn+l a X - t 

+ kkn p(x) (b Pn-tl(t) Pn(t) - Ptn(x] da(t). 
n+l ~ X -

Here the first and third integrals of the right-hand member vanish (also for 
n = 0). The second term is p(x) since 

kn Pn+l(x) - Pn+l(t) = kntn + ..... 
kn+l X - t 

Another proof of (3.2.3) may be obtained by combining Theorem 3.1.4 with 
Theorem 2.5. 

3.3. Elementary properties of the zeros 

THEOREM 3.3.1. The zeros of the orthogonal polynomials Pn(x), associated 
with the distribution da(x) on the interval [a, b], are real and distinct and are 
located in the interior of the interval [a, b]. 

In special instances, particularly in the classical cases (see §2.4), we shall 
obtain later more exact information concerning the position of the zeros. (See 
Chapter VI.) 

As a consequence of Theorem 3.3.1 we have a(a) < a(x1 - 0) and a(xn + 0) < 
a(b), where x1 and Xn are the least and the greatest zeros of Pn(x), respectively. 

(1) The usual proof of the preceding theorem is based on the orthogonality 
property. From 

1b Pn(x) da(x) = 0, n ~ 1, 

we are assured of the existence of at least one point in the interior of [a, b] at 
which Pn(x) changes sign. (The function a(x) has an infinite number of points 
of increase.) If x1 , x2 , · · · , Xt denote the abscissas of all such points, the 
product Pn(x)(x - x1)(x - x2) · · · (x - Xt) has a constant sign (that is, is non
negative or non-positive throughout [a, b]); we have l ~ n. On the other hand, 
if l < n, 

(3.3.1) [b Pn(x)(x - x1)(x - x2) · · · (x - Xt) da(x) = 0. 
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Since the integrand is not a zero-function, this is impossible. Therefore we 
have l = n. 

(2) A slight variation of this argument may be made as follows. Let x0 be 
an arbitrary zero of Pn(x). The coefficients of Pn(x) being real, we see that 
Pn(x)j(x - i'o) is a 7T"n-l. On the other hand 

(3.3.2) rb Pn(x) Pn(X~ da:(x) = lb (x - Xo) II' Pn(x) 1

2 

da(x) = 0, 
}a X - Xo a . X - Xo 

so that 

(3.3.3) Xo t i Pn(:r) ( da(:r) = {b :r! Pn(:r) 12 da(x). 
}a 1 X - Xo 1 }n I X - Xo 

In other words, xo is the centroid of a mass distribution on the interval [a, b]. 
The integral in the left-hand member of (3.3.3) being positive, x0 is real. From 
(3.3.2) we see that a < xo < b. 

If xo were a multiple zero, we should have 

(3.3.4) lb ( ) Pn(x) d ( ) lb{ Pn(x) }
2 

( ) Pn X ( )2 a X = da X = 0, X - Xo a X- Xo 

which is a contradiction. 
(3) The statement concerning the location of the zerot> (not their simplicity) 

follows also from the minimum property formulated in Theorem 3.1.2. ·were 
a zero Xo to lie outside [a, b], the distance I x - Xo I could be diminished simulta
neously for all x in [a, b] by a proper displacement of x0 • Hence the corre
sponding integral (3.1.6) could not be a minimum. 

For an extension of this argument to polynomials possessing an analogous or 
a more general minimum property in the real or complex region, see Fejer 7, 
Szego 5. 

From the orthogonality property of the kernel Kn(x0 , x) (Theorem 3.1.4), 
we can similarly derive some theorems concerning the location of its zeros in x 
if x0 is regarded as a parameter. (See Szego 5, pp. 241-244.) 

(4) The reality apd simplicity of the zeros (without the more exact statement 
concerning their lob:tion in [a, b]) follow from the recurrence formula by means 
of Sturm's theor~m (Perron 4, vol. 2, pp. 7-9). For, the polynomials 

(3.3.5) Po(x), P1(x), P2(x), · · · , Pn(x) 

form a Sturmian t>equence in [a, b] since (a) if p,(xo) = 0, v ;?; 1, it follows from 
(3.2.1) that Pv-l(xo)Pv+l(xo) < 0; (b) Po(x) is a constant ~ 0, and Pn(x) is of 
precit>e degree n; (c) at a point Xo where Pn(xo) = 0, we have ]J: (xo)Pn-l(xo) > 0. 
The latter fact follows from (3.2.4) if n is replaced by n - 1 and x by Xo (see 
below). Now the number of variations of sign in (3.3.5) is n if x < 0 and I x I 
is sufficiently large; it is 0 if x > 0 and sufficiently large. (Cf. §6.2 (1) and the 
footnote 32.) 

(5) From (3.2.4) 

(3.3.6) 

we obtain the important in ;quality 

P:+l(x)pn(x) - p:(x)Pn+l(x) > 0, x real. 
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As a first consequence we point out that Pn(x) and Pn+1(x) cannot have common 
zeros. Furthermore, we obtain the following separation theorem: 

THEOREM 3.3.2. Let X1 < X2 < · · · < Xn be the zeros .of Pn(x), Xo = a, Xn+l = b. 
Then each interval [x., x.+l], v = 0, 1, 2, · · · , n, contains exactly one zero of 
Pn+l (x) · 

In fact if ~ and 77, ~ < 77, are two consecutive zeros of Pn(x), we have 
p:(~)p:(7J) < 0. On the other hand, (3.3.6) yields -p:(0Pn+l(0 > 0, 
-p:(7J)Pn+l(7J) > 0, so that Pn+l(~)Pn+l(7J) < 0. This indicates an odd number, 
that is, at least one zero of Pn+I(x) in~< x < 7J. Now let~= Xn be the greatest 
zero of Pn(x); then p:(~) > 0, and (3.3.6) yields Pn+l(~) < 0. Since Pn+l(b) 
is positive, we obtain at least one zero of Pn+ 1(x) on the right of~ = Xn, and 
similarly at least one on the left of the least zero x1 of Pn(x). Consequently, 
we can have only one zero of Pn+1(x) between x. and x.+1 , v = 0, 1, 2, · · · , n. 

By interchanging the role of Pn(x) and Pn+1(x), we can prove as before the 
existence of at least one zero of Pn(x) between two consecutive zeros of Pn+l(x). 
This shows again that we cannot have more than one zero of Pn+l(x) between 
two consecutive zeros of Pn(x). 

(6) THEOREM 3.3.3. Between two zeros of Pn(x) there is at least one zero of 
Pm(x), m > n. 

See Stieltjes 11, pp. 414-418. For the following proof see Popoviciu 1. 
. Let b , ~2 , • • • , ~m be the zeros of p,.(x) in increasing order. According to 
Theorem 3.4.1 we have 

(3.3.7) 

where p,~<) are the Christoffel number.<.; associated with ~~~<) (see §3.4) and 
p(x) is an arbitrary 1r n-1 • Now an argument :,;imilar to that used in (1) shows 
that the sequence lPn(b), p,.(h), · · · , p,.(~,,)) displays at least n, and therefore 
exactly n, variations of sign. Here sgn Pn(b) = ( -1)", Pn(~,.) > 0. Thus 
there are n distinct intervals 

v = 1, 2, ... , n; 1 ~ J.l.l < /-L2 < . . . < 1-Ln+l ~ m, 

coutainiug exactly ouc zero of p,.(x), respectively. This establir;hes the state
ment. 

Other simple consequences of (:3.3.6) are: 

THEOREM 3.3.4. Let c be an arbitrary real constant. Then the polynomial 

(3.3.8) 

has n + 1 distinct real zeros. If c > 0 (c < 0), these zeros lie in the interior of 
[a, b], with the exception of the greatest (least) zero which lies in [a, b] only for 
C ~ Pn+l(b)/Pn(b), [c ~ Pn+l(a)/pn(a)]. 
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Indeed, the function Pn+I(x)/Pn(x) increases from- ooto + oo in the intervals 
x. < x < x,+1 1 v = 0, 1, 2, · · · , n, where Xo = - oo, Xn+l = + oo. 

THEOREM 3.3.5. The fallowing decomposition into partial fractions holds: 

(3.3.9) Pn(x) = f _z._ , 
Pn+l(x) v=O X - ~. 

l. > 0, 

where ~~.) denote the zeros of Pn+1(x). 

For we have 

(3.3.10) [, = Pn(~.) = P:+1(~.)pn(~,.) - p:(~.)Pn+l(~.) > O 
P~ ·tl (~.) l P:+1 (~.) )2 

• 

3.4. The Gauss-Jacobi mechanical quadrature 

(1) THEOREM 3.4.1. If X1 < X2 < · · · < Xn denote the zeros of Pn(x), there 
exist real numbers A1 1 A2 , · · · 1 An such that 

(3.4.1) lb p(x) da(x) = A1p(x1) + A2p(x2) + · · · + Anp(xn), 

whenever p(x) is an arbitrary 1l"2n-1 . The distribution da(x) and the integer n 
uniquely determine these numbers >-•. 

The set lx. = x.n) of zeros, as well as the set of numbers l>-. = >-.nl, depends, 
of course, on n. Sometimes the numbers>-. are called Christoffel numbers. See 
Gauss 2, Jacobi 1, Christoffel 1, Tchebichef 1, Mehler 1; Heine 3, vol. 2, 
pp. 1-31. 

It suffices to prove (3.4.1) for the special cases p(x) = xk, k = 0, 1, 2, ... , 
2n - 1. These cases represent 2n conditions which uniquely determine, as 
we shall prove, the Christoffel numbers >-. and the points x. . (If the distinct 
points x. are given arbitrarily, the numbers >-. can be determined so that (3.4.1) 
holds for every 7T"n-1 .) 

To prove (3.4.1) we construct the Lagrange interpolation polynomial L(x) 
of degree n - 1 which coincides with p(x) at the points x., that is, 

(3.4.2) 
n Pn(X) n 

L(x) = L p(x.) ' ( )( ) = L p(x.)l.(x), 
•-1 Pn Xv X - Xv v=1 

where the l.(x) are the fundamental polynomials associated with the abscissas 
X1, X2, · · · , Xn of the Lagrange interpolation (see §14.1). Now p(x) - L(x) 
is divisible by Pn(x), so that p(x) - L(x) = Pn(x)r(x), where r(x) IS a 7T"n-1. 
Therefore 

lb p(x) da(x) = lbL(x) da(x) + lb Pn(x)r(x) da(x) 

l

b n lb = L(x) da(x) = ~ p(x.) a l.(x) da(x). 
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This establishes (3.4.1) with 

(3.4.3) [b 1b Pn(x) 
>... = l.(x) da(x) = 1 ( )(- __ -) da(x), 

a Pn Xv X X. 
v = 1, 2, · · ·, n. 

Conversely, let (3.4.1) hold for an arbitrary 1r2n-l, called p(x). Then we 
choose p(x) = l(x)r(x), where l(x) = (x - x1)(x - x2) ••• (x - x,) and r(x) 
is an arbitrary 7l"n-1. \Ve find from (3.4.1) that 

[b l(x)r(x) da(x) = 0, 

so that l(x) = const. Pn(x). 
The interpretation of the left-hand member of (3.4.1) as a mechanical quad

rature is obvious. For an arbitrary function f(x) defined in [a, b] it may 
be written (cf. §15.1) 

(3.4.4) 

Then Theorem 3.4.1 can be formulated as follows: Qn(f) = f~ f(x) da(x) 
provided· f(x) is an arbitrary 7r2n-1 • Further, from (3.4.3) the Christoffel 
numbers >... are the values of Qn(f) for f(x) = l.(x). Also we can discuss for 
a fixed functionf(x) the convergence of the sequence l Qn(f) l as n---> oo. (Com
pare Theorem 15.2.3 and also Problem 9 below.) Concerning mechanical quad
rature formulas holding for an arbitrary 7r2n-k, see Shohat 7, p. 465. 

(2) THEOREM 3.4.2. The Christoffel numbers >... are pos£tive, and 

(3.4.5) A1 + A2 + · · · + An = 1b da(x) = a(b) - a(a). 

The following representations hold: 

(3.4.6) lb ( Pn(x) ) 2 

>..,. = 1 (- )(- _--_ ) da(x), Pn Xv X X,. 

(3.4.7) 

(3.4.8) 

= Kn(x., x.). 

Here the previous notations are used. 

Concerning (3.4.8) see Shohat 3, p. 456. The special case a = -1, b = +1, 
da(x) = dx is particularly important. Here the abscissas x. are the zeros of 
the nth Legendre polynomial, and the sum of the Christoffel numbers is 2, the 
length of the interval of integration. This is the case originally considered by 
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Gauss and Jacobi. Another important special case, namely a = -1, b = + 1, 
da(x) = (1 - x2)-! dx, is due to Mehler (1). 

The po;.;itivencss of 'A. is clear from any of the representations (3.4.6), (3.4.7), 
(3.4.8). In case (3.4.7) we take into account (3.3.6). According to (3.4.5) 
the sum of the >--. is the total masR of the diRtribution da(x) spread over the 
given interval. 

The discussion of the representation (3.4.7) can be carriPd further in the case 
of the classical orthogonal polynomials. (Cf. §15.3 (1).) 

For the proof of Theorem 3.4.2 we write p(x) = ll.(x)) 2 in (3.4.1); this 
furnishes (3.4.6). Furthermore, writing y = x. in (3.2.3), multiplying by 
da(x), and then integrating, we obtain, according to (3.4.3), 

1 = kn {b -pn(x)Pn+1(x.) da(x) 
kn+l }a x-x. 

This establishes (3.4.7). Combining (3.4.7) with (3.2.4) for x = x., we get 
(3.4.8). 

(3) As an application of (3.4.1) we obtain, for arbitrary real constants 
Uo , 'U1 , • • • , Un-1 , 

n 

= L 'A.(uo + U1Xv + · · · + Un-1X:-1)2, 

(3.4.9) 
•=1 

n 

= L 'A.x.(uo + U1Xv + · · · + Un-1X:-1t 
v=1 

Therefore, the characteristic values of the pencil 
n 

(3.4.10) G(u) -~F(u) = L x.(x. - ~)(uo + U1Xv + ... + Un-1x:-1)2 
•=1 

are precisely ~ = X1 1 X2, · · · , Xn. With the notation (2.2.1), the quadratic 
form of the left-hand member becomes 

n-1 n-1 

(3.4.11) L L (c•+~<+1 - ~c•+~<)u.u~<. 
v=O 1'-0 

Its determinant is a 7rn in ~ which vanishes for ~ = x1 , X2) · · · 1 Xn , and is 
therefore a constant multiple of Pn(~). We thus arrive at a new proof of Pquation 
(2.2.9). 

Sec also Problem 10. 
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3.41. Separation theorem of Tchebichef-A. Markoff-Stieltjes 

In 187 4 Tchebichef stated a very remarkable property of the Christoffel 
numbers (see 6, 8), proofs of which were given independently by A. Markoff 
and Stieltjes. Let n ~ 2. In view of the positiveness of>... and of (3.4.5), there 
exist numbers Y1 < Y2 < · · · < Yn-1, a < Y1, Yn-1 < b,9 such that 

(3.41.1) A, = a(y,) - a(Yv-1), P = 1, 2, · · · , n; Yo = a, Yn = b. 

THEOREM 3.41.1. The zeros x1 , X2, ... , Xn, arranged in increasing order, 
alternate with the numbers Y1 , Y2 , · · · , Yn-1 ; that is, 

(3.41.2) Xv < Y v < Xv+l ; 

more precisely 

a(x. + 0) - a(a) < a(y.) - a(a) = A1 + A2 + . ·. + X. 
(3.41.3) 

< a(x.+l - 0) - a(a), v = 1, 2, · .. , n - 1. 

In view of (3.41.1) the quadrature formula (3.4.1) becomes 

(3.41.4) 
[

b n 

p(x) da(x) = L p(x.) l a(y.) - a(y,_1) ). 
•-1 

Since Y·-1 < x. < y. , the right-hand member has the character of a "Riemann
Stieltjes sum." 

As a further consequence of the inequalities (3.41.3) we notice that 
a(x. + 0) < a(x.+l - 0). Thus we have proved the following: 

THEOREM 3.41.2. In the open interval (x., x,+I), between two consecutive zeros 
of Pn(x), the function a(x) cannot be constant. 

Or in other words: In an open interval in which a(x) is constant, Pn(x) has 
at most one zero. 

3.411. First proof of the separation theorem10 

Let v be an integer such that 1 ~ v ~ n - 1. Choose for p(x) in (3.4.1) 
a special 7r2n-2 subject to the following 2n - 1 conditions: 

p(x,) ~ {~ if k = 1, 2, ... 'v, 

(3.411.1) if k = p + 1, p + 2, ... 'n; 

p'(xk) = 0 if k = 1, 2, . · · , v - 1, v + 1, ... , n. 

Then this polynomial is uniquely determined. 

9 To find such numbers y, it might be necessary to modify a(y) at some of its points of 
discontinuity, which has, of course, no influence on (3.4.1). It should be also observed 
that y, is in general not uniquely determined. 

1o Cf. A. Markoff 1, 2, Stieltjes 1, A. Markoff 3. 
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By Rolle's theorem p'(x) has at least one zero in each of the open intervals 

(3.411.2) (Xv-11, Xv+2), • • · , (Xn-1, Xn). 

These zeros together with Xk, 1 ~ k ~ n, k ~ v, furnish (n - 2) + (n - 1) = 
2n - 3 zeros for p'(x). Since p'(x) is a 1l'2n-a, it follows that these are the only 
zeros of p'(x), and also that they are all simple zeros. Hence p(x) is monotonic 
between any two consecutive zeros of p'(x); in particular, it is monotonic 
between the zero in (xv-1 , x.) and x.+l , and therefore also in [x., x.+Il· Fur
thermore, p(x) is decreasing in [x. , x.+l] since p(x.) = 1, p(x.+l) = 0. From 

b 

these considerations the graph of p(x) is easily seen to have the shape given in 
the figure. Therefore we have 

p(x) ~ 1 In a ~ x ~ x. , 
(3.411.3) 

p(x) ~ 0 In x. ~ x ~ b. 

For this special case the general formula (3.4.1) gives 

A1 + A2 + · · · + >-. = [b p(x) da(x) 

rx.+O l:r.+O 
> }a p(x) da(x) > a da(x), 

which establishes part of the inequalities (3.41.3). 
To prove the remaining part we consider the distribution d[ -a( -x)] in 

[- b, -a]. The associated orthonormal set is l ( -1) nPn(- x)} with the zeros 
-xn < -Xn-1 < · · · < -xl . In place of the numbers Y1, Y2, · · · , Yn-1 we 
now have - Yn-1 , - Yn-2 , · · · , - Y1 . Then, according to the preceding result, 
-a(Xn-•+1 - 0) < -a(Yn-v), or a(y.) < a(xv+1 :- 0). 

3.412. Second proof of the separation theorem 11 

Let the non-decreasing step-function V(x) be defined by the following 
conditions: 

u See Stieltjes 12, especially pp. 588--592. 

_____ ,, ____________________________ _ 
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(3.412.1) V(x) 
f

o, 

Al ' Xl ~ X < X2 ' 

= A1 + A2 , X2 ~ X < X3 , 

a ~X < X1, 

l~: ;·~:; ·.· .·.·; -~~:. -~~ ~ -~ -~· ~-
Then (3.4.1) can be written in the form 

(3.412.2) 1bp(x)d!a(x)- V(x)J = [bp(x)d(a(x)- a(a)- V(x)f = 0. 

An integration by parts (see (1.4.4)) yields 

(3.412.3) lb I a(x) - a(a) - V(x) l p'(x) dx = 0, 

since V(a) - 0 and (see (3.4.5)) a(b) - a(a) - V(b) = 0. 
The function V(x) is constant in the open intervals (a, x1), (x1 , x2), ••• , 

(Xn-1, Xn), (xn, b); hence a(x) - a(a) - V(x) = {3(x) is non-decreasing there. 
We have {3(x) ~ 0 (but not {3(x) = O) in the first interval, and {3(x) ~ 0 (but 
not {3(x) = 0) in the last interval. In the other intervals (x., x.+1) the function 
{3(x) is either of constant sign (constantly non-negative or non-positive), or 
there exists a pointy, x. < y < x.+l, such that {3(y - 0) < 0 and {3(y + 0) > 0. 
Thus the total interval [a, b] can be subdivided in at most 2n intervals in which 
{3(x) is non-negative and non-positive alternately, without being identically zero. 
The end-points of these intervals are some of the zeros x. and some of the points 
y previously defined. Now from (3.412.3) we conclude, by means of an argu
ment similar to that in §3.3 (1), that the number of these intervals is at least 2n, 
and then exactly 2n. Less precisely, {3(x) has exactly 2n variations of sign in 
[a, b] which are located at the zeros x. as weq as at the points y mentioned, 
whose number is n - 1. · At the points y there is a transition from negative to 
positive values. Hence at the points x. there is a transition from positive to 
negative values. 

Consequently, 

(3.412.4) {3(x. - O) > 0 > {3(x. + 0), v = 1, 2, • · · , n, 

which is equivalent to the statement of Theorem 3.41.1. (The first inequality 
is trivial for 11 = 1; the same holds for the second one for 11 = n.) 

We can also prove the above statement by a slight modification of the argu
ment used. Let y. denote the point in (x. , x.+l) with the variation of sign of 
the type y; then we have 

(3.412.5) {3(x. + 0) < {3(y.) = 0 < {3(x.+l - 0). 

(Cf. the footnote above.) 
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3.413. Third proof ofthe separation theorem 12 

Let the functions cf>k(x, t) be defined as follows 

(3.413.1) l
(x - t)k if x ~ t, 

cf>k(X, t) = 
0 if X > t, 

where k is a non-negative integer, x and t arbitrary and real. Lee3 

(3.413.2) Fk(t) = Ib cf>k(x, t) da(x) - ~ Avcf>k(x., t). 

Then according to (3.4.1) 
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(3.413.3) k = 0, 1, 2, ... , 2n - 1. 

Also Fk(t) is continuous if k ~ 1; furthermore, we readily see that F0(t) = {3(t), 
where {3(t) has the same meaning as in §3.412. Now 

(3.413.4) F;(t) = -kFk_1(t), a < t < b, k ~ 1. 

[Fork= 1, t = x., this means F~(x. ± 0) = -F0(x. ± 0).] If we take into 
account (3.413.3) and (3.413.4), Rolle's theorem furnishes for the number of 
zeros of Fk(t) (including t = a and t = b) the lower bound 2n + 1 - k, 
1 ~ k ~ 2n - 1; this holds also for k = 0 in the sense that F0(t) has at least 
2n - 1 variations of sign. From this point on the statement follows by an 
argument similar to that in the second proof. 

3.42. Another separation theorem 

If X1n < X2n < · · · < Xnn denote the zeros of Pn(x), we know (Theorem 3.3.2) 
that the system (x.n) alternates with the system !xv,n+I}, that is, 

(3.42.1) Xv-l,n < Xv,n+l < Xvn, II =· 1 2 · · · n + 1. Xo n = a Xn+l n = b. 
' ' ' ' t ' J 

Let now (Avn) denote the system of Christoffel numbers associated with 
Pn(x), and let IYvnl be the numbers y. defined in (3.41.1). Stieltjes showed 
(12) that in addition to Theorem 3.41.1 the following separation theorem holds: 

THEOREM 3.42. We may assert that 

(3.42.2) Yv-l,n < Yv,n+l < Yvn ; 

or 

Aln + A2n + 
(3.42.3) 

+ Av-l,n < Al,n+l + A2,n+l + • • • + Av,ntl 

< Aln + A2n + ... + Avn' II = 1, 2, ... 'n. 

For 11 = 1 the inequalities involving Yon and Aon must be disregarded. 

12 This proof is due to P6lya and Uspensky (written communication). 
13 In case k = 0, t = a the integral in the right-hand member should be replaced by 0. 
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The analogy between (3.42.1) and (3.42.2) is obvious. 
For the proof we use the same function V(x) as in §3.412, denoting it now 

by V ,(x), and introducing the corresponding function V n+I(x) associated with 
the system (Av.n+If· Then by (3.412.3) we have 

(3.42.4) lb I v ,(x) - v n+I(x) Jp'(x) do:(x) = o, 

where p(x) is an arbitrary 1l"2n-1. Hence V ,(x) - V n+I(x) has at least 2n - 1 
variations of sign. Such variations can occur only at the points Xvn and xv.n+I . 
In the first case V n+l(x) is constant in the neighborhood of this point, and 
since V ,(x) increases, the variation of sign is necessarily a transition from 
negative to positive values. The opposite is true for Xv,n+I . The total number 
of points (xvn) and (xv.n+Il is 2n + 1. Now V,(x) and V,+I(x) are identical 
in the intervals a ~ x < x' and x" < x ~ b, where x' is the minimum and x" 
the maximum of all the zeros x.~ and Xv.n+I. Hence no variation of sign is 
possible at x' or x". This means that a variation of sign actually occurs at 
each of the other zeros and is of the type described above. 

As a first consequence of this, we- again obtain (3.42.1), that is, Theorem 
3.3.2, and as a second consequence, the inequalities 

(3.42.5) V n(Xvn - 0) - V n+J(Xvn - 0) < 0 < V ,.(Xvn + O) - V n+l(Xvn + 0). 

These are the same as the inequalities (3.42.3). 

3.5. Continued fractions 

Historically, the orthogonal polynomials (p,(x) l originated in the theory 
of continued fractions. This relationship is of great importance and is one of 
the possible starting points of the treatment of orthogonal polynomials. See 
Tchebichef 1-8, Heine 3, vol. 1, pp. 260-297, St.ieltjes 11. 

(1) For an infinite continued fraction we use the notation 

(3.5.1) a1l ~I a, I 
bo + I~ + ib;" + ... + I b, + ... 

Here, as usual, the convergent R,j S,, n = 0, 1, 2, ... , is defined as the finite 
fraction obtained from (3.5.1) by stopping at the term b,. (See, for example, 
Perron 3.} We have 

(3.5.2) 
Ro = bo, 

So= 1, 

and the recurrence formulas 

R1 = bo b1 + a1 , 

s~ = b1, 

(3.5.3) R, = b, Rn-1 + a, Rn-2 , S, = b, S,_l + a, Sn-2 , n = 2, 3, 4, · · · , 

which hold also for n = 1 if we define R-1 = 1, S-1 = 0. Also, we easily obtain 
(see Perron, loc. cit., p. 16) 
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R .. S .. -1 - Rn-1 S .. = ( -1)"-1
a1 a2 ·. · a .. , 

or 

(3.5.4) R.. Rn-1 ( -1)"-1
a1 ~ • • • a., 

s.. - s .. -1 = s .. -1 s .. n = 1, 2, 3, · · ·. 

(2) Let jp .. (x)} be the orthonormal set of polynomials associated with the 
distribution da(x) on [a, b]. The recurrence formula (3.2.1) then suggests the 
consideration of the continued fraction 

Ca! _ ... _ c .. I 
IAax + Ba IA .. x +B .. 

Here A .. , B .. , C .. have the same meaning as in (3.2.1). Therefore, 

(3.5.6) bo=O, b.,=A .. x+B .. , n~1; a1 =1, a.,=-C .. , n~2. 

Next we prove the following theorem: 

THEOREM 3.5.1. The convergents R .. / S.. of (3.5.5) are determined by the 
formulas 

(3.5.7) 
R .. = R .. (x) = co1(coc2 - ci)t (b p .. (x) - p .. (t) da(t), 

}a X- t 

S .. = S.,(x) = c~p .. (x), n = 0, 1, 2, · ... 

Here c., has the same meaning as in (2.2.1). 

Accordingly, the orthogonal polynomials are identical with the denominators 
of the convergents of the continued fraction (3.5.5). 

The second part of the statement follows immediately by comparing (3.2.1) 
with (3.5.3) for n ~ 2 and observing that the statement is true for n = 0 and 
n = 1. As regards t.he first part, we notice that it holds also for n = 0 and 
for n = 1. (Since P1(x) = k1x + const., the corresponding integral becomes 
k1c0 • Then we use (2.2.15) and (2.2.7).) Finally, if n ~ 2, we have 

c~(CoC2 - ci)-t(R., - b.,R.,_t - a.,Rn-2) 

= lb{p .. (x) - p .. (t) - (A .. x +B.,) lPn-1(x) - Pn-1(t)} 
a X- t 

+ Cn !Pn-2(x) - Pn-2(t) l}da(t) 
X- t 

= lb- (A .. t + B .. )p.,_1(t) + (A .. x + B .. )p.,_1(t) da(t) 
a X- t 

= A., lb Pn-1(t) da(t) = 0, 

which establishes the statement. 
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Therefore, the numerators of the convergents are expressible in terms of 
p,(x). ObYiously, R, is a polynomial of degree n - 1 in x. 

(3) On expanding the rational function R,(x)jS,(x) in descending powers 
of x, we obtain for n ~ 1 

(3.5.8) Rn(x) d -1 + { -2 ..1 -3 
S,(:r) = onX ( JnX + w.!"X + ... 

According to (3.5.4) this expansion agree~ 'vith that of R,_1(x)/ Sn_1(x) up to, 
and including, the term x -<2 

"-
2
l Whence there exists a power series 

(3.5.9) dox-1 + d1x-2 + d2x-3 + ... 
such that, for n ~ 1, 

00 

(3.5.10) R,(x) _ d -1 + d -2 + 
S,(x) - oX 1X + d2n-1X-2" + L d.,x-•-1. 

v=2n 

This is generally true for the convergents of any continued fraction of the 
type (3.5.5). 

THEOREM 3.5.2. The equality 

(3.5.11) d -2( 2)! • = Co Co C2 - C1 c. , II= 0, 1, 2, • • •, 

is valid. 

In fact, if d. is defined by these equations and we use (3.5.7), we find 

R,(x) - S,(x)(dox-1 + d1x-2 + · · · + d2n-1X-2") 

-!( 2)!{1bp,(x)- p,(t) d () ( )( · -1 -2n)} = Co CoC2 - C1 a t - p" X CoX + · · · + C2n-1X . 
a X- t 

Here the expression in the braces can be written in the form 

[
bp,(x) - p,(t) da(t) - p,(x) lb !_=.___x-2nt2n da(t) 

x-t a x-t 

= rb p,(x) - p,(t) x-2nt2n da(t) - rb p,(t) 1 - x-2nt2n da(t) 
}a X- t }a X - t 

= X-2n lb p,(x) - Pr.(t) t2n da(t) 
a X - t 

- x-2n ib p,(t)(x2n-1 + x211-2t + ... + xt2n-2 + t2n-1) da(t). 

Since the first integral of the right-hand member is a 1r ,_1 , the expansion of 
the first term starts with x-"-1

• Since the contributions of the powers 
1, t, t2

, ••• , t"-
1 in the second integral vanish, the expansion of the second 

term starts with x-·2"x"-1 
= x-"-1

• On dividing by S,(x), we obtain an expan
sion of the form (3.5.10). This requirement uniquely determines the numbers 
do , d1 , ... , d2n-1 , and therefore, the whole sequence I d.). 

------·~----------------------------------------------------
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( 4) THEOREM 3.5.3. T~e following decomposition into partial fractions holds 
for the convergents of (3.5.5): 

(3.5.12) Rn(x) = co2(Coc2 - ci)t f: ·~-, 
Sn(X) v=l X - Xvn 

where "A. = Am and x. = Xvn have the same meaning as in §3.4. 

For, we find from Theorem 3.5.1 

R;(x.n) = co1 (~oC~ - ci)t rb -.Pn(t) da(t). 
Sn (Xvn) C(J Pn (Xvn) } a t - Xvn 

Now we can apply (3.4.3). 
From (3.5.12) we see that the zeros of Rn(x) are real and that they alternate 

with those of Sn(x). 
(5) Finally, we consider the special case in which [a, b] is a finite interval. 

Then the expansion (3.5.9) represents the function 

(3.5.13) F(x) = co2(c0c2 - .ci)t lb da(t) 
a X - t 

provided I xI is sufficiently large. In various special cases, a function F(x) 
representable in the form (3.5.13) may be developed directly into a continued 
fraction of the type (3.5.5), the denominators of this r"raction being the or
thogonal polynomials associated with the distribution da(t). Such an approach 
to these polynomials is essentially different from that used in Chapter II. 

THEOREM 3.5.4. Let [a, b] be a finite interval. Then 

(3.5.14) l . Rn(x) F( ) 
1m -S()= x, 

n-oo n X 

if x is an arbitrary point in the complex plane cut along the segment [a, b]. The 
convergence is uniform on r:very closed set having no points in common with [a, b]. 

This theorem is due to A. Markoff (5, p. 89). 
If x be real, x > b, we may combine Theorem 3.5.3 with Problem 9 to get 

(3 5 15) F( ) _ Rn(X) _ _:2( _ 2)!( _ t)-2n-lk-2 < t < b 
. . X Sn(x) - Co CoC2 Cl X <; n ' a = <; = . 

This tends to 0 as n ---+ oo (Problem 52) provided x is sufficiently large. On 
the other hand, the left-hand member of (3.5.15) is uniformly bounded in the 
exterior of an arbitrary closed curve containing [a, b] in its interior, since "A.n > 0 
and (3.4.5) holds. Now the statement follows by use of Vitali's theorem 
(Titchman-;h 1, p. Ui8). Another proof <'nn he ba:-;ed on Theorem 1:).2.:3. 

Concerning further properties of the convergents we refer to Sherman 1 
and the bibliography given there. Regarding the relation of the continued 
fraction (3.5.5) and of the orthogonal polynomials to the problem of moments, 
see Hamburger 1, 2, M. Riesz 2, and the bibliography quoted in these papers. 

--------~-----------------------------------------------------



CHAPTER IV 

JACOBI POLYNOMIALS 

In this chapter we shall be concerned with the main properties of Jacobi 
polynomials, which include as special cases the ultraspherical polynomials, 
particularly, the Legendre polynomials. Among the topics which are not con
sidered here, but which are reserved for later study, are the properties of the 
zeros, asymptotic expressions, expansion problems, and properties connected 
with interpolation and mechanical quadrature., 

Addition theorems for Legendre and ultraspherical polynomials have also 
been omitted, as have the relations of these polynomials to spherical and surface 
harmonics of various dimensions. Limitations of space and the existence of 
exhaustive treatises on these subjects are the chief reasons for such an omission. 
The interested reader may well consult Whittaker-Watson (1, pp. 326-328, 
335) and Hobson (1). 

4.1. Definition; notation; special cases 

(1) The definition of the Jacobi polynomials P~a,f3l (x) has been given in 
§2.4, 1; they are orthogonal on [ -1, + 1] with the weight function w(x) 
= (1 - x)a(1 + xt Assurance of the integrability of w(x) is achieved by 
requmng a> -1 and {3 > -1; the normalization of p~a,f3l(x) is effected by14 

(4.1.1) p~a,f3)( 1 ) = (n ~a). 

The orthogonal polynomials with the weight function (b - x) a(x - a/ on the 
finite interval [a, b] can be expressed in the form 

(4.1.2) const.P~a,f3l{2~ _:.- 1} 

·(see the last remark in §2.3). The case a = 0, b = 1 is often used (Jacobi 3; 
Jordan 1, vol. 3, pp. 231-234; Courant-Hilbert 1, pp. 76-77).15 

Stieltjes (6, p. 75) writes a and {3 for (/3 + 1)/2 and (a + 1)/2, respectively, 
in terms of our notation. The same notation is used by Fejer (13, p. 42). 
Jordan's function Zn(u) in our notation is 

(-1r{(n +:- 1 )}-~ P~a-')',')'-l)(2u- 1). 

14 According to §3.3 the zeros of p~a,f3) (x) are in -1 < x < + 1, so that p~a.{1J (1) ~ 0. 

lb The statement on p. 76 in Courant-Hilbert must be corrected so as to read 

p(x) = x!l-1(1 - x)r!l, q > 0, p - q > -1. 
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Courant-Hilbert'~ function Gn(P, q, u) is the ~ame a~ Zn(u) with p = a, q = 'Y· 

The important identity 

(4.1:3) 

is readily derived by means of the last remark in §2.3. Combining (4.1.3) with 
(4.1.1), we have 

(4.1.4) 

(2) For a - {3 we have the ultraspherical polynomials. They are even or 
odd polynomials according as n is even or odd ( §2.3 (2)). 

THEOREM 4.1. The following formulas hold: 

p<a.a)(x) = r(2v + a + 1)r(v + 1) p<a,-!)(2 2 - 1) 
2

" r(v + a + 1)r(2v + 1) v X 

= ( _ 1)" r(2v + a + 1)r(v + 1) p<-Lal(l _ 2 2) 
r(v + a + 1)r(2v + 1) v X ' 

( 4.1.5) 
p<~,a)(x) = r(2v + a+ 2)r(v + 1) p<a.i)(2 !! - 1) 

2
'+1 r(v + a + 1)r(2v + 2) X v X 

= ( -1)" r(2v + a+ 2)r(v + 1) p<i.a)(1 - 2x2). 
r(v + a + 1)r(2v + 2) X v 

As a consequence of these important relations, Jacobi polynomials with 
a or {3 = ±t may be expressed by ultraspherical polynomials. In order to 
establish the first relation, it suffices to prove that 

L~
1 

P~a.-il(2x2 
- 1)p(x)(1 - x2)a dx = 0, 

where p(x) is an arbitrary 1r2.-1. This is trivial if p(x) is odd. Let p(x) be even 
and equal to r(x\ where r(x) is an arbitrary 1l"v-1 • Then we have 

r+1 

p~a,-i)(2x2 
- 1)r(x2

)((- x2t dx = 2 t p~a,-i\2x2 - 1)r(x2)(1 - x2t dx J-1 }o 

= 11 

P~a.-i>(2x - 1)r(x)(1 - xtx-i dx 

= 2-a-i ~-~
1 

p~a.-i>(x)rl t(1 + x)) (1 - xt(1 + x)-i dx = 0. 

A similar argument may be used to prove the second relation. The constant 
factors are determined according to (4.1.1), (4.1.3). 

The case a = -1, b = +1, w(x) = \ x \2k, k > -t, can also be reduced to 
Jacobi polynomials. The corresponding orthogonal polynomials are (see 
Szego 2, p. 349): 
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(4.1.6) 

[IV] 

if n = 2v, 

if n = 2v + 1, 

where the constant factors are different from zero; they depend on v and k. 
The proof is similar to the previous one. 

(3) The simplest cases of ultraspherical polynomials are16 

<-L-i> 1· 3 · · · (2n - 1) 1· 3 · · · (2n - 1) 
Pn (x) = 2_4 ... 2n Tn(x) = 2_4 ... 2n cos n8, 

(4.1.7) p~U>(x) = 2 ~· 3 · .. ~~n + ~~ Un(x) 
·4 ··· n + 

= 2 1· 3 · · · (2n + 1) sin (n + 1)8 
2 · 4 · · · (2n + 2) sin 8 ' 

where x = cos 8, and Tn(x) and Un(x) denote the Tchebichef polynomials of 
the first and second kind [(1.12.3)]. This follows from 

n ~ m, 

because of (4.1.1). 
In this connection, two ttmixed" cases of importance may be mentioned:17 

p<L-i\ ) = 1·3 · · · (2n - 1) sin { (2n + 1)8/2) 
n X 2·4 • · · 2n sin (8/2) ' 

p<-U>() = 1·3 · · · (2n- 1) cos {(2n + 1)8/2) 
n X 2·4 · · · 2n COS (8/2) ' 

( 4.1.8) X = COS 8. 

The proof is similar to that of (4.1.7) (or is obtained by setting a= ! and a = -! 
in (4.1.5)). Formulas (4.1.7) and (4.1.8) also follow from §2.6 by putting 
p(x) = 1 there. 

Another important ultraspherical case is a = {3 = 0, that is, the Legendre 
(0 0) . 

polynomials Pn · (x) = Pn(x). Less elementary cases are a = {3 = -!, and 
a = {3 = --§-,for which Koschmieder (1) gave representations in terms of elliptic 
functions. 

4.2. Differential equation 

(1) THEOREM 4.2.1. The Jacobi polynomials y = P~a,fJ>(x) satisfy the following 
Linear homogeneous differential equation of the second order: 

(4.2.1) (1 - x2)y" + [{3 - a - (a + {3 + 2)x]y' + n(n + a + {3 + l)y = 0, 

16 In the first equation the coefficient of T n(x) is 1 for n = 0. 
17 For n = 0, the numerical factor on the right side is 1. 
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or 

+ n(n +a+ {3 + 1)(1 - xt(1 + x)fiv = 0. 

To prove this, we note that since y is a ?rn, the expression 

dl(1 - x)a+1(1 + x)fJ+ly'J/dx 

has the form (1 - x)a(1 + x)fiz, where z is also a ?rn. In order to show that 
z = const. y, we prove the orthogonality relation 

1+1 dd I (1 - xt+1(1 + x)fJ+ly'Jp(x) dx = 0, 
-1 X 

where p(x) is an arbitrary ?rn-1. An integration by parts reduces the left-hand 
member to 

-J_~
1 

(1 - xt+1(1 + x)fJ+ly' p'(x) dx, 

since a + 1 and {3 + 1 are positive. A second integration by parts gives 

1+1 Y dd I (1 - xt+l(l + x)fJ+1 p'(x) l dx. 
-1 X 

In the last integrand the coefficient of y is of the form (1 - x)a(1 + x)fJr(x), 
where r(x) is a ?rn-1. Hence this integral vanishes and the statement is estab
lished. The constant factor -n(n + a + {3 + 1) may be determined by com
paring the highest terms. 

An alternative form of (4.2.1) is 

(1 - x
2
)Y" +[a- {3 + (a+ {3- 2)x]Y' 

(4.2.3) + (n + 1)(n +a+ {3)Y = 0, 

Y = (1 - x)a(1 + x)fJy = (1 - x)a(1 + x)fJp~a,fJ>(x). 
(2) Replacing n(n + a + {3 + 1) in (4.2.1) by/', we may ask: For what 

values of 'Y has this equation a polynomial solution which is not identically 
zero? 

THEOREM 4.2.2. Let a > -1, {3 > -1. The differential equation 

(4.2.4) (1 - x2)y" +[/3 - a - (a + {3 + 2)x]y' + ')' y = 0, 

where 'Y is a parameter, has a polynomial solution not identically zero if and only if 
'Y has the form n(n + a + {3 + 1), n = 0, 1, 2, · · · . This solution is const. 
·P~a,fJ>(x), andnosolutionwhichislinearlyindependentof P~a,fJ>(x) can be a poly
nomial. 

To prove this, substitute y = .L:;o..o a.(x - 1)" in (4.2.4). We find 
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"" 
- (x + 1) L v(ll - .1)a.(x - 1)"-1 

•=2 

'lO "" 

- [2(a + 1) + (a + {3 + 2)(x - 1)] L 11a,(x - 1)"-1 + 'Y L a.(x - 1)" = 0, 
-1 -o 

which yields the recurrence formula 

(4.2.5) 
['Y - 11(11 + a + {3 + 1)]a. - 2(11 + 1)(11 + a + 1)a.+1 = 0, 

II= 0, 1, 2, 

Assuming that y is a polynomial, let us suppose that an is the last nonzero 
coefficient. Then we see from (4.2.5) that for 11 = n the coefficient of an must 
vanish, that is, 'Y = n(n + a + {3 + 1). Conversely, if this condition is 13atis
fied, then an+1 = an+2 = · · · = 0 since the coefficient of a.+1 never vanishes. 

Now let 'Y = n(n + a + {3 + 1), and let z be a second solution of (4.2.1) or · 
(4.2.2). If we let x --7 ±1 in the relation 

(4.2.6) (1 - x)a+1(1 + x)fJ+1(y' z - yz') = const., 

we see that y and z cannot both be polynomial13 unless the constant in the right 
member is zero, that is, unless y and z are linearly dependent. This argument 
shows that z cannot even be regular at x = -1 or at x = + 1, unless y and z 
are linearly dependent. 

4.21. Hypergeometric functions 

(1) Substitution of x = 1 - 2x' in (4.2.1) yields 

x'(l - x') dd
2

~2 + [a + 1 - (a + {3 + 2)x'] ddy' 
(4.21.1) X X 

+ n(n + a + {3 + 1)y = 0, 

which is the hypergeometric equation of Gauss. On account of the second part 
of Theorem 4.2.2, for n ~ 1, we obtain the important representation: 

(n +a) 1- x) 
= n F( -n, n +a + {3 + 1; a+ 1; 

2 

1 n (n) 
= 1 L (n +a+ {3 + 1) · · · (n +a + {3 + 11) 

n. ·-o v 
(4.21.2) 

·(a+"+ 1) ... (a+ n)(x ~ 1y.1s 

ts The general coefficient 

(: )<n + a + {3 + 1) · · · (n + a + {3 + ,)(a + " + 1) · · · (a + n) 

is to be replaced by (a+ 1)(a + 2) · · · (a+ n) for" = 0, and by 

(n + a + {3 + l)(n + a + {3 + 2) · · · (2n + a + {3) for " =n. 



[ 4.22 l GENERALIZATION 63 

Here, and in what follows, F(a, b; c; x) is the usual notation for the hyper
geometric series 

F(a, b; c; x) 

(4.21.3) ~ a(a + 1) · · · (a + v - 1) b(b + 1) · · · (b + v - 1) • 
=1+~ X 

•-1 1·2···v c(c+1)···(c+v-1)' 

convergent for I x I < 1 and satisfying 

d2 d 
(4.21.4) x(l - x) ·dx~ + [c - (a+ b + 1)x] d~ - aby = 0. 

(See Whittaker-Watson 1, p. 283.) For latter reference we observe that 
( 4.21.3) is without meaning if c is a non-positive integer. However, it is readily 
seen that if m is a positive integer, 

( 4.21.5) 

lim (c + m - 1)F(a, b; c; x) 
c->-(m-1) 

= ( -l)m-1 a(a + 1) · · · (a + m - 1)b(b + 1) · · · (b + m - 1) 
m!(m- 1)! 

·xmF(a + m, b + m;m + 1;x), 

and the function xmF(a + m, b + m; m + 1; x) satisfies the equation (4.21.4) 
with c = - (m - 1). 

(2) In the formula ( 4.21.2) the hypergeometric series stops with the term 
in xn. The constant factor in the first part of (4.21.2) is determined by (4.1.1). 
Using (4.21.2), note that the coefficient z~a.fJ> of the highest term xn in p~a,fJ\x) is 

(4.21.6) z~a,{J) = lim x-n p~a,{J)(x) = 2-n ( 2
n +a+ {3). 

x-~ n 

(3) Another application of ( 4.21.2) is the useful formula 

(4.21.7) :x (P~a,fJ>(x)) = Hn +a+ {3 + 1)P~~i1 'fJ+O(x), 

which follows immediately when we expand both sides of (4.21.7) according 
to ( 4.21.2). 

As an application of (4.21.7) we observe that the successive derivatives 
r:(x), T~(x), T~'(x), ... of the Tchebichef polynomial Tn(x) are, but for 
constant factors, P~1:..1{(x), P~~~i(x), P~1:!](x), . . . . The first is, except for a 
eonstantfactor, Un-l(x) (see (4.1.7)). We note also that the derivatives P:(x), 

P~ (x), ... of the Legendre polynomial P n(x) are constant multiples of p~l_:_1{ (x), 

P~2:..2i (x), ... , respectively. 

4.22. Generalization 

(1) The second formula (4.21.2) furnishes the extension of the polynomial 
p~a,fJ\x) to arbitrary complex values of the parameters a and {3. It is a poly-
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nomial in x, a, and {3. In the following, we again denote this ?rn by P~a,J'i!(x) . 
.:\1any of the properties of P~,a,/3J(x) may be extended to this general case. The 
polynomial P~a./3J(x) satisfies the differential equation (4.2.1), and the formulas 
(4.1.1), (4.1.3), (4.1.4) hold. Some other results, howeYer, (for instance, the 
theorem on the location of the zeros, cf. §6.72) must be essentially modified. 
Using (4.1.3), the representation of P;,a./3!(x)·as a 7rn in x + 1 can easily be 
derived. 

(2) By comparison of the corresponding powers of x - 1, we obtain the 
identity 

p~a,f3>(x) 

= (
2

n +a+ {3)(~)n F(-n -n- a· -2n- a- [3· - 2 ) 
(4.22.1) n 2 ' ' '1-x 

= c; xy p~a',/3>(~ = ~), a' = - 2n - a - {3 - 1. 

Furthermore, 

(4.22.2) (7) p~-l,f3>(x) = (n t {3)(x; 
1 YP~1!/(x), Zaninteger, 1 ~ l ~ n, 

and 

(4.22.3) 

n + a + {3 + k = 0, k an integer, 1 ~ k ~ n. 

In connection with (4.22.2) see (4.21.5). . 
(3) Let n ~ 1. A reduction of the degree of P~a,/3>(x) occurs if and only if 

n + a + {3 + k = 0 for a certain integer k, 1 ~ k ~ n. In this case ttx = 'X) 

is a zero of order n - k + 1," this being the precise order unless a = -l, l an 
integer, k ~ l ~ n. If 

(4.22.4) n + a + {3 + k = 0, a= -l, 1 ~ k ~ l ~ n, 

the polynomial P~a,f3>(x) vanishe;; identically. 

By setting n + a + {3 + k = e, a + l = 'TJ, it can be shown that P~a,/3\x) 
= er(x) + 'TJS(x), except for term;; of higher order, if e -7 0, 'TI -7 0. Here r(x) 
and s(x) arc certain 7rn independent of e and 'TI· In view of (4.22.2) and (4.22.3) 
it follo\vs that, apart from constant nonzero factors, 

r(x) = (1 - x) 1 P~1:_zn+l-k>(x), s(x) = Pt~·-n+l-k>(x), 
or 

(4.22.5) 

a, {3, n integers, a ~ -n, {3 ~ -n, a+ f:J ~ -n - 1, n ~ 1. Both polynomials 
r(x), s(x) are solutions of (4.2.1); they are linearly independent since r(1) = 0, 
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s(1) ~ 0. Also, they have the precise degrees nand k - 1 = -n - a - {3 - 1, 
respectively. In this instance the general solution of (4.2.1) is a polynomial. 

(4) Once more let n ~ 1. We then see that p~a,tll(1) ~ 0 unless a = -l, 
1 ~ l ~ n. If a = -l, x = 1 is a zero of order l, and this is the precise order 
unless n + a + {3 + k = 0, 1 ~ k ~ l, in which event we recognize the ex
ceptional case ( 4.22.4). 

According to (4.~.3) we have p~a,tll( -1) ~ 0, unless {3 = -l, 1 ~ l ~ n. 
In this case x = - 1 is a zero of order l, and here this is the precise order unless 
n + a + {3 + k = 0, 1 ~ k ~ l, which is again essentially the case (4.22.4). 

(5) Let n ~ 0. From (3) a second case may be derived in which the general 
solution of (4.2.1) is a polynomial. If we replace n by -n - a - {3 - 1, the 
differential equation (4.2.1) remains unchanged, which leads to the linearly 
independent polynomial solutions: 

( 4.22.6) 
a, {3, n integers, a < -n, {3 < -n, n ~ 0. 

4.23. Second solution 

(1) According to the theory of hypergeometric functions, a second solution 
of (4.2.1) is given by 

(4.23.1) (1- x)-aF( -n- a, n + {3 + 1; 1- a; 
1

; x), 

unless a IS an integer. (See Whittaker-Watson 1, p. 286; cf. in particular 
y1 and Y2 .19 The functions (4.21.2) and (4.23.1) are then linearly independent! 

Now let a be an integer. If a = -l, 0 ~ l ~ n, the function (4.23.1) is, 
but for a constant factor, identical with p~a,tll(x) (see (4.22.2)). The same is 
true if a ---+ ao = a positive integer, provided we multiply (4.23.1) by a - ao 

before passing to the limit a---+ ao (see (4.21.5)). 
Finally, for integral values of a, a < -n, P~a,tlJ (x) and (4.23.1) are linearly 

independent, since 

p~a,tll( 1 ) = (n: a)~ O 

a.nd (4.23.1) vanishes for x = 1. The latter function is a polynomial if and 
only if n + {3 + 1 is a non-positive integer, that is, {3 is an integer less than -n. 
This is the case referred to in §4.22 (5). 

(2) Numerous other representations are obtained for the solutions of (4.2.1) 
by using the classical transformation formulas ·of hypergeometric functions. 
The only singularities of this differential equation are at x = + 1, -1, and oo. 

Interchanging a and {3, and replacing x by -x, we obtain the expansions about 
X= -1. 

19 This can be readily shown by introducing in (4.21.1), y = x'-az. Analogous methods 
can be used in the cases (4.23.2), (4.23.3). 
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The expansions about x = (X) are especially important. From Whittaker
Watson 1, p. 286,20 we obtain the solutions 

(4.23.2) 

(4.23.3) 

( 1 - x) n F (-n, - n - a; - 2n - a - {3; 
1 
~ X) , 

(1 - x)-n-a-{J-1 F (n +a+ {3 + 1, n + {3 + 1; 2n +a+ {3 + 2; - 2-). 
1 - X 

The first function iR, except for a constant factor, P~,a,fJ>(x) [cf. (4.22.1)]. The 
second function is obtained from the fir:-;t by replacing n by -n - a - {3 - 1. 

Apart from constant factors, the expre:-;sions (4.23.2) and (4.23.3) arise from 
( 4.21.2) and ( 4.23.1), respectively, by replacing a by - 2n - a - {3 - 1, 
(1 - x)/2 by 2/(1 - x), and then multiplying by (1 - x) n. Consequently, 
(4.23.2) and (4.23.3) are linearly independent unless -2n - a - {3 - 1 is an 
integer not less than -n. 

. 
THEOREM 4.23.1. Let a, {3 be arbitrary, n ~ 0 an integer. The general solution 

of ( 4.2.1) can be represented in the forms 

(4.23.4) 

AP~a,fJ>(x) + B(1- x)-aF( -n- a,n-+ {3 + 1; 1- a; 1 ; X) 
if a ~ -n, -n + 1, -n + 2, · · ·, 

AP~a,f!>(x) + B(1 + x)-f!F( -n- {3,n +a+ 1; 1- {3; 1 ; x) 

1j {3 ~ -n, -n + 1, -n + 2, · · ·, 

AP~a.fJ>(x) + B(l - x)-n-a-fJ-l F ( n +a+ {3 + I, n + {3 + 1; 

2n +a+ {3 + 2; -
2
-) if a+ {3 ~ -n- 1, -n- 2, 

1 - X 

respectively. Here A and B arc nrb£trnry constants. 

(~) The preercting mmlt.s enable us to pro\'e the following: 

THEOREM 4.23.2. If a and {3 arc arbitrary and n ~ 0 is an intrgrr, thPn 
(4.22.5) and (4.22.6) arc the only cases in which the general solution of (4.2.1) 
is a polynomial. They can be charactcrizrd by one of tlw following sets of conditions: 

(a) a, {3 negative integers, a ~ -n, {3 ~ -n, a+ {3 ;£ -n- 1, n ~ 1, 
(4.23.5) 

(b) a, {3 negative integers, a < -n, {3 < -n, n ~ 0. 

VIe see from ( 4.2.6) that in the case in question a and {3 must be negative 
integers. Now, let a < -n, {3 ~ -n; then (4.23.1) is a non-polynomial solu-

2o In particular see the functions denoted by Y21 and Y22 . (There is a misprint in the 
corresponding formulas: the exponent of -x should be -A in Y21 and -Bin Y22.) 
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tion. The case a ~ -n, {3 < -n can be excluded by making use of (4.1.3). 
Finally, let a ~ -n, {3 ~ -n, a + {3 ~ -n. Then (4.23.3) is a non-polynomial 
solution. 

(4) Let a be an integer.' In the exceptional cases, excluded in Theorem 4.23.1, 
we can show that the second solution contains logarithmic terms in its repre
sentation about x = +1 (similarly for x = -1, x = oo ). (See (4.61.6).) 

An extension of the preceding discussion to arbitrary values of n is also 
possible. However, in what follows, we shall confine ourselves to non-negative 
integral values of n. 

The consideration of the second solution, properly normalized, will be resumed 
in §4.61, where some other representations will also be given. 

4.24. Transformation of the differential equation 

Applying §1.8 to (4.2.1),.we obtain the following important transformations 
of the differential equation of Jacobi polynomials: 

d
2 
u {1 1 - a

2 
1 1 - {3

2 

(i;}. + 4 (T-= x) 2 + 4 (1 + x) 2 

+~(~±a 7- {3 _+ })_±_(~_± _!2~+}_2(3} u = 0, 
1 - x2 

(4.24.1) 

(4.24.2) 

d
2

1~ + {1 - ri + i - {3
2 

+ (n +a + f3 + 1)
2

} u = O, 
diJ· A • ~ (} 4 ,, (} 2 

·-t -;l!l" 2 <'OS" 2 

( e)"' t ( 8)t~+! u=:u(8)= i->in 2 cos 2 P~"· 13 '(cos8). 

The special cases a = ± ~, {3 = ± ~ arc to he particularly noted. 

4.3. Rodrigues' formula; the orthonormal set 

(1) Given a and {3 arbitrary, we have 

(4.3.1) (1 - xt(l + x/ p~a,{j)(x) = ~=_IX (!!_)n I (1 - xr+a(l + xr+tll. 
2nn! dx 

First, take both a and {3 greater than -1. A simple application of Leibniz' rule 
then t->hows that the right-hand member is of the form (1 - x)"(l + x)tlp(x), p(x) 
being a 1r"n . To show that p(x) = const. P~a.tl> (x), it suffices to prove that 

1+1 (d)n 
_

1 
dx I (1 - xr+a(1 + xr"+tlJr(x) dx = o, 

where r(x) is an arbitrary 1r"n-I . But integration by parts n times yields the 
result 
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( -1t 1~
1 

(1 - xr+a(1 + xt+tlr(n)(x) dx, 

which vanishes since r<n>(x) = 0. The constant factor can then be determined 
by setting x = 1 and using (4.1.1) (see (4.3.2)). , 

Since P~ a .fJ> (x) is a polynomial in a and {3 by ( 4.21.2), and since the same is 
true for the right-hand member of (4.3.1) when divided by (1 - xt(l + x/, 
it follows that (4.3.1) is valid for arbitrary a and {3. 

On calculating the nth derivative in (4.3.1) by Leibniz' rule, we obtain the 
important representation 

p~a,fJ>(x) = ~ (: + ~) (n ~ {3) (X 
2 

1} (X~ 1)n-• 

( 4.3.2) = (n + a) (:__±J)n :t n(n - 1) · · · (n - v + 1~ (n + {3) (~)· 
n 2 v=o(a+1)(a+2)···(a+v) Jl x+1 

(
n + a) (X + 1)n ( x - 1) = -- F -n - n- [3· a+ 1· -- . 

n 2 ' ' 'x+1 

(2) The argument used in (1) readily leads to the formula 

( 4.3.3) 

[~
1 

(1 - xt(l + x/{P~a,fJ>(x) )2 dx 

- 2a+fJ+1 r(n + a + 1)r(n + {3 + 1) = h (a,{J) 
2n + a + {3 + 1 r ( n + 1) r ( n + a + {3 + 1) n • 

(Here we have the inequalities a > -1, {3 > -1, and for n = 0 the product 
(2n + a + {3 + 1)r(n + a + {3 + 1) must be replaced by r(a + {3 + 2).) 
In fact, because of (4.3.1) and (4.21.6), we have 

1+1 1+1 _
1 

(1 - x)a(l + x)fi{p~a,fJ>(x) )2 dx = z~a,fJ> _
1 

(1 - x)a(1 + x/P~a,fi>(x)xn dx 

= ( - 1r z~a,{J) !+1 (!i)n { (1 - xr+a(l + xr+{Jl xn dx 
2nn! -1 dx 

Now we employ (4.21.6) and (1.7.5). 
Using the notation (4.3.3), we obtain as the orthonormal set associated with 

the weight function (1 - xt(l + x/ in [ -1, +1] 

Pn(x) = {h~a,{J))-!p~a,{J)(x) 

(4.3.4) ={~~±_?a ++fJ_+{31 ___ j-_~ !~~n( __ j- 1)r(~t t + {3 +11))}! p~a,fJ>(x), 
~ rn+a+ rn+f3+ 

n = 0, 1,2, ···. 
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4.4. Generating function 

(1) Formula (4.3.2) can be written as follows: 

(4.4.1) p~a,{J)(x) = 2~i J (1 +X~ 1 z)n+a(1 +X 2 1 z)n+fJZ-n-1 dz' 

where we assume that x ~ ±1. The integration is extended in the positive 
sense along a closed curve around the origin, such that the points - 2(x ± 1) - 1 

lie neither on it nor in its interior. ewe define the first and second factors of 
the integrand to be 1 for z = 0.) Hence for sufficiently small values of I w I , 

(
1 + X + 1 )a(1 + X - 1 ){J 

(4.4.2) £ p~a,fJ}(x)wn = ~ f -2- z -2- .z dz. 

n=O 27rt z - W ( 1 + X ~! z )( 1 + X 2 1 z) 

The denominator is 

(4.4.3) - i(x
2

- 1)wz
2 ~ z(xw - 1)-w = t(1 - x2)w(z- zo)(z- Zo), 

where 

(4.4.4) 2 xw- 1 + R 
zo = zo(w) = -- ----....:~ 

1- x2 w 

For Zo = Zo(w) there is an. analogoufl expression with - R instead of R. 
Here zo and R are regular analytic functions of w provided I w I is sufficiently 
small; we take R(O) = 1. At w = 0 the function z0 has a zero, and the function 
Zo has a pole. For sufficiently small I w I , zo lies in the interior, and Zo in the 
exterior, of the integration curve of (4.4.2), so that by Cauchy's theorem 

to P~a,fJ>wn = [i (1- x
2
)w J-1

(1 +X~ 1 
zo)a(1 + ::_

2 
1 

Zoy(zo- Zo)-1
• 

Now, we readily get 

X + 1 ( )-1 1 + 2 - Zo = 2 1 - w + R , 
X- 1 -1 

1 + -- 2 Zo = 2(1 + w + R) , 

so that 
00 

L P~a,fJ>(x)wn = 2a+fJR-1(1- w + Rra(1 + w + RrfJ 

(4.4.5) 
= 2a+fJ(1 - 2xw + w2r! 11 - w + (1 - 2xw + w2)!)-a 

·11 + w + (1 - 2xw + w2)!)-fJ. 

This is the generating function (series) of the Jacobi polynomials (Jacobi 3, 
pp. 193-194) which may be established directly for x = ±1. The expressions 
I l-a and I l-fJ must be taken positive for w = 0. 
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(2) A slight variation of this argument may be made by writing (4.3.1) in 
the form 

(4.4.6) p~a,{J)(x) = _!_, f(! t2

- 1)n(1 - t)"(1 + t){J ~. 
27rt 2 t - X 1 - X 1 + X t - X 

Here x ~ ±1, and the integration is extended in the positive sense around a 
closed contour enclosing the point t = x, but not the points t = ± 1. Also the 
functions ((1 - t)/(1 - x))" and ((1 + t)j(l + x))fJ are assumed to ~educe to 1 
fort = x. We next write 

1 t
2 

- 1 -1 -11 ( 2 ! l 1 ( 2 ) (4.4.7) -
2
-- = w , t = w 11- 1- 2xw + w) = x + 

2
- x - 1 w + .. ·. 

t -X 

Here that branch of (1 - 2xw + w
2)! must be taken which is equ~l to +1 for 

w = 0. Then if w describes a small closed curve around the origin, t describes 
a curve of the type mentioned above. Furthermore, 

(4.4.8) 

so that 

1 - t 1 ( 2)i}-1 -
1 

- = 2t1 - w + 1 - 2xw + w , 
-x 

P~a,fJ>(x) = 
2
__!_. J W-n2"(1 - w + (1 - 2xw + w2)!}-a 

(4.4.9) ?rt 

·~11 + w + (1 - 2xw + w2)!)-fi(1- 2xw + w2r!w-1 dw, 

which is the desired result. 
(3) A third method of deriving the generating function is based on the fol

lowing remark. If the function F(x, w) of the right-hand member of (4.4.5) is 
developed in a power series in w, it is seen that the coefficient of wn is a poly
nomial of degree n in x. To identify this polynomial with p~a.fJ> (x) we show 
that 

(4.4.10) 1
+1 

_
1 

(1 - x)"(l + xiF(x, u)F(x, v) dx, 

considered as a function of u and v, is a function only of the product uv, which 
is equivalent to the orthogonality property. For x = 1, the identity (4.4.5) 
can be proved directly, and this procedure furnishes the normalization of the 
coefficients. 

In Legendre's case: a = {3 = 0, the integral can be calculated explicitly 
(Legendre 1, p. 250). In the general case, Tchebichef (5) transformed this 
integral into the form 

( 4.4.11) 2"+fJ+I 11 

tfJ(1 - t)"(l - uvt)-"(1.- uvt2r1 dt, 

from which the statement follows. 
Concerning a fourth method based on Lagrange series, see P6lya-Szeg6 1, 

vol. 1, pp. 127, 303, problem 219. 
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4.5. Recurrence formula 

(1) In the pret>ent case the general formula (3.2.1) becomes 

2n(n + a + !3)(2n, + a +!3 - 2)P~a,fJ> (x) 

= (2n +a +!3- 1) I (2n +a +!3)(2n +a +!3- 2)x +a2
- J32 )P~~~>(x) 

( 4.5.1) 
- 2(n +a- l)(n + !3- 1)(2n +a+ J3)P~~~>(x), n = 2, 3, 4, · · ·; 

Here, the coefficient of xP~~~> (x) may first be verified by means of (4.21.6); 
then, by alternately setting x = +1 and x = -1, the coefficients of P~~~>(x) 
and P~~~> (x) may be calculated. Actually, the formula is l;>ut a special case 
of the relations between contiguous Riemann ?-functions (see Whittaker
Watson 1, pp. 294-296). 

(2) Using the notation ( 4.3.3), we obtain the following expression for the 
tlkernel" (cf. (3.2.3)): 

(4.5.2) 

n 

K~a,{J)(x, y) = L (h~a,{J))-1P~a,{J)(x)P~a,{J)(y) 
v=O 

2-a-{J r(n + 2)r(n +a+ !3 + 2) 
=----

2n + a + !3 + 2 r ( n + a + 1) r ( n + !3 + 1) 

P~+~> (;r)P~a,{J) (y) - p~a,fJ> (x)P~+~> (y) 

x-y 

In particular, for y = 1: 

K~a,fJ>(x, 1) = K~a,{J)(x) 

= :t 2v +a+ !3 + 1. r(v +a +!3 + 1) p(a,{J)(x) 
v=O 2a+fJ+! f(a + 1)f(v+ j3 + 1) v 

- 2-a-{J n + a + 1 r(n + a + !3 + 2) 
(4.5.3) - 2n +a+ !3 + 2 r(a + 1)I'(n + !3 + 1) 

p(a,{J)(x) -~-t_!:___ p(a,{J)(x) 
n n +a+ 1 n+l 

1 - X 

= 2-a-{J-I I',(n +a + J3 + 2) p(a+I.{J)( ) 
r(a + l)f(n + j3 + 1) n X • 

The last representation in ( 4.5.3) is a consequence of Theorem 3.1.4, since 
(1 - xr(l + x)fi(1 - x) = (1 - x)a+1(1 + x)fi. We also note that 

p~a+l,fJ>(x) = 2 (n +a+ 1)P~a,fJ>(x) - (n + l)P~+~>(x) 
2n+a+i3+2 1-x 

( 4.5.4) {J) ( {J) 
p(a,fJ+l>(x) = 2 (n + !3 + 1)P~a, (x) + (n ~_l)Pn'+l (x) 

n 2n + a + !3 + 2 1 + X 

The second formula follows from the first one if we interchange a and !3 and use 
(4.1.3). Finally, by using (4.21.7) and the last formulas, we obtain 
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where 

(4.5.6) 

JACOBI POLYNOMIALS 

A = ~(n + a)(n + ~)(n + a+~+ 1) 
(2n+a+f3)(2n+a+~+1)' 

B = (a _ ) 2n(n + a + ~ + 1) 
~ (2n + a + m (2n + a + ~ + 2)' 

C = _ 2n (n + 1) (n + a + ~ + 1) 
(2n +a+~+ 1)(2n +a+~+ 2)" 

[IV 1 

Here P~~~) (x) [or P~~~) (x) 1 can be expressed by means of ( 4.5.1) in terms of 
xP~a.$)(x), P~a,$)(x), P~~~)(x) (or P~~~)(x)). This yields 

. (2n +a+ ~)(1 - x2
) :X (P~a,$)(x)l 

= -n( (2n +a+ ~)x + ~- a\P~a,$)(x) + 2(n + a)(n + ~)P~~~)(x), 
(4.5.7) 

(2n +a+~+ 2)(1 - x2) :X (P~a.~)(x)l 

= (n +a+~+ 1) ( (2n +a+~+ 2)x +a- ~lP~a.~)(x) 

- 2(n + 1)(n +a+~+ 1)P~~~)(x). 

In addition, we notice the following consequence of the last formula (4.5.3): 

K~a,~)(l, 1) = K~a,~)(l) 

(4.5.8) = Ta-~-~ r(n + a + ~ + 2)r(n j-~_+ ~ 
r(a + 1)r(a + 2)r(n + 1)r(n + ~ + 1). 

4.6. Integral representations in general 

The representation (4.3.1) and its integral form (4.4.6) are closely related to 
a classical method used for the integration of the hypergeometric equation and 
others of similar type. We again start from the formula (4.4.6): 

(1 - xt(1 + x)~ P~a,M (x) = ( 
2 

!:n J (1 - tr+a(1 + tr+~(t - x)-n-I dt, 
. 7r't 

(4.6.1) 

where x ~ ± 1. The integratiOn is extended in the positive sense over a closed 
curve enclosing x, but not the points t = ±1. Using an idea of Euler (1), we 
try to integrate (4.2.1) and (4.2.3) by means of 

(4.6.2) Y = (1 - xt(l + x)~y = J (1 - tr+a(1 + trHCt- x)-n-1 dt, 

with a proper choice of the contour of integration. Here x ~ ± 1, and the 
path of integration must avoid the points -1, +1, and x. However, we allow 
-1 and + 1 as end-points of a path provided the integrals (4.6.2) and ( 4.6.3) 
are convergent. 
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Substituting (4.6.2) in (4.2.3), we obtain 

(1 - x2
) Y" + [a - ~ + (a + ~ - 2)x] Y' + (n + 1) (n + a + mY 

= J (1 -_ tr+a(1 + tr+fJ(t - x)-n-3
( (n + 1)(n + 2)(1 - x2

) 

(4.6.3) + (n + 1)[a - ~ + (a + ~ - 2)x](t - x) 

+ (n + 1)(n +a+ ~)(t - x) 2
) dt 

- - (n + 1) j :t I (1 - tr+a+I(1 + tr+fJH(t - x)-n-2
) dt. 

Therefore, we see that (4.6.2) satisfies (4.2.3), provided one of the following 
two conditions is fulfilled: 

(a) The path of integration is a closed contour along which the expression 
(1 - t) n+a+1(1 + t) n+fJ+1(t - x)-n-2

, or what amounts to the same thing, 
(1 - t) a(1 + tl returns to its original value. 

(b) The integration is extended along an arc, finite or infinite, such that the 
first expression mentioned vanishes at the end-points. 

Specialization of the contour according to these restrictions yields numerous 
important integral representations for Jacobi polynomials as well as for other 
solutions of (4.2.1). (Cf. §4.61, §4.82.) For a special contour integral allowed 
in the sense of (a) and (b), we must first show that y is not identically zero; then y 
can be identified with a constant multiple of P~a,fJ) (x), or with some other 
particular solution of ( 4.2.1); finally, the constant factor must be determined. 
The resulting integral representations hold, save for some exceptional values of 
a and~-

Further integral representations are obtained by replacing n by-n- a-~- 1 
in ( 4.6.2); this does not affect ( 4.2.3). Thus, 

(4.6.4) y = (1 - x)a(l + x)(Jy = f (1 - t)-n-(J-1(1 + t)-n-a-\t - xr+a+(J dt, 

where the contour is chosen as in (a) or (b) above. Instead of the first expres
sion in (a) we now have 

(1 - t)-n-(3(1 + t)--n-a(t - x) n+a+(J-1. 

Rodrigues' formula (4.3.1) is a special case of (4.6.2), the path of integration 
being a closed curve which encloses x but not± 1. Condition (a) is then satisfied. 

4.61. Application; functions of the second kind 

(1) THEOREM 4.61.1. Let x be arbitrary in the complex plane cut along the 
segment [- 1, + 1]. Let a > - 1, ~ > - 1, n ~ 0. Excluding the case n = 0, 
a+~+ 1 = 0, a solution y = Q~a,fJ)(x) of the differential equation (4.2.1), which 
is linearly independent of P~a,fJ)(x), can be obtained in the form 

Q~a,(J)(x) 

(4.61.1) 

In the exceptional case: n = 0, a + ~ + 1 = 0, we have Qcia,fJ)(x) = const.; 
then a non-constant solution is given by 
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Q(a)(x) = log (.r + 1) + 7r - 1 sin 7ra (x - n-a(x + 1)-li 

(4.61.2) 1+1 (1 - t)a(1 + t){3 
· log(1+t)dt. 

-1 X- t 

The function Q~a.f3)(x) is called Jacobi's function of the second kind. \Yc use 
this notation also if n = 0, a + (3 + 1 = 0, for the· function Q(a)(x). In the 
special case a = (3 = 0 we write Q~0 ' 0\x) = Qn(x) (Legendre's function of the 
second kind). (Cf. Jacobi 3, pp. 195-197.) 

Both (4.61.1) and (4.61.2) are multi-valued (except if a and (3 arc integers). 
Both integrals are single-valued and regular in the complex plane cut along the 
segment [- 1, + 1]. Obviously, Q~a.f3\x) "'-' x -n-a-{3-1 as x--. rYJ, which shows 
that Q~a,f3\x) is linearly independent of P~a,f3)(x) (except if n = 0, a+ (3 + 1 = 0, 
see below). The corresponding property of Q<a\x) is clear. \Ve have, as is 
easily seen, 

(4.61.3) 

The function Q~a,f3)(x) satisfies the differential equation (4.2.1); this follows 
from (4.6.2) since the segment [-'- 1, + 1] which is the path of integration, 
satisfies the condition (b) of §4.6. Differentiating (4.2.1) with respect to (3, and 
substituting (3 = - a - 1, we obtain the solution Q<al (x) since Q6a,f3)(x) = const. 
if (3 = -a- 1. 

(2) THEOREM 4.61.2. The following representations hold: 

(4.61.4) Q~a,f3)(x) = !(x - 1)-a(x + 1)-{3 (1 - t)a(l + t)f3 n dt 1+1 p<a,{3)(t) 

-1 X - t 

( 4.61.5) 

Furthermore, 

= 2n+a+f3 r(n + a + 1)r(n + (3 + 1) (x - 1)-n-cr-1(x + 1)-{3 
r(2n +a+ (3 + 2) 

· F ( n + a + 1, n + 1 ; 2n + a + (3 + 2; 
1 

2 
x) . 

Q(a)(x) = log (x + 1) 

(4.61.6) + 1 - - · 2: - + - + ... + - - + c, ( 2 )a+
1 00 (a + v)(1 1 1)( 2 )• 

1 - X •= 1 v 1 2 v 1 - X 

r'(-a) 
c = r'(1) - ----log 2. 

r(-a) 

By use of Rodrigues' formula, (4.61.1) may be integrated by parts n times. 
This establishes (4.61.4). From (4.61.1) we readily obtain 

(x - 1)a(x + 1l Q~a,f3)(x) 
00 ( ) ·+1 = (- 2)-n-I L n + v (1 - x)-n-•-1 j (1 - tr+•+a(l + tr+f3 dt 

•=o n -I 

= ( -1r+I2a+f3-1 f. (n + V) f(n + V +a+ 1)f(n + (3 + 1) (-2-)n+•+
1 

•=0 n f(2n + v + a + (3 + 2) 1 - X 
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This, in connection with the notation (4.21.3), yields (4.61.5). 
Turning to the exceptional case, we first notice that for n = 0, a + (3 + 1 ~ 0, 

(4.61.5) becomes 

Q(a,f3)(x) = 2a+f3 r(a + 1)r((3 + 1) ( - 1)-a-1( + 1)-/3 
o f(a + (3 + 2) X X 

(4.61.7) 

·F(a+l,1;a+f3+2; 1 
2 x)· 

For a+ (3 + 1 = 0 this will, in fact, be a constant since ((1.7.2), second formula) 

~ r(a + 1)r((3 + 1)(x - 1)-a-1(x + 1)-/3 F( a+ 1, 1; 1; :l 2 x) 

= - ! ~--- (x - 1)-a-1(x + 1)-/3(1 - _.2_)-a-1 
2 Sin 1ra 1 - X 

1 7r 

2 Sin 1ra · 

Now from (4.61.7), taking into account.(4.61.3), we obtain (4.61.6). 
(3) The case n = 0 may be treated in another way by means of the relation 

(4.2.6). For z = 1 this becomes 

(4.61.8) 

This yields an integral representation for y. 

THEOREM 4.61.3. Let a> - 1, (3 > - 1. We then have the following integral 
representations: 

Q~a,{J)(x) = - 2a+f3 r(a + 1)r((3 + 1) 1"' (t- 1)-a-\t + 1)-/3--1 dt 
(4.61.9) r(a + (3 + 1) co 

(4.61.10) 

(4.61.11) 

if a + (3 + 1 > 0, 

Q~a,{J)(x) = - 2a+f3 r(a + 1)r((3 + 1) {1"' [(t- 1)-a-1(t + 1)-{J-1 
r(a + (3 + 1) co 

- t-a-{3-21 dt - a---::~-a-;-/3~:-1-:-1} if a + (3 + 1 < 0, 

Q<a)(x) = 1"' [(t- 1)-a-1(t + 1)-/3-1 --
1
- J dt +log (x + 1) 

co t + 1 

if a + (3 + 1 = 0. 

In the first case the integrand is ,._,_, t-a-/3-2, as t ----+ oo, so that the integral is 
convergent. The constant factor in (4.61.9) can be obtained by comparing the 
principal terms in (4.61.7) and (4.61.9). 

In the second case the principal term of the integrand is (a - (3)Ca-f3-3
, so 

that the integral is convergent. In the third case the principal term of the 
integrand is 2(a + 1)(t + 1)-2

, so that here too we have convergence. 
(4) Another very general integral representation of a second solution of (4.2.1) 

is obtained by choosing the path of integration in (4.6.2) as in Jordan-Poch
hammer's integral for the Gamma function (see the figure in Whittaker-\Vatson 
1, p. 257). This path can be defined by the scheme 
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(4.61.12) (- 1 - ), ( + 1 + ), (- 1 + ), ( + 1 - ). 

Condition (a) is then satisfied, x ~ ± 1. The principal term is x -n-a-~--1 pro
vided the integral f (1 - t) n+a(1 + t) nH dt, extended over the contour in question, 
does not vanish. This is the case (see Joe. cit., p. 257) unless one of the following 
conditions is satisfied: 

(4.61.13) 
n + a = 0, 1, 2, · . . ; n + (3 = 0, 1, 2, ... 

2n + a + (3 + 2 = 0, - 1, - 2, .... 

In the special cases, where a + (3 or a - (3 is an integer, the contour can be 
simplified. 

4.62. Further properties of the functions of the second kind 

In the following considerations we again assume that a > - 1 and (3 > - 1. 
(1) The possible singular points of Q~a,m(x) are + 1, - 1, oo. In order to 

discuss this function near x = + 1 (and also for later purposes), we write (4.61.4) 
in the form 

(4.62.1) +! (x- 1)-a(x + 1)-~p~a.m(x) 1+1 (1 - t)a(l + t)~ dt 
-1 X- t 

= - !(x - 1)-a(x + 1)-~ (1 - l)a(1 + tl- n X - n - dt 1+1 p<a.~)( ) p<a.m(t) 

-1 X- t 

+ p~a,m(x)Qcia.~)(x). 
The last integral is a ?rn-I in x (a constant multiple of the numerator Rn(x) of the 
nth convergent of the continued fraction defined in §3.5; see the first p~rt of 
(3.5.7)). Therefore, if x approaches+ 1, the behavior of Q~a·~\x) is to a certain 
extent determined by that of Q~a·~\x). 

The discussion of Q6 a.~) (x) near x = + 1 is not difficult. Expanding the 
factor (t + 1)-~-I in the integrand of (4.61.9) into a power series in t - 1, we 
obtain for a + (3 + 1 > 0, a not an integer, 

Qcia.~)(x) = const. + (x - 1)-aM C 
2 

__:;); 

here M(u) is a power series of u, convergent for I u I < 1, and M(O) ~ 0. A 
similar representation holds if a+ (3 + 1 < 0 [(4.61.10)]. (In the exceptional 
case a+ (3 + 1 = 0, this is not true for Q6a,m(x); however, it is true for Q<a\x), 
cf. (4.61.11).) Now, let a be an integer; then we use (4.61.9) again. In view of 

the integration furnishes a logarithmic term. Thus, 
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(4.62.2) 

rCOnst. + (.y- o-aJ\11 ( 1 
2 

.T) 
I if a > -1, /3 > - 1; a~ 0, 1, 2, .. · ; a+ /3 + 1 ~ 0, 

Q6a.~) (x) = 
( -1t J 1 + ( , 1)-aM (1 - X) --- og -- :~ - 2 --

2 X- 1 2 

if a = 0, 1, 2, · · · ; /3 > - 1. 

Here M1(u) and M2(u) are power series convergent for I u I < 1 with M 1(0) ~ 0, 
M2(0) ~ 0 (see below). A representation similar to the first one holds for Q<a\x). 

We have, for instance, 

(4.62.3) Q(O,O) ( ) ( ) 1"' dt 1 X + 1 o x = Qo x = -- = -log -- . 
oo1-t2 2 x-1 

[The statement M2(0) ~ 0 requires further comment for a = 0. Taking 
x > 1, and then integrating by parts, we have 

i"' (t - 1)-1(t + 1)-~- 1 dt 

= (x + 1)-~-1 log (x - 1) + (/3 + 1) i"' (t + 1)-~-2 log (t - 1) dt, 

so that 

M2(0) = lim I Qcia.~)(x) +~log (x- 1) l 
x-1+0 

= - (/3 + 1)2~ 11 
(t + 1)-~-2 log (t - 1) dt ~ 0.] 

(2) Now we prove the following theorem: 

THEOREM 4.62.1. Let x be real, x > 1, and take (x -
positive. We then have, for x ----+ 1 + 0, 

1t, (x + 1l real and 

(4.62.4) 

More precisely, 

(4.62.5) 

{

(x - 1)-a, a > 0, 

Q~a.~)(x)""' log(x- 1), a= 0, 

1, a< 0. 

2a-1 r(a)r(n + 13 + 1~ (x - 1)-a 
r(r. +a+ 13 + 1) ' 

The behavior near x = - 1 of Q~a.~) (x) is similar. 
The case a > 0 follows from (4.61.1): 

a> 0, 

a= 0. 

Q~a·~\x) "'-' Tn-~-1 (x - 1)-a (1 - tt-1(1 + t) n+~ dt. 1
+1 

-1 

Inthecasea = Oweuse(4.62.1), (4.62.2),andP~a.~)(1) = 1. Inthecasea < 0 
the first term of the right-hand member of (4.62.1) vanishes as x ----+ 1 + 0. 
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Thus the statement is equivalent to Qcia.~)(x) "" 1. This is immediately clear 
from (4.61.9) if a+ fl + 1 > 0. If a+~+ 1 < 0, we use (4.61.10) and show 
that 

(4.62.6) !co [(t ·- 1)-a-l(t + 1)-~-1 - l-a-~-2] dt + 1 < 0 • 
a+~+1 

On writing 

(t - 1)-a-l(t + 1)-~-1 = (t - 1)-l(t + 1)-a-~-IG ~ ~y, 

we see that (4.62.6), as a function of a and~~ increases with a if a+~ is constant. 
But when~ approaches - 1, we find for the left-hand member of (4.62.6) the 
result 

!co 1 
[(t - 1)-a-l - ca-l] dt + - = 0. 

a 

We have, as an instance, [(4.62.1), (4.62.3)] 

(4.62.7) 

where R(x) is a 11"n-I. The logarithmic factor is chosen so that it tends to 0 
as x ---+ oo. 

(3) THEOREM 4.62.2~. Let a be an integer, a .~ 0. We consider Q~a,~)(x) (real 
and positive for x > 1) in the complex plane cut along the line [- oo, + 1 ]. The?} 

( 4.62.8) Q~a·~\x + iO) - Q~a,~)(x - iO) = (- 1t-1 7riP~a·~\x), 

-1<x<+l. 
This follows from (4.62.1) and (4.62.2). 
On the other hand, the function 

(4.62.9) 

is analytic on - 1 < x < + 1 and satisfies the differential equation (4.2.1). 
As x---+ 1 - 0, it displays a behavior similar to that of Q~a.~) (x). In particular, 
we find for Qi0

'
0

) (x) = Qn(x) 

(4.62.10) 

(4.62.11) 

(4.62.12) 

1 + X Qn(x) = R(x) + !Pn(x) log 
1 

_ X, 

Qn(- x) = (- 1)"+1Qn(x), 

lim Qn(x) = + oo. 
z-1-0 

Here R(x) has the same meaning as in (4.62.7). 

- 1 <X< + 1, 

In general, if a and ~ are both integers, the function Q~a .~) (x) is regular and 
single-valued in the whole plane cut along [- 1, + 1]. 

( 4) The functions of the second kind satisfy the same recurrence formula as 
p~a,~)(x) [(4.5.1)], that is, 



[ 4.62) 

(4.62.13) 

FURTHER PRORERTIES 79 

2n(n +a+ mc2n +a+~- 2)Q~a.~)(x) 

' 

= (2n + a+ ~ - 1)! (2n + a+ ~) (2n + a + ~ - 2)x + a 2 
- ~2 l 

· Q~~~) (x) - 2(n +a - 1)(n + ~- 1)(2n +a+ ~)Q~~~> (x), 

n = 2, 3, 4, .... 

This follows from (4.62.1) on account of (3.5.3) and Theorem 3.5.1. There is, 
however, an essential difl:erence if n = 1. We then have, according to (4.62.1), 

Qia·~\x) = ~[(,a+~ + 2)x +a- ~] Q6a,i3J(x) 

(4.62.14) - 2•+>--'(a + p + 2) r(~(! ~~(~ t) 1) (x- 1)-"(x + o-'. 

Therefore, both systems of functions [(4.3.3)] 

(4.62.15) 
Pn(X) - lh~a.~) ~-ip~a.~)(x), 

qn(X) - lh~a.~) ~-!Q~a.~)(x), n = 0, 1, 2, .. · , 

satisfy the same recurrence formula of the type (3.2.1) for n ~ 1, provided we 
define 

(4.62.16) P-1Cx) = 0, 

Thus a p.rocedure similar to that used in §3.2 (2) furnishes, for n ~ 1, 

kn Pn+t(x)q,.(y) - Pn(x)qn+l(y) 
kn+l X- y 

(4.62.17) 
_ ( ) ( ) + kn-1 Pn(x)qn-l(y) - Pn-l(x)qn(y) 
- Pn X qn Y -· .. 

kn X - Y 

Here kn denotes the coefficient of xn in the "normalized" polynomial Pn(x). 
This formula also holds for n = 0 if we modify it as follows: 

(4.62.18) ko PI(x)qo(y) - po(x)qi(y) _ ( ) ( ) + t q_I(y) 
k
- - Po x qo y cons . -- . 

1 x-y x-y 

Adding, we obtain the important result: 

f2v+a+~+J: r(v+1)r(v+a+~+1) p<a.~)( )Q(a.~)c) 
v=O 2a+Hl f(v+a+1)f(v+~+1) v X ' y 

= ~ (y _ 1)-a(y + 1)-~ + 2-a-~ 

(4·62·19) 2 y- x 2n+a+~+2 
r(n + 2)r(n +a+~+ 2) p~~~) (x)Q~a.~) (y) - p~a.~) (x)Q~~~) (y) 

r(n+a-l-1)r(n+~+1) x-y 

The constant ~ in the right-hand member can be determined by substituting 
n = 0, multiplying by ya+H\ then permitting y ----+ oo, and finally using ( 4.61.5). 

We shall return to thils formula in §9.2, where it will be used in a classical 
manner for the expansion of an analytic function in terms of Jacobi polynomials 
or of Jacobi functions of the second kind. 
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4. 7. Ultraspherical polynomials 

(1) If a = (3, Jacobi's polynomial P~a.PJ (x) is called an ultraspherical poly
nomial.21 The following is the customary notation and normalization: 

p<X)( ) = r(a + 1) r(n + 2a -t- }J p(a,a)( ) 
n X r(2a + 1) r(n + a+ 1) n . X 

_ r(x + !) r(n + 2X) p<x-l.X-1)( ) 
r(2X) r(n + X+ t) n .x ' 

(4.7.1) 

a= X- !. 

Here we assume first that a > - 1, or X > - !. Some important special cases 
are (cf. (1.12.3)) 

(4.7.2) p~i)(x) = Pn(x), P~l)(x) = Un(x). 

If a = - !, or X = 0, the polynomial P~") (x) vanishes identically for n ~ 1. 
This case will be treated later. (Cf. (4.7.8).) 

We next observe a number of formulas and theorems which can be obtained 
immediately from the theory of general Jacobi polynomials by setting a = (3 = 
X- t, X> - !: 

(4.7.3) 

(4.7.4) 

(4.7.5) 

p~X)(l) = (n + ~- 1); 
p~X)(- x) = (- 1)np~X)(x); 

(1 - x2)y" - (2X + 1)xy' + n(n + 2X)y = 0, y = p~X) (x), 

(1 - x
2
)Y" + (2X - 3)xY' + (n + 1)(n + 2X 1)Y = 0, 

y = (1 _ x2)X-ip~x\x); 

p~X)(x) = (n + ~- 1)F(- n, n + 2X; X+ t; 1 
; x) 

(4.7.6) ( ) ( 2 ) 
= 2n n + ~- 1 (x _ 1t · F - n, - n- X+ t; - 2n- 2X + 1; 

1 
_ x . 

The last formulas define p~XJ (x) for all values of X. If necessary, for som~ 
special values of X, say X = Xo, the formulas may be interpreted as limits for 
X -+ Xo .22 For X = - m, m = 0, 1, 2, · ·. , we obviously have (cf. the first 

formula (4.7.6)) P~x) (x) = 0 if n > 2m. In this case 

(4.7.7) 

I• p~X) (x) ·- { d p(X) ( )} Im ·- - n X 
x--m X+ m dX X--m 

== 2 (2m) !(n- 2m- 1)! F (- n n- 2m.- m + !.2. 1 - x) 
n! ' ' ' 2 

exists. These polynomials are, except for constant factors, again the Jacobi 
polynomials P~a,a)(x), c~ = - m - t. For instance (cf. (1.12.3)) 

(4.7.8) lim X-Ip~X)(x) = (2/n)Tn(x), n~l. 
x-o 

21 They are sometimes called Gegenbauer's polynomials. See the papers of G;;genbauer 
(1-7). See also Heine 3, vol. 1, JlV· ~~7-301, 449-464. Occasionally, the notation c;(x) 
is used instead of P ~x) (x). 

22 This should also be done in all the subsequent formulas. 
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In case a = - l, (n + 1)/2 ~ l ~ n, the polynomial P~a,a\x) vanishes identi
cally ( §4.22 (3)). However, the corresponding expression P~)o.) (x), as a limit, has 
a meaning and does not vanish identically. 

(2) Further formulas involving P~'lo.) (x) are 

(4.7.9) lim x-"p~'lo.)(x) = 2"(-n +X - 1); 
z-~ n 

(4.7.11) 

(4.7.12) 

(4.7.13) 

(4.7.14) 

(4.7.15) 

(4.7.16) 

(4.7.17) 

(4.7.18) 

u = (sin el p~)o.) (cos 8); 

(1 _ 2)'/o.-tp<x) ( ) = (~2t r(n + x)r(n + 2X) (:!__)" (
1 

_ 2t+'lo.-t. 
- X " X n! r(X)r(2n + 2X) dx - X ' 

p<'lo.) ( ) = (n + 2X - 1)(x + 1)"F(- _ _ '" + 1.. '" + .! . x - 1) . 
n X n 2 n. n 1\ 2 '1\ 2 'X + 1 ' 

.!!:_ p<'lo.) (x) = 2XP('Io.+I) (x) · dx n n-1 , 

f+I c1 _ 2)'/o.-t 1 p<'lo.) ( ) l2 d = 21-2'/o. 1 r('") l-2 r(n + 2X) 
-1 - X n X X 7r "' ( n + X) r ( n + 1)' 

t r(2X) r(n +X+ t) p~'lo.)(x)w" 
n=O r (X + t) r(n + 2X) 

X > - .! X ;:e 0 •23 

2' ' 

= 2'/o.-i(l- 2xw + w2)-il1- xw + (1- 2xw + w2)ili-'lo.; 

nP~'Io.) (x) = 2(n +X- 1)xP~)o.21(x)- (n + 2X- 2)P~)o.22 (x) n = 2 3 4 · · · · 
' ' ' ' ' 

(3) We obtain as a second solution of (4.7.5), which is linearly independent 
of P~x\x), (cf. (4.23.1), (4.23.3), (4.61.1), (4.61.4), (4.61.5)) 

(4.7.19) y ~ (1 - x)HF(- n - h + ~. n + h + t; f - h; 1 
2 

"), 

X ;:C - n + 1/2, - n + 3/2, - n + 5/2, ... ;24 

2
3 Use (1.7.3), n = 2. In the limiting case A~ 0, n ~ 1, we multiply (4.7.15) by A-2, 

},. ~ 0 [(4.7.8)]. 

2
• For A = -n - 1/2, -n - 3/2, · · · this is a polynomial linearly independent of p~'lo.) (x) 

(cf. §4.23 (1)). 
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y = (1 - x)'-n-
2
"'F(n + 2X, n + X + t; 2n + 2X + 1; 2 ) 

(4.7.20) 1 -X ' 

X r= - n/2, - n/2 - 1/2, - n/2 - 1, ... ;25 

(4.7.21) 

X > - 1/2, X r= 0; 

y = (1 - x)-n->.-i(l + x)'-"'F(n +X+ t, n + 1 ;2n + 2X + 1; - 2-), 
(4.7.22) 1 -X 

X r= - n/2, - n/2 - 1/2, - n/2 - 1, .... 26 

According to Theorem 4.23.2 the general solution of (4.7.5) is a polynomial if 
and only if X - t is an integer and X ~ - n/2. 

(4) Another generating function, essentially different from (4.7.16) (cf. 
Problem 16), and much simpler, is often used as a definition of the ultraspherical 
polynomials, namely: 

P~"'l (x) + Pi"'l (x)w + P~"'l (x)w2 + ... + P~"'l (x)wn + ... 
(4.7.23) 

= (1 - 2xw + w2
)-"'. 

For the proof, we consider the recurrence formula (4.7.17), from which 
00 oo co 

L nP~"'l (x)wn-1 = 2x L (n +X- l)P~"'.2 1 (x)wn-1 - L: (n + 2X - 2)P~~2 (x)wn-I n-1 n•~1 n-1 

and iu which we define P~Y.(x) = 0. If the left-hand member of (4.7.20) Le 
denoted by h(w), the last equation may be \vritten in the form 

h'(w) = 2.xw1-\w"'h(w))' - w2
-

2\w2"'h(w))' 

= 2.x1Xh(w) + wh'(w) l - f2Xwh(w) + w2h'(w) l; 

or h'(w)/h(w) = 2X(x - w)(1 - 2xw + w2
)"-

1
• Since h(O) = P6"'l(x) = 1, 

(4.7.23) follows by integration. 
On differentiating (4.7.23) with respect to X, we obtain 

(4.7.24) - (ll - 2xw + w2
)-"' log (1 - 2xw + w2

) 

which, for X = - m, m = 0, 1, 2, ... , gives the generating function of the 
polynomials (4.7.7), provided only those terms are considered for which n > 2rn. 
The::.e polynomials are, as mentioned in (1), constant multiples of the Jacobi 
polynomials P~a,al(x) with a= - .m- t. The polynomials of degree n ~ 2m, 
defined by this new generating function (4.7.24), are essentially different from 

2& Cf. §4.23 (2). 
26 Formula (4.61.5) has been considered only under the restriction a > -1, {3 > -1. 

We see immediately, however, that except for the indicated values of>., the function (4.7.22) 
is a solution which is ""X_"_2A as x ~ oo, so that it cannot be a polynomial. 
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the P~"'\x) which are given in this case by the corresponding terms of (4.7.23). 
We have, for instance, [(4.1.7)], 

rPi"(x) = I, P~"(x) : 0, n ~ I, 

) '" =,O 1- log (1 - 2xu: + w2
) =00n~1 (2/n)Tn(x)wn (4.7.2q {\ -

= L ~ . 2·4 · · · 2n pC-!.-ll(x)wn.27 
n-1 n 1· 3 ... (2n - 1) n ' 

Pi-1l(x) = - 2x, p~- 1l(x) = 1, 

p~-1 l (x) = 0, n ~ 3, 

- (1 -- 2xw + w
2

) log (1- 2xw + w2) = 2xw- (2x2 + 1)w2 (4 .. 7.26) X = - 1 

- 32.£ 2·4 ... (2n- 6) p~-Jd\x)wn. 
n-3 1 · 3 · · · (2n - 3) 

(5) From (4.5.5), (4.5.6), (4.5.7), (4.7.14), we obtain the relations 

(1- x
2
) :x {P~"'l(x)} 

= [2(n + x)r1
{ (n + 2X- 1)(n + 2X)P~"'21(x) - n(n + 1)P~"'~1(x) l 

(
4

·
7

·
27

) = - nxP~"'l (x) + (n + 2X - 1)P~"'21(x) 
= (n + 2X)xP~"'l (x) - (n + 1)P~"'~1(x) 

n ~ 0, P~{(x) = 0. 
We can then derive the following identities: 

(4.7.28) 
nP~"'l(x) = x :x IP~"'l(x)}- d~ {P~"'21(x)); 

(n + 2X)P~"'l(x) = :x {P~"'~1(l:)J- x :x {P~"'l(x)}. 
Adding these formulas we find, by use of (4.7.14), 

(4.7.29) 

_!:__ {P~"'~~(x) - P~"'l.1(x) l = 2(n + X)P~"'l(x) 
dx 

n ~ 1, P~{(x) = 0. 
(6) Finally, we give some special formulas involving hypergeometric functions. 

Combining (4.1.5) and (4.21.2), we obtain 

p~:)(x) = (
211 

+ ;~- 1)Fc- II, II+ X; X+~; 1- X
2) 

= ( -- 1)" (
11 

+ ~- 1
) F(- 11, 11 +X;~; x2), (4.7.30) 

27 The first of these identities can be derived directly by writing 1 - 2w cos 0 + w 2 = 
(1 - wei6) (1 - we-i6). 
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(4.7.30) 
P <>-l .( ) __ (211 + 2X) F( . 1 • 2) 2v+1 X -- 211 + 1 X - 11 1 II+ X+ 1, X + 2, 1 -X 

= (- 1)"2X (
11 ~X) xF(- 11, 11 +X+ 1; ~; x2). 

The constant factors ean be calculated by substituting x = 1 and comparing 
the highest powers [or by computing P~;l(O) and P~;!;1 (0) from (4.7.23)]. 

Another way of writing the second part of (4.7.30) is the following: 

( ) <>-l( ) ~~~ 1 
( )m r(n - m + X) ( )n-2m 

4.7.31 Pn X = ~ -1 r(x)r(m.+ 1)r(n- 2m+ 1) 2x . 

This last expression is an explicit representation of the ultraspherical poly
nomials. (Cf. Problem 15.) 

The formulas (4.1.5) may be proved by a more general consideration. For 
instance, in the first case, we may start from the corresponding differential 
equations 

(1 - x2)y" - 2(a + 1)xy' + 211(211 + 2a + 1)y = 0, 

(1 - x~)z" -- (a+!+ (a+ Vxlz' + 11(11 + a+ -!)z = 0 
(4.7.32) 

and show the relation y(x) = z(2x2 
- 1) between their general solutions. This 

argument furnishes at the same time relations between the non-polynomial 
solutions of (4.7.32) similar to (4.1.5). To be specific, let us replace the quanti
ties n, a, {3, x in the expression (4.23.3) first by 11, - t, a, 1 - 2x2

, respectively, 
and then by 11, + t, a, 1 - 2x2

, respectively; we then find (in the second case 
after multiplying by x) 

y = x-n-2
a-

1Ji'([(n + 1)/2] +a+ 1/2, [n/2] +a+ 1;n +a+ ~;x-2) 
(4.7.33) 2>. 2 

= x -n- F((n + 1)/2 + X, n/2 + X; n + X+ 1; x- ), 

as a second solution of (4.7.5), which is linearly independent of p~>-l(x), provided 
X r= -[(n + J.)/2]- k;k = 0, 1, 2, .... 

Starting from the fir~;t formula in (4.7.21), we find, save for a constant factor: 

Y = (1- i)i->-x-n-1 f (n + 211)x-2• 1+1 (1- t2r+>--it2"dt 
v-o 211 -1 

(4.7.34) 
= (1 _ i)t->-x-n-1 i:: (n + 211) r(n + X+ t)r(~~ + t) x-2v 

v-o 211 r(n + X+ II+ 1) 

= r(n + X + t)r(!) (1 _ 2)t->- -n-1 
f(n +A.+ 1) X X 

·F((n + 1)/2, 1 + n/2; n +X+ 1; x-2). 

For further properties of ultraspherical polynomials the reader may consult 
Whittaker-Watson 1, pp. 329, 330, 335, and the literature quoted there. See 
also Wangerin 1, pp. 7a0-731. The function C~(x) of these authors is identical 
with p~l (x) in our notation. The Legendre associated functions P'::(x), m an 
integer (cf. Hobson 1, p. 90), can be represented in the form (cf. (4.21.7)) 

(4.7.35) 
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4.8. Integrall representations for Legendre polynomials 

In the important case a = {3 = 0, that is, for Legendre polynomials, the 
method of §4.6 leads to various integral representations. According to (4.6.1), 

( 4.8.1) Pn(x) = -; --- --. 1 f (1 t
2 

- 1)n dt 
211't 2 t - X t - X 

Here the path of integration encloses the point x. At present, the position of 
this contour with referenee to the points t = ± 1 is immaterial. 

(1) Integrals of Dirichlet-Mehler. (Cf. Dirichlet 1, Mehler 5.) Take x in 
the interior of the interval [- 1, + 1], so that x = cos 8, 0 < () < 11'. For the 
contour in question we choose the circle 

(4.8.2) It - 1 I = 1 eie - 1 1 = 2 sin~, t 1 + 2 
. () iY, 

= sin - .e 
2 ' 

so that 

1 t2 _ 1 1 + sin ~ · ei"' 
------2 t - cos() () 

1 + . -il/1 sm 2.e 

(4.8.3) 

Next let 1/; vary from - 1r to + 1r; then 1 + sin !O ·ei"' describes the small circle 
in the figure. The expression in the right-hand member of (4.8.3) has the 

0 

a= sine/2 

F10. 3 

absolute value 1 and an argument twice that of the numerator. Thus, if we 
write 

(4.8.4) 

the quantity cp varies from 
(4.8.4), we obtain 

1 t
2 

- 1 =cit/> 
2 t - cos() ' 

() to + () and again from + () to - 8. Solving 

(4.8.5) t == ei<l> + ei<l>/2(2 cos cp - 2 cos e)t. 

Here the po:;;itive value of ( )t corresponds to I 1/; I < (1r + 8)/2, that is, to 
the "exterior" arc, while the negative value corresponds to I 1/t I > (1r + 8)/2, 
that is, to the "interior" arc. Furthermore, from (4.8.4) it follows that 

t dl~ = eit/> dt + (t - cos e)ieit/> dcp; 

whence 
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iei<l> dcp iei<1>!2 dcp 
t----co_s_e = t - ei<l> - (2 cos cp - 2 cos e)i. 

dt 

Finally, 

p (cos e) = - e'nt/> --------- + - e'ntj> e --- . 
1 1+8 . ei<i>/2 dcp 1 1-8 . itl>/2 dcp 

n . 271' -8 (2 cos cp - 2 cos e)i 271' +8 - (2 cos cp - 2 cos e)l' 

or, 

(4.8.6) P ( , e) _ 218 
cos (n + ! )cp d 

n COS - - · cp 
1r o (2 cos cp - 2 cos e)i ' 

where the square root of 2 cos cp - :2 cos e must be taken with positive sign. 
This is the first formula of Dirichlet-l\1ehler. Substituting 1r - e for e we ob
tain, because of (4.1.3), the second formula 

( 4.8.7) p n (cos e) = ~ r 7r ( sin (n + !)cp )i dcp. 
1r }8 2 cos e - 2 cos cp 

(2) First integral of Laplace. (Cf. Whittaker-Watson 1, pp. 312-313.) Let 
x be different from ± 1, and choose the circle 

(4.8.8) I t - x I = I x2 
- 1 I i 

as the contour of integration. Writing .t = x + (x2 
- 1)iei<l> (with an arbitrary 

but fixed determination of (x2 
- 1)'), we find that 

2 
1 t - 1 ( 2 )i - -- == X + X - 1 COS cp 
2 t- X ' 

(4.8.9) dt 'd -- = '/, cp. 
t- X 

Consequently, 

(4.8.10) 

1 1+ .. Pn(X) = 271' -.. lx + (i - 1)i COS cp} n dcp 

= 71' -l 1 .. {X + (x2 
- 1)1 COS cp j n dcp, 

an expression known as Laplace's first integral. It holds for arbitrary values 
of x. 

(3) Second integral of Laplace. (Cf. Whittaker-Watson 1, p. 314; Jacobi 2, 
p. 153.) This integral is given by 

(4.8.11) 

1 1+.. --Pn(:t) = 271' -.. lx + (i - 1)i COS cp} n 1 dcp 

= 71'-1 1 .. (x + (x2
- 1)i coscp}-n-1 dcp. 

It may be derived from the first integral of Laplace in the following manner. 
Let 0 < r < 1 and 

(4.8.12) 
1 + r

2 

X=--
1 - r2 ' 

( 
2 1)i _ 2r 
X- ---

1 - r 2 ' 

Z - ei<l> - ' 
whence, 



[ 4.8 J HEPRESENTATIONS FOR LEGENDRE POLYNOMIALS 

(4.8.13) P ( ) (1 - lrn [ I 12" I d I n X = ------ 1 + rz Z . 
271' /z/=1 

Now, substituting 

(4.8.14) 
w-r 

z = ---
1 -no' 

we obtain28 

1 - r2 

1 + rz = 
1 

, 
- rw 

dz 1 - r2 

-
dw (1 - rw) 2 ' 

(4.8.15) Pn(x) = (1 -- r2)-n r (1 - r2)2n 1 - r2 I dw 1-

211' }lw/=1 )1 - rw)2
n )1 - rw)2 

87 

Substituting w = -ei<l>', we obtain ( 4.8.11 ). Using analytic continuation, this 
formula may be immediately extended to arbitrary complex values of x. 

(4) As a special case of (4.4.9) we note the representation 

(4.8.16) 

+0 

Fw •. ·I 

The integration is extended in the positive Hen.se along a contour enclosing the 
origin but neither of the points e±iB. By a proper choice of the contour, formu
las (4.8.6) and (4.8.10) can be derived again from (4.8.16) (see P6lya-Szego 1, 
vol. 1, pp. 115, 287-288, problem 157). 

(5) Integral representat£on of Stieltjes. (Stieltjes 8.) Suppose 0 < () < 1r. 

This important representation can be obtained f.rom (4.8.16) by using the con
tour in the figure. (The derivation from {4.8.1) seems too complicated.) Since 
the integrand is O(w-n-2

) as w ~ oo, the contribution of the large arcs tends to 
zero as the radius becomes infinite. The same is true of the contributions of 
the small arcs around e±i

8 (the integrand is 0 II w - e±i
8 1-i l there). Thus, 

we have 

Pn(cos e) = 2'/R 2~i I w-n-
1(1 - 2w cos() + w

2)-i dw, 

extended twice over the straight line w = t-V8
, where t increases from 0 to 1 

and then decreases from 1 to 0. We have·, then, 

(1 - 2w cos () + w2)-i = ± te-i\1 - t)-i(l - te_2
,.
8)-i, 

2s Concerning this argument see Szego 21. 

-------·~······· 
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where the signs + and - correspond to the first and second cases, respectively 
[(1 - t)-i = (1 - te-218)-i = 1 fort = 0]. Therefore, 

(4.8.17) 

Pn(cos e) = 49? _1_. e tn+1e-i(n+1)8te-i8(1 - t)-i(l - te-2i8)-i( -t-2ei8) dt 
271't }o 

= ! S {ei(n+1l811 t(1 - t)-i(1 - te2i8)-i dt}. 

(6) Further integral representations are obtained by replacing n in (4.8.1) by 
- n - 1 (cf. (4.6.4)) and observing the conditions (a), (b) formulated in §4.6 
(here the expression (1 - t2)-n(t - xr-1 must be considered). We then have 

Y = _1 . f (~ t2 - 1)-n-1 __!!!:_ • 
(4·8·18) 271't 2t-x t-x 

Integrals of this type may represent Legendre polynomials as well as Legendre 
functions of the second kind, or a proper linear combination of these, according 
to the special choice of the path of integration. 

By using the contour in (1), we again obtain Dirichlet-Mehler's formula 
(4.8.6), since the expression in the right-hand member does not change if we 
replace n by - n - 1. The same procedure transforms Laplace's first integral 
(4.8.10) into Laplace's second integral (4.8.11), and conversely. Thus, choos
ing the contour in ( 4.8.18) as in (2), we obtain the second integral. The ex
pression in the right-hand member of (4.8.11) cannot represent a solution other 
than Pn(x), Rince it is finite and equal to + 1 at x = + 1. 

4.81. Legendre functions of the second kind 

(1) Let x be in the complex plane cut along the segment [- 1, + 1], and x = 
Hz + z-

1
), I z I < 1. We deform the path of integration in (4.61.1) into the 

circular arc through - 1, z, + 1 (cf. Whittaker-Watson 1, p. 320, example 1). 
This deformation is permitted since sgn ,Sx = -sgn ,Sz. Then 

t _ (z + 1)eT + (z - 1) 
- ( z + 1) eT - ( z - 1) ' 

(4.81.1) 
1 t2 

- 1 dt 1 
- -- =- -- = (x·+ (x2

- 1)i cosh rj-1
• 

2 t -X dr X- t 

The new variable r is real and ranges from - co to + oo; furthermore (i - 1)i 
I'V x as x ~ oo. This furnishes the following integral representation for 
Q~0 ·0 l(x) =. Qn(x), which is very similar to Laplace's second integral: 

(4.81.2) 

(2) Let X be real, X > 1; we write X = cosh r, r > 0. Introducing in (4.81.2) 

COSh r + Sinh r COSh T = /, 

(4.81.3) d e en 
r e e 

de = sinh r sinh T = -(2_C_O_S_h_e---2-CO_S_h_r........,)P 

we obtain 
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j oo -(n+i)9 

Qn(cosh r) = (2 he 2 h r de. 
cos e - cos r · 

(4.81.4) 

In this formula (Watson 2, p. 154) we first assume that r > 0. By analytic 
continuation it can he extended to the half-strip (1.9.3). The path of integra
tion is the horizontalline ~R(e) ~ ~(r), .g(e) = 3(r).' This formula corresponds 
to Dirichlet-Mehler's formula. 

Flo. 5 

4.82. Generalizations 

(1) Generalization of th~1 Dirichlet-Mehler integral. (See Fejer 12.) Suppose 
0 < e < 1r and 0 < X < 1. According to the generating function (4.7.23) we 
have 

(4.82.1) 

Here we take the unit circle I w I = 1 as the path of integration, avoiding the 
singular points w = e±i

9
, in the neighborhood of which the integrand is 

0 (I w - e±iB 1-x l· (See Fig. 5.) For w = ei<~>, 0 ~ cp < e, we have 

(1 - 2w COS e + W2)-X = t:-iXtj>(W - 1 
- 2 COS e + wr-X = e-i>.tj>(2 COS cp- 2 COS e)->-, 

and for w = ei<~>, e < cp ~ 1r, 

(1 - 2w cos e + w2)->. = e-i>.(t/>-rl(2 cos e- 2 cos cp)->-, 

so that 

p~X)(COS e) = 2~{~ re e-i(n+ll<i>e-iXt/>(2 COS cp - 2 COS e)-\eitj> dcp 
27rt }o 

whence 

(4.82.2) 

P~Xl (cos e) == 1r -
1 lr F(cp) I 2 cos cp - 2 cos e 1-x dcp, 

lcos (n + X)cp 
F(cp) == 

cos [(n + X)cp- X1r] 

if o ~ cp < e, 
if e < cp ~ 7r. 

The expression resulting from (4.82.2) for X = 1/2, is the sum of the expres
sions (4.8.6) and (4.8.7). 

(2) Generalization of the integral of Stieltjes. (Stieltjes; Hermite-Stieltjes 1, 
vol. 2, p. 122, no. 284.) If we choose in (4.82.1) the same contour as in §4.8 (5), 
an argument similar to that used there leads to the representation 
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( 4.82.3) p;" (cos 8) = (2/ T) sin XT ;s {•"'" f.' t"""''-'(1 - t)-\; - te';') ->at}, 

l(8) = (n + 2X)8 +(! - X)1r; o < 8 < 1r, o <X < 1. 

The formulas in §4.8 (1) and (2) can be extended to Jacobi polynomials 
P~a.f3\x) for integral values of a. The resulting representations, however, are 
rather complicated. Finally, we notice the follo~ing generalization of (4.81.2) 
arising from ( 4.61.1) in a manner similar to that used in §4.81 (1) (notation the 
same as there): 

Q~a.f3)cx) =! (r ~ z)a(r ~ zY [:"" lTI (1 + z)eT + 1- zra-{3 

(4.82.4) 
· {x + (x2 

- l)i cosh r l-n-1 dr, 

x = t(z + z-
1
), I z I < 1; a > - 1, {3 > - 1, 

with a proper determination of the functions involved. 

4 .. ~. Trigonometric representations 

(1) Finite cosine expansion of Legendre polynomials. From the generating 
function (4.7.23) we obtain, for X = !, 

(4.9.1) 

where 

(4.9.2) 

so that 

(4.9.3) 

(1 - 2w eos 8 + w2)-i = (1 - we,.8)-!(1 - we-i8)-i 

go= 1, 1 · 3 · · · (2m - 1) gm == 
2 · 4 ···2m m = 1, 2, 3, · · · , 

n 

P,.(cos 8) = L: gmeimBgn-me-i(n-m)B 
m=-0 

n odd, 
{

2g(n-1)/2g(n+1)/2 cos 8, 
+ 2 

g n/2 ' n even. 

Consequently, P ,.(cos 8) is a trigonometric cosine polynomial with non-negative 
coefficients. 

Relation ( 4.9.3), as an identity in 8, can be written as follows in terms of 
Tchebichef polynomials: 

(4.9.4) 

P,.(x) = 2gog,.T,.(x) + 2g1gn-1Tn-2(x) + · · · 

{

2g(n-1) /2g(n+1)/2T1 (x), 
+ 2 

gn/2, 

n odd, 

n even. 

(2) Infinite sine expansion of Legendre polynomials. (Heine 3, vol. 1, pp. 
19, 89.) We have 
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4 ~~ · 4 · · · 2n . . 
Pn(cosfJ) =; 3 . f) ... (2n + 1) lfo sm (n + 1)8 + f 1 sm (n + 3)8 + · · · 

(4.9.5) + f, sin (n + 211 + 1)8 + · · ·}, 

fo = 1; 
(n + 1)(n + 2) .. · (n.+ 11) 

f, = f.n = g, (n + V(n + V ... (n + 11 + !) , 11 = 1, 2, 3, · ... 

For n = 0 the factor (2 · 4 · · · 2n) / (3 · 5 · · · (2n + 1)) must be replaced by 1. 
Abel's transformation ( §1.11 ( 4)) shows this expansion to converge for the values 
0 < 8 < 1r, and even uniformly for E ~ 8 ~ 1r - E, 0 < E < 1rj2. The conver
gence may be deduced also from the elements of the theory of Fourier series. In
deed, (4.9,.5) is the formal expansion of the function defined by Pn(cos 8) for 0 < 8 
< 7r' and: by - p n (cos e) for - 71' < (J < 0 (see below). It is a generalization 
of the classical expansion (n = 0) 

(4.9.6) 1r/4 = (sin 8)/1 + (sin 38)/3 + (sin 58)/5 + 

First pr:oof (Heine, loc. cit.; cf. also Fejer 20, pp. 24-26). Using the notation 
(1.12.3), We have 

(4.9.7) 1r Pn(cos e) sin (m + 1)8 de = 1-:1 

Pn(t)Um(t) dt. 

This integral vanishes .if :m < n, or if m ~ n, and m - n odd. Now write 
m = n + 211; using (4.9.3), we find 

{" Pn(cos 8) sin (m + 1)8 de :~:: t gkgn-k {"cos (n - 2k)8 sin (m + 1)8 de 
}o k-o }o 

(4.9.8) n ( 1 1 ) 
= .t; (J kgn-k m + 1 + n - 2k + m + 1 - n + 2k 

n n 
= 2 :L: gkgn-k = L: gkgn-k 

k=O m + 1 - n + 2k k=O II + k + ! . 
Considering 11 as a continuous variable momentarily, we easily verify (by calcu
lating the residues) that 

(4.9.9) t gkgn-k = (11 + 1)(11 + 2) · · · (11 + n) = 2 2 · 4 · · · 2n j., 
k-o 11 + k +! (11 + !)(11 + D · · · (11 + n + !) 3 · 5 · · · (2n + 1) 

which establishes the statement. 
Second proof (see Fejer 19, pp. 202-203). Expansion of the last factor in 

the integrand of ( 4.8.17) gives 

(4.9.10) 

where gm has the same meaning as in (4.9.2). The last integral can be calcu
lated by means of (1.7 .5), and the 1'Jtatement is thus established. 

Third proof. We use mathemat[cal induction with respect ton. According 
to the recurrence formula of Pn(x) ((4.7.17), X=!), it suffices to show that 

(4.9.11) 

n2 

n2 - .l !vn = !v,tl-1 + fv+1, 71-1 - fv+1, n-2, 
4 

II= 0, 1, 2, '· ·, n = 1, 2, 3, '' · jfv+1,-1 = 0. 
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For n - 0 we have (4.9.6). The identity (4.9.11) can be verified by direct 
calculation. 

Remark. Formula (4.9.5) is closely related to certain expansions of the 
functions of second kind. We find from (4.61.4), a = (3 = 0, 

(4.9.12) Q~O,O)(x) = Qn(x) = -~ !+1 

Pn(t) dt. 
2 -1 X- t 

If we substitute x = !(w + w- 1
) (§1.9), the function Qn I !(w + w- 1

)) will be 
regular for I w I ~ 1, w ~ ± 1. Using (4.7.23), ;\ = 1, we obtain for I w I < 1, 

1+1 p (t) 1+1 f 00 } 

Qn I !(w + W-
1

) l = 'W 1---~__r:___:_+ __ 2 dt = 'W Pn(t)\ L Um(t)wm dt, 
· -1 ~ -.LtW W -1 \_m=O 

so that, because of (4.9.7), (4.9.8), (1.9.9), 

(4.9.13) I w I< 1. 

Now let I w I < 1, w --t c'0
, 0 < lJ < 1r. Then !(w + w- 1

) --t cos 0 - iO, so that 

(4.9.14) Q ( ll _ 'O) = 2 2 · 4 • · · 2n ~ j i(n+2v+l)6 
n cos u z . 3 . 5 ... (2n + 1) ~ .e ' 0 < 8 < 1r. 

(Here use was made of the convergence of the last series and of Abel's con
tinuity .theorem; see Titchmarsh 1, pp. 9-10.) Replacing i by - i, we obtain 

(4.9.15) Q ( n + '0) = 2 2 · 4 ·" 2n ~~ --i(n+2v+l)6 
n cos u '/, 3 . 5 ... (2n + 1) ~ v e ' 

From here (4.9.5) follows again. because of (4.62.8), a = {3 = 0. 
(4.62.9), a = {3 = 0, we find (Heine 3, vol. 1, p. 130) 

2 · 4 · · · 2n ~ 
(4.9.16) Qn(cos 8) = 2:

3
. 5 ... (2n + 1) f;:of• cos (n + 2v + 1)8, 

0 < 8 < 7r. 

By use of 

0 < 8 < 7r. 

Another variation of these considerations (see Hobson 1, pp. 57-58) is to 
introduce x = !(w + w-1

) andy = wn+1z into (4.2.1). Then z, as a function of 
w2

, satisfies a hypergeometric differential equation from which (4.9.13) (therefore 
also (4.9.5)) again follows. 

By means of (4.9.9) we see that the sequence lf.) is completely monotonic 
(cf. §6.5 (4)). 

(3) Another trigonometric representation of Legendre polynomials. (Stieltjes 
7, 8.) Starting again from (4.8;17), we write 

(1 - te2i6)-l = ei<"14- 612>(2 sin 8)-l 1 - (1 - t) e . . 
{ 

i(6-r/2)}-l 

2sm8 

Cvnsequently, for 2 sin 8 > l 

Pn(cosO) = ~3{ei<n+l)6ei<"14-fl12>(2sin8)-l f. g. ei•<~-"
12

> fl t(1- t)•-l dt},or 
7r •-0 (2 sm e)• }o 

(4.9.17) Pn(cos 8) =! 3 ~. 4 ·(~· 2~ ) '£h. cos{ (n + v ~ ~)8) 5; + !)7r/2) ' 
7r ' ' ' ' . n 1 v=O Slll (} v 

where 
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(4.9.I8) t ! · · · (v - 1 ) hv = hvn =g. 2 
(n+V(n+V · · · (n+v+i)' 

v=I,2,3,···. ~=I; 

Expansion (4.9.I7) is convergent if 1rj6 < 8 < 57r/6. Its importance will be 
more fully realized in discussing the asymptotic behavior of Pn(cos 8) for large 
values of n ( §8.5). Concerning the connection of this representation with that 
of Heine [(4.9.5)], see Stieltjes 8, p. 244. 

(4) Ultraspherical polynomials. From (4.7.2I) we obtain as in (I): 

p~>-->(cos 8) = 2aoan cos nO+ 2a1an-1 cos (n- 2)8 + · · · 

(4.9.I9) 

where 

(4.9.20) 

The:t:efore, 

(4.9.2I) 

1
2a(n-l)/2a(n+ll/2 COS 8, 

+ 2 
an/2, 

_ (n +A- I) an-
n ' 

nodd, 

n even, 

n = 0, I, 2, · ... 

Here the cases A - 0, - I, - 2, · .. are to be excluded. In particular, if 
A > 0, the coefficients an are positive, so that p~>--> (cos 8) as a trigonometric 
cosine polynomial again has non-negative coefficients. 

Expansion (4.9.5) can likewise be extended. We have (Szego 19, pp. 508-
509) for A > 0, A r= I, 2, 3, · .. , 0 < 8 < 1r, 

( . )2>---1 <>-->( ) - 22-n r(n + 2A) ~~<>--> . ( + 2 + I)O 
sm 8 P n cos 8 - r (A) r ( n + A + I) ~ • sm n v , 

( 4.9.22) ;<>--> _ I· !<>--> _ !<>--> 
JO - , v - vn 

(n + I)(n + 2) · · · (n + v) 
I . 2 ... v (n +A+ I)(n +A+ 2) · · · (n +A+ v)' 

v = I, 2, 3, .... 

The generalization of the third proof given in (2) is particularly simple. The 
special case n = 0 is 

(4.9.23) (sin 8)2
>-.-

1 = 21r -ir(A + t) ta (I - A~~A ~A}~· ~t- A) sin (2v + I)O. 

It can be verified in various ways. (Cf. Whittaker-Watson 1, p. 263, problem 
40; multiply this formula by cos x, and substitute x = 1r/2 - 8, s = 2A - 2.) 

Another extension of (4.9.5) is the following: 

>--> 2 ~ r(n + v + 2A) ) 
P~ (cosO)= f(A) ~a"r(n + v +A+ I) cos((n + 2v + 2A 8- A7rl, 

(4.9.24) 

0 < A < I, 0 < 8 < 1r. 

It follows readily from (4.82.3) by means of the argument used in the second 
proof given in (2). 

The extension of (4.9.I7) (Szeg617, pp. 57-60) is 
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p~>--)(cosO) = (2/7r) sin A7r r(n + 2A) f r(v + A)f(v.....: A+ I) 
(4.9.25) f(A) •=o v! r(n + v +A+ I) 

. cos( (n+v+A)O- (v+Ah/2l 
(2 sin 8)•+>-- ' O < A < I; 7r /6 < 8 < S1r /6. 

It follows from (4.82.3) by the same argument as used in (3). 

4.10. Further properties of Jacobi polynomials 

(I) Rodrigues' formula. A generalization of Rodrigues' formula ( 4.3.I) is the 
following: 

(I - x)a(l + x)flp~a.f3)(x) 
(4.IO.I) (-I)m (d)m 

= _ ( (I-x)m+a(l+x)m+flp~~ta,m+fl)(x)l. 
2mn(n-I) · · · (n-m+ I) dx 

Here n ~ m. The proof is similar to that given in 4.3 (I). 
(2) Int~gral representations for ultraspherical polynomials. (a) Combining 

(4.1.5) and (4.3.2) we find 

P~~,a)(x) = P~~.a)(I) · x2•F(-v, -v +!;a+ I; I- x-2), 
(4.10.2) 

P~~+i(x) = P~~:fi(I) · x2•+ 1F(-v, -v- !; a+ I; I- x-2) 

so that, in view of (4.7.I) and (4.7.3), 
p~>--)(x) = p~>--)(1) · xnF(-n/2, -n/2 +!;A+!; I- x-2) 

= 21-2>-- r(n + 2A) l~l (-I)k(n) r(k + !) xn-2k(I- x2)k 
(4.10.3) r(A) n! k=o 2k r(A + k + t) 

_ 2
1

-2>-. _f(n + 2A)1 ... ( + ( 2 _ I)! In · 2>-.-1 d - [ r (A) j2 n ! 
0 

X X COS cp sm cp cp. 

We used (1.7.3), n = 2, and (1.7.5). This generalization of (4.8.IO) holds pro
vided that A > 0. See Gegenbauer 1, Seidel-Szasz 1. 

(b) Another remarkable integral representation valid for non-negative integral 
values of A - ~ is the following: · 

(x2 _ I) >--/2-1/4p~>--) (x) 

(4.I0.4) =2>-.-!r(A+!) r(n+2A) .l ( ... ( +( 2-I)l In+>--! 
r(2A) r(n +A+!) 71" Jo x x coscp 

· cos (A - t )cp dq;. 

For the sake of simplicity we assume here that x > I, (x 2 - I )l > 0. 
For the proof we use (4.4.6) with the circle (4.8.8) as contour of integration. 

Since 

we have, a = A - ! , 
(x2 _ I)ap~a,a)(x) = -. _ __ (t2 _ I)a __ I f (I t

2 
- I)n dt 

27rt 2 t - X t - X 

which yields easily (4.I0.4). 
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(3) Generating functions. (a) A slight modification of the argument in 
4.4 (3) (proving the formula ( 4.4.5) for the generating function F (x, w)) is the 
following. Let -1 < w < 1; we write (4.4.7) as follows: 

(4.10.5) x = t + !w(1 - t2) 

so that x and t describe the interval l-1, + 1] at the same time. Henee, using 
the formula (4.4.7) and the two first formulas of (·1.-1.8), we find 

(1 - x)a(l + x)fJF(x, w) dx = (1 - t)a(l + t)fJ dt 

so that for any non-negative integer n 

f+l !+1 
_

1 
(1 - x)a(l + x)fJF(x, w)xn dx = _

1 
(1 - t)a(l + t)fJ[t + !w(1 - t2)]n dt, 

i.e., a polynomial of degree n in w. This shO\vs that the coefficients of F(x, w) 
must be, apart from constant factors, the Jacobi polynomials. These factors 
can be determined by writing x = 1. 

(h) The following generating function holds for ultraspherical polynomials: 
00 p~~) (x) wn - 00 

• r (2;\) (~) " 
n~ p~~l(l) n! - n~O r(n + 2;\) Pn (x)w (4.10.6) 

= 2~-tr(;\ + !) exw[(1 - x2 )iwj!-~J~-![(1 - x2)lw]. 

It is different from (4.7.16) and (4.7.23). Setting ;\ = ! we obtain for the 
Legendre polynomials: 

(4.10.7) 
oo p (x) 2: _n_,_ wn = exwJo[(1 - x2)iwJ. 

n=O n. 

For the proof of ( 4.1 0.6) we use ( 4.10.3); we obtain for the left-hand side 
of (4.10.6): 

2 1-2 ~ r (2;\) ["" exp[wlx + (x2 - 1)tcoscpj]· sin 2~- 1cpdcp 
[f(;\)]2 0 

- 21-2~f(2;\) xw oo [ (x2 - 1 )!wpm1"" -2m . n-1 
- [f(;\))2 e m~o (2m)! 

0 
cos cp sm cp dcp 

which is eu.sy to identify with the right-hand expression in (4.10.6). 
Concerning further formal properties of the Legendre and ultraspherical 

polynomials, see Bateman Manuscript Project, vol. 1, Chapter 3 n.nd vol. 2. 
Chapter 10. Cf. also Problems and Exercises, 61-66, 69-71, 84. 

( 4) The following remarkable identity, involving ultraspherical polynomials, 
is due to Feldheim 5, p. 278: 

r(2;\) p(>-)( ) 2r(;\+!) 
n COS(} = -----=----

f(n + 2;\) r(JL + t) r(;\ - JL) 

(4.10.8) 
(2) 

!u
ll"/2 r JL . . . . . . .. 

· sm2"cp cos2>--~- 1 !1'( 1 - sm20 cos2~;?)"12 
r(n + 2JL) o 

(!') ( cos 8 ) d . l < < ·P,. (1 ·2n 2)1;2 1P.A>JL>-2,;\~0.JL~0.0=0=7r· - sm u cos II' 



96 JACOBI POLYNOMIALS [IV] 

It is an easy consequence of the generating function (4.10.6). Indeed, multi
plyingbothsidesof(4.10.8) byw"andextendingthesummationovern = 0, 1,2, · ·. 
we obtain 

2>.-l2f(A + ~) ew"osO(W sinO) I1 Z->. J>.-I;2(W sinO) 

2f(;\ + ~.) l"l2 2 __ _...:_ _ __:_~- . sin'"~~' cos2>--2"-IIP. 2"-1· 2r(J.L + & )e""·oso 
r(J.L + ~ ) r(;\ - J.L) 

or 

(4.10.9) 

This identity is due to Sonine (Watson 3, p. 373, (1)). 
(5) Positivity of certain sums. The first result of this kind is due to L. Fejer 

4, p. 83: 

(4.10.10) P0(x) + P1(x) + P2(x) + · · · + P,(x) ~ 0 for - 1 ~ x ~ 1. 

This fact is important in the study of summability of the Laplace series. It 
follows from (4.8.7) by observing the identity 

£ sin(2~+l)O = (sin(~+l)0\2 

v=O Sm0 SinO / 

Generalizations of (4.10.10) are due to Fejer 12, Feldheim 5, Szego 25. 
( 6) The formulas ( 4.8.6) and ( 4.8. 7) of Dirichlet-Mehler can be extended to 

p<a+~t.P-"\x) f(a + J.l + 1) i 1 p<a,P)(y) 
a+" n = 1 - a n -X "-1d 

(1 -X) p~a+~t.P-")(1) f(a + 1) f(J.L) x ( y) p~a,p)(l) (y ) y, 

(4.10.11) 
a> - 1, J.l > 0, - 1 <X< 1, 

and 

p~a-~t,P+~<>(x) f({J + J.l + 1) fx p<a,p)(y) 
(1 + x)P+" p~P+~t,a ")(1) ='f({J + 1) f(J.L) -1 (1 + y) p p~P,a)(l) (X- y) "-1dy, 

(4.10.12) 
{J > - 1, J.l > 0, - 1 <X< 1. 

Feldheim's integral (4.10.8) follows by using the quadratic transformations 
( 4.1.5) and the integral 

(1 _X) a+" p~a+~<.P>(x) 

( 1 +X) n+a+1 p~a+~t.Pl(l) 

( 4.10.13) = 2"f(a + J.l + 1) { 1 ( 1 _ y)a(y _ x) "-1 p~a,P>(y) d 

r(a + 1) f(J,L) J X (1 + y)n+a+~t+l p~a,{J)(l) y, 

a> - 1, J.L > 0, - 1 < x < 1. These three integrals are all special cases of 
known integrals connecting hypergeometric functions which were found by 
Bateman 2. See Askey-Fitch 2 for other useful integrals. Among the conse
quences of these integrals is the following theorem on positive sums. 
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THEOREM 4.10.1. If 0 ~ J.L ~ v and {3 > - 1 and if 

n p~a,p)(X) to ak p~P,a)( 1) ~ 0, ( 4.10.14) -1 ~X~ 1, 

then 

( 4.10.15) 
n p~a-~t,P+v)(y) to ak P1P+v,a-"\l) ~ 0, -1~y~l. 

Feldheim's integral ( 4.10.8) can be used to prove a related theorem. 

THEOREM 4.10.2. If v > 0, a > - 1 and if 

n p~a,a)(X) 
"ak > 0 - 1 ~ x ~ 1, ~ p<a,a)( 1) = ' 
k=O k 

( 4.10.16) 

then 

(4.10.17) 
n p~a+v,a+v)(y) t; ak p~a+v,a+v)( 1) ~ 0, -1~y~l. 

As Feldheim 5 pointed out, (4.10.10) implies 

( 4.10.18) - 1 <X~ 1, a> 0. 

Askey-Gasper 4 and Askey-Steinig 2 have obtained generalizations of ( 4.10.18). 
They proved 

( 4.10.19) -1 <X< 1, 

for 

(i) a+ {3 ~ -2, {3 ~ 0 (when a=.- 2, {3 =,0, assume n ~ 1), 
(ii) - {3 ~a~ {3 + 1 (a= t, {3 =.- t omitted),. 

( iii) - {3 + 1 ~ a ~ 3/2, 
(iv) -{3+2~a~{3+3. 

The case a= t. {3 =- t of the sum (4.10.19) is Fejer's sum (6.4.3), which 
is nonnegative, while the case a = 3/2, {3 = - t is equivalent to 

:!:_ £ sin(k + 1)8 < 
0 

de k=o(k+l)sin(0/2) ' 
0 < 8 < 7r. 

It is also equivalent to 

n 2 p J~\ X) 1 . n p J~> (X) 
L: (k + o p<2>o) > 4- L: p<2>o). 
k=O 2k k=O 2k 

and, since the right-hand side of this inequality is the even part of ( 4.10.18) 
when a = 3/2, it is nonnegative. The positivity of the left-hand side is equivalent 
to the positivity of K~2>(x) in (15.5.1). 

(7) Jacobi polynomials satisfy the addition forrnnla 
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p~a,P)( 21 cos 81 cos 82 +rei"" sin 81sin 82l 2 - 1) 
n k 

=.L: L c~~(~(sin81sin82)k+m(cos81 cos82)k-m 
( 4.10.20) k=O m=O 

· P~a_tk+m,f3+k-m)( COS 281) P ~~Jk+m,/3+k-m)( COS 28z) 

. p~a-P-1.P+k-m\2r2- l)rk-m {3 + k- m Cf-m(COS!p), 
{3 

where 

c<a p) - (k +m +a) r(n +k +a +f3+1) r(k +a) r({J+l) r(n +f3+1) r(n -k +0 
n,k,m -, r(n +a +f3+1) r(n +m +a+ 1) r(k +f3+ 1) r(n- m +f3 + 1) 

and the limit relation 

1
. f3+n CP( ) {2cosn!p, n =,1,2, ... , 
1m-- n COS!p = 
p-o {3 · 1, n =,0, 

is used when {3 =.0. 
When r =.1 and a =,{3 this formula is the addition th~orem of Gegenbauer 

I for ultraspherical polynomials. It was discovered by Sapiro I in the case 
{3 =,0 and independently by Koornwinder I in the general case. For other 
proofs see Koornwinder 2, 3, 4. 

Among the special results contained in ( 4.10.20) are 

p~a,P)( COS 281) p~a,p)( COS 282) 
p~a,/3>( 1) p~a,/3>( 1) 

( 4.10.21) 

a> {3 > - t. where 

d ( ) A ( 1 2)a-P-1 2P+l( · )2Pd d ma,P !p, r = a,P - r r sm !p !p r, 

and 

and also 

( 4.10.22) 

When a__, {3, ( 4.10.22) has ( 4.10.3) as a limit. In addition to the papers listed 
above, see Gasper 3, 4 and Askey IO. 

Another useful formula was found by Bateman I: 

( 4.10.23) 

p<a.P) ( 1 + xy) 
n X +Y (X +Y) n n p~a,P>(y) 

- C p<a.P) X p~a,P)( 1) -2- - 6 k,n k ( ) p~a,p)( 1) 

where the ck,n's are defined by 
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( 4.10.24) ( 
1 + x)n n -- = LCk,np~a,P>(x). 

2 k=O 

The ck,n can be explicitly computed by use of Rodrigues' formula and 
orthogonality and they were given in Bateman I. However, in many applica
tions only the positivity of the ck,n is needed (see e.g. Horton I). It can easily 
be proved by induction. Bateman 3 also discovered the inverse to ( 4.10.23): 

( 4.10.25) 

where the bk n' s are defined by 

p<a.P>(x) = ~ b ( 1 + x)k n .~ k,n 
2 k=O 

(4.10.26) 

This has been used by Koornwinder 3. Again the specific form of the bk,n's 
was not needed. 

(8) Gegenbauer 6 generalized (4.9.19) to obtain 

(n/2) 

( 4.10.27) P~">(x) =."'L ak,nP~A!.2k(x) 
k=O 

where 

( 4.10.28) 
r( A) ( n - 2k +A) r( k + JL - A) r( n - k + JL) 

a -----~~~~--~~--~----~~--
k,n - r( JL) k ! r( JL - A) r( n - k +A + 1) 

Proofs are given in H ua I and Askey 2. This can be inverted to give 

( 4.10.29) (1- x2)"- 112P~">(x) = "'Ldk,nP~~2k(x)(l -x2r'- 112
, JL >(A -1)/2, 

k=O 

where 
( 4.10.30) 

d _ r(A)2v.-2"(n +2k +A) r(n +2k + 1) r(n +2JL) r(n +k +A) r(k +A -JL) 
k,n- r(A-JL)r(JL)r(n+l)r(k+l)r(n+k+JL+l)r(n+2k+2A) · 

See Askey I. When A = ), ( 4.10.29) reduces to ( 4.9.22). Generalizations of 
these formulas to Jacobi polynomials as well as generalizations of Problem 
84 are given in Askey 4, Askey-Gasper I, 2, Gasper I, 2. In the general case, 
the coefficients are much more complicated and one needs to obtain asymptotic 
formulas and positivity when it holds. For an application of ( 4.10.27) and 
Problem 84 in which only the positivity is used see Askey-Wainger 3. The 
linearization result in Problem 84 can be used to define Toeplitz operators 
and much of the classical theory of Toeplitz operators and the newer work 
on finite sections of such operators can be extended to these more general 
operators. See Hirschman 2 and Davis-Hirschman I and further references 
given in these papers. 



CHAPTER V 

LAGUERRE AND HERMITE POLYNOMIALS 

Many of the properties of the polynomials with which we shall deal in this 
chapter are very similar, and more or less analogous, to the properties of Jacobi 
polynomials. For this reason we shall be brief and omit details, unless essen
tial differences in statement or proof make the contrary necessary. Here, as 
in the case of Jacobi polynomials, the treatment of some special problems 
(zeros, extrema, and so on) is reserved for later chapters. 

5.1. Elementary properties of Laguerre polynomials 

(I) We define the Laguerre polynomials 1L~">(x) l, for a > -1, by the 
following conditions of orthogonality and normalization: 

(5.1.1) 
10() e-xx"L~">(x)L~">(x)dx = r(a + 1) (n ~ a)onm, 

n, m = 0, 1, 2, · · · . 

In addition, we require that the coefficient of xn in the polynomial L~">(x) of 
degree n have the sign ( -1) n. (This differs from condition (a) in the definition 
of §2.2.) We also write L~0>(x) = Ln(x). 

Reference is here made to Lagrange 1, Abel 1, p. 284, Tchebichef 3, pp. 
506-508, and Laguerre 1, pp. 78-81 (pp. 434-437), who, however, consider 
only the case a = 0. Laguerre uses the notation fn(x) = n!Ln( -x). Hilbert
Courant (1, pp. 79-80) also considers only the case a = 0; the function there 
called Ln(x) is the same as n!Ln(x) in our notation. Concerning the general 
case L~">(x) see Sonin 1, pp. 41-42. 

We have the differential equations 

xy" + (a + 1 - x)y' + ny = 0, y = L~">(x), 

xz" + (x + l)z' + (n + ~ + 1- :~)z = 0, z = e-:rx" 12 L~">(x), 

(5.1.2) u" + (n +_(a +_J_)/2 + 1- a
2 

_ ~)u = O u = e-xl2x<a+OI2L~">(x), 
x 4x2 4 ' 

v" + ( 4n + 2a + 2- x2 + i ~2 a) v = 0, v = e-x212 xa+! L~">(x2). 

Once again let a > -1. Then an argument analogous to that in §4.2 (2) 
shows that a necessary and sufficient condition that 

(5.1.3) xy" + (a + 1 - x)y' + 'Xy = 0 
100 
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have a polynomial solution is that;\ = n. Also, L~">(x) is the only polynomial 
solution. The latter statement follows from the relation 

(5.1.4) u~(x)u2(x) - u1(x)u;(x) = const., 

which holds for two arbitrary solutions u1(x), u2(x) of the third equation in 
(5.1.2). Incidentally, this argument furnishes slightly more: for a > -1, the 
polynomials L~">(x) are the only solutions of (5.1.3) which are analytic near 
X= 0. 

The analogue of Rodrigues' formula is 

(5.1.5) 

To determine the constant factor we apply Leibniz' formula (which leads to 
(5.1.6)) and calculate the highest term of the right-hand member. 

Further, we have the explicit representation 

(5.1.6) 

the formula 

(5.1.7) 

and the expression 

(5.1.8) 

L~">(x) = f (n +a) ( -xr' 
•=O n - v v! 

z~a) = ( -1)" 
n! 

for the coefficient z~a> of xn in L~a> (x). As a generating function we obtain 

LJ">(x) + L~">(x)w + · · · + L~">(x)wn + · · · 
(5.1.9) 

( ) -a-1 ( XW ) = 1- w exp - . 
1-w 

The following recurrence formula holds: 

nL~">(x) = ( -x + 2n + a - 1)£~~\(x) 

(5.1.10) n = 2, 3, 4, · · ·, 

For the "kernel polynomial" K~a> (x, y) we find 

r(a + 1)K~">(x, y) = ta { (v :a)} -1 

L~">(x)L~a>(y) 
(5.1.11) 
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The special case y = 0 is particularly important: 

" (5.1.12) x L L~"''(x) = (n +a +1)L~"''(x) - (n + 1)L~+'1 (x). •-0 . 

(Cf. Theorem 2.5.) Finally, by means of (5.1.6), or (5.1.9), we readily obtain 

" L L~"''(x) = L~a+ll(x), 
(5.1.13) •-0 

L~"''(x) = L~"'+1'(x) - L~':.1 1'(x), 

(5.1.14) d:L~"''(x) = -L~':.11,.(x) = x-1 lnL~"''(x) - (n + a)L~~-\(x) ). 

(2) THEOREM 5.1. Let J"' have the same meaning as in §1.71. Then 

~ {(n: a)}-1

L~"''(x)L~"''(y)w" 
(5.L15) ! 

= r(a + 1)(1- w)-1 exp{-cx + y) ~}(-xyw)-"'12 J .. { 2(-xyw) }, 
1-w 1-w 

and 

(5.1.16) 

See Sonin 1, p. 41, Wigert 1, Hille 2, Hardy 1, Kogbetliantz 12, Watson 4. 
The first formula is a generalization of (5.1.9) (y = 0). The second formula 
is obtained from the first one by replacing w by -y-1w, y-+ oo. 

Direct calculation leads readily to (5.1.16) on account of (5.1.6). The 
formula (5.1.15) follows from (5.1.16) when we introduce for L~"''(y) the 
integral expression which results from (5.4.1), and then integrate term-by-term. 
Finally an integral formula involving Bessel functions (Watson 3, p. 395, (1)) 
must be used. 

5.2. Generalization 

By means of (3.1.6) the definition of Laguerre polynomials can be extended 
to arbitrary complex values of a. No reduction in the degree ever occurs 
(see (5.1.8)). For n ~ 1 we have L~"''(O) = 0 if and only if a= -k, k integral, 
1 ;;;? k ~ n. In this case x = 0 is a zero of precise order k, and from (5.1.6) 

(5.2.1) 

L~-k'(x) = ( -x)dn- k)! I:' ( n ) ( -x)" 
n! •=O n - k - v v! 

_ (- )k(n- k)!L<kl () 
- X I n-k X • n. 

Formula (5.1.16) remains true for arbitrary real a. From here (5.2.1) follows 
agam. 
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5.3. Confluent hypergeometric series; relation between Jacobi and Laguerre 
polynomials; second solution 

(1) In the notation of Pochhammer-Barnes, the confluent hypergeometric 
senes IS 

(5.3.1) F ( . . ) _ 1 + ~ a(a + 1) · · · (a + v - 1) x• 
1 1a,-y,x- .L...J -. 

· •-1 -y(-y + 1) · · · (-y + v - 1) v! 

This is obtained from the ordinary hypergeometric series [(4.21.3)] by the 
limiting process 

(5.3.2) lim F(a, ~; 'Y; ~-1 x). 
/J-+00 

We have 

(5.3.3) (a) ( ) (n + a) ( Ln x = n 1F1-n;a+1;x), 

and using ( 4.21.2), we obtain the following important relation between Laguerre 
and Jacobi polynomials: 

(5.3.4) L~"'(x) = lim p~a,/Jl(l - 2~-1 x). 
/J-+00 

This holds uniformly in every closed part of the complex x-plane. Concerning 
further properties of the confluent hypergeometric functions see Whittaker
Watson 1, Chapter XVI. Compare equation (B) in Whittaker-Watson 1, 
p. 337, with our third equation in (5.1.2). 

(2) From (4.23.1), by a limiting process similar to that used in (5.3.4), we 
obtain as a second solution of the first equation (5.1.2) 

(5.3.5) 

For non-integral values of a the functions (5.3.3) and (5.3.5) are evidently 
linearly independent. The same is true if a is a ne.gative integer less than -n, 
since in this case (5.3.5) is an infinite series. However, if a is an integer not 
less than -n, these solutions are identical. (If -n ~ a ~ 0, use (5.2.1). In 
case a = g, g ~ 1, it is necessary to multiply (5.3.5) through by a - g before 
letting a---+ g.) 

The representation (5.3.3) makes possible an extension of the definition of 
L~"'(x) to arbitrary values of n. 

5.4. Integral representations 

THEOREM 5.4. The following representation of Laguerre polynomials in terms 
of Bessel functions holds: 

(5.4.1) e-xx"12 L~"'(x) = ~ 1"" e-ttn+at2 J ,.l2(tx)!)dt, n = 0, 1, 2, ···;a> -1. 
n. v 

For this representation, the reader may consult E. Le Roy 1, pp. 379-384, 

! 
···------·.--.I 
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Erdelyi 1. The same representation is valid if a ;;;;; - 1, provided n + a > -1. 
From this, (5.2.1) follows again. 

Several proofs of this formula may be given. The special case n = 0, that is, 

(5.4.2) e -xxo:12 = 11XJ e -t to: 12 J o: (2(tx )! l dt, 

can be obtained by expanding J o:(z) as in (1.71.1) and integrating term-by-term. 
(The formula is due to Sonin; cf. Watson 3, p. 394, (4).) The general formula 
then follows from calculation of the generating function of both sides of (5.4.1); 
here (5.1.9) and (5.4.2) must be used. 

FIG. 6 

Another proof, from a more general point of view, can be given as follows. 
We shall try to satisfy the second equation (5.1.2) by an integral of the form 

(5.4.3) z = z(x) = J e-ttn+o:/2Jo:l2(tx)!j dt 

with a proper path of integration. Substituting this expression in the left-hand 
member of the equation mentioned, we obtain 

J e-1 tn+o:/ 2 [tJ~l2(tx)!j + (tx- 1)!(x + !)J~l2(tx)!J 

+ ( n + ~ + 1 - :~) J o: (2(tx)! l J dt. 

(5.4.4) 

In view of (1.71.3) the expression in the square brackets becomes 

(5.4.5) 

so that the entire expression will be 

(5.4.6) J ~i[e-tt+o:/2+lJo:l2(tx)!j]dt. 
Hence (5.4.3) is a solution of (5.1.2) .provided that 
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(a) the path of integration is a closed contour, and so chosen that 
e-ttn+o:/2+lJ al2(tx)!} resumes its initial value, or 

(b) the path of integration is an arc, and the expression in (a) vanishes at its 
end-points. 

For the interval 0 ~ t < + oo, condition (b) is satisfied provided n +a+ 1 > 0. 
Assuming first that a > -1, we notice that the function x-o:12z is analytic near 
x = 0, so that (see the remark concerning (5.1.3)) z = const. e-xxo:12L~o:'(x). 
The constant factor can be determined by comparing the "lowest terms," that is, 
the coefficients of xo:12. The restriction a > -1 can then be removed by means 
of analytic continuation. 

Another remarkable representation is obtained by choosing the contour as 
in the figure. Condition (b) is again satisfied, and the same argument as before 
yields z = const. e-xxo:12L~o:'(x). The normalization of the integrand requires 
the determination of to: at a certain point. We agree to take arg t = 0 on the 
rectilinear part of the contour with St < 0 (in its ·limiting position). Then 
the "lowest term" becomes, if a > -1 and a :;t. 0, 1, 2, ... , 

X e-ttn+o: dt = X (1 - e_2,.io:) e-1 t+o: dt o:/2 f o:/2 100 
r(a + 1) r(a + 1) 0 

- 2 . ill'(!-o:) r(n +a + 1) o:/2 
- Slll 1rae r( a+ 1) X , 

so that on account of (5.1.7), we have 

(2 . )-1 ill'(o:-!) 1(0+) 
(5.4.7) e-xxo:12 L~o:'(x) = sm 1ra 

1 
e e-ttn+o:/2 J o:l2(tx)!} dt. 

n. +oo 
This formula can be extended to arbitrary non-integral values of a. 

Further integral representations can be derived from (5.1.5) and (5.1.9) in a 
manner analogous to that used in the case of Jacobi polynomials (cf. (4.4.6), 
(4.4.9)). We have for instance, x :;t. 0, 

(5.4.8) e-xxo:L~o:l(x) = 2~i J e-tt+o:(t- x)-n-1 dt, 

where the contour encloses t = x, but not t = 0. 

5.5. Hermite polynomials 

(1) These are defined by the conditions 

(5.5.1) L:oo e-x
2 
Hn.(x)Hm(x) dx = 7r!2nn! Onm, n, m = 0, 1, 2, .... 

The coefficient of xn in the nth polynomial is positive. 
See the bibliography in Hille 1. Our notation agrees with that of Hille. 

See also Hilbert-Courant 1, pp. 77-79 where the same notation is used. In 
P6lya-Szego 1 (vol. 2, pp. 94, 294, 295, problem 100), H n(x) is written for 
( -1) n(2n12n!)-1H n(2-!x) in terms of our notation. 
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(2) The derivation of the following properties of Hermite polynomials presents 
no difficulty: 

J y" - 2xy' + 2ny = 0, y = Hn(x), 
(5.5.2) 

lz" + (2"-n + 1 - x2)z = 0, z = e-x212Hn(x), 

(5.5.3) e -x2 
H n(X) = ( -1 t (!!:_)n e-x2 

dx ' 

(5.5.4) Hn(x) = [fl ( -1)" (2xt-2" 
n! .-o v! ( n - 2v) ! ' 

(5.5.5) 

(5.5.6) 

H2m(O) = ( -1)m (
2
:?!, H~m+l(O) = ( -1)"' ~~: :;!!, 

lim x-n H n(x) = 2n, 

Ho(x) + H1(x) w + H2(x) w2 + ... + Hn(x) wn + ... 
(5.5.7) 1! 2! n! 

(5.5.8) 
Hn(x) = 2xHn-l(x) - 2(n - 1)Hn-2(x), 

. 2 = exp (2xw - w ), 

(5.5.9) 

n = 2, 3, 4, · · · ; Ho(x) = 1, H1(x) = 2x, 

·t (2"v!)-1H.(x)H.(y) = (2n+ln!)-1 Hn+l(x)Hn(y) - Hn(x)Hn+l(y). 
v-o X - y 

We notice the following "individual" properties: 

(5.5.10) H:(x) = 2nH n-l(x), 

From (5.5.7) we obtain 

(5.5.11) t (n)H.(x)Hn_.(y) = 2n12 Hnl2-!(x + y)), 
•-o v 

and, by Cauchy's formula, 

( 2) H,.(x) _ 1 f -n-1 (2 2) d 5.5.1 --
1
--

2
--; w exp xw - w w, 

n. 7r~ 

where the contour encloses the origin. 

5.6. Relation of Hermite polynomials to those of Laguerre 

(1) Hermite polynomials can be entirely reduced to Laguerre polynomials 
with the parameters a = ±!, for we have 

(5.6.1) H2m(x) = ( -1)"'22mm!L~-!l(x\ H2m+1(x) = ( -1)m22m+1m!xL~i'(x2). 

These formulas are in some respects the analogues of (4.1.5). Their proofs 
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are similar to those given there. Note the fourth equation in (5.1.2) (a = ±t), 
and the second equation in (5.5.2). 

Combining (5.6.1) with (5.3.4), we obtain a representation of Hermite poly
nomials as limits of Jacobi, and in consequence of (4.1.5), of ultraspherical 
polynomials. This can be ascertained from (4.7.23) and (5.5.7). In fact, we 
have 

(5.6.2) exp (2xw - w2
) = lim 1 - 2: w + w , ( 2)->. 

>--~ A A 

so that 

(5.6.3) 

From (5.6.1) the explicit representation (5.5.4) follows readily when we use 
(5.1.6). From Theorem 5.1 analogous expansions for H,.(x) can be. derived 
(see Watson 5). The generating function (5.5.7) follows ·from (5.1.16), while 
the generating function arising from (5.1.9) for a = ±tis of a different nature 
(see Problem 24). 

By using (1.71.2) and (5.4.1), we obtain the integral representations 

e-"'2 Hn(x) = (-1)[n121 2n+11r-! 1~ e-12 tn cos (2xt)dt, n even, 

(5.6.4) 

e-"'2 H n(x) = ( -1)[n121 2n+1 1r-! 1~ e-12 tn sin (2xt) dt, n odd. 

(2) Conversely, Laguerre polynomials can, to a certain extent, be reduced to 
Hermite polynomials. We have (Uspensky 1, p. 604, (14)) 

( ) 
(a) ( ) ( - 1 t 1r -! r ( n + a + 1) 1 + 

1 
( 2) a-t ( t ) 1 

5.6.5 Ln X = r(a + t) (2n)! -1 1 - t H2n X t dt, a> - 2· 

This can be readily shown by using the explicit formulas (5.1.6), (5.5.4), and 
(1.7.5). 

(3) We conclude these formal considerations with the following remark con
cerning the identities (4.21.7), (5.1.14), and (5.5.10) on Jacobi, Laguerre, and 
Hermite polynomials, respectively. If the orthogonal polynomials I Pn(x) l 
associated with a distribution da(x) have the property that I p:(x) J is, save for 
constant factors, a system of the same kind (that is, associated with a certain 
distribution d[j(x)), then I Pn(x) l is (save for trivial linear transformations) 
one of the three special systems mentioned before (classical polynomials). 
(W. Hahn 3, Krall 1.) A similar statement holds if we replace I p:(x) J by 
lP~k'(x)J (Krall2, W. Hahn 4). 

Another problem of a similar nature has been considered by Bochner (1). 
He determines all sets of polynomials I Pn(x) l, where Pn(x) is of precise degree n, 
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satisfying a differential equation of the form 

(5.6.6) fo(x)y" + ft(x)y' + [h(x) + ;\.]y = 0, Y = Pn(x), A = An• 

Bochner obtains, in addition to the classical polynomials, certain polynomials 
related to J n+1(x), n integral, as possible solutions, as well as polynomials of 
the trivial type axn + bxm, where a and b are constants. 

5.7. Closure 

Here we prove the analogue of Theorem 3.1.5 for Laguerre and Hermite 
polynomials. The main difficulty of these cases is due to the fact that the 
orthogonality interval is infinite. Using the cu~tomary notation (§1.1), we 
have the following theorem: 

THEOREM 5.7.1. The system 

(5.7.1) -z/2 a/2 n e X X , a > -1, n = 0, 1, 2, ·. · · , 

is closed in L 2(0, + oo); the system 

(5.7.2) -z2f2 n e x , n = 0, 1, 2, · · ·, 

is closed in L 2
(- oo, + oo ). 

This statement is equivalent to the closure of the systems I e-"'12x,. 12L~a> (x)} 
and le-"'212H n(x)), respectively. Theorem 5.7.1 remains true, of course, if we 
replace e-"'12 bye-"' and e-"'212 by e-"'

2
, 'respectively. The idea of the following 

proof is due to J. von Neumann (see Hilbert-Courant 1, pp. 81-82). 
(1) We start with the remark that for a > -1 the system 

(5.7.3) ( 1)a/2 
logy yn, n = 0, 1, 2, · · ·, 

is closed in L 2(0, 1). This is a consequence of Theorem 3.1.5, p = 2, since 
(log (1/y)t is integrable in [0, 1]. 

Now let e-"'12x,.12f(x) belong to L 2(0, + oo ). Then (log (1/y)),.12j(log (1/y)) 
belongs to I}(O, 1), and it can be approximated in mean by functions of the 
form (log (1jy)),. 12p(y), where p(y) is a polynomial. Thus, corresponding to 
every E > 0 a polynomial p(y) can be determined such that 

(5.7 .4) 1"" e-"' xa lf(x) - p(e -z)} 2 dx < E. 

Hence all that remains to be shown is that if m is a non-negative integer, there 
exists for every o > 0 a polynomial p(x) such that 

(5.7.5) 1"" e-"'x,.le-m"' - p(x) }2 dx < o. 

(2) For this purpose we use (5.1.9), writing 
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(5.7.6) 

and choosing 

(5.7.7) 

Then 

CLOSURE 

m 
w=-

m + 1' 
w 

·m=--
1- w' 

N 

p(x) = (1 - w)"+1 L L~"'(x)wn. 
n-O 
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(5.7.8) 100 
e-x x" le-mx - p(x) )2 dx = (1 - w) 2"+2 100 

e-x x"{ £ L~"'(x)wn}2 

dx, 
0 n=N+l 

which, in _view of (5.1.1), is equal to 

(5.7.9) (1 - w)2a+2r(a + 1) f (n + a)w2n. 
n=N+l n 

Term-by-term integration is permitted here since the series 

t 100 

e-xxa I L~"'(x) II L~~'(x) I dx·wn+n' 
n.,n'=N+l 0 

is convergent. The expression (5.7 .9) becomes arbitrarily small when N is 
sufficiently large, and this establishes the statement. 

(3) Let e-x212f(x) belong to L 2
(- oo, + oo ). Then both functions 

-y/2 -d(y!) ± f(- y!) 
(5.7 .10) e Y 

2 

belong to L 2(0, + oo ). Therefore, by the preceding result (first taking a = - t, 
then a = +!), for every E > 0 there exist polynomials Pl(y), P2(Y) which satisfy 
the inequalities 

100 {e-y/2y-d(y!) +/(-yl)- e-y/2Y-1Pl(y)r dy < E, 

(5.7.11) 

100 { -y/2 -J.f(yt) - f(- yl) -y/2 i ( )}2 t < e y ---2------ - e y P2 y ( y E, 

or 

(5.7.12) 

so that 

(5.7.13) 
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For another proof based on the theory of integral equations, see Weyl 1, in 
partieular pp. 58-61, 64. See also Hamburger 1, pp. 200-205. 

(4) The argument used in (2) leads to the following result: 

THEOREM 5.7.2. The system 

(5.7.14) 
a > -1, n = 0, 1, 2, . ·. , 

is closed in L(O, + oo); the system 

(5.7.15) -z2 n e x , n = 0, 1, 2, . ·. , 
is closed in L(- oo, + oo ). 

We use again Theorem 3.1.5, p = 1. By means of (5.1.1) and Schwarz's 
inequality we find 

(5.7.16) 1oo e-"'xo: I L~o:'(x) I dx = O(no:12 ). 

For later purposes (§9.5 (1)) we note the following theorem: 

THEOREM 5.7.3. The functions 

(5.7.17) fn(x) = cf>(x)xn, n = 0, 1, 2, .. ·, 
where 

{" 0 <X< 1, x, 
(5.7.18) cf>(x) = -z (j 

X ~ 1, e x, 

a > -1, {3 arbitrary and real, form ~ closed system in L(O, + oo ). 

We apply Theorem 3.1.5 with da(y) = y-1cf> (log (1/y)) dy, 0 < y < 1, and 
p = 1. Furthermore, we need a bound for 

1oo cp(x)jL~o:>(x)ldx = 0(1) £
1

e-:r.xo:IL~o:>(x)ldx+ J""e-"'x(jiL~o:>(x)jdx. 

The first integral in the right-hand member is O(no:12); for the second integral, 
Schwarz's inequality yields the bound 

{f"" e-"' X2(j-o: dx Y{i"" e-"' xo: [L~o:)(x)f dx r = O(no:12). 

Concerning further formal properties of t.he Laguerre and Hermite poly
nomials, see Bateman Manuscript Project, vol. 2, Chapt.er 10, pp. 188-19G. 
Cf. also Problems and Exercises, 67, 68, 72-80. 

For problems related to Laguerre polynomials and applications of Laguerre 
polynomials see Szego 26, Askey-Gasper 3, Askey 9, Peetre 1, and Roosenraad 
1. For Hermite polynomials see de Bruijn 1. 



CHAPTER VI 

ZEROS OF ORTHOGONAL POLYNOMIALS 

In §3.3 it was proved that the zeros of orthogonal polynomials are all real, 
distinct, and lie in the in~erior of the orthogonality interval. \Ve shall now 
present a further and more detailed investigation of the location of these zeros. 
Starting with certain theorems valid under very general conditions imposed on 
the weight function, we proceed to the zeros of the classical polynomials and 
point out various methods used in their investigation. A particularly important 
tool in the latter connection is Sturm's theorem (§1.82), which in various cases 
leads to rather exact information concerning the zeros of polynomials satisfying 
certain linear differential equations of the second order. 

No claim of completeness is made for the present survey on the zeros. Con
cerning the literature about zeros of Laguerre and Hermite polynomials, we 
refer to \V. Hahn's "Bericht" (2). 

The methods of this Chapter are quite elementary. In particular, no sys
tematic use is made of the asymptotic properties of orthogonal polynomials of 
a special and general kind (Chapters VIII and XII), from which important 
information concerning zeros can also be derived. 

6.1. Density of zeros 

(1) THEOREM 6.1.1. Let da(x) be a distribution on the finite segment [a, b], 
and let IPn(x) l denote the associated orthonormal set of polynomials. Let [a', b'] 
be a subinterval of [a, b] such that f~: da(x) > 0. Then if n is sufficiently large, 
every polynomial Pn(x) has at least one zero in [a', b']. 

For the proof we shall usc the Gauss-Jacobi mechanical quadrature (§3.4). 
Let p(x) be an arbitrary 1r,. which is not greatrr than 0 in [a, b], except possibly 
in [a', b']. Assuming that the polynomial Pn(x) has no zeros Xv in [a', b'], 
and taking 2n - 1 ~ m, we obtain 

(6.1.1) l
b n 

p(:r) da(x) = L Avp(.rv) ~ 0. 
v=l 

Hence, when we apply the theorem of Weierstrass (Theorem 1.3.1 ), it follows 
that 

(6.1.2) ib f(x) da(x) ~ 0, 

where f(x) is continuous in [a, b] and not greater than 0 in [a, b], except pos
sibly in [a', b']. If we deJ6.ne 

111 
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(6.1.3) f(x) = {

0 in a ~ x ~ a' and b' ~ x ~ b, 

(x ·- a')(b' - x) in .a' ~ x :5; b', 

we reach a contradietion. 

(2) THEOREM 6.1.~~- Theorem 6.1.1 remains valid for infinite intervals [a, b] 
provided the zero of the greatest modulus of Pn(x) is o(n). 

This remark is due to W. Hahn (1, pp. 215-217). 29 If we write 

max [ x. - a' [[ b' - x.[ = Mn, v = 1, 2, · · · , n, 

the assumption means that Mn = o(n2
). We now choose 

I 

where Tk(x) denotes T.chebichef's po(ynomial (1.12.3). If we next assume 
that [a', b'] contains no zeros, we have 

-1 ~ M~\x.- a')(b' - x.) ~ 0, 

so that p(x.) ~ 1. It then follows that 

1~' p(x) da(x) ~ lb p(x) da(x) = ~ X.p(x.) ~ ~X. = lb da(x). 

Now T~(x) is increasing for X ~ 1, so that Tk(~ + 1) > T~(l)~ = e ~ for 
~ > 0; thus we have in [a', b'] 

where Cis a positive eonstant independent ~f n. Hence n2M;.X = 0(1), which 
is a contradiction. 

Concerning the distribution of the zeros for large values of n, see Theorem 
12.7.2. 

6.11.. Distance between consecutive zeros 

Here and in the subsequent sections we consider distributions of the type 
w(x) dx. 

(1) THEOREM 6.11.1. Let w(x) be a weight function on the finite interval 
[a, b], bounded from zero: w(x) ~ J.L > 0. Let xx > X2 > · · · > Xn be the zeros 
of the associated orthonormal polynomial Pn(x) in decreasing order.30 On writing 

(6.11.1) x. = !(a + b) + !(b - a) cos e.' 0 < e. < 71", v = 1, 2, ... 'n, 

29 He states (without a satisfactory proof) that if either a orb is finite, the subsequent 
argument succeeds even with o(n2). 

ao Of course, each x. depends on P and n, Xv = x.,. . 
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we have 

(6.11.2) log n 
e,+1 - e. < K -- , 

n v = 0, 1, 2, · · ·, n; eo = 0, en+t = 71'. 

Here the constant K depends only on J.L, a, and b. 

See Krawtchouk 2; Erdos-Turan (written communication). Erdos-Turan 
require the existence of f~ I w(x) l-1 dx instead of w(x) ~ J.L > 0. Their proof 
(cf. 2) is based on the study of the distribution of the interpolation points 
for which the associated fundamental polynomials (Chapter XIV) satisfy 
certain conditions. The following proof for the special case w(x) ~ J.L > 0 
has been prepared by B. Lengyel; he eliminated all references to the theory of 
interpolation from the argument of Erdos-Turan. 

(2) Let v be a ·fixed integer, 0 ~ v ~ n, and 'Y = (e. + e.+1)/2. We then 
define p(x) = PI Ha + b) + Hb - a) cos e1 by 

(6 11 3) 2 (X) = (si~Y('Y + e)/21 )
2m+ (sin IN(-y - e)~~J)2m 

· · P N sin I (-y + e)/21 N sin { ('Y - e)/21 ' 

where N and m denote certain positive integers. The single terms in the right
hand member represent the same trigonometric polynomial of degree m(N - 1), 
taken alternately with arguments 'Y + 0 and 'Y - e. Therefore, the sum is a 
cosine polynomial of the same degree m(N - 1). If m(N - 1) ~ 2n - 1, 
Theorem 3.4.1 can be applied. 

We then have 

(6.11.4) (e.+1 - e.)/4 ~; -y/2 < (-y + 11')/2 ~ 71'- (e•+1 - e.)/4; 

whence for all values of k, 1 ~ k ~ n, 

(6.11.5) 0 < (e•+1 - e,)/4 < ('Y + ek)/2 < 71' - (e•+1 - e.)/4, 

so that 

(6.11.6) . 'Y Vk • e-+1 - v. ( + ll )-1 ( ll )-1 sm - 2-- < sm 
4 

, k = 1, 2, · · ·, n. 

The same inequality, with ~ instead of <, holds for I sin ('Y - ek) /2 1-\ since 
I 'Y - ek I ~ (e.+1 - e.);~:. Thus, 

(6.11.7) (, ) < (N . e.+1 - e.)-2m 
p .xk = . sm 

4 
, k =I, 2, · · ·, n. 

By using (3.4.1) and (3.4.5), we obtain 

(6.11.8) lb ( e - e )-2m rb 
p(x)w(x) dx ~ N sin •+1 

4 
·· }a w(x) dx. 

On the other hand, the value of p(x) for e = 'Y is not less than !, so that 

------ ·-------
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if we write Xo = Ha + b) + Hb - a) cos 1', we obtain from a later result (cf. 
Theorem 7. 7) 

(6.11.9) 1& p(x)w(::r) d:r ~ !J. 1& p(x) dx ~ !J.cn-2p(x0 ) ~ ! /J.cn-2, 

where C is a positive constant depending on a and b only. Comparing (6.11.8) 
and (6.11.9), we now have 

r -2 · HI - (), 
( 

() 

)

-2m 1& ! !J.Cn ;£ N sm 
4 

- a w(.r) d:r, 

or 

By substituting N == [n/log n], m = [log n], we see that the condition 
m(N - 1) ;£ 2n - 1 is satisfied for large values of n, and (6.11.2) follows 
immediately. 

The same inequality (6.11.2) holds without essential change if w(x) ~ 
!J.(l - xt(I + x),s, !J. > 0, where a and {3 ~re greater than -1. In this case, 
the last remark in §7.71 (4) must be used. The constant K in (6.11.2) now 
depends on !J., a, b, a, and {3. 

(3) We ·note the following simple result: 

THEOREM 6.11.2. Let w(x) be a we-ight function on the interval [-1, +I], 
and suppose 

(6.11.11) -1;£x;£+1, 

where A and Bare positive constants. If x. = cos e. , 0 < e. < 1r, v = 1, 2, · · . , n, 
~tand for the zeros of the orthonormal polynomial Pn(x) associated with w(x), in 
decreas~·ng order, we have 

(6.11.12) v = 0, 1, 2, · · ·, n; Oo = 0, On+I = 1r. 

This remark is due also to Erdos-Turan (written communication). The 
proof can be based on Theorem 3.41.1. We denote by X. the Christoffel number 
corresponding to x. . Then 

(6.ll.l3) A(O•+I- e.);£ 1~·+
1 

w(cosO) sin Ode= 1~~~ w(x)dx ;£ x. + X,+1 , 

v = 0, 1, 2, · · · , n; Xo = An +I = 0. 

On the other hand, 

(x) = (cosO) = (sin {n(O - 0.)/2}_)
2 + (sin {n(O + 0.)/2} )

2 

P P nsin {(0- o.)/21 nsin {(0 + o.)/2l 

·---,...----..,----------..,--------··-······ 
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is a 11"n-l in X = cos e. Furthermore, p(x.) = p(cos e.) ~ 1, so that (cf. (1.6.5)) 

X. ~ t Akp(xk) = 1+1 
p(x)w(x) dx ~ B {" p (cos 0) dO 

k-I -1 }o 
(6.11.14) 

= B 1+,.. (sin. {n0/21 )
2 

dO = 211"B. 
_,.. n sn1 {0/21 n 

On combining this with (fU 1.13), the statement is seen to be true. 
Erdos-Turan proved also ( cf. 2) that if 0 < A ~ w(x) ~ B, - 1 ~ x ::: + 1, 

and 0 < E < 71"/2, then, wii~h the notations of Theorem 6.11.2, 

(6.11.15) 

provided E ~ e. ~ 71" - E. Here K1 and K2 depend on A, B, and E. 

6.12. Variation of the zeros with a parameter 

A. Markoff proved ( 4) an important statement concerning the dependence of 
the zeros of Pn(x) on a parameter r which appears in the weight function 
w(x) = w(x, r). 

(1) THEOREM 6.12.1. Let w(x, r) be a weight function on the interval [a, b] 
depending on a parameter· r such that w(x, r) is positive and continuous for 
a < x < b, rx < r < r2 . Also, assume the existence and continuity of the partial 
derivative w.(x, r) for a < :c < b, rx < r < r2 , and the convergence of the integrals 

(6.12.1) lb x• wT(x, r) dx, v = 0, 1, 2, ... , 2n - 1, 

uniformly in every closed inte·rval r' :S r ~ r" of the open segment r1 , r2 . If 
the zeros of Pn(x) = Pn(x, r) be denoted by Xx(r) > x2(r) > · · · > Xn(r), the vth 
zero x. ( r) (!or a fixed value of v) is an increasing function of r provided that wT / w 
is an increasing function of x, a < x < b. 

The integrals (2.2.1) for the moments c. [da(x) = w(x, r) dx] converge uni
formly in r' ~ r ~ r", and the relations (2.2.1) may be differentiated with 
respect tor; v = 0, 1, 2, . · . , 2n - 1. Let a < a' < b' < b. For a' ~ x ~ b', 
r' ;£ r ~ r", the function w(x, r) has a positive minimum; whence the deter
minants Dn--1 are uniformly bounded from zero· if r' ~ r ~ r" [(2.2.11)]. 
According to (2.2.6) the coefficients of Pn(x), therefore also the zeros x.( r) 
(which are all distinct), possess continuous derivatives for r 1 < r < r2. 

Let p(x) be a fixed 11"2n-I. Apply Theorem 3.4.1 with da(x) = w(x) dx. 
The Christoffel numbers ;,. = X.( r) are obviously functions of r with a con
tinuous derivative [(3.4.3)]. Differentiating (3.4.1) with respect to r, we obtain 

(6.12.2) 

------ ·-------
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Now we substitute 

(6.I2.3) p(x) = fpn(x) 1
2 

X- Xv ' 
whence 

so that 

(6.I2.4) 1b ( ) { Pn(x) 1
2 

( ) { 1 
( ) 2 '( ) w,. x, T dx = X. T Pn x. I x. T , 

X- Xv 

since p' (x1J = 0 if J.L ;:C v. The left-hand member can be written in the form 

(6.I2.5) l b{- ( )-wT(x.,r) ( )}{Pn(x)l
2

d WT x, T ( ) w x, T x, 
W Xv 1 T ,X - Xv 

the second term being zero because of the orthqgonality. The difference 

wT(x, r) wT(x., r) 
w(x,r) w(x., r) 

(6.I2.6) 

has the same sign as x - x. according to the assumption. This establishes the 
statement.31 

(2) We point out the following eonsequence: 

THEOREM 6.I2.2. Let w(x) and W(x) be two weight functions on [a, b], both 
positive and continuous for a < x < b. Let W(x)/w(x) be increasing. Then if 
{ x.l and {X .1 denote the zeros of the corresponding orthogonal polynomials of 
degree n in decreasing order, we have 

(6.I2.7) x. < x.' 
Defining w(x, r) = (I - r)w(x) + rW(x), 0 ~ 

wT(x, r) W(x) - w(x) _1 

(6.I2.S) w(x, r) = (I - r)w(x) + rW(x) = r 

v = I, 2, · · · , n. 

r ~ I, we see that 
-1 

T 

I - r + rW(x)jw(x) 

is an increasing function of x, 0 < r < 1. We also have w(x, 0) = w(x), 
w(x, I) = W(x). 

Various applications of these results will be given in §6.21. 

6.2. Location of the zeros of the classical polynomials 

The discussion of this question, given in §3.3 for the general orthogonal 
polynomials, was based on the orthogonality property. In the particular cases 
called classical polynomials (§2.4) there exist various other approaches which 
are interesting from the point of view of method. It is assumed that a > -I 
and {3 > -I in the Jacobi case, and a > -I in the Laguerre case; furthermore, 
n ~ 2. 

31 This proof docs not differ essentially from the original one due to A. Markoff, although 
the present arrangement is somewhat clearer. 

-------·------------- -----,---r---------r--·----.. --.. ·--. 
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(I) First of all, if we are dealing with the classical polynomials, a more precise 
form can be given to the argument indicated in §3.3 (4). In fact, for the 
polynomials in question the number of the sign variations in (3.3.5) for x = a 
and x = b can be readily calculated.32 We use (4.1.I) and (4.1.4) for Jacobi 
polynomials, and (5.1.7) and (5.1.8) for Laguerre polynomials. In addition to 
the reality and distinctness of the zeros, the statement as to their location 
follows from the same argument. 

In the Jacobi case the value of 

sgn { P~'::f> (x) l · :x { p~a,,s) (x)} 

at the zeros of P~a,,s>(x) can also be determined by means of (4.5.7) (instead of 
the method in §3.3 (4) generally given). In the Laguerre case, (5.1.I4) can be 
used. The situation is especially simple for Hermite polynomials; we have 
but to apply the first equation in (5.5.IO). 

(2) By Rolle's theorem the formulas (4.3.I), (5.1.5), (5.5.3) of Rodrigues' 
type furnish the statement again. We must bear in mind that the derivatives 
of (I - xr+a(I + xrH, e-xxn, and e-x

2 
of the orders 0, 1, 2, · · · , n - 1 vanish 

at x = ±I, x = 0, + oo :• and x = ± oo, respectively. 
(3) The statement ~lso follows from the differential equations (4.2.1), (5.1.2), 

and (5.5.2). To this end we first show that the zeros of Jacobi polynomials 
are different from -1, +I, and from one another. Differentiating (4.2.I) k 
times, we have 

(I - x2)y<HZ> + [!3 - a -· (a + i3 + 2k + 2)x]y<HI> 

+ [n(n + a + i3 + I) - k(k + a + i3 + I)]y<k> = 0. 

Were y to vanish for x = +I or x = -I, it would follow from (4.2.I) that 
y' = 0, whence from the equation just obtained (k = I) y" = 0, and so on; 
that is, y = 0. (The coefficient of y<Ho is different from zero for x = ± 1.) 
Therefore, each of the zeros of P~a.,s> (x) is different from ±1. Moreover, the 
zeros are all simple since ( 4.2.I) combined with y = y' = 0, x ;:e ±I, yields 
(1 - x2)y" = 0, or y" = 0. Using the equation for y', we find y"' = 0 in 
the same way, and so on; that is, y = 0 again. 

Similarly, we show that the zeros of L~a> (x) are simple and different from 0, 
and the zeros of H n (x) are sim pie. 

We next apply the following theorem due to Laguerre (P6lya-Szeg6 1, vol. 2, 
pp. 59, 244-245, problem 118). 

Let f(x) be a 11"n and Xo one of its simple zeros. Then any circle through the 
points 

(6.2.1) ' ( ) f'(xo) 
x0 and Xo = Xo - 2 n - 1 f" (xo) 

32 Professor P6lya has kindly called to my attention the fact that the same can be done 
for the general orthogonal polynomials by using the determinant representation (2.2.6). 

------·--------
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contains some zeros of f(x) in both domains bounded by it, unless all the zeros 
lie on the circumference of this circle. The same is true if a straight line replaces 
the circle. 33 

The proof is as follows. Let f(x) = (x - x0 )g(x), and let x1 , x2, ... , Xn-I 
denote the zeros of g(a:). Then g(xo) = f'(xo) and g'(xo) = !f"(xo), so that 

I I I = g'(xo) = 1 f"(Xo) 
(6.2.2) + --- + ... + ( ) 2 • 

Xo - Xx Xo - X2 .'ro - Xn-1 g Xo f' (xo) 

Hence (6.2.I) becomes 

(6.2.3) _I_ (-I- + I + ... + I ) = I 
n - I Xo -· Xx Xo - X2 Xo - Xn-1 Xo - X~ . 

The linear transformation X = (xo - x)-1 carries the points x1 , x2, · ·. , Xn-I, 

and X~ into certain points Xx' x2' ... ' Xn-1 and X~ . Then we have 

(6.2.4) _I_ (X1 + X2 + · · · + Xn-x) =X~, 
n --I 

so that any straight line through X~ separates the points Xx, X2, ·. · , Xn-1 
from one another, unless they all lie on this straight line. Referred back to the 
x-plane, this yields the theorem. 

For the Jacobi polynomials y = p~a,{J>(x) we obtain from (4.2.I) 

(6.2.5) 
2 . 

Y
1 I X - if y=O 

y" -- a - {3 + (a + {:J + 2)x ' 

so that 

(6.2.6) 
, 2(n - I) 

Xo = Xo - a + I {3 + I . 

I - Xo I+ Xo 

Let x0 be a zero of y with the greatest imaginary part. If there were any non
real zeros, we should have 3-(xo) > 0, and 

(6.2.7) 3 (a+ I)> 0, 
I- Xo 

3 (- {3 + I)> 0 I+ Xo ' 

whence S(x~) > 3(xo). Therefore x~ lies in the half-plane 3(x) > 3(xo), 
and a circle can be dr:awn through x0 and x~ which contains no zeros. (The 
zeros cannot all lie on this circle since they would then have to coincide with 
x0 , an impossibility.) Hence all the zeros are real. Now let Xo be the greatest 
zero, x0 ;:e ± 1. If we had Xo > I, (6.2.6) would give x~ > Xo. Considering 
an arbitrary circle through xo and x~ , we are again led to a contradiction. 

In the case of Laguerre polynomials, 

33 If f"(x 0) = 0, we have x~ = oo, and a straight line through x0 must be considered. 
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, 2(n - 1) 
Xo = Xo- • 

1 _a+ 1 

, 
(6.2.8) 

Xo 

From ,S(xo) > 0 we obtain, as before, ,S(x~) > ,S(x0). From x0 < 0 we find 
' 34 

Xo < Xo. 

In the case of Hermite polynomials, 

(6.2.9) 
, n- 1 

Xo = Xo- --
Xo ' 

so that ,S(x~) > ,S(xo) if ,S(xo) > 0. 
( 4) Laguerre's theorem also furnishes certain bounds for the zeros. Let x1 

be the largest and Xn the smallest of the zeros of p~a,fl>(x). Then (a+ 1)/(1 - x1) 

- ({3 + 1)/(1 + xx) > 0 and (cf. (6.2.6)) 

(6.2.10) -1 < X ~ X - 2(n - 1) 
n _ 1 a + I _ {3 + I < Xx , 

1 - Xx 1 + Xx 

so that 

(6 .2.11) ~ + 1 _ {3 + ]~ > 2(n - 1), 
1 - Xx 1 + x:x 1 + Xx 

{3- a+ 2n - 2 
Xx > {3 + a + 2n ' 

or for {3 ~ a 

(6.2.12) 
n- 1 

xx> -+ . n a 

ln the ultraspherical case Xn = -xx, so that 

(6.2.13) a_+_I _ ~_+_I > n_-_1 
1 - Xx 1 + Xx Xx ' ( 

n 1 )! 
Xx > n + 2a + 1 · 

(If n = 2, the sign > is to be replaced by =.) This bound is better than the 
preceding one. Both bounds have the form 1 - (a + 1)/n + O(n-2

). Simi
larly, an upper bound can be obtained for Xn. 

An analogous argument yields the bounds 

(6.2.14) Xo > ~~n + a - 1, 

for the largest zeros Xo of L~a> (x) and of H n(x), respectively. (For n = 2 the 
second inequality becomes an equation.) These are very rough estimates 
(Theorem 6.32). 

(5) Another proof of the reality and simplicity of the zeros (also furnishing 
a < x. < b) can likewise be based on the differential equation by using the 
considerations of §6.7. It must be remembered that the polynomials in ques
tion are the only polynomial solutions of the corresponding differential equa
tions (see §4.2 (2), §5.1 (1)). 

34 From (6.2.8) we also find that the least zero is <a + 1. 
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(6) In this connection, we refer to a very elementary method due to Laguerre 
(3), which furnishes certain upper bounds for the zeros of the classical poly
nomials .. Since g"(xo) = !f"'(xo), we have from (6.2.2) 

1 + 1 + . .. + 1 = _ (~) g' (x0) 

(xo - X1)2 (xo - X2)2 (xo - Xn-1)2 dxo g(xo) 
(6.2.15) 

_ {g'(xo) 12 
- g(xo)g"(xo) _ 3{f"(xo) 12 

- 4f'(xo)f"'(xo) 
- {g(xo) 12 - 12{f'(xo) 12 

and accor-ding to Cauehy's inequality 

(n - 1) L: ~ L: --n-1 1 {n-1 1 }2 

•-1 (xo - x.)2 •-1 Xo - x. 

or 

(6.2.16) 3(n- 2){f"(xo)l 2
- 4(n- 1)f'(xo)f"'(xo) ~ 0. 

This condition is necessary for each zero of a polynomial with real and distinct 
zeros. 

In the case of Legendre polynomials, 

so that 

whence 

(6.2.17) 

(1 - x~)f" (xo) = 2xof' (xo), 

(1 - x~)f"'(xo) = 4xof"(xo) - (n - 1)(n + 2)f'(xo) 

= 2 - n - n
2 + (6 + n + n2)x~f'( ) 

2 Xo , 
1- Xo 

3(n - 2)4x~ - 4(n - 1)[2 - n - n2 + (6 + n + n2)x~] ~ 0; 

{ 
n + 2 }t 5/2 ·1 Xo I ~ (n - 1) = 1 - - + .. ·. 

n(n2 + 2) n2 

The "true" constant, as n --t oo, in the second term is ji/2 = 2.891592 · · · 
(instead of 5/2), where j 1 is the least positive zero of Jo(x) (see (6.3.15)). 

In the case of Hermite polynomials, from (5.5.2) 

f"(xo) = 2.xof'(xo), f"'(xo) = 2(2x~ - n + 1)f'(xo), 

3(n - 2)x~ - 2(n - 1)(2x~ - n + 1) ~ 0; 

whence 

(6.2.18) 
< 2t(n - 1) _ t _ 9 -t ... I Xo I = (n + 2)~ - (2n + 1) 2 (2n + l) + . 

·---·----·····. 
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This bound is better than that obtained by Sturm's method (cf. §6.31 (4)), 
although according to (6.32.5) the "true" order of the second term is n-116 

6.21. Inequalities for the zeros of the classical polynomials 

A. ::\Iarkoff's theorem (§6.12) furnishes .several remarkable inequalities for 
the zeros of the classical polynomials. 

(I) In discussing the zeros of Jacobi polynomials, we again enumerate the 
zeros x. = cos e. in decreasing order: 

(6.21.1) +I>xx>xz> ··· >xn> -l; 0<01 <02< ··· <On<11". 

THEOREM 6.21.1. Let ( ±. = x.(a, {3) l denote the zeros of the Jacobi polynomial 
p ~a' {3) (X) in decreasing order. Then 

(6.21.2) ax.< 0 
aa ' 

ax. 0 
a{3 > ' 

In the ultraspherical case a = {3 we have 

(6.21.3) ax. 0 
aa < ' 

v = 1, 2, · · ·, n. 

v = 1, 2, · · · , [n/2]. 

Applying Theorem 6.12.1 to w(x, r) = (1 - x)a(l + x) 13 with a = r, {3 fixed, 
or {3 = r, a fixed, we obtain the inequalities (6.21.2) (cf. A. Markoff 4; Stieltjes 
6, p. 76). In the first case we have, in fact, wT/w = log(l - x), which is a 
decreasing function of x. The proof is similar in the second case. 

The inequality (6.21.3) for the ultra.spherica.l case is due to Stieltjes (6, p. 77). 
For the negative zeros the opposite inequality holds. This inequality does 
not follow directly from Theorem 6.12.1, since for w(x, r) = (1 - x2f the ratio 
wT/w = log(l - x

2
) is not monotonic. However, it follows immediately from 

(6.21.2) by using (4.1.5). 
[The proof of Stieltjes for (6.21.2) and (6.21.3) is entirely different from that 

of Markoff and is based on the differential eq ua.tion (see below §6.22). Markoff 
also attempts a. direct approach to (6.21.3) through a. general theorem, but his 
proof is incorrect. In his notation (4, p. 181) the function 

f(y) = (y - e) V(y, ~) 
aV(y, ~) 

a~ 

is equal to y(log 1/(1 - y2
))-

1 in the ultmspherica.l case. This function ap
proaches+ oo a.s y----. +O and- oo for y----. -0. Therefore, a.lthoughf'(y) < 0, 
nothing can be said about the sign of the ratio (f(y) - f(x;))/(y - x;). Inci
dentally, the condition aV(y, ~)ja~ > 0 of l\hrkoff is not satisfied in the ultra
spherical case a.t y = e = 0; 

In the general case, f(y) > 0 for y > e, and f(y) < 0 for y < e. This fact is 
compatible with the decreasing property only if the denominator of f(y) becomes 
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0 as y ---t e. The function f(y) is, however, in any case discontinuous at y = e, 
so that in the general1 case the same criticism. applies as in the special case 
mentioned before.] 

Apparently, Stieltjes was in possession of the general theorem of §6.12 (see 
6, p. 79, section 5, and the remark on p. 88). 

(2) THEOREM 6.21.2. Let the parameters a and {3 of the Jacobi polynomial 
p~a.f3>(x) be subject to the conditions 

(6.21.4) 

Then we have for the zeros (notation as before) 

(6.21.5) ~v- 1 < < 2v _ 
2n + 1 7r ·-

0• = 2n + 1 7r' 
v = 1, 2, · · ·, n, 

with equality only in the special cases a = -!, {3 == +!and a= +!, {3 = -!, 
respectively. 

For Legendre polynomials, that is, for a = {3 = 0, this result is due to Bruns 
(1). The general case is due to A. Markoff and Stieltjes. For the proof we 
observe that according to (6.21.2) the maximum and minimum of x. = cos o. 
are attained in the special cases mentioned above. Now \Ve use (4.1.8). 

(3) THEOREM 6.21.3. 

(6.21.6) 

we have the inequalities 

(6.21.7) 

In the ultraspherical case 

- .l < rv = {3 < +.! 2 =..... = 2 

( 1)7r 7r p--2 _5,() :$p--
n- •- n+1' v = 1 2 .. · [n/2] 

' ' ' ' 

w£th the equality sign valid only in the special cases a = {3 = -! and a = {3 = +!, 
respectively. 

The first proof of these inequalities, which are more precise than the corre
sponding inequalities (t).21.5) of "Bruns's type," is due to Stieltjes (6). Mar
koff's proof is not correct (see above). For the proof of Stieltjes see §6.22. 
Refer also to §6.3 (2) and (3). Corresponding inequalities for the negative 
zeros can readily be obtained from the symmetry relation x. + Xn+I-• = 0. 

We base our proof on Theorem 6.21.1. According to (6.21.3), the maximum 
and minimum of x., v ;~ [n/21, are attained if a = {3 = -!and a = {3 = +!, 
respectively. Now the zeros of the polynomials ( 4.1. 7) are 

(6.21.8) COB (v - !) ~ 
n 

and· 
7r 

cos v n + 1, v = 1, 2, · · ·, n. 

(4) In the case of ~~guerre polynomials we have w(x, r) = e-xxa, with a = r, 
and wr/w = log x increasing. Hence the zeros of Laguerre polynomials are 
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increa~ing functions of the parameter a, a > -1. Thus, on account of (5.6.1), 
we obtain the following theorem: 

THEOREM 6.21.4. If 

(6.21.9) 

the zeros x. of L ~a) (x), arranged in increasing order, have the bounds 

(6.21.10) 1:2 < . < 2 c;;v = Xv = 71v • 

Here~. and 'T/v denote the vth pos1'tive zeros of the Hermite polynomials H2n(x) and 
H2n+I(x), respectively. 

6.22. Proof of Stieltje,s for the monotonic variation of the zeros of the 
classical polynomials 

Stieltjes (6, pp. 73-77) gives a proof of Theorem 6.21.1 along the following 
lines. Substituting x = x. in (4.2.1), we have 

! y" + ! a + 1 + ! ~ + 1 = __ 1 _ + ... + 1 
2 y' 2 Xv - 1 2 Xv + 1 Xv - X1 Xv - Xn 

(6.22.1) 
+ ! a + 1 + ! {3 + 1 = O. 

2 x.- 1 2 x. + 1 

Differentiation of this equation with respect to a yields 

1 (ax. _ ax1) + 1 (ax. _ ax2) + ... 
(Xv - X1) 2 Oa Oa (Xv - X2) 2 Oa Oa 

+ 1 (ax. OXn) + 1 a + 1 ax. 
(6·

22
·
2
) (Xv - Xn) 2 oa - oa 2 (Xv - 1)2 oa 

+ 1 {3 + 1 ax. 1 1 _ 0 2 (Xv + 1)2 oa - 2 Xv - 1 - 1 

or 

(6.22.3) v = 1, 2, · · ·, n, 

where 

(6.22.4) 

a., = 1 + ... + 1 + 1 + 
(x. - X1) 2 (x. - Xv-I) 2 (x. - Xv+I) 2 

1 1 a+1 1 !3+1 
+ (x. - Xn) 2 + 2 (x. - 1)2 + 2 (x. + 1)2 ' 

and 

(6.22.5) 
1 

p ¢ J.L. 
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The matrix (av11 ) is positive definite since 
.. .. 

K = L: L: a.11 u.u11 

(6.22.6) 
v=l 11=1 

Stieltjes now uses the following theorem: If A = (a.11 ) is a positive definite 
matrix with a.11 < 0, l' ¢ J.L, then the reciprocal matrix (A)-1 has only positive 
elements. 

[We can assume that a.v = 1, v = 1, 2, . ·. , n, so that K = E - L, where E 
is the unit form, and the coefficients of L are non-negative. Then the absolute 
value of L is less than 1 if E = · 1, and the reciprocal form of K can be writ
ten as follows: 

(6.22.7) (.K)-1 
= E + L + L2 + L3 + · ... 

All the forms of the right-hand member have non-negative coefficients, and the 
coefficients of E + L are also positive.35

] 

By virtue of this theorem, the statement follows immediately from (6.22.3). 
The proof for the seeond inequality of (6.21.2) is similar. The ultraspherical 

case (6.21.3) can either be treated by means of (4.1.5), or directly handled (cf. 
Stieltjes, loc. cit.). The same method applies to Laguerre polynomials (Theo
rem 6.21.4). In this case we have 

a, .• = .,..----1---::, + .. . + 1 + 1 + ... 
(x. - X1) 2 (x. - Xv-I) 2 (xv - Xv+\) 2 

(6.22.8) + 1 +a+1 
(xv - x,.) 2 2x; ' 

1 

with (2x.)-1 on the right-hand side of the equations corresponding to (6.22.3). 

6.3. Sturm's method; Jacobi polynomials 

Sturm's method (see §1.82) leads very simply to certain inequalities for the 
zeros of Jacobi polynomials (see Szego 20, Buelll). In this way we not only 
confirm some of the results of §6.21, but we are also able to improve them to a 
considerable degree. "T e assume in this section that 

(6.3.1) _!. < a < +!. 
2 = = 2! 

:...._!. < {3 < +!. 
2 = = 2! 

3s This argument is different from that of Stieltjes, which is likewise very simple and 
elementary. The present argument, however, furnishes similar theorems in more compli
cated cases. 
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excluCling, in general, the case ci = {3
2 

= ! ; we arrange the zeros x. = cos o. of 
p~a,f3> (x) in decreasing order: 

r 

(6.3.2) + 1 > X1 > X2 > • • • > Xn > -1; 0 < 01 < 02 < • • · < On < 7r. 

(1) THEOREM 6.3.1. Under the condit£ons mentioned we have 

(6.3.3) 0 0 7r 
v - v-1 < n + (a+ {3 + 1)/2' p = 1, 2, ... 'n + 1. 

This holds for a
2 = {3

2 = i w£th the = sign instead of <. Here we define 

(6.3.4) Oo = { O if a > - !, and On+I = { 7r if ·f3 > 
-01 1J a = -!, 27r- On if {3 = 

Wenoticethatfora = {3 =-!,a= {3 =+!,a= -{3 =!,a= -{3 = 

(6.3.5) 0. = (v- !) ~ 
n' 

7r 
P--

n + 1' 
7r 

P--

n+!' 
p - ! -+ 17r' n 2 

_.l 
2' 

v = 0, 1, · · ·, n + 1, 
respectively. 

Inequality (6.3.3) follows immediately from Theorem 1.82.1 by compa.ring 
(4.24.2) with 

(6.3.6) d2 ~ + ( + a + {3 + 1)2 = 0 
d612 n 2 v . 

We consider the solution v = sin { (n + (a+ {3 + 1)/2) (0- 0._1)}. For a > -!, 
the condition corresponding to (1.82.2) is satisfied at xo = Oo = 0 (and similarly 
for {3 > -!at Xo = On+I = 1r). 

(2) THEOREM 6.3.2. Under the conditions mentioned we have 

v + (a + {3 - 1) /2 . v 
(
6

·
3

·
7

) n + (a+ {3 + 1)/2 7r < 0• < n + (a+ {3 + 1)/2 1r, v = I, 2' · · ·' n, 

whereas in the ultraspherical case a = {3 = X - ! 

(6.3.8)' 0 > v + a/2 - ! v - (1 - X)/2 v =I, 2, ... , [n/2]. 
v + + 1 7r = + '\ 7r, n a 2 n 1\ 

The bounds (6.3.7) follow from (6.3.3) by addition and by using (4.1.3) (see 
Buell 1, pp. 311-312). In case a = - ! , the factor v of the upper bound can be 
replaced by v- !, while if {3 = -!,the factor v +(a+ {3- 1)/2 of the lower 
bound can be replaced by l' + (a + {3)/2. In the cases (6.3.5) the same bounds 
hold, at times with = replacing <. These inequalities are more precise than 
(6.21.5) provided a + {3 > o·. In the case of Legendre polynomials (a = {3 = 0) 
they are identical with (6.21.5), that is, with the inequalities of Bruns (1). 

The inequality (6.3.8) holds only for the zeros 0 < o. < 1r /2; it becomes an 

·------··-···-
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equation for a = {3 = -!or a = {3 = +!. It is more precise than the lower 
estimate of (6.21.7). 

For the proof of (6.3.8) we observe that according to (6.3.3), the sequence 

(6.3.9) o' = () - v + a/2 - i 
v ,, + + 1 7r, n a 2 

v = 0, 1,2, · · · ,[(n+ 1)/2], 

is decreasing. Now for n odd, we have o;n+1)/2 - 0. For n even it suffices to 
show that 8~12 > 0. This follows from (6.3.3), since On/2 + On/2+1 = 1r. 

A similar argument ean be used to improve the left inequality in the ,general 
case (6.3.7) provided the zeros considered all lie in a certain preassigned part 
0 ;£ o. ;£ c of the interval [0, 1r}. For further proofs of (6.3.8) see (5) and 
§6.6 (2). I 

(3) In this connection we prove the following theorem: 

THEOREM 6.3.3. 
sequence 

(6.3.10) 

Let n ~ 2. Under the condition <a - {J < +!the 

of the zeros of p~a 'a) (cos 0) is convex, that is, o. - 0._1 is increasing. 

This follows by applying Theorem 1.82.2 to (4.7.11), 0 < X < 1. In fact, 
the coefficient of u in (4.7 .11) decreases monotonically. In the cases a = {3 = ±! 
the differences o. - 0 •. -1 are constant. Here again Oo = 0 if a > - !, while 
Oo = -81 if a = - !. If n is even, the last term of (6.3.10) lies in [7r/2, 1r], 
and then (1.82.4) is used. For a > -! condition (1.82.5) is satisfied. 

From Theorem 6.3.3: a similar convex property for the sequence {x.} can 
easily be derived (cf. Hille 4). 

By means of Theorem 6.3.3 the upper estimate of (6.21.7), more precisely 

(6.3.11) -!~a < +!; v = 1, 2, · · · , [n/2], 

can be proved in another way (Szeg6 20, pp. 5-6, 8). For, let -! < a < +!. 
The sequence 

(6.3.12) 
II V 

o. = o. - n + 1 7r, v = 0, 1, 2, · ·. , [n/2] + 1, 

is convex; it therefore attains its maximum either for v = 0 or for v = [n/2] + 1. 
Now o~' = o~'n/21+1 = 0 if n is odd. If n is even, we must bear in mind that 

II II 

()n/2 + ()n/2+1 = 0. 
(4) Finally, by means of Sturm's method, we derive certain inequalities which 

involve the zeros of Bessel functions. In some respects these are more precise 
than the preceding inequalities, although not so simple. 

THEOREM 6.3.4. Let a = {3 = X - !, 0 < X < 1. Denoting by i1 < j2 < ia < · · · 
the positive zeros of Bessel's function J a(x), we have 
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(6.3.13) )v 
0
" < n + X' 

For X = 0 and X = 1 the sign < in (6.3.13) has to be replaced by the sign =. 
The statement follows by comparing (4.7.11) with (see (1.8.9)) 

( ) d
2 

v {c )2 X ( 1 - X)} ! 6.3.14 d()2 + n + >, + 
02 

v = 0, v =OJal(n + X)O}, a= X-~. 

The estimate (6.3.13) of o. is the best possible in the sense that for a fixed v 
and for n arbitrary the factor j. cannot be replaced by a smaller one since· 
(Theorem 8.1.2) 

(6.3.15) lim no. = lim n()vn = j • . 
n-+oo n-+OO 

Incidentally, for 0 < o. ~ 1rj2, a similar lower bound for o. can be obtained, 
namely, 

(6.3.16) 

where k is a positive numerical constant (Szego 20, p. 9). Then (6.3.15) follows 
from (6.3.13) and (6.3.1EI). 

( 5) Finally, another remarkable property of the zeros o. = Ovn of P~~> (cos 0) 
can be proved by a proper application of Sturm's theorem. On substituting 
() = ~/(n + X) in (4.7.11) we obtain 

( ) d2u + {ll + X(1 - X) } u = 0 
6.3.

1
7 d~2 (n + X) 2 sin2 {~/(n + X)} · 

If 0 < X < 1, then (n + X) 2 sin 2 I U (n + X) l increases with n provided~ is fixed 
and 0 < ~ < (n + X)1r. Thus (n + X)Ovn increases with n if vis fixed.36 From 
these considerations the estimate (6.3.13) follows again if (6.3.15) is known. 
Indeed, (n + X)Ovn < limn-+oo (n + X)Ovn = j • . 

As another application we can give also a new proof of (6.3.8) since 

(6.3.18) (n + X)Ovn ~; (2v - 1 + X)Ov,2v-l = (2v - 1 + X)7r/2 

for n ~ 2v - 1. Cf. Problem 32. 

6.31. Sturm's method; Laguerre and Hermite polynomials 

Suppose a > -1. 

(1) THEOREM 6.31.1. Let x. = Xvn = Xvn(a), p = 1, 2, ... ' n, be the zeros 
of L~">(x) in increasing order. Then 

f6.31.1) 
(j./2)2 

x. > n + (a+ 1)/2' 
v = 1, 2, ... , n. 

Here j. has the same meaning as in Theorem 6.3.4. 

•• By the separation theorem (Theorem 3.3.2) 9," decreases as n increases for fixed "' 
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When we compare the third equation in (5.1.2) with 

(6.31.2) U" + (n + (a + 1) /2 + 1 ....:. a
2

) U = 0 
x 4x2 ' 

which has the solution 

(6.31.3) U = X! J a {2x! ( n + a ~ 1 Y} 
(cf. (1.8.10)), the statement follows immediately. Condition (1.82.2), x' = 0, 
is satisfied in the present case. 

An upper bound of ~~. of a similar kind can alsq be easily obtained. Let w 

be a positive constant such that w < 4n + 2(a + 1). Compare the same 
equation (5.1.2) as before with 

(6.31.4) v" + {~~ + (a+ 1)/2 - w/4 + 1 - a2} v = 0, 
x 4x2 

where 0 < x ~· w. Then 

(6.31.5) X < (j./2)2 
• n + (a + 1)/2 - w/4' 

if the expression on the right-hand side is not greater than w. (For a fixed v, this 
· is the case, provided n is large enough.) The constant (j./2)2 in the inequalities 

(6.31.1) and (6.31.5) is the best possible in the sense explained in §6.3 (4). For 
a fixed v, we have, for the zero x. = Xvn, 

(6.31.6) lim nx.n = (j./2)2
• 

n-+oo 

The same results can be obtained by use of (1.8.9) and the fourth equation 
in (5.1.2). Condition (1.82.2), x' = 0, is again satisfied. 

(2) Both equations (5.1.2) mentioned furnish upper bounds for the zeros 
if we use Theorem 1.82.3 and take into account the fact that the correspond
ing solutions vanish at x = + c.c. The bound which is obtained from the lourth 
equation is slightly better. It is given in the following theorem: 

THEOREM 6.31.2. The largest zero of L~a>(x) satisfies the inequaWy 

(6.31.7) Xn < 2n +a+ 1 + ((2n +a+ 1)2 + i- a 2 1! r-v 4n. 

(3) Introducing x = (n + (a + 1)/2}- 1~ in the third equation (5.1.2), 
we obtain 

(6.31.8) 

Since the coefficient of u increases with n, it follows that, for a fixed v, the 
expression 
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(6.3{9) In+ (,x + 1)/2}x. = In+ (a+ 1)/2}x.n 

decreases with increasing n. The limit as n ---t oo is (j./2) 2 (according to 
(6.31.6)). An interesting; consequence of thi~ decreasing property is 

(6.31.10) (n + (a+ 1)/2}x.n ~ lv + (a+ 1)/2}x •• , n = v, v + 1, 

Applying (6.31.7) and recalling (6.31.1), we obtain the following result: 

THEOREM 6.31.3. Let a> -1 ;for the zeros x.n of L~a>(x), arranged in increas
ing order, the fallowing estimates hold: 

(6.31.11) 

(j./2)2 
n +(a+ 1)/2: < x.n < lv +(a+ 1)/2} 

. 2v + a + 1 + I (2v + a + 1)2 + i - a 2
}
1 

n +(a+ 1)/2 

v = 1, 2, ... , n; n = 1, 2, .... 

In particular, for the least •~ero X1n we have 

(6.31.12) (ji/2)
2 

< (a + 1) (a + 3) 
n + (a + 1)/2 < XIn = 2n + a + 1 ' n = 1, 2, 3, .... 

Here j. has the same meanin.g as in Theorem 6.3.4. 

If vis large, (j./2)
2 

::::: 1rV/4 (cf. (1.71.7)), while the coefficient in the right
hand member of (6.31.11) is '"'-'4v2

• For v = 1 we do not need (6.31.7) since 
x11 can be calculated explicitly. In fact, xu = a + 1; whence (6.31.12) follo,vs. 

E. R. Neumann (2, p. 2t3) obtains for a = 0 an inequality similar to (6.31.11) 
in a different manner. He finds in this case 

(6.31.13) v = 1, 2, ... , n; n = 1, 2, 3, · .. , 

where i < C.n < 4. In view of the well-kno"·n estimate j. > (v - i)7r (cf. 
(8.1.4) and Prohlem 32), we can derive the following inequalities of the type 
mentioned from (6.31.11): 

(6.31.14) (37r /16)2 < C.n < 4. 

(The upper bound 4 can not be diminished; cf. (8.9. 15); also Problem 33.) 
W. Hahn (1, pp. 228-238) generalizes and extends Xeumann's method to arbi
trary real values of a. 

A part of these results is more precise thau those occurring iu the literature 
(see W. Hahn 2, pp. 228-230). 

(4) The corresponding considerations for Hermite polyuomials are very 
simple. To begin with, the second equation (.5.5.2) iurnishes the upper bound 
(2n + 1)! for the zeros. This is not as good as the bound (6.2.18). Further
more, assuming n ~ 2, we obtain the convexity of the sequence of the zeros 
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(6.31.I5) Xon < X1n < X2n < · • • 
of Hn(x), where Xon == 0 if n is odd, and Xon = · -Xln if n is even. In all cases, 
X1n , X2n , • • • denote the positive zeros in increasing order. (See W. Hahn 1, 
p. 244.) 

On comparing the same equation with Z" + (2n + l)Z = 0, we find37 

(6.31.I6) Xvn > 
{

(2: ~!I)! 1r, 

(2n ~ I)! 1r, v = I, 2, · · ·, [n/2]. 

(This follows also from (6.31.I) for a = ±!.) Now let w be a fixed positive 
number, w < (2n + 1)!. Then 

(6.31.I7) 

(2n + I - w2)! 1r, 
v = I, 2, 3, · · · , [n/2], 

provided the right-hand members are not greater than w. For a fixed v we 
see that the constants (v - !)1r and v1r are the best possible. 

By introducing x = (2n + I)-!~, the differential equation mentioned is 
transformed into 

(6.3I.l8) 
~~: + {I - (2n + o-2(}z = 0, 

z = exp { -(2n + 1)-1(/21Hn{(2n + 1)-;~}. 
The coefficient of z inereases with n; hence (for fixed v) (2n + I);xvn decreases 
as n increases. Therefore, we have (cf. (3)) (2n + I)!x•n ~ (4v + I)!x •. 2. or 
(4v + 3)!x•,2•+1, respeetively. Thus 

(6.31.I9) 
v - ! ) 14v + I (2n + I)! 7r (2n + I)!' 

< x.n < 
v 4v + 3 

(2n + I)! 7r (2n + I)!' v = I,2, .. ~,[n/2]. 

For the least positive zero X1n, we obtain (x12 = 24 , x13 = (3/2)!) 

(6.31.20) 
7r/2 l I( 5/2 )! 

(2n + I)! < Xln ~ 2n + I !' 

7r . ( 2I/2 ) 
(2n + I)! 2n + I ' 

n f;; 2. 

3
7 In this and subsequent formulas the upper line eonesponds to the case n even, while 

the lower line to the ease n odd. 
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The' upper bounds are more precise than those resulting from (6.3l.I9) for 
v = 1. 

From (6.31.20) we can derive bounds for the minimum distance dn between 
consecutive zeros. The convex property mentioned above easily furnishes 
dn ·= X1n - Xon , that is, dn = 2Xln if n is even, and dn = X1n if n is orld. It 
follows that 

( 10! 

(6.31.2I) 7r l(2n + I)!' 
~----,-, < dn :=::;; 
(2n + I)! - (2I/2)! 

(2n + I)l' 
n ;;; 2. 

In every case we have 

(6.31.2_2) 
7r < (2I/2)! 

(2n +I)!< dn = (2n +I)!" 

Concerning the extensive literature on this subject, we refer to Laguerre (2, 
p. I05), Korous (1), Wiiman (1), A. Brauer (1), Hille (4), and Winston (1). 
Hille obtains the same lower bounds as in (6.31.20) and (by a suitable choice 
of w in (6.3l.I7)) the upper bounds 

(6.31.23) l
(~~n7r~ I)!{~+ ~[I- (2n ~ IYJ}-!, 

x,. < (2n: J)l {! +! [ 1 - (2n
2
: SJT'· 

These bounds are better than those resulting from (6.31.20), except for 
n ~ 6. The results of the other authors are less precise than the preceding 
inequalities.38 

6.32. Sturm's method; the largest zeros of Laguerre and Hermite polynomials 

(I) Let a > -I, and enumerate the zeros x. = x.n of L~a>(x) or Hn(x) in 
decreasing order: 

(6.32.I) X1 > X2 > Xa > · · · . 
Our purpose is to derive inequalities and asymptotic relations for X1n , as well 
as for Xvn for fixed values of v as n --t oo . 

THEOREM 6.32. Let i11 < i2 < ia < · · · be the real zeros of Airy's function 
A(x) (§1.8I, i1 > 0). If I a I ~ l, a > -I, the following inequalities hold for the 
zeros {x.} of L~a>(x): 

(6.32.2) 

as An exception is the lower bound in (6.31.20) for the special values n = 2 and n = 3 
in which Wiman's expression furnishes the exact values. For n = 3 the upper bound of 
Wiman is the same as in (6.31.20). 
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whereas J or the zeros I x·.} of H n ( x) : 

(6.32.3) ;r. < (2n + 1)! .:._ 6-!(2n + 1)-t i •. 

Furthermore, we have for a fixed v 

(6.32.4) 

(6.32.5) 

X~ = (4n + 2a + 2)! - 6-!(4n + 2a + 2)-i I i. + Enl, 

x. = (2n + 1)!- 6-!(2n + 1)-1{i. +En}, 

in the Laguerre and H e:rmite cases, respectively, where limn-oo En = 0. 

[VI] 

These remarkable results possess an extended literature. (Zemike 1, W. 
Hahn 1, p. 227. See also Korous 1, Bottema 1, Van Veen 1, and Spencer 1.') 
In what follows, Sturm)'s method is used to prove (6:32.3). A similar argument 
can be applied for the proof of (6.32.2) (cf. the fourth equation in (5.1.2)). 
Formulas (6.32.5) and (6.32.4) follow from a certain asymptotic expansion of 
Hermite polynomials due to Plancherel and Rotach as well as from corre'Spond
ing expansions for Laguerre polynomials; (6.32.4) holds for arbitrary real a. 
We discuss these formulas in Chapter VI.II (cf. §8.9 (3)). They show that the 
constant i. in (6.32.2) and (6.32.3) is the best possible if v is fixed and n is 
arbitrary. 

We notice that the expressions 

\ (4n + 2a + 2)~ - 6-!(4n + 2a + 2)-*id 2
, 

(6.32.6) 
(2n + li - 6-!(2n + 1)-til 

are upper bounds for the zeros of L~">(x) and Hn(x), respectively, I a I 
a > -1. Here the constant 

(6.32.7) 

> 1. = 4) 

cannot be replaced by a smaller one. These bounds are more precise than 
those previously given. 

Alternative forms of (H.32.4) and (6.32.5) are 

(6.32.8) 
.:r! = (4n)t - 6-li.(4n)-i + o(n-1), 

re:-;pectively. Also, the first formula can be written as follows: 

(6.32.9) x. = 4n- 2·6-li.(4n)l + o(nl). 

(2) 'Vriting hn = (2n + 1)!, we substitute x = hn - ~in the second equation 
(5.5.2) and obtain 

(6.32.10) 
2 

d z ( 2' de + 2hn~ - ~ )z = 0. 

Next we compare this equation with 
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(6.32.11) d2 Z de + 2hn~Z = 0, 

which has the solution Z = A I (6hn)l ~ l; here A (x) is Airy's function defined 
in §1.81. We can then apply Theorem 1.82.1 in [- oo, + oo]; condition (1.82.2) 
is satisfied at~ = - oo (ef. the last remark in §1.81). Thus we have (6 hn)-ti" 
< hn - x" , which establishes (6.32.3). 

(3) We add a sketch of a direct proof of (6.32.5) based on Sturm's method. 
Let the real variable~ be subject to the condition I ~ I ~ 2hnEn , where 0 < En < 1; 
we shall dispose of En later. Then 

(6.32.12) 

We now compare (6.32.10) with 

(6.32.13) 
d2t 
de + 2hn~(l ± Enk = 0, 

where the signs + and - correspond to ~ ~ 0 and~ ~ 0, respectively. Using 
the notation (1.81.1), we eonsider, for - 2hnEn ~ ~ ~ 0, the solution 

(6.32.14) 

with 

(6.32.15) 

This solution vanishes for~ = - 2hnEn . On the other hand, for 0 ~ ~ ~ 2hnen, 
we shall consider the solution 

At~ = 0 it has the same value and the same derivative as (6.32.14) on account 
of (1.81.1). According to Sturm's theorem, H n(hn - ~) oscillates more rapidly 
in the interval __: 2hnEn ~ ~ ~ + 2hnEn than the function t = t(~) represented by 
(6.32.14) and (6.32.16). 

The only neg:;ttive zero of t(~) is ~ = - 2hnEn . We now calculate the positive 
zeros of (6.32.16), that is, the values of ~ for which 

(6.32.17) 
l\(6hn)t(l- En)t~~ (1- En)t l(-Xn) 
k\ (6hn) 11 (1 -En)!~~ = 1 +En k( -Xn) • 

If En is small and X n large, the right-hand member is nearly -1, and the vth 
zero in question is, for a given v, near to (6hn)-t(l - En)-ti". If Xn is large 
and positive, we obtain from (1.81.3) and (1.81.5) 
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(6.32.18) 

Now let vo be a fixed positive integer and E an arbitrary positive number. 
We choose 

(6.32.19) h-4/3 
En = n w, 

where w is a fixed positive number, so large that 2 · 6tw > i"o + 1, and 
1

the left
hand member of (6.32.18) is less than E. For sufficiently small vah1es of E, 

and a:s n--+ oo, the first vo zeros of (6.32.17) then have the form 

(6.32.20) v = 1, 2, ... ' vo, 

where I 8 I is arbitrarily small with E. (At any rate let I a I be less than 1.) 
"r e see that for large n, the expressions (6.32.20) are less than 2hn En. • Hence, 
when we apply Sturm's theorem in - 2hn En ~ ~ ~ +2hn En, we have 

(6.32.21) 

This latter relation combined with (6.32.3) establishes the statement (6.32.5). 
I 

i 

6.4. Theorem of Polya-Szego on trigonometric polynomials wit~ 
monotonic coefficients 

THEOREM 6.4. Let ao > Q1 > ... > am > 0. Then the functions 

f(t) = ao cos mt + a1 cos(m - 1)t + · · · + am-1 cost + am, . 

(6.4.1) g(t) = ao cos(m + ~)t + a1 cos(m - ~)t + · · · + am-1 cos(3t/2) 

+ am cos(t/2), 

have only real and simple zeros; there is, respectively, exactly one zero in 'each of 
the intervals 

(6.4.2) 
1 + 1 p,-2 <t...-Jl 2 --"Tr ., --"Tr 

m+~ m+~ 
and p,-~ J.t.+~ 

--- 7r < t < -- 7r 
m+1 m+1' 

wherr p, = 1, 2, ... , 2m, and J.L = 1, 2, · · · , 2m+ 1, respectively. 

The first part of the statement is due to P6lya (3, p. 359); his proof dses the 
principle of argumrnt (Theorem 1.91.1). The following proof furnishes P6lya!s 
result :again and, in addition, the inequalities (6.4.2) (Szeg6 20, pp. 9-11). It 
is based on Fcjer's fundamental theorem (Frjer 1; ::;ee P6lya-Szego 1, vol. 2, 
pp. 78, 269, problem 17) which asserts that the sine polynomials · 

(6.4.3) 
crn(t) = sin(t/2) + sin(3t/2) + · · · + sin(n + ~)t, 

n = 0, 1, 2, ... ; 0 < t < 2-rr, 

are non-negative. 
If J(t) and {j(t) denote the conjugate functions of f(t) and g(t), respectively, 
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we have 
m 

(6.4.4) -3e-i(m+i)llf(t) + i](t) l = -3e-i(m+Otlg(t) + ig(t) l = La~< sin(,~L + !)t, 
~<-o 

which is positive for 0 < t < 21r, according to Abel's transformation (1.11.4). 
Therefore, 

(6.4.5) 

whence 

(6.4.6) 

j(t) sin(m + !)t - ](t) cos(m + !)t > 0, 

g(t) sin(m + 1)t - g(t) cos(m + 1)t > 0, 

sgn !(~- ! 1r) = sgn g (~-' - ! 1r) = ( -1)1<+1. 
m+! m+1 

0 < t < 27r; 

This sho:ws the existence of at least one zero in each of the intervals (6f4.2). 
On the other hand, the functions (6.4.1) cannot have more than 2m and 2m:.+ 1 
zeros, respectively, in (0, 21r]. 

6.5. Fejer's generalization of Legendre polynomials 

(1) Starting from the representation (4.9.3) of Legendre polynomials, Fejer 
(9) defines the "Legendre polynomials F n(x) associated with a given seqJence 
ao , a1 , a2 , · · · " in the following way: 

(6.5.1) 

Fn(cos 0) = 2aoan cos nO+ 2alan-1 cos (n- 2)0 + · · · 

{

2a(n-1)/2 a(n+l)/2 COS 01 

+ 2 
an/2 1 

The classical Legendre polynomials P n(x) are obtained if 

if n <i>dd, 

if n even. 

(6.5.2) ao = go =: 1; 
1·3 · · · (2n - 1) a - g - n= 1,2,3,'···, 

n- n- 24 2 1 .... n 

the ultraspherical polynomials P~\x) if (§4.9 (4)) 

(6.5.3) ao = 1; = (n +X- 1) 
an ' . n 

n = 1, 2, 3,' · · ·. 

Various properties, well-known in these special cases, can be extended to the 
general polynomials F n(x) by imposing proper restrictions on the sequence I an!. 

These restrictions concern certain properties of monotony and asymptotic 

behavior. 

(2) THEOREM 6.5.1. The zeros ofF n(x) are real and simple and lie in the inter
val - 1 < x < + 1, provided an > 0 and the sequence 

(6.5.4) 
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is increasing. More precisely, each interval 

(6.5.5) v-! v+! -+ 1 7r < 0 < - 7r, n n+1 v = 1, 2, · · ·, n, 

contains exactly one zero of Fn(cos 0). 

See Szego 20, pp. 15-17. Under the condition mentioned the coefficients of 
(6.5.1) are decreasing, and the statement follows immediately from Theorem 
6.4 if we write n = 2m or n = 2m+ 1, according as n is even or odd and 20 = t. 
The condition in question is satisfied for Legendre polynomials' and in the 
u1traspherical case for 0 < :\ < 1. 

The inequalities (6.5.5) are not so precise as the Bruns inequalities (6.21.5). 
However, they hold for a comparatively general class of polynomials. 

(3) THEOREM 6.5.2. Let the sequence {an}, an > 0, be completely monotonic, 
that is, for all the differences, 39 

(6.5.6) t/ an = an - (;) an+l + (~) an+2 - · · • + ( -1)k an+k f:; 0, 

k, n = 0, 1, 2, · · · . 
Then the zeros x. = cos o. , 0 < o. < 1r, of F n(x) are not only real and lie in 
[-1, +1], but they also satisfy the inequalities (6.21.7) of Stieltjes: 

(6.5.7) 
v = 1, 2, · · · , [n/2]. 

Here the signs of equality hold if and only if Fn(x) is Tchebichef's polynomial of 
the first (see below) or of the second kind, respectively. 

See Fejer 17, pp. 311-312. According to an important theorem of Hausdorff 
(1) the class of completely monotonic sequences [an}, an > 0, is identical with 
the class of sequences which can be represented in the form 

(6.5.8) an = 11 

C da(t), n = 0, 1, 2, · · ·, 

where a(t) is a non-decreasing function, not constant, with 2a(t) = a(t + O) 
+ a(t - 0) for 0 < t < 1. For sequences of this kind the condition of Theorem 
6.5.1 is satisfied (Schwarz's inequality). The ultraspherical polynomials p~XJ(x), 
0 < >-. < 1 are obtained [(1. 7.2)] if 

(6.5.9) a. ~ ( n + ~ - 1
) ~"_,sin x,. /.' t+'-'(1 - t)-' dt, n = 0, 1, 2, · · · · 

Tchebichef's polynomials of the first kind are a limiting case of (6.5.9) since 

ag This definition of the differences of various orders is not the same as in (2.8.4). 
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ao = 1, (6.5.10) 
I 

t-1 
dt = ~' n = 1, 2, 3, · · ·, 

so that 

(6.5.11) lim X-1Fn(cos0) =-
x-o 

:os nO, n = 1, 2, 3, · · ·. 

Tchebichef's polynomials of the second kind arise if an = rn, 0 < r ;:£ 1, that is, 
a(t) has only one point of increase in 0 < t ;:£ 1. 

Fejer's argument is as follows: 

(6.5.12) Fn(cos 0) = 11 

[I {:t t'< un-k cos (n - 2k)o}da(t) da(u). 
o }o k-o 

An elementary transformation of the integrand gives 

(t - u) (t+! - un+!) 0 + 2tu(tn + un)sin2 0 sin (n + 1)0 (6.5.13) cos n 
t2 

- 2tu cos 20 + u2 t2 - 2tu cos 20 + u2 sin 0 

so that 

(6.5.14) ( ( sin (n + 1)0 f'n cos 0) =An 0) cos nO+ Bn(O) . , 
smO 

where An(O) and Bn(O) are positive functions in 0 < 0 < 1r provided a(t) has 
at least two points of increase. From this it follows that 

sgn Fn {cos (v - !) ~} = -sgn Fn {cos v n : 
1
} = ( -1)"+\ 

(6.5.15) 

v = 1 2 .. · [n/2] 
' ' ' ' 

which establishes the statement. 
The last part of this argument is similar to that used in the proof of 

Theorem 6.4. 
(4) Fejer considers (20, pp. 40-45) another remarkable generalization of 

Legendre polynomials. He starts from the representation (4.9.5}. Let 
f3m l 0, and 

(6.5.16) 
Gn(cos 0) = f3o sin (n + 1)0 + {31 sin (n + 3)0 + · · · 

+ {3m sin (n + 2m + 1)0 + · · · . 

This series converges for 0 < 0 < 1r (see §4.9 (2)). Legendre polynomials are a 
special case, as well as the more general functions (sin 0) 2x-rp~x)(cos 0), 

! (X) X > 0, X ~ 1, 2, 3, · · · (see (4.9.22)). In these cases the sequence f3m = m 

(using the notation of (4.9.22)) is completely monotonic. In fact, we have 

ex) ex) · cxl{ nX 1 X(n + 2X) 1 } _ 1cx) 
(6.5.17) f m - f m+! = f m n +X m + 1 + n +X n +X+ m + 1 - m 'Ym· 
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The sequence hm l is completely monotonic and, on account of a well-kn(}wn 
formula, we have 

Ak+!f(X) = AkJj(X) _!(X) l = ~ (k) A"f(X) Ak-P 
.U. m .U. l m m+! £.... .U. m .U. 'Ym+•· 

•=0 v 
(6.5.18) 

Hence the statement follows by induction. 40 

Fejer shows (loc. cit.) that Gn(cos 0) has at least one zero in each interval 

(6.5.19) ( 1)7r 7r v-2-<0<v-+
1

, n n 
v = 1 2 .. · [n/2] 

' ' ' ' 

provided 

(6.5.20) 

His proof is based on the positiveness of certain special trigonometric poly
nomials. We shall prove the following theorem: 

THEOREM 6.5.3. The funct£on Gn(cos 0) has at least one zero £n each £nter-val 
(6.5.19) provided !,B, l is a completely monotonic sequence. 

This condition is more restrictive than that of Fejer. The proof is, how
ever, very simple. Using (6.5.8), with f3n and {3(t) in place of an and a(t), 
respectively, we obtain 

G,.(cos 0) = 11 {to tm sin (n +2m+ 1)0}d{3(t) 

(6.5.21) t 2t d{3(t) . t (1 - t) d{3(t) . 
= }o f-.::... 2t cos 20~ t2 sm 0 cos nO+ }o 1 - 2t cos 20 + t2 sm (n + 1)0. 

From this point the statement follows in the same way as in the proof of 
Theorem 6.5.2. 

6.6. Recapitulation; additional remarks on ultraspherical polynomials 

(1) We have obtained the following inequalities for the zeros x. = cos o., 
0 < o. < 1r, (arranged in decreasing order) of the ultraspherical polynomial 
P~"·")(x), a = X - !, provided 0 < X < 1: 

(a) Inequalities (6.5.5), derived from the representation of P~"·"\cos 0) as a 
cosine polynomial: 

(6.6.1) 
v-! v+! 
n + 1 7r < 0" < n + 1 7r' 

v = 1, 2, · · ·, n. 

(b) Inequalities of the Bruns type: 

(6.6.2) 
v-! v -+ 1 7r < o. < -+ 1 7r, n 2 n 2 

v = 1, 2, · · ·, n, 

4o For A. = 1/2 this follows directly from (4.9.9). 
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(6.6.3) v+A-1 v 
n + A 7r < o. < n +A 7r, v = 1, 2, ... ' n. 

Inequalities (6.6.2) follow from (6.21.2), which was proved by A. Markoff and 
by Stieltjes in two different ways (cf. (6.21.5)); (6.6.3) is a special case of the 
more general inequalities (6.3. 7) proved by Sturm's method. The inequalities 
(6.6.2) are more precise than those of (6.6.1) and those of (6.6.3) with A < !; 
the opposite is true if A > ~. 

(c) Inequalities of Stieltjes' type: 

(6.6.4) v - ! v 
---- 7r < o. < -- 7r 

n n+ 1 ' 
v = 1, 2, · · ·, [n/2]. 

These follow from (6.21.3) and were proved by Stieltjes. They can also be 
readily derived from (6.21.2) (which is due to A. Markoff and to Stieltjes). 
Fejer obtains them from (4.9.19) or (4.9.22) (cf. Theorems 6.5.2 and 6.5.3). 
An alternative proof for the upper bound is due to Szego (Sturm's method, 
§6.3 (3)). The upper bound is better than that in each of the preceding in
equalities; the lower bound is better than that in (6.6.2), and is better than 
that in (6.6.3) provided A < !. 

(d) Szego's lower bound: 

(6.6.5) 
v - (1 - A)/2 

0" > n +A 1r, v = 1, 2, · · · , [n/2]. 

This follows by Sturm's method in two different ways (cf. 6.3 (2) and (5)). 
For a third method see (2) below. This lower bound is more precise than 
any of the'preceding ones. 

(2) By combining the integral representation (4.82.3) with the argument 
used in the proofs of Theorems 6.4, 6.5.2, 6.5.3, 

(e) Fejer obtains (19, p. 208) 

(6.6.6) v-(1-A)/2 0 v+A-! v=1,2,···,[n/2]. 
n + A 7r < " < n + 2A 1r, 

The lower bound is the same as in (6.6.fi). The upper bound is lcF;s or greater 
than that in (6.6.4) according as A < 1 or A > ~· 

For the proof we substitute the bound in (6.6.5) for 0 in (4.82.3), 0 < 0 < 1rj2, 
and find that 

(6.6.7) P (X) ( ) ( 1)" c)C J iH0-7r/2! (l t 2i0)-X l sgn n cos 0 = - t;gn '-'' l e - e . 

It happens that the last sign is constant if t varies in 0 < t < 1. Indeed, the 
argument of the expression in the braces lies between 0 ancl - A(7r/2 - 0). 
Thus (6.6.7) becomes ( -1)"+1

• 

Upon substituting the upper bound of (6.6.6) in (4.82.3), we have 

(6.6.8) sgnP~x)(cosO) = (-1)"sgnS!(1- te2
;
0)-xl = (-1)", 

which establishes the statement. 
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To recapitulate: the lower bound (6.6.5) ~s the best of all lower bounds given 
here; while in the case of the upper bounds, either (6.6.4) or (6.6.6) is best 
according as X > ! or X < !. Here we did not refer to inequalities which in
volve zeros of Bessel functions. 

6. 7. Electrostatic interpretation of the zeros of the classical polynomials 

Stieltjes gave (4, 5; 6, pp. 75-76; cf., also, Schur 1) a very interesting deriva
tion of the differential equations of the classical polynomials, which is closely 
connected with. the calculation of the discriminant of these polynomials (cf. 
§6. 71) and can be interpreted as a problem of electrostatic equilibrium. 

(I) PROBLEM. Let p and q be two given positive numbers. If n unit "masses," 
n ~ 2, at the variable points x1 , X2 , x3 , • • • , Xn fn the £nterval [- I, +I] and 
the fixed masses p and q at +I and -I, respect£vely, are cons£dered, for what posi
tion of the po£nts x1 , X2 , Xa , • • · , Xn does the expression 

n 

(6.7.I) T(:r1, X2, · • ·, Xn) = T(x) = IT (I - x.Y(l + x.)q II I x. -X~< I 
K-1 ,.,J.'-1,2,· · ·.n 

•<~< 

become a maximum? 
Obviously, log (T-1

) can be interpreted as the energy of the system of electro
static masses just defined. They exert repulsive forces according to the law 
of logarithmic potential. The maximum position corresponds to the condi
tion of electrostatic equilibrium. A maximum exists because T is a continuous 
function of Xr, X2,. • ·, Xn fbr -I ~ x. ~ +I, v =I, 2, · · ·, n. It is clear 
that in the maximum position the x. are each different from ±I and from one 
another. In addition, this position is uniquely determined. To show this, let 
us suppose that (cf. Popoviciu 2, p. 74) 

(6.7.2) 
>xn> -I, 

I I 

+I > X1 > X2 > I > Xn > -I 
are two positions of this kind; we write 

(6.7.3) y. = (x. + x~)/2, v = I, 2, . · · , n. 

Then 

(6.7.4) 
I I 

= I x. - x~< I + I x~ - x~ I > I - I! I I - xl I! y. - y I' 
2 

= X. XI' x. I' , 

II ± y. l ~ II ±x. I! II ± x~ 1!, 

so that T(y) ~ !T(x)l!\T(x1)l!, the equality sign being taken if and only if 
x. = x~ . This establishes the uniqueness. 

THJ<JOREM 6.7.1. Let p > 0, q > 0, and let !x.l, -I ~ x. ~ +I, be a system 
of values for which the expression (6.7.I) becomes a maximum. Then the \x. l 
are the zeros of the Jacobi polynomial P~a,f3) (x), where a = 2p - I, {3 = 2q - 1. 



('6.7 J ELECTROSTATIC INTERPRETATION OF ZEROS 141 

From this fact the uniqueness of the maximum position follows again. For 
a maximum we have the conditions aT j(ax.) = 0, or 

1 
+ 

(6.7.5) 
x.- X! 

+ 1 + ---'-P_ + q = 0. 
X. - Xn X. - 1 X. + 1 

If we introduce the polynomial f(x) - (x - x1)(x - x2) ••• (x - Xn), this 
becomes 

(6.7.6) 1 f"(x.) 
2 ]'( x:) + x. ~ 1 + x. ~ 1 = 0' 

or 

(1 - x;)f"(x.) + \2q- 2p- (2q + 2p)x.lf'(x.) = 0. 

The last equation means that (1 - x2)f"(x) + \.B - a - (a + ,B + 2)x lf'(x) 
is a 7l"n which vanishes for all the zeros of f(x); whence this expression is equal 
to const. f(x). By comparing the terms in xn we obtain for the constant factor 
the value -n(n + a + ,B + 1). The resulting differential equation reduces to 
(4.2.1), so that according to Theorem 4.2.2, f(x) must be a constant multiple 
of P~a,f3)(x). 

See also Problem 37. 
(2) The zeros of Laguerre and Hermite polynomials admit a similar inter

pretation. 

THEOREM 6.7.2. Let us cons£der the pos£t£ve mass p at the fixed po£nt x = 0 
and un£t masses at the var£able po£nts x1 , X2, . • • , Xn £n the £nterval [0, +co] 
such that_ the "centro£d" sat£sfies 

(6.7.7) 

where K is a preass£gned positive number. Then the maximum of 

n 

(6.7.8) U (X! 1 X2 1 • • • 1 Xn) = II x: II I x. - XJ.I I 
•-1 P,J.I-1,2,· · ·,n 

"<J.I 

is attained if and only if the !x.l are the zeros of the Laguerre polynomial L~a)(cx), 
where a = 2p - 1, and c = K-1(n + a). 

THEOREM 6.7.3. Let us consider a un£t mass at each of the variable points 
x1 , x2 , •• • , Xn in the interval [- co, + co] such that the "moment of £nertia" 
satisfies 

(6.7.9) 

where Lis a preassigned positive number. Then the maximum of 
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(6.7.IO) V(xr,xz,···,xn)= IT lx.-x,.l 
P,Jt=l.2,· · ·,n 

"<I' 

is attained 2j and only if the l x. l are the zeros of the Hermite polynomial H n ( e' x), 
e' = (2L)-1(n - I)1. 

The existence and uniqueness of the position of maximum is clear in both 
cases. The corresponding .<:. are all different from one another; in the first 
case they are positive. It is clear, furthermore, that for the maximum position 
the sign of equality holds in (6.7.7) and (6.7.9). Hence, if p is a proper 
"multiplier," we have 

(6.7.11) 

I + __ I_ + ... + I + E_ = ~' 
X. - Xr X. - Xz x. - Xn x. n 

x.j"(x.) + ( 2p - ~ x.) f'(x.) = 0 

in the first case, and 

(6.7 .I2) 

I I I 2p + + ... + -- x., 
X" - Xr X, - X2 x. - Xn n 

f"(x.) -
4

P x.j'(x") = 0 
n 

in the second. In both cases we have written 

f(x) = (x - Xr)(x - x2) · · · (x - Xn). 

If we replace x by ex, withe a proper constant factor, these conditions can easily 
be reduced to the first equation in (5.1.2) and to the first equation in (5.5.2), 
respectively.. Therefore, 

f(x) = const. L~a) (ex), 2 -1 
a = 2p - 1, e = pn , 

in the first. case, while f(x) = const. Hn(e'x), e' = (2p/n)! in the second case. 
The constants e and e' can be determined from the conditions (6.7 .7) and 
(6.7.9), in which the equality signs now hold. vVe observe that according to 
(5.1.6) the sum of the zeros of L~a)(x) is equal to n(n + a); according to (5.5.4) 
the sum of the squares of the zeros of H n(x) is equal to n(n - I)/2. 

Cf. also Problem 38. 

6.71. Discriminants of the classical polynomia1s 

The maximum problems treated in the preceding section are closely related 
to the calculation of the discriminants of the classical polynomials (Hilbert 1, 
Stieltjes 4, 5). The following method is due to I. Schur (2) (cf. Popoviciu 2). 

(I) Let !Pn(x) l be a sequence of polynomials satisfying the recurrence 
formula 



[,6.71 J DISCRIMINANTS OF CLASSICAL POLYNOMIALS 143 

(6.71.1) 
n = 2, 3, 4, ... ; 

po(x) = 1; 

We suppose that ancn ':/: 0. Denoting by (x.nl the zeros of Pn(x), we show that 

(6.71.2) 
n n 

Ll = II (x ) = ( -1) n(n-1)/2 II ( n-2•+1 •-1) n Pn-1 •n a. c. , 
•=1 •=1 

n = 1, 2, 31 • • •• 

Suppose n ~ 2. The coefficient of xn-1 in Pn-1 (x) is .. a1 a2 · · · an-1 , so that 

Using the recurrence formula, we obtain 

(6.71.4) 

which establishes the statement. 

(2) THEOREM 6.71. The discriminants of P~a,/3)(x), L~a)(x), Hn(x) are 

(6.71.5) 

(6.71.6) 

(6.71.7) 

respectively. 

n 

D~a,/3) = Tn(n-1) II llv-2n+2(11 + a)"-1(11 + {3)"-1(n +II+ a+ f3t-•, 
•=1 

n 

D (a) _ II •-2n+2( + )"-1 
n- II II a 1 

•-1 
n 

D _ 23n(n-l)/2 II • 
n - II 1 

•-1 

We start from the familiar expression (cf., for instance, 0. Perron 4, vol. 1, 
p. 259, (12), (13); p. 260, (16)) 

(6.71.8) 

Dn (a ,/3) = J ln(a ,/3) j2n-2 II ( )2 
l Xm- X,.n 

P,JJ-1,2,· · ·,n 
•<I' 

n 
= ( _ 1r(n-1)/2 (l~a,/3) j n-2 II p~a,/3)' (x.n), 

•=1 

where z~a ,/3) has the same meaning as in ( 4.21.6), and ( x.n l denotes the zeros 
of p~a,/3)(x). The discriminants D~a) and Dn admit a similar representation. 
According to the first formula in (4.5.7), we have 

-
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(6.71.9) (1 - x2
) :X (P~a.~)(x)) = 

2
(;n+ ;~~+.B.B)'p~~~)(x) if P~a.~)(x) = 0, 

so that 

n 

II (1 2 )-lp(a,{J)( ) ' - Xvn n-1 Xvn 

(6.71.10) 
•=1 

n 

· (P~a.~)(1)P~a.~)( -1) )-1 II P~~~)(xvn). 
v=1 

The last factor can be calculated by means of (6.71.2), so that on account of 
(4.21.6), (4.1.1), (4.1'.4), and (4.5.1), we obtain (6.71.5). 

The expression (6.71.6) can be calculated in the same way by using (5.1.14); 
(5.1.8), (5.1.7), and (5.1.10); or even more simply, from (6.71.5) by using the 
limiting process of (5.3.4). Indeed, if (xvn = Xvn(.B)) denotes the zeros of 
p~a.~)(x) in decreasing order, we have, for fixed v and n, 

(6.71.11) lim ,8(1 - Xvn) = 2~vn, 
~-00 

where {~vn) are the zeros of L~a)(x) in increasing order. Therefore, 

D~a) = (l~a))2n-2 II (~vn _ ~l'n)2 
P,JJ=l,2 1 • • • ,n 

•<I' 

(6.71.12) 
- (l~a)J2n-2lim (,B/2f(n-1) II (xl'n- Xvn)2 

{3-+oo P 1JJ=l,2 1 • • • 1 n 

•<I' 

_ (l~ a) )zn-z lim (,B/2t<n-1) ( z~a.~) J-zn+z D~ a,~), 
~-00 

which establishes the statement. 
The discriminant Dn can also be obtained either directly, or from (6.71.5) 

by using (5.6.3), or from (6.71.6) by using (5.6.1). The first method is the 
simplest. By using (5.5.6), (5.5.10), (5.5.8), and (6.71.2), we find (6.71.7). 

6.72. Distribution of the zeros of the general Jacobi polynomials 

(1) Let a and .B be arbitrary real numbers, n ~ 1, and let P~a.~)(x) denote 
the generalized Jacobi polynomials defined in §4.22. Then (6.71.5) still holds. 

It follows from (4.1.1) or (4.21.2) that x = +1 is a zero of p~a.~l(x) if and 
only if 

(6.72.1) a=-1,-2, ... ,-n. 
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(The multiplicity of this zero is I a I; cf. (4.22.2).) Similarly, x = -I is a 
zero if and only if (cf. (4.1.4)) 

(6.72.2) fJ = -I, -2, ... , -n. 

Finally, it follows from (4.21.6) that x = oo is a zero, if and only if 

(6.72.3) n + a + fJ = -I, -2, ... , -n. 

If such values of a and fJ are excluded, the zeros of P~a,f3>(x) are different from 
±I and oo; in addition, (6.71.5) shows that they are distinct. (This follows 
also from (4.2.I); cf. §6.2 (3).) Let N1, Nz, N3 be the number of zeros in 
-I < x <+I,- oo < x < -I, and +I < x < + oo, respectively. We shall 
now determine these numbers as functions of a and fJ. 

Hilbert .(1) calculated the number N1 + N 2 + N3 of the real zeros. A remark 
of Stieltjes (5, p. 444) indicates that he obtained the numbers N 1 , N2 , N3 three 
years before Hilbert's paper. The later results of Klein concerning the number 
of the zeros of the general hypergeometric function (1, pp. 562-567) readily 
lead to these numbers. (Cf. also Shibata 1, Fujiwara 1, Sen-Rangachariar 1.) 
By use of Klein's .symbol 

(6.72.4) l 
0 if u ~ 0, 

E(u) = u [u_] if u > 0, u non-integral, 

I if u = I' 2, 3, ... ' 

we can formulate the following theorem: 

THEOREM 6.72. Let a, fJ be arbitrary real values, and set 

X = X (a, fJ) = E (! (I 2n + a + fJ + I I - ( a I - i fJ I + I) J , 

(6.72.5) Y = Y(a, fJ) = E(!( -l2n + a + fJ + I I + I a I - I fJ I + I)), 

Z = Z(a, fJ) = E( !(-I 2n + a + fJ + I I - I a I + I fJ I + I)). 

If we exclude the cases (6.72.I), (6.72.2), and (6.72.3), the numbers of the zeros of 
p~a,f3>(x) in -I< x <+I, - oo < x < -1, +I < x < + oo, respectively, are 

(6.72.6) 

(6.72.7) 

l
2[(X + I)/2] 

N1 = N1(a, fJ) = 
2[X/2] +I 

l
2[(Y + I)/2] 

Nz = Nz(a, fJ) = 
2(Y /2] + I 

if (- It ( n ! a) ( n ! fJ) > 0, 

if (-It ( n ! a) ( n ! fJ) < 0, 

if (2n+:+fJ)(n!fJ) > 0, 

if (2n+:+fJ)(n~fJ) < 0, 
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Na = Na(a, {3) = 
2[(Z + 1)/2] if (2n +na +iS) (n ~a)> 0, 

2[Z/2) + 1 if (
2
n +1~ +iS) (n ~a) < 0. 

We notice that the numbers 2f(X + 1)/2], 2[X/2] + 1 can be characterized, 
respectively, as the even or odd of the numbers X and X + 1, so that N

1 
is either X or X + 1. We also see that the conditions in (6.72.6) are 
equivalent to p~a ~)(1)P~a.~)( -1) > 0 or < 0, respectively. For instance, if 
sgn p~a.~)(1)P~a.~)( -1) = ( -1)x or ( -1)x+\ then N

1
(a, !3) = X or X + 1, 

respectively. Similar remarks hold for N 2 and N 8 • 

E(-n) = 0 

E(n + 1 +a) 

~ 
X 

Q
x 

,(? 

FIG. 7 

X 
./ 
~ 

0 

I 

{3 

E(n + 1) = n 

E(n + 1 + {3) 

E(- n- a)= 0 

It is sufficient to calculate N1. On account of (4.22.1) we obtain N 2 by 
replacing a by -2n - o: - !3 - 1 in (6.72.6), while N 8 is obtained from N 2 by 
interchanging a and jS. The following proof is based on the continuity of the 
zeros as functions of a and jS. 

(2) For convenience, we introduce the notation M(a, !3) for the function of 
the right-hand member of (6.72.6) so that we must prove N 1(a, {3) = M(a, !3). 
If the point (a, !3) varies, the function N 1(a, {3) can change only if (a, !3) crosses 
one of the straight lines (6.72.1) or (6.72.2). We first show that the function 
M(a, !3) has the same property. 

An easy calculation furnishes the value of X(a, !3) in the seven regions 
bounded by the a- and iS-axes and by the straight line 2n + a + J3 + 1 = 0 
(see figure 7). The only discontinuities of the function E(u) are at the points 
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u = 1, 2, 3, · · · ; hence, apart from the straight lines (6.72.1) and (6.72.2), a 
jump of the function M(a, {3) is possible only in the triangle where X(a, {3) = 
E(n + 1 + a + {3) if n + 1 +a + {3 coincides with an integer k, 1 ~ k ~ n. 
Let a = ao and {3 = f3o be negative non-integers, n + 1 + a0 + {30 = k, and 
let the integers p and q be chosen such that 

(6.72.9) -p < ao < -p + 1, -q < f3o < -q + 1, 1 ~ p ~ n, 1 ~ q ~ n. 

Then we necessarily have k = n + 2 - p - q. We investigate M(a, {3) for 
n + 1 + a + {3 = k ± E, 0 < E < 1, where I a - ao I and I {3 - f3o I are suffi
ciently small. Obviously, 

sgn (-1r(n ~ a)(n ~ {3) = (-1t(-l)v-1(-1)q-1 = (-1)k; 

furthermore, X(a, {3) = E(n + 1 + a + {3) = E(k ± E) = k or k - 1, respec
tively. In other words k = X or k = X + 1, respectively. Then (see the 
remark concerning Theorem 6.72) M(a, {3) = kin both cases, so that no change 
occurs in M(a, {3). 

(3) We now show that when (a, {3) crosses one of the lines (6.72.1) or (6.72.2), 
the jumps in N 1(a, {3) and M(a, {3) are the same. This willprove the statement 
(6.72.6), since, for a > 0, {3 > 0, we have N 1(a, {3) = n and X(a, {3) = 
M(a, {3) = n. 

Because of the symmetry in a and {3, it is sufficient to consider the case 
a = - k ± E, E > 0, 1 ~ k ~ n, {3 not an integer, and to discuss the location of 
the zeros near x = + 1. 

From (4.21.2) we obtain for a = -k + E 

2kk! (n- k)! p<a,f3)( ) 

( ) (n +a+ {3 + 1) · · · (n +a+ {3 + k)(a + k + 1) · · · (a+ n) n X 6.72.10 
= Co(E) + C1(E)(x - 1) + • • • + Ck-1(E)(x - 1)k-1 + (X - 1/ 

+ Ck+l(E)(x - 1)H1 + · · · +. Cn(E)(x - 1r. 

Here the coefficients are real rational functions of E, regular for E = 0, and 

(6.72.11) eo(O) = c1(0) = · · · = ck-1(0) = 0. 

Furthermore, 

k{(n)}-
1 

(a + 1) (a + 2) · · · (a + k) . 
co(E) = 2 

k (n +a+ {3 + 1)(n +a+ {3 + 2) · · · (n +a+ f3 + k)' 

(6.72.12) {( )} 1 
' k-1 k n - (k - 1)! . 

co(O) = ( - 1) 2 k (n + {3)(n + {3- 1) · · · (n + {3- k + 1) ¢ O. 

By means of a simple consideration from the theory of analytic functions (see 
below), we now obtain the following result. If o is an arbitrarily small positive 
number (o < sin 1r/k fork > 1), then for sufficiently small values of E > 0, the 
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function P~a,f3)(x), a = -k + E, has exactly k distinct zeros in the neighborhood 
of x = + 1. More precisely, if 'Y/1 , TJz, TJa , • • • , 1Jk denote the numbers satis
fying the equation 

(6.72.13) '( k sgn co 0) + 1J = 0, 

these roots lie in the circles 

(6.72.14) X = 1 + (E I c~(O) i) 11
k(1Jv + z), I z I < o, II = 1, 2, • • · 1 k. 

By replacing E by - E (that is, for a = - k - E), the same res.ult holds with 
the circles 

(6.72.15) I 1/k I 

x = 1 + (E I co(O) I) Crv + z), I z I < o, 
where r1 ' fz ' ••• ' rk are the roots of 

(6.72.16) '( k -sgn Co 0) + r = 0. 

The root corresponding to a realrJv or rv is obviously real. 
To prove the previous statement we introduce x = 1 + (E I c~(O) I l'ky in 

(6.72.10) and obtain 
2 p 

Ec~(O) + ~! c~'(o) + · · · + ;! d")(O) + · · · + c1(E)(E I c~(O) l) 11k y 

(6.72.17) + · · · + Ck-1(E)(E I c~(O) l)<k-O/kyk-1 + E I c~(O) I yk 

+ Ck.ti(E)(E I c~(O) i)(k+
1
)/kyk+1 + ... + Cn(E)(E I c~(O) i)n/kyn = 0. 

If this be divided through by E I c~(O) I , the "principal terms" are sgn ~(0) 
+ yk. Now we can apply Theorem 1.91.2 (Rouche's theorem); whence the state
ment follows immediately. 

We are interested especially in the number of real zeros x < + 1 near x = + 1. 
From the preceding result we see that this number increases or decreases by 
one unit if we replace E by -E, according as ( -1)kc~(O) is positive or negative. 
With reference to (6.72.12) this is equivalent to the condition that 

(ntJS)<o or >O, 

respectively. 
(4) On the other hand, we discuss the jump of M(a, J3) as (a, iS) crosses 

the line a = -k with !3 non-integral. First suppose J3 > 0, so that X(a, !3) 
= E(n + 1 + a). For a = ~k ± E, E > 0, we have 

(6.72.18) 
\

n + i - k, 
X(a, J3) = E(n + 1 - k ± E) = 

n - lc, 

respectively, and 
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' (6.72.I9) ( I)n (n + a) (n +,B) ( I}n (n +a) 1( -l)n+k-\ ~n- · =s~- = 
n n n ( -I)n+k

1 

respectively, which in both cases is (-I)x(a.~). Hence (cf. the remark to 
Theorem 6.72) M(a, .B) changes from n + I - k ton - k, a loss of one unit. 
In this case 

Now let .B be negative and non-integral. Then n + I + a + .B is non
integral near a = -k, so that X(a, {3) remains constant in this neighborhood. 
More precisely, 

1
n + I - k + (.8] if n + I - k + .B > 0, 

(6.72.20) X(a, ,B) = 
0 if n + I - k + .B < 0. 

In the first case we have for a = - k ± E, E > 0
1 

(6.72.2I) ( If n + a n + .B 1 ( ) ( ) 1
( -If( -I)k-I( -I)r~l+I 

sgn - n n = (-If( -I)k( -1)[~1+\ 

respectively, which are (-I)x<a.~HI and (-I)x(a,~), respectively. Hence (cf. 
the remark to Theorem 6.72), M(a, .B) changes from X(a, .B) + I to X(a, .B), 
a loss of one unit. In this case, again 

Let us now consider the second case in (6.72.20). Then 

(6.72.22) = sgn (-If ( n ~ a) ( n t .B) ~i (.B + I)(.B + 2) · · · (.B + n - k) 

(
n +.B) = -sgn k or (

n +.B) sgn k 1 

respectively, for a= -k ± E, E > 0. For instance, if 

M(a, ,B) changes from 0 to I, a gain of one unit. The opposite is true if 

This establishes Theorem 6. 'Z2. 
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6. 73. Distribution of the zeros of the general Laguerre polynomials 

The discriminant formula (6.71.6) is valid for general Laguerre polynomials 
L~a)(x), a arbitrary and real, n ~ 1. On account of (5.1.7), x = 0 is a zero of 
L~a)(x) when and only when 

(6.73.I) a= -I, -2, ·. · , -n. 

(Its multiplicity is I a I; cf. (5.2.I).) If such values of a are excluded, the zeros 
of L~a)(x) are finite and different from 0; in addition, we conclude from (6.71.6) 
(or from the first differential equation (5.1.2)) that they are distinct. Let 
n1(a) and nz(a) denote the number of positive and negative zeros, respectively. 
By using Theorem 1.91.3 (Hurwitz's theorem) and (5.3.4), we see that if {3 is 
large, p~a,/3)(x) has at least n1(a) zeros in [-I, +I], at least nz(a) zeros in 
[+I, +oo], and at least n- n1(a)- nz(a) zeros which are not real. There
fore, using the notation of the prev:ious section, we see that n1(a) = N1(a, {3) 
and nz(a) = N 8(a, {3) if {3 is large; that is, 

(6.73.2) n1(a) = lim N1(a, {3); nz(a) = lim Na(a, {3). 
B-+~ !3-+~ 

Obviously, if a > -I, then n1(a) = n, and nz(a) = 0. 
Now suppose a < -I, a ¢ -2; -3, . ·. , -n. From (6.72.5) we obtain 

{

n + [a] + I if a > - n, 
lim X(a, {3) = E(n + a+ I) = 
P-+~ 0 if a < -n, 

since the argument of E in the formula for X(a, {3) is not a positive integer; 
furthermore, 

lim Z(a, {3) = E( -n) = 0. 
!3-+~ 

Now 

( I) n n +a _ ' 
( ) {

( -It+[al+I if a > -n 
sgn - -

n I if a < -n. 

Thus, N 1(a, {3) = n + [a] + I in the first case, and N1(a, {3) = 0 in the second. 
Therefore, 

(6.73.3) {
n + [a] + I if 

n1(a) = 
0 if a < -n. 

a> -n, 

Furthermore, 

(6.73.4) n~(a) = 0 or I, 

according as 
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THEOREM 6.73. Let a be an arbitrary real number, a¢ -1, -2, ... , -n. 
' The number of the positive zeros of L~a)(x) is n if a> -1; it is n + [a]+ 1 if 

-n < a < -1; it is 0 if a < -n. The number of the negative zeros is 0 or 1. 

This result can also be obtained by a direct method similar to that used in 
§6.72. In fact, the numbers n1(a), nz(a) can change only if a passes one of the 
integers -1, -2, · · · , - n. If a decreases through an odd value of this kind, 
a positive zero is lost and a negative zero gained. If the passed value is even, 
a positive and a negative zero are lost. For a < - n, there are no real zeros if n 
is even and one real zero (which is negative) if n is odd. (Compare Lawton 1, 
W. Hahn 1.) 

6.8. Polynomialb which satisfy a second:..order linear homogeneous differential 
equation with polynomial coefficients; theorem of Heine-Stieltjes 

Heine (3, vol. 1, pp. 472-479) has studied the following problem: 

PROBLEM. Let A(x) and B(x) be given polynomials of degrees p + 1 and p, 
respectively. To determine a polynomial C(x) of degree p - 1 such that the 
differential equat1:on 

(6.8.1) 
d2 d 

A (x) dx~ + 2B(x) d; + C(x)y = 0 

has a solution which is a polynomial of a preassigned degree n. 

Heine asserts that, in general, there are exactly 

(6.8.2) <T = <Tnp = ( n + ~ - 1) 
determinations of C(x) of this kind. 

The hypergeometric equations (4.2.1) and (4.21.1) are of this type with 
p = 1. Lame functions satisfy an equation of the same type with p ~ 2. 
These cases were the starting points of Heine's investigations on this subject. 

Stieltjes (3) discusses only a special case of (6.8.1) which, however, is of 
primary importance. He obtains the following result: 

THEOREM 6.8. Let A (x) and B(x) be given polynomials of precise degree 
p + 1 and p, respectively, and let the highest coefficients of A(x) and B(x) have the 
same sign. If the zeros of A (x) and B(x) are real, distinct, and alternating with 
one another, there are exactly <r polynomials C(x) of degree p - 1 such that the 
differential equation (6.8.1) has a solution which is a polynomial of degree n. 
Here <r has the meaning (6.8.2). 

The proof of Stieltjes uses a part of Heine's assertion, namely, that <r is an 
·upper bound for the number of polynomials C(x) in question. He obtains, 
however, not only the existence but also a characterization of the <r solutions 
mentioned, in the following way: Then zeros of these solutions are distributed 
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in all possible ways in the p intervals defined by the p + 1 zeros of A (x). (The 
number of such distributions is obviously a-.) The solutions are obtained by 
means of a maximum problem similar to those treated in §6. 7. 

The following proof of Stieltjes' theorem uses the latter's idea based on a 
maximum problem, but Heine's elimination process (which furnishes the upper 
bound a-) is replaced by certain elementary considerations related to Sturm's 
theorem (see §1.82). Our proof is, consequently, independent of Heine's work. 

6.81. Preliminary remarks 

We assume with Stieltjes that 

(6.81.1) A (x) = (x - ao)(x - a1) · · · (x - ap), 

and 

ao < a1 < · · · < ap, 

(6.81.2) BA((x)) = ~ + PI + ... + Pp ' p. > O,v = o; 1,2, ... ,p. 
x x - ao x - a1 x - ap 

This is equivalent to the assumption that the zeros of A (x) alternate with 
those of B(x) and that the highest coefficients of A (x) and B(x) have the 
same sign. 

Let C(x) be a given polynomial. Then (6.8.1) cannot have two polynomia1 
solutions y and z linearly independent of each other. Otherwise, we should 
have for x r!: a. 

A(x)(y'z - yz')' + 2B(x)(y'z - yz') = 0, 

(6.81.3) 
y'z - yz' = const. exp {-J ~(~; dx} = const. g I x - a.i-

2
P'. 

Since the last product approaches oo as x ~ a., this leads to a contradiction 
unless y' z - yz' = 0. 

Now let y be a polynomial solution, y ¢ 0. We show that y r!: 0 at x = a •. 
If the contrary were true, substitution of x = a. in (6.8.1) would give y' = 0. 
Differentiation of (6.8.1) k times results in a differential equation of order 
k + 2 in y, which -has the form 

A(x)y<k+2> + {kA'(x) + 2B(x) Jy<k+I> + · · · = 0; 

the further coefficients are again polynomials. Now from (6.81.2) we see that 
B(a.) = p,A'(a.), so that kA'(a.) + 2B(a.) r!: 0. Thus y = y' = y" = · · · = 
y<k> = 0 would imply y<k+I> = 0. In a similar way we can show that all the 
zeros of y are distinct. 

Next we prove that the zeros of y lie in the interval [ao, ap]. Upon writing 
y = j(x) = const. (x - x1)(x - x2) . · · (x - xn), we have, according to (6.8.1), 

(6.81.4) 

or, using (6.2.2) and (6.81.2), 
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(6.81.5) 

+ 1 + t p. = 0. 
Xk - Xn •-o Xk - a, 

'Ve assume that some of the zeros of f(x) lie outside of [a0 , ap]. Let Xk be one 
of these zeros such that the segment [ao, avl and the remaining zeros all lie in a 
closed half-plane with Xk as a boundary point, the segment itself lying in the 
open interior of the half-plane. :rhen the complex vectors 

Xk- Xm, Xk- a. 

lie in an angle not greater than 1r for all values of v and m, m ~ k, and the same 
is true of the reciprocals of these vectors. The vectors Xk - a, are directed into 
the interior of this angle. But then we see that (6.81.5) is a contradiction. 
(For this argument, see P6lya 1.) 

Let n1 , n2 , · · · , nv be the number of zeros of y in [a0 , ad, [a1 , a2], · · · , 
[av-I, av], respectively. Then we say that y is of the type ln1, n2, · · · , nv}· 
Here n1 + n2 + na + · · · + nv = n, and (J represents the number of all possible 
types. It is our intention to show the existence of exactly one polynomial 
solution of each type, corresponding to (J different determinations of the poly
nomial C(x) of degree p - 1. 

6.82. A maximum problem 

Following Stieltjes (loc. cit.), we first show that a polynomial solution of each 
type exists. 

Let x1 , x2 , · · · , Xn be variable points, each different from the a, and dis
tributed in [ao , ap] so that in each interval [a,_1, a.] there lies a certain pre
assigned number, say n., of these points, L~=I n. = n. Letting each Xk vary 
in a fixed interval, we c·onsider the maximum of the product 

W = II I xK - a. IP• II I x" - xl' I· 
"=1,2,· · · ,n X,p.=-1,2,· · · ,n (6.82.1) 
·-0,1,·. ·,p "<~' 

The existence and positiveness of this maximum are clear. In the maximum 
position, the points Xk are different from the a. and from one·another, and they 
are of a preassigned type. Furthermore, we have aWjaxk = 0; whence (6.81.5) 
again follows. If f(x) denotes the polynomial w.ith the zeros Xk, the latter 
equation means that A (x)f"(x) + 2B(x)f'(x) vanishes for x = xk and hence is 
divisible by f(x). If this ratio is denoted by -C(x), (6.8.1) follows. It is 

1 I ~-~ clear that log (W- ), apart from the constant terms P~<P• log a~< - a. , 11- ~ v, 

is the "energy" of the system of masses p, concentrated at a. and of unit masses 
concentrated at the Xk. (Cf. §6.7 (1).) 

Incidentally, the argument used in §6.7 (1) shows that the system (xd with 
the maximum property is uniquely deterrp.ined. This is not the same as the 
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uniqueness of the solution of a given type since (6.81.5) is not equivalent to the 
maximum property. It is, however, easy to show (cf. (6.22.6)) that (6.81.5) 
is equivalent to a relative maximum of W. 

6.83. Uniqueness 

Let C(x), y and D(x), z be two solutions of our problem of the same type, 
C(x) ~ D(x). Suppose both polynomials y and z have positive highest coeffi
cients. By combining (6.8.1) with the corresponding equation for z, we find 
the relation 

(6.83.1) 
d
d (y'z - yz') + 2 i: p, (y'z - yz') + C(x) - D(x) yz = 0. 
x .-o x - a. A (x) 

Introducing H = II~-o I x - a. I2P', we obtain for x ~ a. 

(6.83.2) d (H( , ') l _ D(x) - C(x) H 
dx y z - yz - A(x) yz · 

Suppose the function (D(x)- C(x)JIA(x) is non-negative in the fixed interval 
a,_1 < x < a.. Then between two consecutive zeros a and (3 of y, a < (3, in this 
interval, z must change its sign at least once. Otherwise, yz would be perma
nently positive or negative, and therefore, H(y'z - yz') increasing or decreasing 
in a < x < (3. For x = a + E, E > 0, however, the last expression has the 
same sign as y'z or yz, and for x = (3 - E, E > 0, the same sign as y'z or -yz. 
Hence it passes from positive to negative values if yz > 0, and from negative 
to positive values if yz < 0. Either case contradicts the property of monotony 
of H(y'z - yz') mentioned before. 

Under the previous assumption concerning ID(x) - C(x)} I A (x), the function 
z must change its sign also in [a•-1, 'Y] and in [o, a.] if 'Y and o are, respectively, 
the first and last zeros of y in [a.-1, a.]. Otherwise, y and z would each have 
a constant sign in those intervals; moreover, y and z would have the same 
sign in a given interval because they are of the same type. Then H(y'z - yz') 
would be an increasing function. It vanishes for x ~ a,_1 + 0 and also for x ~ 
a. - 0, so that y'z - yz' must be positive in [a,_11 'Y] and negative in [o, a.]. 
Now for x =/',we have sgn (y'z- yz') = sgn y'z, which is the same as sgn (y'y) 
at x = 'Y - E, E > 0, that is, negative. This is a contradiction. The same argu
ment can be used at x = o. 

Finally, we remark, under the assumption made about (D(x) - C(x) J I A (x), 
that the polynomial z must vanish in [a,_1 , a.], even if y has no zeros there. 
Otherwise, because of (6.83.2), the function H(y'z - yz') would be monotonic. 
This is impossible since H vanishes for x = a•-1 and for x = a • . 
. To recapitulate: this argument would furnish at least one more zero for z 

in [a,_1 , a.] than for y, which is impossible. Therefore, (D(x) - C(x)} I A (x) 
must be negative in some points of a•-1 < x < a.. By interchanging C(x), y 

with D(x), z, it is seen that the same function must also be positive somew~ere 
in a,_1 < x < a. ; whence D(x) - C(x) must have at least one variation of sign 
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in [a.-1, a.]. Since this is true for v = I, 2, ... , p, the function D(x) - C(x) 
has at least p variations of sign in [ao, ap]. However, this is impossible since 
D(x) - C(x) is of degree p - 1. 

6.9. Zeros of Legendre functions of the second kind; generalization 

(I) In connection with Fejer's second generalization of Legendre poly
nomials (§6.5 (4)) we consider the function 

Hn(cos 8) = f3o cos (n + I)8 + (31 cos (n + 3)8 
(6.9.I) 

+ · · · + f3m cos (n + 2m + 1)8 + · · .. 

Here f3m l 0, so that the series converges for 0 < 8 < 1r. This is the conjugate 
series of the function Gn (cos 8) defined by (6.5.I6). The function Qn(cos 8) 
of (4.9.I6) is a special case; then the sequence f3m is given by· (4.9.5) and is 
completely monotonic. Now we prove the following theorem: 

THEOREM 6.9.1. Let f3m > 0 and let lf3m} be a completely monotonic sequence. 
The function Hn (cos 8) defined by (6.9.I) has at least one zero in each of the intervals 

(6.9.2) v = 0, I, 2, · · · , n. 

More precisely, Hn (cos 8) has an odd number of zeros in each of these inter
vals. For the proof we again use Hausdorff's representation and obtain for 
(6.9.I) 

11 {%;
0 

tm cos (n +2m + I)()} d(3(t) 

= e cos (n + I)8 - t cos (n - 1)8 d[3(t), 
}o I - 2t cos 28 + t2 

(6.9.3) 

where (3(t) is a function of the same type as a(t) in (6.5.8). Upon substituting 

v v +! 
8 = --1 1r and 8 = n + .1. 1r, 

n+2 2 

we find 

{ (-I)"(~os (8/2)- t cos (38/2)), 
(6.9.4) cos (n + I)8 - t cos (n - I)8 = ( -I)"+I{sin (8/ 2) + t sin (38/ 2)}, 

respectively. Both expressions in the braces are positive; this establishes the 
statement. (For v = 0 and v = n we must take into account that 

lim Hn(cos8) = (-Ir+I lim Hn(cos8) > 0 
8-++0 8-+1!"-0 

( + oc if L::...o f3m is divergent).) 
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(2) THEOREM 6.9.2. The function Qn(cos 8) (§4.62 (3)) has exactly n + 1 
zeros in 0 < () < 1r, which lie in the intervals (6.9.2). 

In this special case of Theorem 6. 9.1 there cannot be more than one zero 
in each of the intervals (6.9.2); otherwise, Pn(cos e) would have more than n 
zeros by Sturm's theorem. 

Inequalities (6.9.2) for the zeros of Qn(cos e) are due to Stieltjes (8, p. 252), 
whose proof is, however, different from that just given. Fejer obtains (20, pp. 
51-52) less precise inequalities in a manner similar to that used above; his 
conditions concerning the sequence I.Bm l, ho\vever, are more· general. 

(3) THEOREM 6.9.3. Legendre's function of the second kind Qn(x) (§4.61 (I)) 
has no zeros in the complex plane cut along the segment [ -1, + 1], except x = oo , 

which is a zero of multiplicity n + 1. 

This theorem is due to Hermite (3) and Stieltjes (9) (cf. also Hermite
Stieltjes 1, vol. 2, pp. 80-104, no. 267-274). The following argument is a slight 
modification of the second proof of Stieltjes. 

- 1 
FIG. 8 

We start from (4.62.10). This function Qn(x) has n + 1 zeros in the interior 
of [-1, +I], which alternate with the zeros of Pn(x) (cf. Theorem 6.9.2). Let 
+I = Xo > X1 > · · · > Xn > Xn+I = -1 denote the zeros of (1 - x

2
)Pn(x) in 

decreasing order. Then 

(6.9.5) sgn Qn(x.) = ( -lr, 11 = 0, 1, 2, ... , n + 1. 

Furthermore, Qn(x) is a solution of (4.2.1), a = .B = 0, so that Qn(x)/Pn(x) 
is increasing in the interval -1 ;£ x ;£ +I (cf. (4.2.6)); it becomes infinite at 
each x •. 

The curve in the figure encircles the points x = ± 1 and avoids the zeros of 
P n(x) by means of semi-circles. Now we shall show that the variation of 
arg (Qn(x)/Pn(x) J along nhis curve is equal to 21r(2n + 1). Then, according 
to Theorem 1.91.1 (principle of argument), the function Qn(x)/I>_n(x) has 
exactly 2n + 1 zeros exterior to this curve. But since it has a zero of multi
plicity 2n + 1 at x = oo, the statement will follow. 

Let E be a sufficiently small positive number. As x encircles + 1 in the nega
tive (clockwise) direction from 1 + E to 1 - E, the variation of the argument in 
question is approximately (cf. (4.62.7)) the variation of arg (log 1/(x - 1) l, 
a quantity which tends to 0 with E. If x describes the segment from x. - E 

to x.+I + E, 11 = 0, 1, 2, ... , n, along the "lower border" of [ -1, + 1], we have 
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(6.9.6) Y = Qn(X - iO) = i1r + Qn(X) 
P n(x) 2 P n(x)" 

Then y describes a straight line 3Y = 1r /2 in the direction of decreasing abscissas. 
The variation of the argument of y is +1r. 

In the neighborhood of x., v = 1, 2, · .. , n, the function Qn(x)/Pn(x) differs 
only by a bounded term from 

(6.9.7) Qn(x.) 1 h Qn(x.) O 
-, -) , w ere -, - < . 
Pn(x. X- Xv Pn(x.) 

Therefore, the half-circle in the lower half-plane around x. will be carried over 
into a curve which approximates a large semi-circle in the lower half-plane; the 
argument of '!j then increases by +1r. 

Finally, if x = -1 is encircled. in the negative sense, from -1 + E to -1 - E, 

the variation in arg y is again a quantity which tends to zero with E. 

To recapitulate: While x moves along the lower border from 1 + E to -1 - E, 

the total increase in the argument of y i-s (n + 1)7r + n1r = (2n + 1)1r. The 
same is true on the upper border as x varies from -1 - E to 1 + E. This es
tablishes the statement. 

6.10. Further results 

(1) Let (O.nl denote the zeros of Pn(cos e) in the interval [0, 1r], ordered in 
un increasing way. Turan (1) proved that the sequence x.n - x •. n-1, where 
x.n =cos e.n, is increasing as v runs from 1 to [!(n- 1)}. S~ego proved (in a 
correspondence with Turan, 1946) the same fact for the differences e •. n-1 - e.n. 
Cf. Szego-Turan I. 

(2) Concerning the topics treated in §§6.8-6.83, see also Makai 3. 
(3) The argument of §6.9 (3) leads to a more general result concerning the 

number of the zeros of Qn(x) - aPn(x) in the complex plane cut along the 
8egment [ -1, + 1} where a is a given complex constant (Hermite and Stieltjes, 
Joe. cit.). This number is again = 2n + 1 if -1r/2 <Sa < +1r/2, and =n if 
Sa f;; +1r/2 or Sa ~ -1rj2. 

Indeed, in the case -1r/2 < 3a < +7r/2 no essential change in the reasoning 
is needed. Now let Sa > +1r/2. If x describes the segment from x. - E to 
x.+1 + E, v = 0, 1, 2, · · ·, n, along the lower border of [ -1, + 1], the variation 
of the argument of y - a is -1r. There is no change in the contribution of the 
semi-circles around x. and of the whole upper border. Thus the total increase 
in the argument of y - a is - (n + 1 )1r + n1r + (n + 1 )1r + n1r = 2n1r. 

Let Sa = +1r/2. On the segment from x. - E to x•+1 + E there is a unique 
point~ such that Qn(~)/Pn(~) =~a. We must use an indentation of the contour 
into the lower half-plane and take into account that for 8 > 0 

(
Qn(x - iO)) = (Qn(X - iO)) _ io f.!!_ Qn(X - iO)} + 

Pn(X) z=t-ia Pn(X) x=t [dx . Pn(X) z=t 
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the imaginary part of the right-hand side is 1r 12 - 8' < 1r /2 where 8' > 0. The 
argument is similar if ~a = -1r /2. 

( 4) Makai-Turan (I) have proved the following theorem of the Picard
Landau type. Let Hn(z) be Hermite's polynomial. There exists a positive 
(absolute) constant A such that every equation of the form 

H 0(z) + HI(z) + 'Y Hn(z) = 0 

has a solution in the strip I 3 z I ~ A; n ~ 2, 'Y arbitrary real or complex. 
The exact value of A has been determined by Schmeisser I. The extremal 
polynomials are of third degree. The corresponding problems for quadrinomials 
and more general equations remain open. 

(5) Szego 20 improved the right-hand estimates in Theorem 6.4 when 
2ao -a1 > a1 -a2 ~ a2 -a3 ~ · · · ~ an-1 -an~ an~ 0. Both sides can be im
proved when (2k -l)ak-1 ~ 2kak > 0, k ~ I. See Askey-Steinig I. 

(6) The results mentioned in §6.10 (I) have been extended to ultraspherical 
polynomials in Szego-Turan I. 

(7) For the positive 8-zeros of the Legendre polynomials Pn(cos8) and 
also for the positive z~ros of the Hermite and Laguerre polynomials, written 
in increasing order, the second differences of the respective sequences of con
secutive zeros are all positive, as an immediate consequence of the Sturm 
theory (cf. Theorem 6.3.3). In L.Lorch-P.Szego I, 2, it is conjectured that 
all higher differences are also positive, but this remains unresolved. Sub
stantiating numerical evidence is cited there and in Davis-Rabinowitz I. The 
latter present also similar evidence connected with P~ (cos 8). See also Lorch
Muldoon-P.Szego I, 2. 

(8) If 7rn(x) is an arbitrary polynomial of degree less than or equal to n 
and if 

is its Laguerre expansion, then the number of sign changes of 7rn(x) for x > 0 
is at least as great as the number of sign changes of the sequence of the differences 

b0 , (bo- b1), (bo- 2bl +b2), · · ·. 

See Turan 2. 



CHAPTER VII 

INEQUALITIES 

No inequalities, except trivial ones, are known for general orthogonal poly
nomials. However, inequalities involving an unspecified constant can easily 
be derived under certain conditions concerning the weight function w(x). 
Still more precise estimates can be obtained if w(x) is monotonic, and a great 
number of special inequalities follow from this added restriction. 

Another very extensive class of inequalities can be derived for the classical 
orthogonal polynomials, and in the present chapter we intend to enumerate and 
compare the various methods used to obtain these inequalities. Aside from inte
gral and series representations, the main tool is differential equations. As regards 
the latter, we remark that there is a special method for deriving inequalities for 
the solutions of certain differential equations (cf. Theorem 7.31.1). In recent 
years this method has been used i'n several special problems (not only for po'ry
nomials), with slight variations, primarily by G. N. Watson and S. Bernstein; 
it originated, however, in an idea of Sonin. 41 

At the end of this chapter we use the above mentioned inequalities in dealing 
with certain extremum problems which involve polynomials of a fixed degree. 

The selection of the material treated in this chapter has been influenced by the 
needs of later chapters, especially by those of Chapters IX, XIV, and XV. 
Historically, the major part of the inequalities for classical polynomials arose 
from the discussion of the corresponding expansion problems. 

We shall postpone till Chapter VIII the asymptotic l')alculation of certain 
maxima (which can also be expressed in terms of inequalities), since they 
require more intricate asymptotic consideratidns. However, we have found it 
necessary in the present chapter to anticipate certain asymptotic results of 
Chapter VIII. 

7.1. Rough bounds for orthogonal polynomials 

In this section we make essential use of the representation of positive func
tions discussed in §10.2. However, this does not play a role in the further 
course of Chapter VII. 

(1) Let w(x) be a weight function on the interval [-1, +I] for which the 
integral 

(7.1.1) 1-:1 

(1 - x2)-! Jog w(x) dx 

exists in Lebesgue's sense. (This implies that w(x) cannot vanish on a whole 

u Cf. Sonin 2, pp. 23-24. I owe this reference to Professor J. A. Shohat. 
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segment.) Let D(j; z) = D(z) be the analytic function associated with f(8) = 
w(eos 8) I sin 8 I in the sense of §I0.2 (2). 

The conformal representation x = Hz + z-1
) maps the unit circle I z I < I 

(or I z I > I) onto the x-plane cut along the segment -I ~. x ~ + 1. For 
ill z = e we have x = cos 8. (Cf. §1.9.) 

THEOREM 7 .1.1. Let I Pn (x) l be the orthonormal set of polynomials associated 
with a weight function w(x), -I ~ x ~ +I, for which (7.1.I) exists; then 

(7.1.2) I 1rJD(z)pn(x)zn I < (I - I z 1
2)-!, I z I < I, 

where x = Hz + z-1
) is an arbitrary point of the cut plane. 

For, (cf. (I0.2.9)) 

1
+1 

I = _
1 

IPn(x) \
2 

w(x) dx· 

(7.1.3) I1+1r· = 2 _,.. IPn(cos 8))
2
w(cos8)1 sin 8 I d8 

- r~~o ~ 1:""1 Pnf!(z + Z -
1

) }zn j
2 

I D(i) 1

2 
d8, 

i8 z = re 

Now if f(z) = L::-o CmZm is regular in I z I < I, we have, according to Cauchy's 
inequality, 

(7 .1.4) 

This establishes the statement. 
The bound in (7.1.2) becomes infinite if x lies on the segment [-I, +I}; 

for all other values of x it furnishes a first appraisal of the magnitude of Pn(x) 
under a rather general condition. This information is comparatively precise 
because we shall prove (cf. Theorem I2.1.2) that, for a fixed x, the left-hand 
member of (7.1.2) 'tends to 2-! as n ~ oo. It is rather remarkable that no use of 
the orthogonal property has been made in deriving (7.1.2); only the normaliza
tion of Pn(x) is employed. 

(2) THEOREM 7.1.2. Let w(x) be bounded from zero, that is, w(x) ~ 11- > 0. 
Then, if x is not on the segment [-I, +I], 

(7.1.5) 

where (x2 
- I)! is chosen so that I x + (x2 

- I)! I > 1. The constant A depends 
on x and 11- but not on n; A is uniformly bounded in the exterior of any closed curve 
which contains [-I, +I] in its interior. 

·we have in this case I D(z) I > I 11-(I - i)/2 I! (cf. (I0.2.IO)), so that from 
(7.1.2) 

--------------------------------· ------·--··· . 
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(7.1.6) I z I <I, 
follows. 

(3) In the same case w(x) ~ 11- > 0, we can also easily obtain bounds for 
Pn(x) on the orthogonality interval -I ~ x ~ +I itself. In fact, if I z I < I, 
we have, in view of (7.1.6), (7r~J-/2)t(l - I z 12)! I Pn(x)zn I < (I - I z 12)-t. Let 
x be on the segment [-I, +I], x = Hz+ z-1

), where I z I = 1. Then Pn(x)zn 
is a 1r2n in z, and we have for -I ~ x ~ + I, I z I = I, r < I, 

I Pn(x) I = I Pn(x)zn I < max I Pn(~)(' I 
lll=r-1 

= r-2
n max ! Pn(~)rn I < r-2 n(7r~J-/2)-t(I - r2

)-
1

• 
l!!=r 

Here~= Hr + r-
1
). On putting r

2 = I - I/n, for n ~ 2, -I ~X~ +I, 
we have 

(7.1. 7) 

For -I < x < +I, we can reduce the exponent in (7.1.7) from I to ! (cf. 
(7. 7I.28)). 

(4) The same elementary method gives an idea of the magnitude of Jacobi's 
polynomial if n is large. In this case w(x) = (I - x)a(I + x)fl, a > -I, 
{3 > - I and (cf. (I0.2.I3)) 

(7.1.8) D(z) = 2-<a+fJ+l)!2(I - z)aH(I + z)fJH. 

Then by (7.1.2) 

(7.1.9) 
7rt2-<a+{J+I)/ 2 I I - Z jaH ! 1 + Z ifJH I Pn(x)zn I < (I - I Z 12)-t, 

x = Hz+z-1),1zl < 1. 

Now assume -I ~ x ~ +I; we obtain, as in (3), 

(7.l.IO) I Pn(x) I < cr-2"(I - r2)-~ max II - r 1-a-t II + r 1-fl-!, 
i!l=r 

where C depends only on a and {3, and 0 < r < I. We choose again r 2 = I - I/ n. 
Discussing the right-hand member of (7.l.IO) for I r I = r, ·m(r) ~ 0, and for 
I r I == r, 91(t) ~ o, we obtain 

(7.1.11) I Pn(x) I < C'nmax(a+l,{J+l, t>, -I~ X~+ 1. 

Here C' depends only on a and {3. The "true" exponent is max(a + !, {3 + !, 0) 
(cf. (7.32.2)). 

For later purposes we give a formulation of (7.1.9) in terms of the Jacobi 
polynomials p~a,fJ>(x) (cf. (4.3.4)). If xis exterior to the segment [-I, +I], 
we have 

(7.1.I2) 

a>- I,{3 > -I,n--4 oo. 
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This holds uniformly in the exterior of any curve containing the segment 
[ -· 1, +I] in its interior. Inequality (7.1.12) follows, of course, immediately 
from the asymptotic formula (8.21.9). 

(5) The following theorem is rather useful in obtaining bounds for ortho
normal polynomials: 

THEOREM 7.1.3. Let w(x) and w(x) be two weight functions on the segment 
[ -1, + 1], w(x)/w(x) = k(x). Assume k(x) ~ k > 0, and let k(x) satisfy the 
Lipschitz c.ondition 

(7.1.13) 

If I Pn(x)} and I Pn(x)} are the orthonormal polynomials associated with w(x) 
and w(x), respectively, we have 

(7.1.14) 

This theorem is due to Korous (3). The proof follows from the identity 
( (3.2.3)) 

Pn(x) = 1:1 

Pn(t) {~ p.(x)p.(t) }w(t) dt 

k 1+1 {n-1 } ( k(i)) 
= fc: Pn(x) + _1 Pn(t) ~ p.(x)p.(t) w(t) 1-- k(x) dt 

·w(t) k(x~ = :c(t) dt, 

where kn has the same meaning as in (2.2.15), and kn has the corresponding 
meaning for Pn(x). Now, according to Schwarz's inequality 

k 1+1 {1+1 }! {1+1 }! fc: = _
1 

p,(t)pn(t)w(t) dt ~ _
1 

[pn(t)]2 w(t) dt _
1 

[jj,(t)]2 w(t) dt 

= {/_:
1 
[k(t)r1w(t)[pn(t)] 2 dty ~ k-l, 

k~-l = 1+1 tPn-l(t)pn(t)w(t) dt ~ 1+1 I Pn-1(t) I I Pn(t) I w(t) dt ~ 1, 
~ -1 ~ 

11~' p.(t)p._,(t)W(t) at I ~ {1~' lp.(t))'w(t) at}' ~ k -•, 

which establishes (7.1.14). 
We mention two important special· cases which follow immediately from 

(7.1.14) by use of the bounds of the Legendre and Tchebichef polynomials (con
cerning the fir;;t case, see (7.21.1) and (7.3.8)): 

(a) If w(.-r) iR poRitin and satisfies a Lipschitz condition I w(xl) --- wCx2) I 
< Xl.rl- x2l,wc han~ 
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(7.1.15) 
-1<x<+l. 

Here the positive constants A and A' are independent of x and n. 
(b) If w(x) = (1 - x2)-! k(x) where k(x) is positive and satisfies a Lipschitz 

condition I k(xi) - kCx2) I < X I XI - x2l, we have 

(7.1.16) I Pn(X) I <A, -1<x<+1, 
where A is independent of x and n. 

For other elementary considerations of a similar nature, see Shohat 4, pp. 165-
166 and Jackson 6, pp. 893-898. See, also, §7.71 (6). 

7.2. Monotonic weight functions 

THEOREM 7.2. Let w(x) be a weight function which is non-decreasing in the 
interval [a, b], b finite. If (pn(x)) is the set of the corresponding orthogonal poly
nomials, the functions I w(x))! I Pn(x) I attain their maximum in [a, b] for x = b. 

See Szego 3. A corresponding statem·ent holds for any subinterval [xo , b] 
of [a, b] where w(x) is non-decreasing. 

The proof is based on the identity 

w(b)lpn(b)) 2
- w(x)lpn(x)) 2 = 2 [b w(t)pn(t)p~(t) dt + [b 1Pn(t)) 2 dw(t), 

which follows from (1.4.4). It suffices to show that this expression is non
negative in a ~ x ~ b. Denoting by x1 < X2 < : · · < Xn the zeros of Pn(x) 
in increasing order, we have Pn(t)p: (t) > 0 for t > Xn and Pn(t)p~(t) < 0 for 
t < XI • Therefore, the statement is trivial for Xn ~ x ~ b and follows from 

1b w(t)pn(t)p:(t) dt = 1b w(t)pn(t)p~(t) dt - 1"' w(t)pn(t)p~(t) dt 

= - 1"' w(t)pn(t)p~ (t) dt 

for a ~ x ~ x1 • Here we used the monotony of w(x) only in x ~ t ~ b. 
Now let x. ~ x ~ x.+l, 11 = 1, 2, . ·. , n - 1, n ~ 2. If we introduce the 

new weight function 

W(x) = w(x) I (x - xi)(x - x2) · ·. (x - x.) )2, 

the corresponding orthogonal polynomial of degree n - 11 will be, save for a 
positive constant factor, 

Pn(X) 
Qn-•(x) = ( ) ) , 

X - X1 (X - X2) • • • (x - X. 

with the zeros x.+1 , x.+2, · · · , Xn. In fact, if p(x) is an arbitrary 11"n-•-I, 
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1b W(x)qn_.(x)p(x) dx = 1b w(x)pn(x)(x- x1)(x - x2) · · · (x- x.)p(x) dx = 0. 

But W(x) increases monotonically for x. ~ x ~ b, so that the preceding argu
ment furnishes, for x. ~ x ~ x., 1 , 

W(b) /qn_.(b) 12 
- W(x)lqn_.(x) 12 

= w(b)lpn(b) 12 - w(x)lpn(X) 12 ~ 0. 

In addition we conclude that the equation w(b)lpn(b) 12 = w(O IPn(O 12 holds 
if and only if ~ < xi and w(t) vanishes in (a, ~] (this condition has, of course, 
no signifieance if a = ~),and is step-wise constant in[~, b]. Furthermore, Pn(t) 
must vanish at the points of increase of w(t). (The weight function w(x) cannot 
vanish for x ~ xi .) 

7.21. Applications 

On putting a = -1, b = + 1, and w(x) = 1, we obtain the important in
equality 

(7.21.1) I P n(X) I ~ 1, 

for the Legendre polynomials Pn(x), Pn(l) = 1. If n > 0, the equality sign 
holds only for x = ± 1. 

Another interesting case is a = -1, b = +I, and w(x) = I x l2k, k > 0. On 
account of (4.1.6) we have I x lk I p;o.k-!>(2i - 1) I ~ P~o,k-!>(1) = 1, so that 

(7.21.2) I (1 - x)/2) a/Hi I p~a ,o)(x) I ~ 1, -1 ~ X ~ + 1, a ~ - !. 

The equality sign hold!-l only for x = -1. In the interval 0 ~ x ~ 1 this is, 
for large n, less precise than the first inequality (7.32.6). 

In case a = 0, b = + oo, and w(x) = e-", we obtain for the Laguerre poly~ 
nomials 

(7.21.3) X~ 0, 

the equality sign holding only for x = 0 if n > 0. 
With regard to these special cases, see Szeg6 2 and 3. 

7.3. Legendre polynomials 

A second proof of (7 .21.1) and various other important inequalities can be 
obtained by means of the differential equation for Legendre polynomials. 

(1) THEOHEM 7.3.1. Let n ~ 2. 'l'he successive relative maxima of I Pn(x) I, 
when x decrease8 from 1 to 0, form a decreasing sequence. More precisely, if 
p,1 , p,2 , , J.I.Cn/2J denote these maxima corresponding to decreasing values of x, 
we have 

(7.3.1) 1 > J.LI > P,2 > · · · > J.l.[n/2) • 

From this (7.21.1) follows again. 

------------------------·----·------···· 
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If n is even, we have 

J.Ln/2 = J Pn(O) I = 1·3 .. • (n - 1). 
2·4 · · · n 

For the proof let 

(7.3.2) 

Then we havef(x) = IPn(x) )2 
if P:(x) = 0, or if x = ±1. Therefore, 

(7.3.3) max 1Pn(x)) 2 ~ max f(x). 
-l~z~+l -l~z~+l 

Now, on account of (4.2.1), 

165 

n(n + 1)f'(x) = 2P~(x)ln(n + 1)Pn(x) - xP~(x) + (1 - x2)P~(x)) 
(7,3.4) I I I 2 

= 2Pn(X)·XPn(X) = 2x(Pn(x)), 

so that f(x) is decreasing for x < 0 and increasing for x > 0. This establishes 
the statement. 

(2) THEOREM 7 .3.2. Let n ~ 2. The successive relative maxima of 
(sin e)t 1 P n(cos e) 1 when e increases form o to 1r/2, form an increasing sequence. 

From ( 4.24.2) we obtain for a = {3 = 0 

d2
u 

de2 + ¢(e)u = 0; 
(7.3.5) 

u = u(e) = (sin e)! Pn(cos e), 

Introducing 

(7.3.6) f(e) = (u(e)) 2 + ~(e)(tt1 (e))2, 

we have 

(7.3.7) f'(e) = 2u1 (e)lu(e) + ~(e)u"(e) + 1~1 (e)u1 (e)) = ~~(e)lu1 (e)( 

Now ~(e) is an increa:-;ing function in [0, 1rj2], so thatj'(e) > 0, andf(e) is also 
iner<'nsing. Butf(e) = i·u(e))

2
ifu1 (fJ) = O;thisprovcsthetheorem. 

(3) An important. application of Theorem 7.3.2 is 

THEOREM 7.3.3. We have 

(7.3.8) o ~; e ~ 1r. 

Here the constant (2/7r)! cannot be replaced by a smaller one. 

The first proof of nn irwqunlity of the type (7.3.8), with a constant A instead 
of (2/7r)i, is due to Sticlt.jcs (8, p. 241). Further proofs have been given by 
Gronwall (1, p. 221) and Fejer (9, pp. 280-291). The following proof is due to 
S. Bernstein (2, p. 236); it was the first leading to the precise constant (2/7r)}. 

Let n be even. From Theorem 7 .3.2 
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(7.3.9) 

with the .sign of equality holding if e = 1r /2. l\ ow let n be odd. Then for 
o~e~1r 

(sin e)! I Pn(cos e) I < max lf(e) l t 
(7.3.10) 0 ~0 ~,. 

= lf(7r/2)l!= !i+(n+~) 2 )- 1 1P~(O)I, 

where f(e) is defined by (7.3.6). Using the notation (4.9.2), we have42 

I Pn(O) I = gn/2 < (2/7r)!n-!, 
(7.3.11) 

I P~(O) I = (n + 1)g(n+l)/2 < (2/7r)!(n + 1)!, 

according as n is even or odd. (In the second case we can use (4.7.31).) Now 
I± + (n + !/ l-\n + 1)1 < n-!; therefore (7.3.8) follows. 

That (2/7r)! is the best possible constant is easily seen hy considering./ Pn(O) I, 
n even. Besides this we have ( cf. (7 .32. 9), a = {3 = 0) 

(7.:3.12) max (sin e)! I P,. (cos e) I "'' (2/7r )} n-!, n ~ oo. 
0~8~,.. 

7.31. Theorem of Sonin; Bessel functions 

The argument used in the preceding section can be generalized in various 
ways. For instance, the following important theorem holds. 

THEOREM 7.31.1. Let y = y(x) satisfy the differential equation 

(7.31.1) y" + ¢(x)y = 0, 

where¢ (x) is a positive function having a continuous derivative of a constant sign 
in xo < x < Xo . Then the successive relative maxima of I y I , as x increases 
from x0 to Xo ,form an increasing or decreasing sequence according as cp(x) decreases 

• 43 or tncreases. 

If we write 

(7.31.2) 

we have, in fact, f(x) = (y(x) )2 if y'(x) = 0, and 

(7.31.3) f'(x) = 2y'(x)ly(x) + ..J;(x)y"(x) + !..J;'(x)y'(x)) = ..J;'(x)ly'(x) )2
• 

That is, sgn f'(x) = -sgn ¢'(x); whence the ~-.;tatement follows. 

42 The sequence (mi! 2gml is increasing, so that mi!2grn < limm_. 00m112gm = 71"- 1/ 2 • 

43 Professor P6lya has kindly pointed out to me the following generalization of this 
theorem: Let y(x) satisfy the differential equation 

lk(x)y'l' + q,(x)y = 0, 

where k(x) > 0, q,(x) > 0, and both functions k(x), q,(x) have a continuous derivative. Then 
the relati1•e maxima of I y I form an increasing or decreasing sequence according as k(x)q,(x) 
is decreasing or increasing. This was obtained independently by Butlewski I. 
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As an illustration, we apply this result to (1.8.9) for k = 1, x > 0. In this 
case we have 

(7 .31.4) 
1 2 

¢(x) = 1 + 4 -2 a 
X 

so that ¢(x) is decreasing if a? < -!- and increasing if a 2 > -!-. In the latter 
case x must be taken so large that ¢(x) > 0. We then conclude that the 
relative maxima of x'l J a(x) I form an increasing sequence if a 2 < l, and a 
decreasing sequence if a 2 > -!-. In the first case x > 0, and in the second 

( 2 1 )' X> a - 4 . 

According to (1.71.7), there are infinitely many such maxima, and they 
tend to (2/ni. Thus, we have the theorem: . 

THEOREM 7.31.2. If J a(x) denotes Bessel's functz'on of order a, we have 

(7 .31.5) 1 
(2/?r·)' 

sup lx' I J a(x) ll = 
.:~o finite and > (2/?r· )' if a>!. 

For a = ±~we can use formulas (1.71.2). For a < -~we have x'J a(x) ~ oo 
as x -~ +O [(1.71.1)]. The second statement holds in this case provided the 
least upper bound in question is taken in an arbitrary interval [xo , + oo] with 
Xo > 0. 

See Szego 17, pp. 40-41, and compare similar theorems in Watson 3, pp. 
488-489. See abo §7.8. 

7.32 Jacobi polynomials 

(1) The consideration of §7 .3 can easily be extended to ultraspherical poly
nomials. A treatment of this case will be given in §7 .33. First, however, 
we discuss general Jacobi polynomials P~ a .P> (x). In applying the previous 
methods to P~a .P> (x), the main difficulty lies in the fact that there is no special 
point x = ~ interior to [ -1, + 1] at which P~a,P>(x) and its derivative have 
values which are easily calculated, as in the case of the ultraspherical, and 
especially of the Legendre, polynomials at x = 0. This is the reason that here 
we must anticipate certain comparatively simple results from Chapter VIII. 44 

These are the following: 
(a) The formula of the Mehler-Reine type [(8.1.1)], 

limn-a p~a,p) (cos =) = (z/2)-a J a(z), 
n-oo n 

which holds uniformly for I z I ~ R, R fixed. 

u After completing the manuscript I received a paper of Korous (3) in which some of 
the results of §7.32 arc derived by use of the differential equation· of Jacobi poly no~ 
mials but without using the asymptotic formulas (8.1.1), (8.21.10). 
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(b) Darboux's formula l(8.21.10)], 

p~a,P>(cos e) = n-! k(e) cos (Ne + ,) + O(n-!), 

( 
())-a-! ( e)-P-i k(e) = 1r -! sin 2 cos 

2 
, 

N = n + (a + {3 + 1)/2, 'Y = -(a+ !h/2, E ~ e ~ 1r- E, 

Here E is a fixed positive number; the bound for the error term holds uniformly. 
In both cases, a and {3 are arbitrary real numbers. 

Concerning the results of this section and subsequent ones, cf. Kogbetliantz 
19, p. 125, S. Bernstein 2, and Szego 17. 

(2) THEOREM 7.32.1. Let a> -1, {3 > -1, 

(7 .32.1) 

We have 

{(n+q) q 

max I P~a,P>(x) I = n ,.._, n 
-l~x~+I I p~a,P)(x') I ,.._, n-! 

(7 .32.2) 
ifq =max (a, {3) ~- t, 

if q = max (a, {3) < - t. 
Here x' is one of the two maximum points nearest xo . 

The symbols ,.._, refer to the limiting procedure n ~ oo. In the second case 
-1 < Xo < +1; then we use (8,21.10). The subsequent argument furnishes 
the more precise result that the maximum of I P~a,P>(x) I in the interval 0 ~ x ~ 1 
is of order nmax(a,-l/2). A similar result holds for -I ~X~ 0. 

For the proof we generalize the argument of §7.3 (1) as follows. Let n ~ 1, 
and let 

n(n + a + {3 + 1)f(x) 

(7.32.3) 
= n(n +a+ f3 + 1) IP~a.P>(x) )2 + (1 - x2){! P~a.P>(x) r. 

Then by using (4.2.1), we obtain 

(7.32.4) n(n +a+ {3 + 1)f'(x) = 2la- {3 +(a+ {3 + 1)x){! p~a,P>(x)r. 
Thusf'(x) can change its sign only at x = xo. 

Weseethatthecondition -1 < Xo < +1 isequivalentto (a+ t)(f3 + !) > 0. 
Now let a > -! and {3 > -!. Then the sequence formed by the relative 
maxima of I P~a,P>(x) I in -1 ~ x ~ Xo and by the value of this function at 
x = -1, is decreasing, while the sequence of the maxima in xo ~ x ~ +1 and 
of the value of the function at. x = +I. is increasing. Therefore, I P~a,P>(x) I 
attains its maximum in [ -1, + 1] at one of the end-points. 

-----------------------------------------
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In case a ~ -!and -1 < {3 ~ -!,the linear function a - {3 + (a+ {3 + l)x 
is non-negative, so that the sequence of relative maxima in question is increasing 
in [ -1, + 1], save for the case a = {3 = - !, in which it is stationary; the situ
ation is opposite in the case {3 ~ - !, -1 < a ~ - !. Finally, let -1 < a<-!, 
-1 < {3 < -!, so that again -1 < Xo < + 1; then the sequence of maxima is 
increasing in [ -1, xo] and decreasing in [xo , + 1], so that the absolute maximum 
of I P~"·P>(x) I in [ -1, +I] is attained at the point of maximum nearest Xo on 
the left or on the right. 

See Problem 39. 

(3) THEOREM 7 .32.2. Let a and {3 be arbitrary and real, and c a fixed positive 
constant, n ~ oo. Then 

(7.32.5) f -1 < < /2 '/, en = e = 7r ' 

f 0 < < -1 
'2. = e =en . 

See S: Bernstein 2, pp. 225-232 where Sonin's theorem is applied, but where 
the proof is perhaps slightly more complicated than ours. Szego (17, p. 77) 
uses the asymptotic formula (8.21.17) which is, of course, a more complicated 
tool than (8.1.1) and (8.21.10) used below. 

The bounds in (7 .32.5) are precise as regards their orders in n. They follow 
also, as mentioned, from the more complicated asymptotic formula (8.21.17) 
of "Hilb's type." By use of (4.1.3) we can obtain similar bounds for the 
intervals 7r/2 ~ e ~ 7r. 

We notice the useful inequalities 

(7.32.6) p~a,P>(cos e) = 
{

o-a-!O(n -!), 

O(na), 

(7.32.7) 

which follow from (7 .32.5). Concerning the second bound in (7 .32.6), and 
concerning (7 .32. 7), see §7 .32 (2). 

We observe that e-a-!n _, "'--' n a if e "'--' n -I; thus it suffices to prove (7.32.5) 
for a special value of c. Apply Theorem 7.31.1 ·with [(4.24.2)] 

X = e, y = Un(e) = (sin~) aH (co::; ~YH p~a,p)(cos e), 

cp(e) = i - a2 + t__=-_.{j_2_ + {n + a+ {3 + 1}2· 
. 2e 2e 2 

4 sm - 4 cos --
2 2 

(7 .32.8) 

First, let o = o(a, {3) be a fixed positive number, sufficiently small. Then cp(e) 
is positive and decreasing in 0 < e ~ o if a 2 < i. It is positive and increasing 
in kn-

1 ~ e ~ o if a 2 > i; here k is a fixed number, k > (a2 
- t)\ and n is 
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sufficiently large. Thus in both cases, the function ¢(0) is positiv:e and monotonic 
in kn-

1 ~ e ~ o, where k = k(a, {3), o = o(a, {3), and n is sufficiently large. The 
same holds for a 2 = i-, {3

2 ~ i-. Therefore, the sequences of the relative maxima of 
I un(e) I in the interval kn - 1 ~ 8 ~ o are increasing and decreasing, respectively, 
for large n, according as a 2 < i- or a 2 > i-. According to (8.1.1) and (8.21.10), 
we find in both cases un(e) = O(n-~). (We have (sin 0/2)a+!(cos 0/2)!9+! 
'""'"' ea+'.) This furnishes the first part of (7.32.5) with c = k. The second part 
follows immediately from (8.1.1). 

In the case a
2 = {3

2 = t, excluded before, ¢(0) is constant. Then we know 
p~a,P>(cos e) explicitly (cf. (4.1.7), (4.1.8)). 

(4) THEOREM 7.32.3. Let un(e) have the same meaning as in (7.32.8), and 
Mn =max I Un(e) I when 0 < e ~ 7r/2. We have 

(7 .32.9) lim n'Mn = J1r -! 
n-+oo lfinite and > 7r _, 

Here {3 is greater than - 1. 

if-!~ a~ +t, 
f 1 

t a> 2· 

Cf. S. Bernstein 2, pp. 225-232; Szego 17, pp. 79-80. Cf. Theorem 7.31.2. 
The preceding argument needs only a slight modification. We have to discuss 

the maximum of n' I un(e) I foro~ e ~ 1r/2 if-!~ a~ +!,and fore = n-
1
z, 

0 ~ z ~ c, if a > 1. The first is ""' 1r -! as n ~ oo (according to (8.21.10)); 
the second is 

""' n' 0~~;c { (2:) a+!na(z/2)-a I J a(z) 1} = 0~~~~ 1 (z/2)' I J a(z) IJ 

(according to (8.1.1)). For sufficiently large c this is independent of c and 
greater than 1r -! (Theorem 7 .31.2). 

(5) Finally, as an application of (4.21.7) we point out the following generali
zation of Theorem 7 .32.2: 

THEOREM 7 .32.4. Let a and {3 be arbitrary and real, and c a fixed positive 
constant, n ~ oo. Then 

f(!!_)k p<a.fi>(x)} = ~e-a-k-!O(nk-!) 
(7.32.10) j d n k 

\ X x=c<Js8 O(n2 ·+a) 

f -I< e < ;2 ten= =1r, 

f 0 < e < -1 t = =en . 

From this we find, uniformly in x, -1 ~ x ~ + 1, 

(7.32.11) (;xy P~a.P>(x) = O(nq), q = max (2k + a, 2k + {3, k - !). 

7.33. Ultraspherical polynomials 

In the ultraspherical case the preceding considerations can be simplified. 
(1) By the same argument·as that in §7.32 (2) we find that 
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is increasing or decreasing in 0 ~ x ~ 1 according as X > 0 or X < 0, X non
integral; we assume n > 0 in the first and n > - 2X in the second case. Thus 
we obtain the following theorem: 

THEOREM 7.33.1. We have 

if X > 0, 
(7 .33.1) max I P~">(x) I = n {(

n + 2X- 1) 
-1~.:~1 I P~">(x') I if X < 0, X non-integral. 

Here x' is one of the two maximum points nearest 0 if n is odd; x' = 0 if n is even. 

In the first case (4.7.3) has been used (cf. also Theorem 7.4.1). In the second 
case we obtain, if n is even, 

(7 .33.2) 

whereas, for n odd, 

max IP~">(x)l < lf(O))!= /n(n+2X))-!Ip~>->'(O)I 
-1~.:~1 

(7.33.3) 

= I2X lln(n + 2X))-! I (X t (n ~)}~12) \. 
Both bounds (7 .33.2) and (7 .33.3) are "'"' 21->- I r(X) l-1n"-·1 as n ~ oo ; the first 
bound is attained for x = 0, the second bound is precise in the asymptotic sense. 

(2) By use of (4.7.11) we obtain in a manner similar to that in §7.3 (2), (3), 
the following: 

THEOREM 7.33.2. Let 0 < X < 1. Then we have for 0 ~ e ~ 7r 

(sin e)" I P~">Ccos o) 1 

(7.33.4) 

and 

(7.33.5) 

if n is even, 

if n is odd, 

Here the constant 21-"l r(X) )-1 cannot be replaced by a smaller one; an has the 
same meaning as in (4.9.21). 

In (7.33.4) the sign of equality holds only fo~ even n and e = 1rj2. Now 
an "'--' I r(X) )-1n"-\ and an < I r(x) l-ln>-.-I (since I n1-"an l is increasing45

); more-
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over, p .. (1 >..) + (n + A) 2)-i(n + 1)" < n"-\ 45 so that equation (7.33.5) 
follows. 

Less precise (but more general) inequalities can be obtained from the general 
result (7.32.5) for a = {3 = A - !. We have · 

(7.33.6) lrr"O(n"-1
), cn-1 ~ o ~ 1r/2, 

P~'->(cosO) = 
O(n2

"-
1
), 0 ~ 0 ~ en-\ 

A arbitrary and real, A ~ 0, -1, -2, ... ; c > 0. 

(3) We point out an interesting special case of (7.33.6), namely,. A = ~ 
(cf. Szego 16). We have P:(x) = p~i~ 1 (x) (cf. (4.7.14)), so that 

1 10-!0(n!), cn-1 ~ 0 ~ 1r/2, 
(7.33.7) Pn(cosO) = 

2 O(n) , 0 ~ 0 ~ cn-1
• 

The first bound can be used for the whole interval 0 < 0 ~ 1r/2 [cf. (7.32.6)]. 
According to (7.33.1) the inequality 

(7.33.8) I P:(x) I ~ n(n + 1)/2, -1 ~ x ~ + 1, 

holds, the equality sign being taken if n = 0, 1, or n > 1, x = ±1. 
By using the first identity in ( 4. 7 .27), we find 

(7.33.9) 2 1 ( ) n(n + 1) ( ) ) ) (1-x)PnX = 
2
n+

1 
(Pn-1X -Pn+1(X . 

Thus we conclude from the first bound in (7.33.7) (which now holds for 
0 < 0 2 1r /2, cf. the previous remark) the following: 

THEOREM 7.33.3. If Pn(x) denotes Legendre's polynomial, we have for 0 < 0 < 1r 

(7.33.10) Pn-1Ccos 0) - Pn+1(cos 0) = (sin o)!O(n-!). 

The bound of the factor 0 ( n -!) is independent of 0. 

This result, without the factor (sin 0)!, is due to Stieltjes (cf. Hermite-Stieltjes 
1, vol. 2, pp. 174-177; Fejer 9, pp. 295-298). The present form of the theorem 
is implied in the previous more general results of S. Bernstein, Kogbetliantz, 
and Szego; cf. Szego 16. 

7.34. Bounds for integrals involving Jacobi polynomials 

THEOREM 7 .34. Let a, {3, Jl. be real numbers each greater than - 1. Then as 
n -~ oo (concerning the second part of the statement see below) 

46 In view of the concavity of log x, we have 

(1 - A) log (n - 1) + A log n < log (n + A - 1), 

{l- A) log (n 2 ) -r A log l(n + 1)21 <log 1{1- A)n2 + A(n + 1) 2 1. 

------------------ ·---·--· 
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(7.34.1) 

2J.L <a- ~~ 

2J.L =a-~~ 

2J.L >a-~-

See Szego 17, pp. 84-86, where the existence of the limits of the corresponding 
ratios is proved, and the limits are calculated. The proof of the second part 
of (7.34.1) requires a more complicated apparatus [(S.21.18)]; here we prove 
only that 

(7.34.2) Un = n! 11 

(1 - x)"' I P~a,f3>(x) I dx = O(log n), and Un ~ oo. 

This is sufficient for later purposes (cf. §9.41 (5)). 
We use (7.32.5); in fact, we have 

t e·'2 

}o (1 - x)"' I p~a,f3>(x) I dx = 0(1) }o rlp.+l I p~a,f3>(cos o) I do 

(7.34.3) 
= 0(1) 1n-1 

02P.+lna dO + 0(1) 1:
1

2 

02P.+lo-a-!n-! dO 

= O(na-2p.-2
) + O(n -!)I 0(1) + O(na-2p.-~)}. 

If 2J.L -- a+ ~ = 0, the last term must be replaced by O(log n). 
On the other hand, 

(7.34.4) 11 

(1 - x)"' I P~a,f3>(x) I dx > 

A 1n-1 

02P.+l I P~a,f3>(cos 0) I dO, 

2J.L <a- ~' 

1
1r/2 

A I P~a,f3>(cos 0) I dO, 2J.L > a - ~' 
/4 

where A is a proper positive constant. According to (8.1.1), the first bound is 

:::A 11 

(z/n) 2p.+l?t(z/2)-a I Ja(z) I n-1 dz I"V na-2p.-2
• 

According to (8.21.10), the second bound is 

r-v n-! t .. 
12

l cos (NO + 'Y) I dO r-v n-!. 
J "'4 

In case 2,L =a-~' a> -!,we have 

11 

(1 - x)"' I P~a,f3>(x) I dx > A' 1wn-1 

02P.+l I P~a,f3)(cos 0) I dO, 

where w is a fixed poi:litive number, and A' is independent of n and w. From 
this inequality, according to (8.1.1), 
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follows. The last integral becomes arbitrarily large with w; this furnishes the 
second part of (7.34.2). 

7.4. Fejer's generalization of Legendre polynomials 

(1) THEOREM 7 .4.1. Let (an l be a sequence with positive terms. Then the 
"Legendre polynomials" Fn(x) (6.5.1) associated with the sequence (anl satisfy 
the £nequalities 

(7.4.1) 

The sign of equality holds only if n = 0, or n > 0 with x = -1 or x = + 1. 

This leads to a new proof for (7.21.1) and for the first part of (7.33.1). 
(2) The inequalities (7.3.8) and (7.33.5), of the Stieltjes type, can likewise 

be extended to the polynomials Fn(x), though with certain larger constants.· 
We prove the following: 

THEOREM 7 .4.2. Let 

(7.4.2) 
an > 0, dan = an - an+l > 0, d

2
an = an - 2an+l + an+2 > 0, 

n = 0, 1, 2, ... , 

and 

(7.4.3) 

Then for the "Legendre polynomials" F n(x) associated with the sequence I an l, 
we have 

(7.4.4) 0. < () < 71"; n = 0, 1, 2, .. · . 

See Fejer 9, pp. 291-295; Szcgo 11, p. 179. Szego obtains a larger bound 
under a more restrictive condition. The inequality (7.4.4) and the present 
proof are new. 

Under the conditions (7 .4.2) the function f(z) is regular for I z l < 1 and con
tinuous for I z I ~ 1, I z - 1 I ~ o, where o is an arbitrarily small positive number. 
Indeed, we see that limn_.ooan = a ~ 0 exists. If a = 0, we use a well-known 
case of Abel's inequality (1.11.6); if a > 0, we write an = (an - a) + a. 

Now from (6.5.1), 
[n/2] [n/2] 

(7 .4.5) F ( ) -n/2 ""'' k + n/2 ""'' -k n COS () = Z L.J akan-kZ Z L.J akan-kZ , 
k-0 k-0 

2i6 z = e , 

where the sign L:' indicates that for even n the last term k = 
multiplied by!. Hence, 

n/2 has to be 

(7.4.6) I Fn(cos 0) I ~ 21 [I:} a~;an-kll, 
k-0 

2i6 z = e . 

---------------------- -----···· 
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By virtue of (1.11.6) we obtain 

(7.4.7) 2 ·e m = n - [n/2], z = e ' . 

Now, writing 

(7.4.8) 

we have, according to a theorem of Fejer-Szego (1), 

(7.4.9) 

But 

I f(z) I ~ I Pl(z) I ~ I p2(z) I ~ · · · , 1 z I ~ 1, z ~ 1. 

(7.4.10) n even, 

n odd, 

so that the modulus of this sum is in both cases not greater than 21 f(z) I ; 
whence (7.4.4) follows. 

We give here a sketch of the proof of (7.4.9). It suffices to show that I f(z) I 
~ I Pl(z) I ' or I f(z) I ~ I f(z) - ao I' or m [j(z)] ~ ao/2 for I z I < 1. Now 

limn_=-,an = a ~ 0 exists. If f(z) is replaced by f(z) - a(1 - z)-\ it is seen 
that we can assume a = 0 from the start. Then for I z I < 1 

00 

f(z) == L Ll
2
anln + 1 + nz + (n - 1)z2 + · · · + zn} 

n-o 

:::-2
1 "£ Ll

2
an(n + 1) + f Ll

2
anl (n + 1)/2 + nz + (n - 1)i + · · · + znl 

n-O n-O 

00 

=: ao/2 + L Ll
2
anl (n + 1)/2 + nz + (n- 1)i + · · · + zn). 

n~O 

But for a real (} 

ml (n + 1)/2 + neie + (n - 1)e2
i
6 + ... + eniel 

n 

= L: c i + cos o + cos 2o + . . . + cos vo) 
•=0 

= f sin (v + i)O = J (sin I (n + 1)0/21)
2 

•=O 2 sin I(} /21 2 sin { (} /21 

( cf. Fejcr 1; see also P6lya-Szego 1, vol. 2, pp. 78, 269, problem 17). 
Fejer (9, pp. 295-298) also gives an extension of Stieltjes' theorem on 

Pn_1(x) - Pn+l(x) (cf. Theorem 7.33.3) to the polynomials Fn(x). 

7 .5. Recapitulation 

In the last sections we gave various derivations of the important inequality 
(7.21.1): 
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(a) from the orthogonal property, by use of the general Theorem 7.2; 
(b) from the differential equation (§7.3 (1)); 
(c) from the trigonometric representation (4.9.3). 
Moreover it follows also 
(d) from Laplace's integral representation (4.8.10); in fact, if- 1 ~ x ~ + 1, 

I x + (x2 
- l)! cos 1> I - I x + i(1 - x 2

)' cos¢ I 

- { x
2 + ( 1 - x2

) cos2 ¢ l t ~ { x2 + ( 1 - x 2
) l ~ - 1. 

7.6. Laguerre and Hermite polynomials 

(1) THEOREM 7.6.1. Let a be arbitrary and real. The sequence formed by the 
relative maxima of I L~" > (x) I and by the value of this function at x = 0, is decreasing 
for .'X < a + !, and increasing for x > a + !. The successive relative maxima of 
I H,.(x) I form a decreasing sequence for x ~ 0, and an increasing sequence for 
X ~ 0. 

Indeed, the function 

(7.6.1) n{L~")(x) 12 +X {:x L~")(x) r 
is decreasing for x < a + ! and increasing for x > a + !. The function 

(7.6.2) 

is decreasing for x < 0 and increasing for x > 0. Both statements follow by 
differentiation as in §7.3 (1); we use the first differential equation in (5.1.2) 
and (5.5.2), respectively. 

(2) THEOREM 7.6.2. Let a be an arbitrary real number. The successive relative 
maxima of 

(7.6.3) 

forrn an increasing sequence provided x > Xo. In the first case 

(7.6..4) 
{

0 

Xo = a2 - 1 

2n +a+ 1 

In the second case 

(7.6.5) 
"' ~ { ~,,' - tl' 

In the first case we take n so large that 2n + a + 1 > 0. 

if a 2 ~ 1, 

f 2 < 1 2 a = 4, 

f 2 > 1 '/, a 4· 

Sonin's theorem 7.31.1 applies to the functions ·u aud v occurring, respectively, 
in the third and fourth equations of (5.1.2). The larger zero 'Yn of the coefficient 
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of u is an upper bound for the zeros of u (cf. Theorems 1.82.3 and 6.31.2). 46 

The differential equation shows also that x = 'Yn is the last point of inflexion of u; 
thus 'Yn is at the same time an upper bound for the points at which the relative 
extrema of u are attained. Similarly, if 'Y: denotes the larger zero of 4n + 
2a + 2 - x + (i - a

2)x-\ we find in ('Y:)! an upper bound for the points at 
which v attains its relative extrema. (The bound of Theorem 6.31.2 is 'Y: .) 

Now if Xo is chosen according to (7.6.4) and (7.6.5), we have 

n + (a+ 1)/2 + 1 - a
2 

_ i > O, n + (a+ 1)/2 
x 4x2 x2 

(7.6.6) 1 2 

4n + 2a + 2 - x + 4 - a > 0, 
X 

respectively. This establishes the statement. 

-1 

THEOREM 7 .6.3. The successive relative maxima of 

(7 .6. 7) e -x212 IH n(X) I 
form an increasing sequence for x ~ 0. 

Here the second equation in (5.5.2) can be used. 

1 - a2 . 0 
2x3 < 

forxo < x < 'Yn, 

for Xo < X < 'Y
1 
n , 

(3) The bounds analogous to (7.32.5) are readily obtained by means of the 
asymptotic formulas (8.1.8) and (8.22.1), which correspond to (8.1.1) and 
(8.21.10), respectively. It is convenient to use the fourth equation in (5.1.2). 
Then 4n + 2a + 2 - x + (i - a2

)x-1 is positive and decreasing in 0 < x ~ o 
if a

2 ~ i; it is positive and increasing in kn-1 ~ x ~ o provided a2 > i, k > 
(a

2 
- i)/4 and n is sufficiently large. Here o = o(a) is a sufficiently small posi

tive constant. Therefore, as in §7.32 (3), we obtain the following: 

THEOREM 7.6.4. Let a be arbitrary and real, c and w fixed positive constants, 
and let n ~ oo . Then 

(7.6.8) 
:t -1 < < 

2J en = x = w, 

These bounds are precise as regards their orders in n; they follow also from 
the more complicated formula (8.22.4) of Hilb's type. 

For a ~ - !, both bounds hold in both intervals, that is, 

{ 

x-at2-iO(nat2-l) 
(7.6.9) L~a>(x) = a ' 0 <X ~ w, a ~ - !. 

O(n ), 

4
G If this coefficient is constantly negative for x > x0 , lui has no zeros and no maxima. 

Similarly for v. These cases can be excluded. 
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On the other hand, 

(7.6.10) 0 ~X~ w, _.! 
2. 

And generally, with a arbitrary and real, 

(7.6.11) a = max (!a - t, a), 0 ~X~ w. 

Finally, we obtain the following analogue of Theorem 7.32.3: 

THEOREM 7.6.5. L t M -x/2 a/2+l I L(a)( ) I e n = maxo <x~"' e X n X • Then 

1 
-! 

7f 

I, -af2+iM (7.6.12) 
if-!~ a~+!, 

1m n ., = 
n -oo finite and > 7f -! f 1 

1, a> 2· 

The proof is very similar to that in §7.32 (4); of course, (7.6.12) also follows 
directly from the deeper formula (8.22.4) combined with (7.31.5). 

7.7. Problem of Lukacs 

(1) This problem (Lukacs 1) deals with a more precise form of the mean-value 
theorem 

(7 .'7 .1) 1 1b A ~ b _ a a f(x) dx ~ B, 

where A = mina~x~b f(x), B = maXa~x~b f(x), provided f(x) is restricted to the 
set of all1rn with a fixed value of n. 

THEOREM 7.7. Letf(x) be an arbitrary 1fn with the minimum A and maximum B 
in [a, b]; then 

(7.7.2) B- A 1 lb B- A A + ~ -- f(x) dx ~ B - ---, 
Tn b - a a Tn 

where 

(7.7.3) 
J (m + 1)

2 

Tn = l (m + 1)(m + 2) 

ifn =2m, 

if n =2m+ 1. 

The number Tn cannot be replaced by a smaller one. 

This result is the analogue of an older theorem due to Fejer which deals 
with the analogous question for trigonometric polynomials of a fixed degree n, 
b -- a = 21r. In this case Tn = n + 1. The proof of Fejer's theorem can 
be based on Theorem 1.2.1; however, various other methods have been used 
(cf. P6lya-Szego 1, vol. 2, pp. 83, 277-279, problem 50). 

It suffices to prove the first inequality of (7.7.2); the second one follows when 
we replace f(x) by - f(x). In addition, there is no loss in generality in assuming 
A == 0. It is readily seen then that Tn is the greatest possible value of f(x) if x 
varies in [a, b], and f(x) ranges over the class of the 1fn which are non-negative in 
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[a, b] and satisfy 

(7 .7 .4) 1 1b 
b - a a f(x)' dx = 1. 

Let now max f(b) = Mn for the same set of 7rn; we shall prove that Tn = Mn. 
It is clear that Tn ~ Mn. On the other hand, if x0 is an arbitrary point in [a, b], 
we see, by means of a linear transformation, that 

(7.7.5) 1 1x.o f(xo) ~ Mn -- · f(x) dx, 
Xo- a a 

1 1b f(xo) ~ Mn b--=- j(x) dx. 
Xo x 0 

Multiplying the firf5t. inequality by Xo - a, the second by b - Xo, and adding, we 
find 

(7.7.6) 1 1b f(xo) ~Mnb-a a f(x)dx=Mn. 

(2) First method of calculating Mn. See P6lya-Szego 1, vol. 2, pp. 96, 297, 
problem 108. 

Assuming a = - 1, b = + 1, we use Theorem 1.21.1 and represent the poly
nomials in (1.21.1) as linear combinations of certain convenient polynomials. 
For arbitrary and real u., v. (subject only to the normalization condition (7. 7 .8)), 
we write 

if n =2m, 

(7.7.7) 
f(x) = (1 - x){ta u.P~ 1 '0 > (x) r + (1 + x){ta v.P~0 '1 > (x) r 

if n =2m+ 1. 

Because of the orthogonality of Jacobi polynomials, we have, in the notation of 
( 4.3.3)., 

m m-1 L h(O,O) 2 + L h(l,l) 2 if n =2m, 
1+1 

• u. • v. 
•-0 •-0 (7.7.8) 2 = _

1 
j(x) dx = 

m m L h(l,O) 2 + L h(O,l) 2 if n =2m+ 1. • u. • v. 
•-0 •-0 

But 

{ta u.P~o,o)(l)r if n =2m 
(7.7.9) f(l) = 

2{ f: v.P~0,1)(1)r if n =2m+ 1, 
•-o 

so that 
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m 

2 L { h~O,O)} -1 { p~O,O) (1)} 2 if n =2m, 
(7.7.10) 

•-0 
m 

4 L {h~0,1) J-1{P~0,1)(1) }2 if n =2m+ 1, 
•-0 

which is attained for u. = const. {h~0 ' 0>}-1P~o,o>(1), v. = 0, and u. = 0, vp = 
const. {h~0 ' 1>)-1 P~0 ' 1l(l), v = 0, 1, 2, · .. , m,respectively. Thecorresponding 
polynomials are obviously the "kernel" polynomials K~a ,{j\x) ( cf. ( 4.5.3)) for the 
cases a = {3 = 0 and a = 0, {3 = 1, that is, constant multiples of P~1 ' 0>(x) and 
P~1 ' 1>(x). In other words, we have f(x) = const. {P~l.Ol(x) }2, and f(x) = 
const. (1 + x) {P~1 ' 1>(x) }2, respectively. From (7.7:10) we now obtain (7.7.3) 
by direct calculation or, more easily, by mathematical induction, reasoning from 
m tom+ 1. 

(3) Second method of calculating M n· See Lukacs, loc. cit.47 This method is 
based on certain mechanical quadrature formulas related to considerations 
similar to those in §3.4. 

Let n = 2m, x0 = 1, and let the zeros of (1 - x) p~l.Ol(x) be denoted by 
Xo , X1 , · · · , Xm • If j(x) is a 11"n and L(x) the Lagrange interpolation polynomial 
of degree m which coincides with f(x) at Xo , x1 , · · · , Xm, then 

f(x) - L(x) = (1 - x) P~1 ' 0>(x)p(x), 

where p(x) is a proper 11"m-1 . Therefore, 

(7 .. 7.11) 1-~
1 

f(x) dx - 1-~
1 

L(x) dx = 1-~
1 

(1 - x)P~1 ' 0>(x)p(x) dx = 0, 

so that as in (3.4.1) 

(7 .. 7.12) 11+1 m 

2 _
1 

f(x) dx = ~ "A.j(x.), 

where the coefficients "A. do not depend onj(x). Upon writing 

{ 
{

p<l,o>(x)}2 (1- x) _m __ 

j(x) = X- Xp 

(P;!·o)(x) }2 
(7.7.13) 

if v > 0, 

if v = 0, 

we show as in §3.4 (2) that the numbers "A. are positive. Now in view of f(x) ~ 0 
and of (7.7.4), we obtain from (7.7.12) 

(7 .. 7.14) 1 ~ "Aof(1), f(1) ~ Ao1; 

this is the precise bound of f(1), attained when an only when f(x.) = 0, v = 
1., 2,. · ·, m; that is, when f(x) = const. {P;!'0>(x)} 2. In order to find Ao, it is 
convenient to write f(x) = 'Y P~1 ' 0>(x) in (7.7.12) (cf. (3.4.3)), where 'Y is a con-

47 Lukacs uses this second method in 1; however, the first method was also in his possession 
(r.f. 1, p. 296). 
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stant; then, on account of (4.5_.3), a = {3 = 0, 

I !+1 

j(x) dx = I JH P~1 ' 0>(x) dx = _'Y_ JH K~o.o>(x) dx = _ _2__ = 1. 
2 -1 2 -1 m + 1 -1 m + 1 

Consequently, A.()1 
= 'Y P~1 ' 0 > (1) = (m + It 

Now let n = 2m + 1, Xo = 1, Xm+1 = -1, and denote the zeros of the poly
nomial (1 - x2)P~1 ' 1>(x) by Xo, X1, · • • , XmH. The same argument as before 
leads to 

(7.7.15) 
11+1 m+1 

2 _
1 

f(x) dx = ~ A..j(x.), A..> 0, 

wherej'(x) is an arbitrary 11'n. The maximum in question is again A.il\ which is 
attained when and only when f(x.) = 0, v = 1, 2, ... , m + 1; that is, f(x) = 
const. (1 + x) {P~1 ' 1>(x) }2

• In order to find A.o, we writej(x) = 'Y (1 + x) P~1 ' 1>(x), 
so that on account of (4.5.3), a = 0, {3 = 1, 

1 1+1 1+1 
2 _

1 
f(x) dx = ~ _

1 
(1 + x)P~1 ' 1>(x) dx 

(7.7.16) 

1
+1 

= ~ (1 + x)K;.:>· 0 (x) dx = ~ = 1, 
m+ 2 -1 m + 2 

and we obtain 

A.il
1 = 2-y(m + 1) = (m + l)(m + 2). 

7 .71. Generalizations; applications 

(1) Let da(x) be an arbitrary distribution on the finite or infinite segment 
[a, b], (pn(x)} the associated set of orthonormal polynomials, and x0 an arbitrary 
but fixed point. Then if p(x) is an arbitrary 11'm with 

(7.71.1) lb l p(x) f
2 da(x) = 1, 

we have 
m 

(7.71.2) I p(xo) 1
2 ~ L I p.(xo) 1

2
, 

v=O 

with the sign of equality if and only if p(x) = const. I:~!:o p.(x0) p.(x). This 
was proved in §3.1 (3). 

In certain special cases we can calculate the maximum of (or some upper 
bounds for) the right-hand member of (7.71.2) if Xo runs over a certain interval. 
The bounds obtained hold uniformly in that interval for the set of all p(x) 
which are 11'm and satisfy (7.71.1). 

In what follows we consider various distributions of the form da(x) = w(x) dx; 
p(x) denotes an arbitrary 71',. which ~ati~fics (7.71.1). 

(2) Let a = - 1, b = + 1, w(x) = l. 
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THEOREM 7.71.1. Let p(x) be an arbitrary ?rm subject to the condition 

(7.71.3) 1-:1 

I p(x) 1
2 dx = 1. 

Thenwehavefor- 1 ~ Xo ~ + 1 

{ 
2-'(m + 1), 

(7.71.4) I p(xo) I ~ A( 2)_* ! 
1 - Xo m. 

Here A is an absolute constant. 

The first bound is precise; it is attained for x0 = ± 1 if p(x) is a proper 7rm. 

These inequalities follow from (7.71.2) when we use (7.21.1) and (7.3.8). 
Now let a= - 1, b = + 1, w(x) = (1 - x)a (1 + x)fl. 

THEOREM 7.71.2. Let a > - 1, (3 > - 1, and p(x) an arbitrary ?rm subject to 
the condition 

(7.71.5) 

Then 

(7.71.6) 

[+I J_
1 

(1 - x)a(1 + x)tl I p(x) 1
2 dx = 1. 

{ 

o-a-i O(m') 
p(cos 0) = 

O(maH) 

•f - 1 < 0 < /2 o em= =7r, 

•f 0< 0 < -1 
o ==em. 

Here c is an arbitrary but fixed positive number, and the constants in the 0-terms 
depend only on a, (3, and c. Similar bounds hold in the interval [1rj2, 1r]. 

For the proof we notice that in this case Pn(x) rv n' P~a,fl)(x) [(4.3.3)], and 
according to (7.32.5), 

m 

L v{P~a,fl)(cos 0) }2 = L vO(v2a) + L v0-2a-1 0(v-1) 

•=1 •O<c v06;c · 

= oco-2a-2) + o-2a-10(m) = o-2a-10(m), 

if em - 1 ~ 0 ~ 1r /2. For the same sum we obtain the bound L:';';..1 vO(v2a) = 
O(m2a+2) if 0 ~ 0 .::;; cm-1

• 

By use of (7 .32.2) certain precise bounds can likewise be derived. 
Let a = 0, b = + co, w(x) = e-x. Then, according to (7.21.3), 

(7.71.7) e-"'012
1 p(xo) l ~ (m + 1)!, Xo ~ 0, laC() e-x I p(x) 1

2 dx = 1. 

This bound is attained if Xo = 0 and p(x) is a proper ?rn . 
The case a = 0, b = +co, w(x) = e-:r xa, a > -1, can be treated by a 

method similar to that used in the Jacobi case discussed above (cf. (7.6.8)). 
(3) Now let [a, b] be a finite interval and f(x) an arbitrary ?rn which is non

negative in [a, b] and satisfies the condition 
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(7.71.8) lb f(x)w(x) dx = 1. 

We intend to determine the maximum of I f(xo) I, where x0 is a fixed real or 
complex value. 

By Theorem 1.21.1 we can write 

l
{ta u.p.(x)Y + (x- a)(b _ x) {'% v.q.(x)r 

(7.71.9) f(x) = 

(x- a) {ta u.r.(x)Y + (b- x) {ta v.s.(x)Y if n =2m+ 1, 

if n =2m, 

where {p.(x)}, {q.(x)}, {r.(x)}, {s.(x)} are the orthonormal sets of polynomials 
associated with the weight functions 

(7.71.10) w(x), (x - a)(b - x)w(x), (x - a)w(x), (b - x)w(x), a ~ x ~ b, 

respectively. The third arid fourth sets are special cases (x0 = a, x0 = b) of 
the "kernel" polynomials (Theorem 3.1.4); the second set can be calculated by 
means of Theorem 2.5. In both cases, n = 2m and n = 2m + 1, we have for 
the real numbers u. , v. 

(7.71.11) l
b m m 

f(x)w(x) dx = L u~ + L v; = 1, 
•=0 ·-0 

so that according to Cauchy's inequality 

!f(xo) I ~ 

Vm = 0 if n = 2m, 

(7.71.12) 
max {ta I p.(xo) /2 , I Xo - a II b - Xo I '%: I q.(xo) 12} if n = 2m, 

max {1 Xo - a I ta I r.(xo) 12, ·1 b - Xo I ta l s.(xo) 12} if n = 2m + 1. 

In case a ~ x0 ~ b, the absolute value signs can be omitted. The right-hand 
side of (7.71.12) represents the maximum required. 

(4) Let a = - 1, b = + 1, w(x) = (1 - x)a(1 + x)tl, a and (3 > - 1. Then 
the four sets of polynomials mentioned in (3) are, respectively, constant mul
tiples of 

(7.71.13) {P~a,/l)(x)}, {P~a+l,/l+I)(x)}, {P~a,/l+I)(x)}, {P~a+l,/l)(x)}. 

In the special case Xo = 1, for the maximum of /(1) we obtain (cf. (4.5.3)): 
m L {p.(1) }2 = K~a,tJ)(l) if n =2m, 

v=O 

(7.71.14) m 

2 L {r.(1) }2 = 2K~a,tJ+I)(1) if n =2m+ 1. 
•-o 

Therefore, the following theorem holds: 
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THEOREM 7. 71.3. Let f(x) be an arbitrary 1r n which is non-negative in [- 1, + 1] 
and satisfies the condition 

(7.71.15) 1
+1 

_
1 

f(x)(l - x)a(l + x)fJdx = 1, a > - 1, (3 > - 1. 

Then 

/(1) ~ 

(7.71.16) 
2-a-{J-1 r(m + a + 2)r(m + a + (3 + 2) 

r(a + l)r(a + 2)r(m + l)r(m + (3. + 1) 
if n =2m, 

2-a-{J-1 r(m + a + 2)r(m + a + (3 + 3) 
r(a + I)r(a + 2)r(m + I)r(m + (3 + 2) 

if n =2m+ 1. 

These bounds are precise; both are ""' m2
"+2 as m -7 oo. 

Cf. P6lya-Szego 1, vol. 2, pp. 96-97, 298, problem 110. Upon permuting a 
and (3, we obtain the corresponding bounds for f(- 1). In general, we find, 
under the same ~onditions as in Theorem 7.71.3 (cf. Theorem 7.71.2), 

(7.71.17) f (cos 0) = 1 
0-2a-lO(m) if cm-1 ~ 0 ~ 7r/2, 

O(m2a+2
) if 0 ~ 0 ~ cm-1

• 

The bounds for f(cos 0) are similar in 1r/2 ~ 0 ~ 1r. Further, a bound of thEl 
form O(mc) holds uniformly in 0 ~ 0 ~ 1r, where c = max (2a + 2, 2(3 + 2, 1). 
The constants of all these 0-terms depend only on a, (3, and c. 

(5) By means of Theorem 1.21.2 we can treat the following problem. Let 
f(x) be an arbitrary 'Trn, non-negative for x ~ 0, and 

(7.71.18) 1C() e-xxaf(x) dx = 1, a> - 1. 

What is max f(O)? 
We write (cf. (5.1.1)) 

I-ta u,{r(a + l)(v ~a)}-! L~a>(x) r 
+ x!~ v.{r(a + 2)(v + ~ +l)}-t L~a+I>(x) r 

if n =2m, 
(7.71.19) f(x) = 

~~ u.{r(a + l)(v ~a)}-; L~a\x) r 
+ x\~ v.{r(a + 2)(v +: + 

1)}-! L~a+I>(x) r 
if n =2m+ 1, 
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where the complex numbers u., v. satisfy the condition 

(7.71.20) 
m m 

L: I u.l 2 + L: I v. 1
2 

= 1. 
•=0 •=0 

(In the second sum Vm = 0 if n = 2m.) Now in both cases we have (cf. (5.1.7)) 

j(O) = I~ u. {rca+ l)(v ~ a)}-t L~Q)CO) r 
C7.71.21) ~~{rca+ l)(v ~ a)}-1 IL~Q>(o)} 2 

= !rCa+ 1)}-1 f: (v +a)= !r(a + 1)}-1(m +a+ 1), 
•=O v m 

and this is the required maximum. 
If a = 0, we obtain 

(7.71.22) f(O) ~ [n/2] + 1, 

provided f(x) is a 7rn, non-negative for x ;S; 0. We can readily prove the more 
general inequality 

(7.71.23) e-xf(x) ~ [n/2] + 1, 

where f(x) is subject to the same condition as in (7.71.22). To this end, let Xo 
be an arbitrary positive number. Applying (7 .71.22) to 

f(x + Xo) {1C() e-x f(x + Xo) dx} -
1 

which satisfies the required condition, we find 

f(xo) {1C() e-x f(x + xa) dx} -
1 

~ [n /2] + 1. 

Whence 

e-x0 f(x0 ) ~ ([n/2] + 1)e-xo lr.<J e-xf(x + Xo) dx 

= ([n/2] + 1) 1C() e-xj(x) dx ~ [n/2] + 1. 
xu 

See also Problem 42. 
(6) Certain bounds for the orthonormal polynomials IPn(x) l can be derived 

from the preceding results, provided the weight function w(x) satisfies an 
inequality of the type 

C7 .71.24) a~ x ~ b; 
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or 

(7.71.25) w(x) ~ JJ.(x - a)"(b - xl, a < x < "b, a > - 1, (3 > - 1 ; 

or 

(7. 71.26) x > 0, a> - 1. 

In the first and second cases a and b arc finite. 
For instance, under the condition (7.71.24) we obtain 

(7. 71.27) 

Consequently, aceording to Theorem 7.71.1, 

(7.71.28) 1 
Am, 

I P'n(Xo) I < · 
A'[(xo- a)(b- xo)r1m!, 

a < Xo <b. 

Here A and A' are positive constants depending only on a, band JJ.. 
A similar argument applies to the cases (7.71.25) and (7.71.26). 
If we assume that 1D(x) satisfies a Lipschitz condition, the bounds m and m! 

in (7.71.28) can be replaced by m! and 1, respectively. (Cf. (7.1.15).) 
(7) Finally, by use of Theorem 7.32.4, we obtain the following generalization 

of (7.71.28). Let w(x) ~ JJ. > 0, a = - 1, b = + 1, and k ~ 0, an integer. 
Then 

(7.71.29) p<;> (cos e) = ' 1 
(sin 0)-k-!O(nk+!) 

O(n2k+l), 
0 < 0 < 7r. 

The bounds of the 0-terms depend only on JJ. and k. 
For the proof we use an argument similar to that used in proving Theorem 

7.71.2. 

7.72. A problem of Tchebichef 

(1) PROBLEM: Let w(x) be a weight function on the interval [a, b], and let W(x) 
be a given real-valued function, defined on the same interval, and for which the 

integrals 

(7.72.1) k = 0, 1, 2, ·. · , n, 

exist. Let f(x) be an arbitrary polynomial of fi.xed degree n, not identically zero, 
and non-negative in a ;£ x ;£ b. To detc;mine the maximum and the minimum of 

the ratio 

(7.72.2) ~C f(x) W(x) dx : 1b f(x)w(x) dx. 

Sec Tehcbiehcf 7. Fir:-;t let a and b b(~ finite. By using the representation 
(7.71.9) again, we easily find that the quantities in question are the maximum 
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and minimum of the following quadratic forms in 1 u.l and I v.l: 

lb {t u.p.(x)r W(x) dx + lb {~ v.q.(x)r(x - a)(b - x)W(x) dx 

(7.72.3) if n = 2m, 

lb { m r lb { "' }2 ~ u.rv(x) / (x - a)W(x) dx + a ~ v,8,.(x) (b - x)W(x) dx 

if n =2m+ I, 

under the condition L~=o u; + L~=o v= = I. (In the first case Vm = 0.) Here 
lp.(x)), lq.(x) l, lr.(x) l, ls.(x) l have the same meaning as in (7.71.9). 

Let now a be finite and b = + oo. Then we have to consider the maximum 
and minimum of the form 

C7.72.4) 1C() f~
1

u.p.(x)ywcx)dx + lC() f(n~) 121 v.q.(x)Ycx- a)w(x)dx 

under the condition L u; + L: v: = 1. Here lp.(x) land I q.(x) l are the ortho
normal sets associated with w(x) and (x - a)w(x), respectively, x ~ a. 

In case a = - oo , b == + oo, we must consider the form 

(7.72.5) f +r.<J f[ n/2] }2 

-c<J l ~ u.p.(x) W(x) dx, 
[ n/2] 

L: u: = I, 
•=0 

where lp.(x) l is associated with w(x) in [- oo, + oo ]. 

Thus, in all these cases, the problem in question if-5 reduced to the determina
tion of the greatest and least characteristic values of a certain quadratic form. 
In dealing with the sum of two quadratic forms in lu.l and lv.l, respectively, 
we determine the greatest characteristic value of the single forms, and the 
greater of these values is the maximum in question. A similar remark applies 
to the minimum. The actual application of this method is difficult, however, 
and certain mechanical quadrature formulas (see below) are often preferable. 

Similar considerations apply if the integrals (7. 72.2) are replaced by Stieltjes 
integrals. 

(2) Leta=- I, b =+I, W(x) = xw(x). It suffices to determine the maxi
mum and minimum of 

(7.72.6) 
r+l 1+! J_

1 
(p(x)l

2
xw(x)dx: _

1 
/p(x))

2
w(x)dx, 

if p(x) is an arbitrary 7rm, not identically zero with real coefficients. Having 
done this, we must replace w(x) by (I - x

2
)w(x), (I ± x)w(x), respectively; sec 

below. Let x0 , x1 , .•. , .Xm be the zeros of the orthogonal polynomial Pm+I(x) 
associated with w(x); according to (3.4.I), we find for the ratio (7.72.6), the 
representation 

m m 

(7.72.7) r: x.(p(x.) l 2 x. : L: x.(p(x.) 1
2

, 
v=O v=O 

where X. denote the Christoffel numbers. Therefore, the maximum and mini
mum in question coincide with the greatest and least zero of Pm+I(x), respec-
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tively. (Cf. §3.4 (3).) If p denotes the greatest zero of p(x), it is seen from 
(7. 72.3) that the maximum of (7. 72.2) is, in this special case, 

(7.72.8) 
max CPm+l , qm) 

max (rm·H, §m+I) 

The result for the minimum is similar. 

if n =2m, 

if n =2m+ 1. 

(3) Here the general discussion of Tchebichcf ends (cf. 7, p. 395). We can 
prove, however, that the expressions (7.72.8) are Pm-11 and rm+l, respectively, 
so that the following theorem holds: 

THEOREM 7. 72.1. Let w(x) be a weight function on the interval [- 1, + 1]. 
Let f(x) be an arbitrary 'Trn, not identically zero, and non-negative in [- 1, + 1]. 
Then the maximum of 

(7.72.9) 
1

+! 1+! 
_

1 
f(x)xw(x) dx : _

1 
f(x)w(x) dx 

is the greatest zero of Pm+I(x) if n =2m, and the greatest zero of Pm+2( -1)Pm+1(x) -
Pm+I( -l)pm+2(x) if n = 2m + 1. Here !Pn(x) l is the .c;et of the orthonormal 
polynomials associated with w(x) w the interval [ -1, + 1]. 

According to Theorem 2.5, 

(7.72.10) 

Pm(x) 

(1 - x2)qm(x) = const. Pm( -1) 

Pm+2(x) 

Pm+2( -1) , 

Pm(l) Pm+l(l) Pm+2(1) 

(1 + x)rm(x) = const. 
p.,(x) Pm+l(x) 

Pm(-1) Pm+I(-1) 

(1 - x)sm(x) = const. 
Pm(x) Pm+l(x) 

Pm(1) Pm+I(l) 

First, let ~0 > ~~ > ... > ~m be the zeros of Pm+I(x) in decreasing order. We 
show that the first determinant in the right-hand member of (7.72.10) is non
zero 0 if ~0 < x < 1. Indeed, according to (3.2.1) 

Pm(X) Pm+!(X) Pm+2(X) Pm(X) Pm+I(X) 

Pm( -1) Pm+l( -1) Pm+2( -1) = Am+2 Pm( -1) Pm+!( -1) -Pm+l( -1) 

Pm(l) Pm+I(1) Pm+2(1) Pm(l) Pm+I(l) Pm+I(l) 

h(x) 1 

h( -1) 1 

X 

-1 

h(l) 1 1 

where h(x) = Pm(x)!Pm+I(x). Now, by using (3.3.9), we see that the last 
determinant is positive in ~o < x < 1, since 

--------------.,.-----
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(x - ~.)-1 1 X 

( -1 - ~.)-1 1 -1 2(1 - x2
) - ( 2 > 0. 

o - ~.r~ 1 1 
1 - ~.)(x- ~.) 

On the other hand, h(x) decreases from + oo to - oo between ~1 and ~0 , and 
from + oo to h(1) between ~o and 1 (cf. the proof of Theorem 3.3.4). Further
~ore, h(- 1~ < 0, h(1) > 0. Thus the greatest zero of rm(x), or h(x)- h(- 1), 
IS greater than the greatest zero of sm(x), or h(x) - h(I), x < 1. 

( 4) Tchebichef discusses in detail the case 

(7.72.11) a=- 1, b = + 1, w(x) = 1, W(x) = x. 

(Problem of the "centroid," see loc. cit., p. 399; cf. also Szego 13, pp. 627-629.) 
Save for constant factors, we now have 

Pm+l(x) = Pm+l(x); qm(x) = P~l,l)(x) = const. P~+1 (x), 
(7.72.12) rm+l(x) = P~Cl_t~(x) = const. (Pm+1(x) + Pm+2(x)\(l + x)-1 ; 

Sm+l(x) = P~~C~)(x) = const. {Pm+l(x) - Pm+2(x)\(l - x)-1• 

This yields the following theorem: 

THEOREM 7.72.2. Let f(x) be an arbitrary 'Trn, not identically zero, and non
negative for- 1 ~ x ~ 1. Then the maximum of 

(7.72.13) 1+1 1+1 
_

1 
xf(x) dx : _

1 
f(x) dx 

is the greatest zero of P m+I(x) if n = 2m; if n = 2m + 1, it is the greatest zero of 
Pm+I(x) + Pm+2(x). 

The distance from the maximum value to 1 is,...._, n-2 as n -7 oo. The minimum 
is obviously the corresponding negative value. 

For other refinements of the mean-value theorems, the reader is referred to 
Tchakaloff 1. Cf. Problem 43. Concerning other extremum problems for poly
nomials and connected inequalities, see Geronimus 2, 3, 4, and Shohat 2. 

7.8. Further results 

(1) From Theorem 1.82.i) we conclude the following refinement of Sonm's 
Theorem 7.31.1. Let y = y(x) satisfy the differential equation (7.31.1) and let 
y(x) have an infinite set !xml of zeros ordered in the inerea~ing way: x1 < x~ < 
x3 < · · · . The function .-p(x) should be positive, eontinuous, 1.tnd decreasmg. 
J ,rt p he a fixrd positive number. Then the integrals 

{'•·I ly(x)l~' rh 
... rv 

are inereasing. 
A similar statement holds if q;(x) is inereasing. 
For p -7 0 this reduces to the assertion of Theorem 1.82.2. Taking the pth root 

of the integral, for p ~ oc we obtain the assertion of Sonin's theorem. Hence, 
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the assertion above Is a common generalization of both theorems (Makai 2). 
In Makai 2 one finds various remarkable speeial eases of this useful theorem. 
(2) Let JJ.,·,n be the suceessive relative maxima of 1/\ (x )I when x decreases 

from +1 to -1. We have (Theorem 7.3.1): 

I > 1-'l.n > IJ.2,n > · · · > /J.h.n where h = [ni2]. 

::\f ow for H fixed r, we have (Szego 23) 

(7.8.1) n~r+l. 

These inequalities also hold for the relative maxima of 1 P~"·ll\x) 11 pn<a.ll)(l) 

when a={3>- t, Szasz 2, and from this for a>(3=- 1 by use of (4.1.5). 
The same result for a> (3 > - t is probable, but still open. Somewhat 
surprisingly these inequalities fail for 

p~O,-l)(x) = Pn(X) + Pn-l(x) 
2 

and graphical evidence suggests that the inequalities (7.8.1) are reversed 
for this function. See Askey-Gasper 4 for a problem which would be solved 
by these inequalities. 

For the orthonormal Hermite functions defined by 

Hn(X)e-x'/2 

M;;(x) = 1l"l/4( 2nn!)ll2' 

Szasz 3 proved inequalities similar to ( 7 .8.1) and used them to prove 

I M;;(x) I ~ ~(x) = 1!"-114. 

Stronger inequalities in which the right-hand side goes to zero in n are 
known. See Askey-Wainger 1 and Muckenhoupt 3. They also obtain refine
ments similar to that given in Problem 40 and similar inequalities for Laguerre 
polynomials. 

(3) Many inequalities, involving in particular the classical orthogonal 
polynomials, have been investigated by Karlin-Szego 1. Problem 70 (Turan's 
inequality) is a specia~ case. See Gasper 5 for a Turan type inequality for 
Jacobi polynomials. 

(4) Theorems 7.31.2, 7.32.3, and 7.6.5 have been sharpened for a> - 1 by 
Lorch 3. 

(5) The inequalities (7.71.12) have been refined in Schoenberg-Szego 1. 
(6) Turan 3 considers the problem of maximizing the Markoff-type functional 

fo "'[1r~(x) re-xdx 

fo"'[1rn(x)] 2e xdx 

over polynomials 1l"n of degree ~ n. He shows that the exact maximum IS 

1 

2 sin 1r I ( 4n + 2) 



CHAPTER VIII 

ASYMPTOTIC PROPERTIES OF THE CLASSICAL POLYNOMIALS 

The consideration of the asymptotic properties of the orthogonal polynomials 
!Pn(x) l, n -7 oo, leads to two fundamental problems: the asymptotic behavior 
of' the polynomials in question outside the orthogonality interval, especially 
in the non-real domain, and the asymptotic behavior on the orthogonality 
interval itself. In general, the second problem is deeper and more difficult than 
the first one. In our treatment we start with a discussion of Legendre poly
nomials, obtaining various important asymptotic formulas for them. We 
intend not only to give a survey of results, but also to point out the various 
methods used. The extension to ultraspherical and general Jacobi polynomials 
will also be indicated. The asymptotic investigation of Laguerre and Hermite 
polynomials, in general, requires new considerations, although essentially the 
same methods as before can also be applied to these cases. 

The simplest special case, 

the case of Tchebichef polynomials of the first kind, furnishes a good illustration 
of the characteristic features of our results. If xis located outside the interval 
[- 1, + 1], we can take I z I > 1, and we then see that 

n -7 oo. 

On the interval [- 1, + 1], we write z = ei0
, T n(x) = cos nO. Here the poly

nomials have an oscillatory behavior. 
These results need only a slight modification for Legendre, and even for Jacobi, 

polynomials as long as x ~ ± 1. A new difficulty will, however, arise in the 
vicinity of the end-points ± 1, which are in some respects exceptional. This 
is ultimately due to the fact that the coefficient of dO in 

(1- x)'"(l + x)fJdx = -(1 -cos O)a(1 +cos O)fJ sin OdO 

vanishes, in general, or becomes infinite at 0 = 0 and 0 = 1r. When this occurs, 
functions of the type cos nO are not suitable for the approximation of the poly
nomials in question in the neighborhood of x = ± 1. For this purpose we shall 
use certain Bessel functions. 

Usually, the problems and results for Laguerre and Hermite polynomials are 
similar. But it is rather curious that, in the corresponding asymptotic expres
sions, the quantity n! appears instead of n. In the general Laguerre case, 
Bessel functions are needed near x = 0, whereas for the Hermite polynomials 
the origin x = 0 does not play an exceptional role. In both cases new difficulties 
arise due to the fact that the interval of integration is infinite. For the expan-

191 
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sion problem it is of great importance to have asymptotic formulas that hold in 
intervals which become infinite as n --+ oo. 

8.1. The formulas of Mehler-Reine type 

These important formulas are elementary in character, and we shall discuss 
them briefly before entering into the general considerations of §§8.2I-8.23. 

(I) THEOREM 8.1.1. Let a and {3 be arbitrary real numbers. Then 

(8.1.I) limn-a P~a.~) (cos:.) = lim n-a P~a,f3) (I -
2
z

2

2
) = (z/2)-aJa(z), 

n-oo n n-oo n 

where J a(z) has the same meaning as in (1.71.I). This formula holds uniformly 
in every bounded region of the complex z-plane. 

For Legendre polynomials, a = {3 = 0, formula (8.1.I) is due to Mehler (3, 
p. I40) and Heine (3, vol. I, p. I84). Concerning further literature we refer 
to Watson 3, p. I55. In case a = {3 = 0, a very simple proof follows from the 
first integral of Laplace [(4.8.IO), (1.71.6)]. For a = ± t the function in the 
right-hand member of (8.1.I) is a constant multiple of z-1 sin z and cos z, re
spectively (cf. _(1.71.2)). Formula (8.1.I) is trivial for the elementary cases 
(4.1.7) and (4.1.8). 

The proof can be based on (4.21.2). In fact, we have for the (v + I)st term 
of (4.21.2) if x = cos(z/n), z and" fixed and n--+ oo, the following asymptotic ex
pression: 

I r(n +a+ {3 +" + I) r(n +a+ I) ( . 2 z )" 
v!(n-v)! r(n+a+f3+I) r(v+a+I) -sm2n 

~ v!r(v ~aa·+ I) (-f)". 
(8.1.2) 

Here we exclude the case of a negative integer a. Passing to the limit under the 
summation sign is valid because of the existence of a dominant for the total sum 
which is readily derived. Indeed, we have, if n is large enough, 

n-a r(n +a+ {3 +"+I) r(n +a+ I) 
(n - v)! r(n + a + {3 + I) 2•n2• 

~ n-,a n"(2n + a + {3)" r(n ~ ~ + I) = O(I), 
n. •n • 

uniformly in v, 0 ~ " ~ n. The argument needs only a slight modification if a 
is a negative integer. 

Formula (8.1.I) gives a complete characterization of the function P~a,f1l(cos e) 
for () = O(n-1

). As an important consequence we note the following: 

THEOREM 8.1.2. Let x1n > X2n > · · · be the zeros of P~a,{J)(x) in [- I, + I] 
in decreasing order (a, {3 real but not necessarily greater than - I). If we write 
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Xvn = cos Ovn' 0 < O.n < 'TT', thenfor a fixed v, 

(8.1.3) lim nOvn = j., 

where j. is the vth positive zero of J ,.(z). 

(2) Relation (8.1.1) enables us to derive some properties of Bessel functions 
from the corresponding properties of Jacobi or Legendre polynomials. We use 
the symbol (a)--+ (b) to indicate that in writing x = cos (z/n), a certain formula 
(a) is transformed into another formula (b) by the limiting process n --+ oo. 

Then we have the following relations: 
(4.1.7) and (4.1.8) --+ (1.71.2), 
(4.2.1) --+ (1.71.3), 
(4.22.2)--+ J_z(z) = (- 1)1Jz(z), l an integer, 
(4.24.2) --+ (1.8.9), 
each of (4.8.6), (4.8.10), (4.9.3) --+ (1.71.6) in the special case a = 0, and 
(4.9.19) --+ (1.71.6) in the general case. 

See also Problem 44. 
Ji..,rom Theorem 1.91.3 (Hurwitz's theorem) the reality of the zeros of z-a J ,.(z) 

follows for a > - 1. From (6.6.5) and (6.6.3) (or (6.6.2)) we obtain for the 
positive zeros j. of J ,.(z), f.. = a + i, 
(8.1.4) 11 = 1, 2, 3, · · · , - i ~ a ~ + t. 
The upper bound can be replaced by (v + a)7r if - i ~ a ~ 0 (cf. (6.6.6)). 
Furthermore (cf. Watson 3, p. 49, (1); cf. (7.31.5)), 

(8.1.5) 

(8.1.6) 

(7.33.1) --+rca + I)(z/2)-" 1 J ,.(z) 1 ~ 1, z > 0, a ~ - i, 

The expansion (4.9.17), (8.21.5), and the inequality (8.21.6) of the remainder 
term furnish the important formula (Stieltjes 8, p. 242): 

Jo(z) = (~)!I: (1·3 · · · (2v- 1) )
2 

cos (z- (v + ih/2) + Ep(z), 
'TT'Z v=O 2 · 4 · · · 2v 22• z• 

(8.1.7) t 

IEp(z)l ~ (.3.) (1·3 ... (2p -1))2 _1_, Z > 0. 
- 'TT'Z 2 · 4 · • • 2p 22P zP 

Thus the error Ep(z) is numerically less than the first neglected term (replacing 
cos by 1). For p = 1 we obtain the special case a = 0 of (1.71.7) (with a 
numerical constant in the bound of the remainder). 

(3) THEOREM 8.1.3. Let a be arbitrary and real. Then for an arbitrary com
plex z 

(8.1.8) limn-a L~")(z/n) = z-"12 J ,.(2zt), 

uniformly if z is bounded. 
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This formula is of a type similar to (8.1.1) and yields similar results. The 
proof can be given along the same lines as there. In the special cases a = ± i, 
we again obtain trigonometric functions. From this case an analogous formula 
for Hermite polynomials can be derived. See Problem 45. 

Both formulas (8.1.1) and (8.1.8) can be extended to an asymptotic expan
siOn. Concerning the case of Laguerre polynomials, a = 0, see Moecklin 1, p. 28. 

8.21. Asymptotic formulas for Legendre and Jacobi polynomials 

From the point of view of the asymptotic problem, the Legendre polynomials 
Pn(x) represent the simplest non-trivial case. We start with an enumeration 
of some classical results concerning the behavior of Pn(x) as n -7 oo. The 
proofs, based on various methods, are given in subsequent sections. In what 
follows, E denotes a fixed number with 0 < E < 1r /2, so that the interval [ E, 1r - E] 

lies wholly in the interior of [0, 1r]; p is a fixed positive integer. 

(1) THEOREM 8.21.1 (Formula of Laplace-Heine; Heine 3, vol. 1, p. 174). 
Let x be an arbitrary real or complex number which does not belong to the closed 
segment [- 1, + 1]. Then as n -7 oo, 

(8.21.1) 

Here (x2 
- 1)-114

, (x2 
- 1) 112

, and lx + (x2 
- 1) 112

) n+
112 are real and positive if x 

is real and greater than 1. This formula holds uniformly in the exterior of an arbi
trary closed curve which encloses the segment [- 1, + 1], in the sense that the ratio 
tends uniformly to 1. 

THEOREM 8.21.2 (Formula of Laplace; Heine 3, vol. 1, p. 175). 

Pn(cos e) = 2112 (7rn sin e)-112 cos I (n + !)e - 7r/4) + O(n- 312
), 

(8.21.2) 
0 < () < 7r. 

The bound for the error term holds uniformly in the interval E ~ () ~ 1r - E. 

THEOREM 8.21.3 (Generalization of Laplace-Heine's formula). Let x be in 
the complex plane cut along the segment[- 1, + 1]; let x =Hz+ z-1

), I z I> 1. 
Then 

p ( ) n 
1~ 1·3 · · · (2v- 1) -2•(1 -2)-•-t 

(
8

.
2

1.
3

) " X = gnZ f=t g. (2n- 1)(2n- 3) · · · (2n- 2v + 1) Z - Z 

+ O(n-p-! I z n. 
Here g. has the same meaning as in (4.9.2), that is, 

go= 1; g.= 
1·3 · · · (2v - 1) 

2·4 · · · 2v 
"= 1, 2, 3, .... 

Formula (8.21.3) holds uniformly in the same sense as in Theorem 8.21.1. 

------------··-----·----···· 
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THEOREM 8.21.4 (Darboux's generalization of Laplace's formula; Darboux 1, 
p. 39). 

p-1 ( ) 
p n(cos e) = 2gn L g.---. -· l· 3 . . . 2" - I______ . 

v=O (2n- I)(2n- 3) • • · (2n- 2v + 1) 
(8.2I.4) 

. cos I (n - " + !)e - (v + ~]71"/2) + O(n-p-l) 
~~n~~ ' 

O<e<1l". 

Here gn has the same meaning as in Theorem 8.21.3. The bound for the error term 
again holds uniformly in E ~ e ~ 1r - E. 

THEOREM 8.21.5 (Stieltjes' generalization of Laplace's formula; see Stieltjes 
7, 8). 

4 2·4 · · · 2n 
Pn(cos 0) - ; 3 .5 ... (2n +I) 

(8.2I.5) 
~h cos ((n +" + !)e- (v + !h/2) R () 
£.......• (. )t + pe, -o 2mne~ 

Here h. has the same meaning as in (4.9.I8), that is, 

ho =I; _ I· 3 · · · (2v - 1) ! ~ · · · (v - !) h - - --
• 2 · 4 · · · 2v ( n + V ( n + D · · · ( n + " + ! ) ' 

"= I, 2, 3, .... 

We have 

4 2·4 · · · 2n M 
< - 5 ( )- hp ( . ) 1 ' 

1r 3 · · · · 2n + I 2 sm e P+, (8.21.6) 

M = max (J cos e 1-\ 2 sin e). 

The factor M is between I and 2. Thus the error is numerically less than twice the 
first neglected term (replacing cos by I). 

THEOREM 8.21.6 (Formula of Hilb; Hilb 1). 

(8.21.7) Pn(cos e) = (ejsin e)tJ0 ( (n +!)e) + O(n-l), 

uniformly for 0 ~ e ~ 1r - E. More precisely, for the error term we have the 
bounds 

(8.2I.8) 
e!O(n-~) if cn-1 ~ e ~ 7r - E, 

e20(1) if 0 < e ~ en -t, 

where c is a fixed positive constant. 

(2) Some of these results can be extended to Jacobi polynomials. The 
extension of (8.2l.I) is due to Darboux (1): 
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THEOREM 8.21.7. Let a and {3 be arbitrary real numbers. Then 

p~a,f3)(x) ,.__, (x _ 1)-a/2(x -t-1)-f3/2((x + l)t + (x _ l)t)a+f. 
(8.21.9) 

. (27rn)-t(x2 - 1)-t {x + (x2 - l)t l n+t, 

where xis outside of the closed segment [ -1, + 1]. Thz:s formula holds umformly 
in the same sense as in Theorem 8.21.1. The determination of the multivalued 
functions occurring in this formula is obvious. 

The extension of (8.21.2) is also due to Darboux (1); this is the important 
formula to which we referred in §7 .32: 

THEOREM 8.21.8. Let a and {3 be arbitrary real numbers. Then 

p~a,f3)(cos e) = n-tk(e) cos (Ne + 'Y) + O(n-~), 

(8.21.10) ( 
e )-a-! ( e )-{3-! k(e) = 71'-! sin 2 cos 

2 
, N = n + (a+ {3 + 1)/2, 

'Y = -(a+ !h/2, 0 < e < 71'. 

The bound for the error term holds umformly in the interval [ E, 7r - E]. 

The extension of Theorems 8.21.3 and 8.21.4 to Jacobi polynomials is readily 
achieved. However, the law of the coefficients is, in this case, rather com
plicated. 

THEOREM 8.21.9. Let a and {3 be arbitrary real numbers. There exists a se
quence of analytic functions ¢.(z) =¢.(a, {3; z) which are real for real z and regular 
for I z I > 1 and I z I = 1, z ~ ± 1, such that 

p-1 

(8.21.11) z-n P~a,f3)(x) = L ¢.(z)n-•-! + O(n-p-!); x = Hz+ .Z-1), J z 1· > 1, 
v=O 

uniformly for I z I ~ R, R > 1. 
Furthermore, 

{ 

p-1 } 
p~a,{3)(cos e) = 2m einO L ¢.(ei8)n-•-! + O(n-p-!), 

•=0 
(8.21.12) 0 < e < 71', 

uniformly for E ~ e ~ 7r - E. 

These extensions attain, in the ultraspherical case, the following more pre
cise form: 

THEOHEM 8.21.10. Let x = Hz + z-1
), I z I > 1, and f.. > 0 or f.. < 0, f.. ~ 

-1, -2, -3, · · ·. Then 

(I-) n ~ (1 - f..) (2 - f..) · · · (v - f..) 
P n (x) = anZ .L.J a. ( )( ) ( ) 

v=o n + f.. - 1 n + f.. - 2 · · · n + f.. - " (8.21.13) 

--·--------
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Furthermore, 

P (l-l( ll) _ 2 ~ (1 - A.)(2- A.) · · · (v -A.) 
n cos v - an£....... a.-:---:---:-:-- ---:-

v=O (n +A - 1) (n +A.- 2) · · · (n +A.- v) 

. cos l(n- "+ A.)e- (v -t_~h/~ + O(nl--p-l) 0 < 0 < 1r. 

(2 sin e)•+>- ' 

(8.21.14) 

Here a. has the same meaning as in (4.9.21). Regarding the uniformity, the same 
remark holds as in the previous theorem. 

The special case of an integral value of A. is discussed in §8.4 (5). 
An extension of Theorem 8.21.5 to ultraspherical polynomials is the fol

lowing: 

THEOREM 8.21.11. Let 0 < A. < 1. We have 

P (A)( ll) (2/ ) . '\ r(n + 2A.) ~ r(v + A.)r(v -A+ 1) 
n COS V = 7r Sin /\7r ---:---:--- £....... 

r(A.) •=o v!r(n +"+A.+ I) 

. cos ( (n + " + A.)e - (v + A.)7r /2) + R (e) 0 < e < 7r, 
(~sin e)•+>- p ' 

(8.21.15) 

where 

(8.21.16) I R ,(e) I < (2/7r)sin A7r r(n + 2A.) r(p + A.)r(p- A.+ 1) .M . 
1 r(A.) p!r(n + p +A.+ I) (2sme)P+>-

Here M has the same meaning as in Theorem 8.21.5. 

(3) Finally, we mention the following formula of "Hilb's type" (cf. Szego 
17, p. 77; Rau 2, pp. 691-692). 

THEOREM 8.21.12. Let a > -1, and let {3 be arbitrary and real. Then we 
have 

(. e)"( e)13
p<a {;)( ) N_"r(n +a+ 1) (I. )!J (N) sm 2 cos 2 n • cos e = . --;nr---- e sm e " e 

( e!O(n-~) if en-1 ~ e ~ 7r - E, 

+ l e"+ZO(n ") if 0 < e ~ en -r, 

(8.21.17) 

where N has the same meaning as in (8.21.10); e and E are fixed positive numbers. 

Obviously, the remainder term is always e~O(n-l). If we use (4.1.3), a 
similar formula can be obtained in the intervals E ~ e ~ 1r - en - 1 and 
1r - en - 1 ~ e < 1r provided {3 > -1. In view of (I. 71. 7) this leads to the 
following important result: 

THEOREM 8.21.13. Let a > -1, {3 > -1. We have, with the same notation 
as in (8.21.10), 

·-----------------·-----···· 
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P~a,f3>(cos 0) = n-tk(O) {cos (NO+ 'Y) + (n sin 0)-10(1)), 
(8.21.18) 

-1 < < -1 en =0=1r-cn. 

Here cis a fixed positive number. 

This formula (Szego 17, p. 77) is more precise than (8.21.10); for a = {3 -
A - ~. 0 < A < 1, it follows from Theorem 8.21.11, p = 1. The restriction 
a > -1, {3 > -1 is not essential (cf. Szego, loc. cit.). See also Obrechkoff 2. 

(4) Analogous formulas hold for Jacobi's functions of the second kind Q~a,tl>(x) 
and, particularly, for Legendre's functions of the second kind Qn(x), if x is 
in the cut plane, as wrll as for Q"(cos 0) if 0 < () < 1r. Here we point out 
only the analogue of Laplace':-:; formula (8.21.2): 

Tm~ORI~M 8.21.14. For 0 < () < 1r 

(8.2l.HJ) Qn(cos e) = 7r;(2n sin e)-t cos I (n + ~)e + 7r/4l + O(n-j). 

'I' his holds uniformly in the interval [ E, 1r - E]. 

8.22. Asymptotic formulas for Laguerre and Hermite polynomials 

Similar, but slightly more complicated, formulas hold for Laguerre and 
Hermite polynomials. In what follows n --t oo; we denote by E and w fixed 
positive numbers, E < w, by p a positive integer. 

(1) THEORI<~M 8.22.1 (Fejer's formula; Fejer 3). Let a be an arbitrary real 
number; we have 

1 (a) ( ) -t x/2 -a/2-l a/2-l 12( )! _ rv""/2 _ ""/4) 
-'n ,x = 1r e x n cos \ nx ..... , , 

(8.22.1) 
X> 0. 

The bound for the remainder holds uniformly in [E, w]. 

THEOREM 8.22.2 (Perron's generalization of Fejcr's formula; Perron 2, p. 78, 
(49)). Let a be an arbitrary real number; we have for x > 0 

L~">(x) = 7r-!ex12 x-"12- 1n"12-l cos (2(nx)t- a7r/2- 7r/4) 

·{I: A.(x)n-"12 + O(n-p12
)} 

.-o 
(8.22.2) 

+ -! x/2 -a/2-l a/2-l • 12( )! /2 /4) 1r e x n sm \ nx - a1r - 1r 

· {2=: B.(x)n-"12 + O(n-p12
)}, 

•=0 

where A.(x) and B.(x) are certain functions of x independent of nand rp,gular for 
x > 0. 'l'he bound for the rp,mainder holds uniformly in [E, w]. 

\Ve notice that Ao(x) = 1 and Bo(x) = 0. 
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THEOREM 8.22.3 (Perron'~ formula in thr complex domain; loc. cit.). Let a 
be an arbitrary real number. Then 

L (na(x) _ 1 -} x/2( )-a/2-! a/2-·! (2( )t) - z1T' e -x n exp -nx 

(8.22.3) · f~ Cv(:r)n-"12 + O(n-p12)}, 

where Cv(x) is again independent of n; it is regular in thr com7Jlrx plane cut along 
the positive part of the real axis. Formula (8.22.:3) holds if x is in the cut plane 
mentioned; (- x)-a/Z-i and (- x)l must be taken real and positive if x < 0. The 
bound for the remainder holds wuformly in every closed domain w1'th no points in 
common with x ~ 0. 

Here \Ve have Co(x) = 1. 

THEOREM 8.22.4 (Asymptotic formula of Hilb't> type). For a > -1 we have 

(8.22.4) 
e-x/2Xa/2L~a)(x) = N-a/2 :r_~n_±~.±-~) Ja(2(Nx)ll + O(na/2-'1), 

n. 

N = n + (a + 1) /2, x > 0, 

the bound holding uniformly in 0 < x ~ w. More precisely, the following bounds 
are valid: 

(8.22.5) 
x5/40(n a/2-~) 

xa/2+20(n a) 

"f -1 < < • en = x = w, 

In case a = 0 the last bound is to be replaced by x2 log (x- 1n-1
); in (8.22.5) 

cis a fixed positive number. 

Evidently, the remainder term (8.22.5) is equal to x514 0(na12·-'l) throughout 
0 <X~ w. 

As a consequence of (8.22.4) we obtain the following analogue of (8.21.18), 
which is more precise than (8.22.1). 

THEOREM 8.22.5. Let a > -1 and cn-1 ~ x ~ w; thrn 

L~a) (x) 
(8.22.6) 

= 71 

Here c and w arc fixed poxz'tivr constants. 

We observe that N! - nl = O(n-l) where N hm; the sn,nw meaning as in 
(8.22.4). 

(2) Substituting a= -1-~ in (8.22.4), we find, by using (5.6.1) and (l.7l.2), 
a formula of Hilb's type for Hermite polynomials. This is containC'd in the 
more general theorem: 

THEOREM 8.22.6 (Asymptotic expansion for Hermit<~ polynomials). For a 

1·cal x 
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(8.22.7) 

where 

p-1 
A.-;.

1
e-x

212
Hn(x) =cos (N!x- mr/2) L u.(x)N-• 

·-0 
p-1 

+ N-! sin (N!x- n1rj2) L v.(x)!V" + O(n-p), 
•=0 

r(n + 1) 
A.n = r(n/2 + I) or 

N = 2n + 1, 

r(n + 2) -! 

r(n/2 + 3/2) N ' 

according as n is even or odd. The coefficients u.(x) and v.(x) are polynomials 
depending on v; they contain only even and odd powers of x, respectively. The 
bound for the error term holds uniformly in every finite real interval. whether it 
contains the origin or not. 

For arbitrary n, we have A.n = (r(n + 1)/r(n/2 + 1))\1 + O(n-1) l, and 
uo(x) = 1, vo(x) = x3/6, so that 

(8.22.8) 

r(n/2 + 1) -x2!2H ( ) (N! / 2) 
r(n + l) e n X = COS X - n1r 

3 

+ ~ N-! sin (Ntx- n1rj2) + O(n-1
). 

THEOREM 8.22. 7 (Asymptotic expansion for Hermite polynomials in the 
complex domain). The expansion (8.22.7) holds in the complex x-plane if we 
replace the remainder term by exp \N!I S(x) llO(n-p). This is true uniformly 
for I x I ;£ R where R is an arbitrary fixed positive number. 

(3) Finally we deal with another type of asymptotic formulas requmng a 
more elaborate consideration. 

THEOREM 8.22.8 (Formulas of Plancherel-Rotach type for Laguerre poly
nomials). Let a be arbitrary and real, E and w fixed positive numbers. We have 

(a) forx = (4n + 2a + 2) cos2 ¢, E ;£ ¢ ~ 1r/2- -! En , 

(8.22.9) 
-x/2L(a) ( ) ( l)n( • ,~,.)-! -a/2-i a/2-i e n X = - 7r Sin '+' X n 

(b) for x 

\sin [(n +(a +1)/2) (sin 2¢- 2¢) + 37r/4] + (nx)-!0(1)1; 

(4n + 2a + 2) cosh2 ¢, E ;£ ¢ ~ w, 

(8.22.10) 
e -x/2 L~a) (x) = H -lt(7r' sinh¢)-! x-a/2-i na/2-l 

·exp \(n +(a+ 1)/2)(2¢- sinh 2¢)}\1 + O(n-1
)}; 

(c) for x = 4n + 2a + 2 - 2(2n/3)1t, t complex and bounded, 

·-------------------·-···· . 
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(8.22.11) 

where A(t) is Airy's function defined in §1.81. 
In all of these formulas the 0-terms hold uniformly. 

The corresponding formulas for Hermite polynomials (Plancherel-Rotach 1) 
are given by the following: 

THEOREM 8.22.9. Let E and w be fixed positive numbers. We have 
(a) for x = (2n + l)t cos ¢, E ~ ¢ ~ 1r - E, 

e-x2f2 Hn(x) = 2n/2H(n!)t(7rn)-l(sin ¢)-t 
(8.22.I2) 

·{sin [(n/2 + t)(sin 2¢- 2¢) + 37r/4] + O(n-1
)}; 

(b) for x = (2n + I)t cosh ¢, E ~ ¢ ~ w, 

e-x2f2 Hn(x) = 2n/2-i(n!)t(7rn)-t(sinh ¢)-t 
(8.22.I3) 

· exp [(n/2 + t)(2¢- sinh 2¢)] {I+ O(n-1) l; 
(c) for x = (2n + I)t - 2-t3-!n-1t, t complex and bounded, 

(8.22.14) e-x212 Hn(x) = 3!7r -i2n/2+i(n!)tn-1112 {A(t) + O(n-1) }. 

In all these formulas the 0-terms hold 1tniformly. 

Note that (8.22.I2) holds uniformly in the vicinity of x = 0. 

8.23. Remarks on the preceding results 

(I) Of all the formulas enumerated in §8.2I, formula (8.21.I) has the simplest 
character. It can be proved by various methods. An extension to an asymp
totic series is given by (8.21.3). Corresponding formulas hold for Jacobi poly
nomials (§8.2I (2)). The following simple consequence of (8.21.9) is important 
for various purposes: 

(8.23.I) n-'> oo; 

here x is in the cut plane. The right-hand member is >I and represents the 
sum of the semi-axes of the ellipse with foci at ± 1 and passing through x. 
We compare (8.23.I) with the following formula for Jacobi's functions of the 
second kind: 

(8.23.2) 

Here y is again in the cut plane and the right-hand member is < 1. (Cf. 
(8. 7l.I9) .) 

We shall give also several proofs for the classical formula (8.21.2) of Laplace. 
It can be similarly generalized in various directions. 

Darboux's formula (8.21.4) is the most important illustration of the method 
due to him (1). This method furnishes asymptotic formulas for the coefficients 
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of power series whose singularities on the circle of convergence have a certain 
simple character. The same method yields (8.21.3), as well as similar expan
sions of Jacobi polynomials. (Cf. §8.4.) 

The significance of the formula of Stieltjes is due to its unrestricted validity 
in the interval 0 < e < 1r (although the bound for the remainder given by 
(8.21.6) becomes infinite if e ~ 0 or e ~ 1r). In view of this fact, it can be used 
in various cases not only in a fixed interval in the interior of [0, 1r], but even in 
the vicinity of the end-points where the formulas of Laplace and Darbonx 
fail in general. For p = 0 it holds in the sense that Pn(cos e) = R0(8). Then 
(8.21.6) furnishes inequality (7.3.8) but with a larger factor on the right side 
(with 2(2/7r)! instead of (2/7r)!). From the formula of Stieltjes an arbitrary 
number of terms in (8.21.4) can readily be derived. However, it seems diffi
cult to obtain the general law of the coefficients of (8.21.4) in this manner. 

The importance of Hilb's formula also lies in its unrestricted validity in the 
neighborhood of e = 0, with the additional advantage that the remaindrr term 
tends to 0 uniformly in this neighborhood. ·It furnishes the .1\Iehler-Heine 
formula (8.1.1) immediately and yields Laplace's formula (8.21.2) by means 
of (1.71.7). The bounds (8.21.8) are a slight improvement over Hilb's result. 
Our proof ( §8.62) is essentially the same as that of Hilb. Szego (15) gives 
an asymptotic expansion in terms of Bessel functions of increasing order and 
generalizes Hilb's result. Analogous formulas hold for Legendre's function of 
the second kind. Szego also obtains (15, p. 450) an analogue of (8.21.1) which 
holds in the cut plane, arbitrarily near its boundary. This formula involves 
Bessel functions with imaginary arguments. 

Another formula of a type similar to (8.21.7) has been given by Watson (2) 
with a numerical estimate of the remainder. It involves Jo(z) and Yo(z). 

Theorem 8.21.12 is the extension of Hilb's formula to Jacobi polynomialR. 
The proof given in §8.63 follows the same line of argument as that in §8.62. 

The proofs of Theorems 8.21 .1-8.21.14 are based on the following methods: 
(a) Explicit series or integral representations; 
(b) Darboux's method; 
(c) method of Liouville-Stekloff (method of the integra-differential equation); 
(d) method of steepest descent. 

A short survey of these methods will be given at the proper place:-;. 
(2) Fejcr's proof of (8.22.1) is baRed on the grnerating function (5.1.9), 

which in this case has the essential singularity w = 1 on the circle of con
vergence I w I = 1. This argument is of a charactrr ,<;imHar to Darboux's 
method. The more complicated type of singularity in thiR ca~e naturally 
requires a more careful diRcussion; it is carried out by Fcjer by an elementary 
method similar to the second mean-value theorrm of the integral calculus. 

In Perron's first proof of (8.22.3) (in the special case p = 1, see 1), complex 
integration is used. He obtains the complete rxpansions (8.22.2) and (8.22.3) 
by using certain general asymptotic results concerning confluent hypergeometric 
functions. 
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Further proofs of Fejer's formula (partly giving more exact bounds for the 
remainder and holding on certain segments the end-points of which tend to +O 
and + oo) have been given by Rotach (1), Szego (10), and Kogbetliantz (14). 
They use either the method of steepest descent or similar arguments. Fejer's 
i()rmula is contained in (8.22.4); the latter result follo:ws from certain general 
asymptotic theorems of Hilb's type due to Wright (1, p. 261, however only 
for fixed x). We give a proof for (8.22.4) by using the Liouville-Stekloff 
method (§8.64). 

The special cases a = ±! are equivalent to Hermite polynomials (see 
(8.22.7)); in these cases, Fejer's theorem was known previously by Adamoff (1). 
Adamoff obtains the remainder term with certain numerical bounds. 

We derive (8.22.7) by using the method of Liouville-Stekloff. Uspensky's 
formula (5.6.5) then leads immediately to a corresponding asymptotic expan
sion for Laguerre polynomials involving Bessel functions. We indicate this in 
§8.66. Concerning this expansion see Wright, loc. cit.; its first term is (8.22.4). 
From this expansion Perron's formulas (8.22.2) and (8.22.3) follow readily. A 
second proof of these formulas can be based on the method of steepest 
descent (§8.72). 

The first term of the asymptotic expansion mentioned for Hermite poly
nomials furnishes (8.22.8). Adamoff's formula is less precise. (On the other 
hand it contains numerical constants.) Comparison of (8.22.8) with Us
pensky's formula (1, p. 597, (6)) indicates that it is convenient to work with 
N = 2n + 1 instead of N = 2n. 

A very detailed asymptotic investigation of Hermite polynomials is due to 
Watson (1, second paper). 

We mention the following simple consequence of Theorems 8.22.3 and 8.22.7: 
Let x be in the complex plane cut along the non-negative real axis. Then 

(8.23.3) n-+oo. 

Here ( -x); is taken real and positive if x < 0. However, if x is non-real, 

(8.23.4) n-+oo. 

Theorems 8.22.8 and 8.22.9 arc closely related to the important results of 
Planchcrel-Rotach (1). These authors deal exclusively with Hermite poly
nomials and use the rnethod of steepest descent; they obtain a complete asymp
totic expansion in all three cases of Theorem 8.22.9. Their argument has been 
applied to Ln(x) by Moecklin (1). We shall derive (§§8.73-8.75) only the 
principal terms of these expansions, however, for general Laguerre polynomials 
L~a> (x), by using the method of steepest descent. Our argument is based on 
the generating function (5.1.16) and on the asymptotic expansion of Bessel 
functions ~n the complex domain. 
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The formulas (8.22.9)-(8.22.11) describe Laguerre polynomials in the 
"oscillating region," in the region beyond this, and in a certain vicinity of the 
largest zero, respectively. The same is true for (8.22.12)-(8.22.14). 

Van Veen (1, 2) derives the asymptotic series corresponding to (8.22.12) 
with numrrical estimates. Schwid (1) applies the method of Liouville-Stekloff 
(in the more precise form dur to Langer (1)) to the asymptotic investigation of 
Hermite polynomials. 

8.3. "Elementary" proof.of the formulas of Laplace-Heine and Laplace 

(1) 'Ve start from the representation (4.9.4) and first prove (8.21.1). Let 
x = Hz + z-

1
), I z I > 1; then 

(8.3.1) 
n n 

P ( ) '"" n-2m n '"" gn-m -~m n X = L._, g",gn-mZ = g,z L..., ·--· g"'z . 
m=O tn=O gn 

We next show that 

(8.3.2) n ( ) 
· gn-m -2m hm L ···-- - 1 g"'z • = 0, 

n....,.oo m=O gn 

uniformly for I z I ;?; R, R > 1. Indeed, the expression in the brackets tends to 
zero if m is fixed and n ----+ Cl). On the other hand, it is easy to find a dominant; 
we have, for instance, 

0 ~ (gn-m _ 1) gm ~ gn-mgm • 
gn gn 

Now (n + 1);gn is bounded from zero and from infinity, and 

(n + 1)! 5 1 
(n - m + 1)!(m + 1)! - ' 0 ~ m ~ n. 

(2) We can prove (8.3.2) in another way, by use of certain very elementary 
properties of the sequence I gn}. Let 8 > 0 be arbitrary, and let M be a positive 
integer, such that 

00 

L R-2m < 8. 
m=M+l 

The numbers gn-m/gn - 1 are positive and increase with m; we therefore have, 
if n > M, 

The last expression tends to 0 as n ----+ Cl) since gn/ gn-I ----+ 1. On the other hand, 

t (gn-m _ 1) gmR-2m < t gn_tngm R-2m' 
m=M+l gn m=M+l gn 

--- --·-···"'·· 
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Now gm/gm~i is increasing, so that 

- gn-:-rr.gn,_ ;;£ 1 or S; 1 
gn-m-tlgm-1 
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according as m ;;£ (n + 1)/2 or m ~ (n + 1)/2. Consequently, gn-mgm attains 
its maximum, as m varies from 0 ton, form = 0 or m = n; hence gn-mgm ;;£ gn, 
so that 

t (Yn-m- 1) gmR-2m ;;£ t R-2m < f R-2m <D. 
m-M+l gn m-M+l m=M+l 

This establishes (8.3.2). 
Therefore the expression 

n 

(8.3.3) (gnzn)-1Pn(X) - L gmz-?.m 
m=O 

tends to 0 as n --? oo, uniformly for I z I S; R, R > 1. The last sum tends to 
(1 - z-2)-!; whence (8.21.1) is readily derived. 

(3) For the proof of (8.21.2) we use (4.9.3). We have for 0 < e < 1r 

(8.3.4) 
{ 

[n!2] } 

P ( e) _ 2 (I) -in8 '"' gn-m 2im8 n cos - gnJl e ~ - gme 
m=O gn 

f [n/2] ( ) } r [n/2] }' 2 m -in8 """' gn-m 1 2im0 + 2 "' -in8 """' 2im8 = gnJt)C ~ ·---- - gme g,,UL)C ~ fJ,,e 
l -o gn l fu=O 

where .L:' has the same meaning as in (7.4.5). The sequence (gml tends 
monotonically to 0, so that for 0 < e < 1r 

00 

""" 2im8 (l z;o)-l i(7r/4-8t2>(2 . e)-; ~ gme = - e = e Sin . 
m=O 

This series converges uniformly for E ;;£ e ;;£ 1r - E. 

Now, if 8 is an arbitrary positive number, we determine the positive integer !vi 
so that 

(8.3.5) M" > M' > M. 

The numbers gn-m/gn - 1 being positive and increasing with m if n > 2.M, we 
have, according to Abel's inequality, 

(8.3.6) 

where K is a fixed constant. On the other hand, 
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(8.3.7) 
I 

[n/2] ( ) I L' Yn-m _ 1 gme2im8 
m=M+1 Yn 

~ (Yn-[n/2] - 1) max I 1fJ ;m(J2im81 < D Yn-[n/2] • 

Yn M<l'~(n/2] m-1' Yn 

Since Yn/Y2n is bounded, we see that the first 2:' in the right-hand member of 
(8.3.4) tends to zero. Hence we have 

(8.3.8) 

where on--+ 0 uniformly in E ~ e ~ 1r - E. This is the formula of Laplace with 
a remainder term o(n-i). 

( 4) Although they do not lead to the remainder term O(n -I) stated in (8.21.2), 
these elementary arguments are important since they use only some very 
simple properties of the sequence I Yn ). At the same time they yield certain 
asymptotic formulas for Fejer's polynomials Fn(x), introduced in §6.5, valid 
in the cut plane and in -1 < x < + 1, respectively, provided certain condi
tions regarding the sequence I an) are satisfied. We have the following: 

THEOREM 8.3. Let (am) be a positive sequence, am--+ 0, and let am/am-l j 1. 
Then the following asymptotic formula holds: 

(8.3.9) 
00 

Fn(x) "-' anZn .L: amz-2m, 
m-0 

n-+oo, 

where xis in the cut plane, x = Hz + z-1
), I z I > 1. Ij-in addition am/a2m 

remains bounded, we have 

Fn(cos e) = 2anm{eino t ame-2imB} + o(an), 
m-0 

(8.3.10) n--+ oo, 

where 0 < e < 1r. Both formulas are valid uniformly in the same sense as (8.21.1) 
and (8.21.2), respectively. 

The generalization (8.3.9) of the Laplace-Heine formula is new; concerning 
the generalization (8.3.10) of Laplace's formula, see Szego 11, pp. 186-187. 

We observe that the series in (8.3.9) is convergent, and the series in (8.3.10) 
is uniformly convergent in E ~ e ~ 1r - E. With regard to the latter fact we 
note that cx.m/am-1 ~ 1, so that am is decreasing. As an application of Theorem 
8.3, we obtain the analogue of (8.21.1) and (8.21.2) (with a less precise estimate 
of the remainder in the second case) for the ultraspherical polynomials P~>..\x) 
provided >-. > 0. 

8.4. Darboux's formula proved by Darboux's method 

(1) We shall prove formula (8.21.4), as well as others, by means of an impor
tant method due to Darboux (1), and we begin with an illustration ~f this 
method. Supposing 0 < e < 1r, let us consider the generating function of 
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Legendre polynomials (cf. (4.7.23)) 

m the neighborhood of ei6
: 

(8.4.2) 

h(w) = (1 - we-i6)-! (1 - iiB)-} {1 - e2i6 (1 - we-io)}-l 
e2•6 - 1 

= (1 - e2i6)-l f: g. ( 2.:2i6 1)" (1 - we-iO)•-l. 
•=O e' -
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A similar representation holds in the vicinity of e-io. Denoting the Lth partial 
sums of these expansions (stopping at the terms v = L) by siu(w) and si2>(w), 
respectively, let us consider the difference 

(8.4.3) 

We see immediately that the Lth derivative H<L>(w? possesses continuous 
boundary values in I w I ~ 1. Thus if we expand H(w) in a power series about 
w = 0, the coefficients of H\L) (w) tend to 0. This simple remark shows that 
the coefficients dn of H(w) satisfy the condition 

(8.4.4) 

Each of the terms of the finite sums siu(w) and si2>(w) has only one singu
larity on the ·unit circle. The vth term of si1>(w) contributes to the coeffi
cient of wn in h(w) (and therefore to Pn(cos e)) an expression of the form 

(8.4.5) 

The sum si2>(w) contributes the conjugate of (8.4.5). Both terms are O(n_"_'). 
For a fixed value of p the coefficient of wn in H(w) is of higher order than n-p-i, 
provided L is sufficiently large. 

By use of the same argument, the follmving general theorem can be obtained: 

THEOREM 8.4. Let h(w) be regular for I w I < 1, and let it have a finite number of 
singularities 

(8.4.6) i<J>, i<i>2 i<l>l e , e , · · · , e , i<Pa _.r. i<J>p e ,.... e , a~ {3, 

on the unit circle I w I = 1. Let 
00 

(8.4.7) h(w) = L c~k)(l - we-•<~>krk+•b\ k = 1, 2, ... 'l, 
•=0 

in the vicinity of ei<Pk, where bk > 0. Then the expression 

(8.4.8) f: j: c~k> (a" + vbk)( -ei<~>kr 
v=O k=l n 

·---···-----·····. 
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furnishes an asymptotic expansion for the coefficient of wn in h(w) in the following 
sense: if Q is an arbitrary positive number, and if a sufficiently large number of 
terms is taken in the sum L~o in (8.4.8), we obtain an expression which approxi
mates the coefficient in question with an error equal to O(n-Q). 

A simple discussion shows that it suffices to stop at the term v = p - 1 of 
the sum, where p is a positive integer such that 

(8.4.9) 

Proper logarithmic singularities of h(w) can also be admitted. 
(2) In the case of Pn(cos e), this asymptotic expansion becomes 

(8.4.10) 

The general term is O(n -·-!);thus, if we stop at v = p - 1, the error is O(n -p-!). 
This agrees with formula (8.21.4). It is also clear that the bound for the 
remainder holds uniformly in E ~ e ~ 1r - E. 

The same method can be used for the proof of the expansion (8.21.3), which 
corresponds to the Laplace-Heine formula (8.21.1). (Actually, this case is 
simpler than the preceding one.) Indeed, let I z I > 1; then 

h(w) = (1 - zw)-!(1 - z-1w)-; 

(8.4.11) 

whence (8.21.3) readily follows. 
(3) The infinite series which corresponds to Darboux's formula (8.21.4) is 

convergent in the ordinary sense and represents Pn(cos e) provided 2 sine > 1, 
that is, 1r /6 < e < 57r /6. In fact, the representation (8.4.2) holds uniformly 
near w = 0 if 

(8.4.12) 

See 8.92 (4). 
(4) Darboux's method also applies to the general Jacobi, and in particular 

to the ultraspherical, polynomials and leads to the Theorems 8.21.9 and 8.21.10. 
Another method of deriving the expansions of Theorem 8.21.9 will be indi

cated in §8.71 (4) and (5). 
(5) Finally we observe that the expansion (8.21.14) stops at v = A - 1 if A 

is a positive integer. Then we obtain the exact representation 

(8.4.13) 

P~x>(cos e) = 2an I: a.(. (1 - A)(2 - A) ... (v (- A) ). 
•=O n +A - 1)(n +A- 2) · · · n +A- v 

n = 0, 1, 2, · · · 

cos \ (n - v + A)e - (v + Ah/21 
(2 sin e)•+A 

A= 1, 2, 3, · · · an __ (n + nA - 1). 
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In fact, the difference (8.4.3) (with L = A - I) is in this case a rational func
tion which has no singularities for any w (including w = oo) and which van
ishes for w --+ oo. Hence it must be identically zero. 

The analogous representation of p~>-> (x) for I z I > I, A a positive integer, is 
slightly more complicated; it can be readily derived from (8.4.I3). 

8.5. Proof of the formula of Stieltjes 

(I) Stieltjes' formula (4.9.I7), (4.9.I8) has been derived in §4.9 (3) from the 
integral representation (4.8.I7). This argument furnishes for the remainder 
RP(e) of (8.21.5) the representation 

(8.5.I) 

Here (g. has the same meaning as in Theorem 8.21.3) 

(8.5.2) 
ei(6-1r12> 

z = (I - t) 2 . . 
sme 

According to Stieltjes we have 

(8.5.3) 
11r 

-1 • 2v 
g. = 1r sm <P d<P, 

~ v _ -1 lor zP sin
2
P <P d,~.. (I - z)-! - L....t g.z - 1r • 'I'· 

v=O 0 I - Z Slll2 <P 

The last formula is obvious first under the assumption that I z I < I; it then 
can be extended to the whole strip 0 ~ ffi(z) ~ ! without restriction. Now, 
writing (I - t) sin2 

<P = r, we find 

II - z sin2 
<P 1

2 = II - r/2 + (ir/2) cote 12 = [sine - r/(2 sin e)] 2 + cos2 e. 

The minimum of this expression is cos2 e or (2 sin e)-2
, according as 2 sin2 e ~ I 

or 2 sin2 e ~ I, so that 

(8.5.4) 

where M has the same meaning as in (8.21.6). Thus 

I Rp(e) I ~ ~ (2 sin er! e t(I - o-to - t)P gp(2 sin erp M dt 
7r }o 

2 r(n + I)r(p + !) M 
= :;;. gp r(n + p + -!) (2 Sin e)P+i 1 

(8.5.5) 

which is equivalent to (8.21.6). 
The analogous formula of Theorem 8.21.11 for the ultraspherical polynomials 

p~>->(cos e), 0 < A < I, results from (4.82.3) (cf. Szego 17, pp. 57-60). It is 
the expansion (4.9.25) completed with an estimate of the error if we stop at the 
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term v = p - 1. The error is again less than twice the first neglected term in 
which cos is replaced by 1. The proof is the same as before; we use for the 
quantities a, of (4.9.21) the representation (cf. (6.5.9)) 

(8.5.6) -1 • 2>--1 • 2• 1" 
a. = 1r sm "A1r I tan ~ ! sm ~ d~. 

The same remark as in §8.4 (3) applies to the infinite series corresponding to 
Stieltjes' formula and to its generalization. (Cf. (4.9.17), (4.9.25).) 

8.61. Method of Liouville-Stekloff; formula of Laplace 

We shall now derive the formula of Laplace from the differential equation 
(7.'3.5). The essential idea is the transformation of this equation into an 
integral equation of Volterra's type which permits a successive improvement of 
the asymptotic formula in question. The idea is very old, and appears in the 
investigations of Liouville on differential equations of the Sturm-Liouville type. 
Stekloff (1) applied this method to the asymptotic discussion of certain classical 
polynomials. 

Recently, Langer (1, 2, 3) employed this method systematically and improved 
its efficiency considerably. He generally considers "singular" cases like (4.24.2), 
or any of the equations (5.1.2), in the neighborhood of e = 0 and x = 0, respec
tively, and obtains general asymptotic formulas of "Hilb's type." He takes up 
also applications of this method in the complex domain. 

(1) We write the differential equation (7.3.5) in the form 

(:0 y l (sin e)! p n(cos e) l + (n + !l (sin e)! p n(cos e) 

(8.61.1) ! 
(sin e) Pn(cos e) 

=-
4 sin2 e 

Interpreting this relation as a non-homogeneous equation for (sin e)!Pn(cos e), 
we can apply (1.8.12); the corresponding homogeneous equation has the funda
mental system \cos (n + !)e, sin (n + !)el, so that with certain constants 
eo , C1 , C2 , 

(sin e)! Pn(cos e) = c1 cos (n + !)e + C2 sin (n + !)e 

(8.61.2) __ 1_16 
sin \(n + !)(e- t)l (. t)!p ( t) dt 

1 4 . sm n cos . 
n + 2 Bo sm2 t 

If we assume e0 = 1r /2, 0 < e < 1r, the last integral and its derivative vanish 
for e = 1r /2. This remark enables us to determine c1 and c2 . We find 

(sin e)! Pn(cos e) = An cos I (n + !)e - 7r/4l 
(8.61.3) 

- - 1 - t sin l (n +. ~)(e - t) l (sin t)! Pn(cos t) dt, 
n + ! J~r/2 4 sm2 t 

------·-···. 
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where 

An = {:n: 1 
-+ 1 Y<n+l)/2 n 2 . 

if n is even, 
(8.61.4) 

if n is odd. 

This is the Volterra equation mentioned above. 
If () is confined to the interval [E, 1r - E] and M n denotes the maximum of 

the absolute value of the left-hand member of (8.61.3), we have 

(8.61.5) M <A + _7r__ l'rln 
n= n 2 +14'2' · n Sin E 

Therefore, if n is sufficiently large, 

M n < 2An = O(n-}), 

or 

(8.61.6) (sin e)! Pn (cos e) = An cos { (n + !)e - 11"/41 + O(n-!), 

which readily furnishes Laplace's formula. 
(2) Successive application of (8.61.3) leads to an expansion 

type, namely, to the formula 

{

P-1 } 
(sine)!Pn(cos e)= cos (n + !)e L: A.(e)n-•-t 

•-0 
(8.61.7) 

of Darboux 

{

p-1 } 
+ sin (n + !)e I: B.(e)n-•-! + O(n-p-!), E ~ () ~ 7r - E1 

•-0 

where A.(e) and B.(e) are certain functions analytic in 0 < () < 1r and inde
pendent of n and p. The explicit determination of these functions, that is, the 
identification of (8.61.7) with the formulas of Darboux or Stieltjes, seems, 
however, to be rather difficult. 

For the proof we use mathematical induction. Assuming (8.61.7), we obtain 
from (8.61.3), 

(sin e);Pn(cos e) 

=An cos {(n + !)()- 7r/4l - _1_18 sin {(n + !)(()- t)l 
n + ! 1r12 4 sin2 t 

·{cos (n + !)t I: A.(t)n-•-! 
•=0 

p-1 } 
+sin (n + !)t L B.(t)n-•-! dt + O(n-p-!). 

v=O 

Now 2 sin { (n + !)(e- t) l cos (n + !)t =sin (n +!)()+sin { (n + !)(e - 2t) l, 
and integration by parts yields 



212 ASYMPTOTIC PROPERTIES OF CLASSICAL POLYNOMIALS (VIII J 

1
8 A (t' 

sin ( (n + !) (0 - 2t) l 
4 

: : t dt 
12 sm 

= cos (n + !) o{I: aiO)n-~'} +sin (n + !) o{I: biO)n-~'l + O(n-p), 
p=O p-0 J 

where aiO) and b~'(O) are certain functions of the same type as Av(O) and Bv(O). 
The integrals 'involving Bv(t) can be dealt with in the same way. This leads 
by use of Stirling's series (cf. P6lya-Szeg6 1, vol. 1, pp. 29, 193, problem 155), 
to a representation of the form 

(sin olPn(cos 0) = cos (n + !) o{t A;l)(O)n-v-!} 
v-o 

+sin (n + !) o{t B;0 (0)n-v-l} + O(n-p-J). 
v-0 

Comparing this with (8.61.7), we see that 

Jl = 0, 1' 2, ... ' p - 1. 

This establishes the statement. 
We have 

(8.61.8) Ao(O) = (2/7T} cos (7r/4) = 1r -t, Bo(O) = (2/7r)l sin (7r/4) = 1r -!. 

The same method can be used for the asymptotic evaluation of Qn(cos 0), 
(see Problem 18), as well as of the ultraspherical polynomials. In the first 
case we obtain Theorem 8.21.14. The application of the method to general 
Jacobi polynomials is more difficult because no explicit values for these poly
nomials are known at the point 0 = 1r/2 (or at any other fixed point in 0 < 
0 < 7r).48 

8.62. Method of Liouville-Stekloff; formula of Hilb 

(I) We again deduce an integral equation for Pn(cos 0), different from 
(8.61.3) and involving Bessel functions. Writing (7.3.5) in the form 

(8.62.1) 

(~Y I (sino)! Pn(cos 0) l + {4~2 + (n + !)2} (sino)' Pn(cos 0) 

we apply (1.8.12). The corresponding homogeneous equation is (1.8.9) (a = 0, 
k = n + t) with the solutions 

(8.62.2) o' Jo( (n + t)Ol and o' Yo( (n + !)Ol. 

4s Cf., however, Korous 3. 
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Consequently, with certain constants Oo , c1 , c2 , we have 

(sin o)'Pn(cos 0) = c~o'Jo((n + !)O} + c2o'Y0 ((n + !)O} 

o' {
8 

-! Jo{(n + !)O} Yo{(n + !)t} - Y0 {(n + !)O}Jo{(n + !)t} 
(8.62.3) + n +! }o0 t J~( (n + !)t} Yo( (n + !)t} - Y~( (n + !)t}Jo( (n + !)t} 

. (:e2 - 4 s:n2 t) (sin t)' p n(cos t) dt. 

According to (1.8.14) 

(8.62.4) J~( (n + !)t} Yo( (n + !)t} - Y~ ( (n + !)tlJo( (n + !)t} = - ( 2 
1

) • 

1rn+ 2 t 

Furthermore, C
2 

- (sin t)-2 is analytic at t = 0; that is, we can take 0
0 

= 0, 
and we then obtain 

(sin o)'Pn(cos 0) = c~o'Jo((n + !)O} + c2o'Yo((n + !)O} 

- ~ o' 18 

t'[Jo((n + !)O}Yo{(n + !)t}- Yo((n + !)O}Jo((n + !)t}] 

. (~2 - 4 s:n2 t) (sin t)' p n(cos t) dt. 

If this equation is divided through by o', and 0 approaches 0, the last term 
tends to 0, whereas the left-hand member tends to 1. Hence (cf. (1.71.10), 
(1.71.1)) c2 = 0, c1 = 1, and we find for 0 < (} < 1r 

(
sin o)' 1r t - 0- Pn(cos 0) = Jo( (n + !)O} + B }o [Jo( (n + !)0} Yo( (n + !)t} 

(8.62.5) { } )' 
- Yo( (n + !)O}Jo( (n + !)t}]t-1 ci~ ty- 1 (si~ t Pn(cos t) dt. 

This is the integral equation required. 
(2) First assume 0 < nO ~ 1. Then according to (1.71.1) and (1.71.4) 

Jo{(n + !)O}Yo{(n + !)t}- Yo{(n + !)O}Jo{(n + !)t} 

= Jo( (n + !)O} [~log ( (n + !)t}Jo( (n + !)t} + 0(1) J 
(8.62.6) 

- Jo{ (n + !)t} [~log { (n + !)O}J0 ( (n + !)O} + 0(1) J 
2 o· o 

= --J0 {(n + !)O}Jo{(n + !)t}log- + 0(1) = 0(1) log-+ 0(1). 
7r t t 

Therefore, the integral of the right-hand member of (8.62.5) is (by (7.21.1)) 

0(1) t t log~ dt + 0(1) t t dt = 0(1)02 t t log! dt + 0(02) = 0(02). 
}o t }o }o t 
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(3) On the other hand, let nO ~ 1, () ~ 1r - E. Then, according to 
(1.71.10) and (1.71.11), the contribution of the interval 0 < t;;;; n-1 to the inte
gral previously considered, is 

O((ne)-!Jln-
1 

ti Yo(nt) ldt + O((ne)-!lln-l tiJo(nt) ldt 

= Ol (ne)-~l·n-2 = O(e-!n-1) = (ne}- 1 0(etn-~) = O(e'n-~). 

Finally, we find for the contribution of the interval n-1 ;"£ t ;"£ e, according 
to (7.3.8), 

8.63. Method of Liouville-Stekloff; extension of Hilb's formula to 
Jacobi polynomials 

By use of complex integration, Szego (17) has extended Hilb's formula and 
the corresponding asymptotic expansion mentioned in §8.23 (1), to ultraspher
ical, and even to general J·acobi, polynomials. Following Rau (2), we deduce 
the principal term of this general expansion by means of the Liouville
Stekloff method and obtain formula (8.21.17). The bounds for the remain
der are better than those in Szego 17, p. 77, (47), and in Rau 2, pp. 691-692, 
(29), (30). 

(I) Let a> -1. We write (4.24.2) in the form 

~()~ + {t ()2 a2 + N2}u = {/32- to + (i- a2) (~ - 1 e)} u, 
4 cos2 

- 4 sin2 2 (8.63.1) 2 

u = (sin ~)'·H (cos ~YH p~a,fl)(cos e), N = n + (a + /3 + 1)/2. 

Again applying (1.8.12), we obtain, because of (1.8.9), 

(8.63.2) 

(sin ~YH (cos ~YH P~a.fl>ccos e) = c1e'JaCNe) + c2o'J-aCNe) 

e' t -! J a(Ne)J --a(Nt) - J -a(Ne)Ja(Nt) 
+ N )eo t J: (Nt)J -aCNt) - J:_a(Nt)J a(Nt) 

. t ' a t2 t 
{ 

/3
2 

- 1 + (1- _ 2) (I _ 1 )} 
4 cos2 

2 4 sin2 

2 

( 
t)aH( t)flH · sin 2 cos 2 p~a,fl>(cos t) dt. 

Here and in what follows .J -a(z) must be replaced by Y a(z) if a is an integer. 
We refer again to the identity (1.8.14), by which 
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(8.63.3) , ( ) ( ) , ( 2 sin a1r .!.a Nt J_a Nt - J_a Nt)Ja(Nt) = 1rNt . 

(If a is an integer, sin car is to be replaced by -1.) Therefore, 

( 
(J)aH ( (J)flH o-! sin 2 cos 2 p~a,fl>(cos 0) = c1J a(NO) + c2J -a(NO) 

(8 ( t)aH ( t)flH (8.63.4) +)eo (J a(NO)J -a(Nt) - J _a.(NO)Ja(Nt) }t!j(t) sin 
2 

cos 
2 

· P~a,fl}(cos t) dt, 

where j(t) is regular in 0 ~ t < 1r, and independent of n. 
The last integral is convergent for Oo = 0; as () ~ +O it becomes (n fixed) 

0(1) 18 

(OaCa + 0-at)t~tH dt· = O(Oa) 18 

t dt + 0(0-a) 18 

t2aH dt = O(Oa+2). 

This is true whether a is an integer or not [(1.71.10)], except for a = 0. Then 
we obtain 

0(1) 18 

(log~ + log}) t!t! dt = 0 (o2 log}). 

Dividing (8.63.4) by oa, 0 ~ +O, we find [(1.71.1)] a relation of the form 

2-a-!p~a,fl)(1) + 0(02) = c1{r~~ ~):) + 0(0~} + c20-aJ -a(NO) + 0(02
). 

(The last term must be modified for a = 0.) Hence if a ~ 0, 

c2 = 0 and c1 = 2-!N-a r(n +a+ 1)(n!)-1. 

The same result holds when -1 < a < 0 if we take into consideration the 
fact that the "principal term" of o-aJ -a(NO) is 0-2a. Thus, for 0 < 0 < 1r, 

()-!( . (J)aH( (J)flHp<a,fl>( 0) - 2-!N-a r(n +a+ 1) J (NO) sm 2 cos 2 n cos - n! a 

(
8

·
63

·
5
) + 18 

IJ aCNo)J -aCNt) - J -aCNo)J aCNt) lttf(t)(sin ~)aH (cos ~YH 
· P~a,fl>(cos t) dt. 

(2) Now let n ------+ oo. We find bounds for the last integral in a manner 
similar to that in §8.62. First, let 0 < nO ~ 1. Then for a ~ 0, the integral 
is (cf. the second bound in (7.32.5)) 

0(1) 18 

I (nOt(nt)-a + (nO)-a(nt)a}t!taHna dt = O(naoa+2). 

In case /x. = 0, we reason as in §8.62 (2) and obtain the same bound, that is, 
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O(fl). On the other hand, let n-1 ~ () ~ 1r - E. The contribution of the 
interval 0 < t ;;;; n-1 is (cf. the second bound in (7.32.5)) 

0(1) 1n-1 

(nO)-! II J -a.(Nt) I + I J a.(Nt) llt'ta.-Hna. dt 

= 0(1) (no)-!n -a.-2na. = oco-!n -I) = (no)-10(o'n -j) = O(o'n -j). 

(Here J -a must be replaced by Yo if a = 0.) For t ~ n -\ we use the first 
bound in (7 .32.5) and obtain 

0(1) 18

_
1 

(no)-'(nt)-'t'n-l dt = O(o'n-!). 

8.64. Method of Liouville-Stekloff; asymptotic formula of Hilb's 
type for Laguerre polynomials 

By use of the fourth equation in (5.1.2) this method readily leads to (8.22.4). 
The third equation could likewise be used, but the calculation would then be 
slightly more complicated. Concerning an extension of (8.22.4) to an asymp
totic expansion (at least for a > -!) see §8.66. 

(1) Let a , > -1. Writing the equation in question as 

(8.64.1) ( 1 2) --a 2 
v" + 4N + 4 v = x v · x2 ' 

N = n + (a + 1)/2, 

we can apply (1.8.12) and (1.8.9). Hence with certain constants Xo, Ct, c2 , 

e-'"212xa.HL~a.>(x2) = c1x'Ja.(2N'x) + c2x!J_a.(2N'x) 

+ _t_ 1'" Ja.(2N'x)J_a.(2N!t)- J_a.(2N'x)Ja.(2N't) e-t2t2t+2r<a.>(t2) dt. 
2Nt xo J:(2N't)J_a.(2N't) - J!_a.(2N't)Ja.(2N't) n 

Once again we use (8.63.3) and obtain 

e-'"212xa.L~a.>(x2) = c1J a.(2N'x) + c2J -a(2N'x) 

+ 
2 

. 7r {'" I J a.(2/tx)J -a.C2N't) - J -a.C2N'x)J a.(2N't) l e -t 212t+aL~a.> (t2) dt. 
Sln a1r ]xo 

If a is an integer, J -a.(z) must be replaced by Y a.(z) and sin a1r by -1. 
Let x0 = 0. For a fixed n, as x ~ + 0, the last term is 

0(1) 1'" (xa.Ca. + x -a.ta.)ta.+a dt = O(xa.H). 

(If a = 0, this bound must be multiplied by log (1/x).) Therefore, as in §8.63, 
c2 = 0 and L~a.>(o) = c1Na. 12 lf(a + 1) l-1

; whence 

(8.64.2) C1 = ~a./2 f(n +a+ 1)(n!)-1
, 
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Consequently, 

(8.64.3) 
+ 2 . 7r 1"' I J a.(2N'x )J -a.C2N't) 

sm.a1r 0 

- J -a.C2N'x)J a(2N't) l e-1212ta.+aL~a.> (t2) dt. 

(2) As n ~ oo, the remainder term can be estimated in the same way as 
in the previous cases. However, we avoid here the use of bounds of the type 
(7.32.5). (In §7.6 (3) we derived such bounds as a consequence of (8.1.8) 
and of Fejer's formula (8.22.1); this is almost (8.22.4), which is just what we 
must prove now.) In the following proof we apply only the elementary 
formula (8.1.8) of the Mehler-Reine type, in particular only the second bound 
in (7.6.8). 

First, let 0 < x ~ n-!. Then we have L~a.>(t2) = O(na.) for 0 ~ t ~ x. 
It then follows that the integral term in (8.64.3) is 

(8.64.4) 0(1) 1"' (na. 12xa.n-a.12Ca. + n-a.12x-a.na.12ta.)ta.+ana. dt = O(xa.Hna.); 

for a = 0 this bound must be multiplied log (x -ln -!). 
Now let n -! ~ x ~ w\ where w is a fixea positive number. Let M n be the 

maximum of e-"'
212

xa. I L~a) (x2) I in this interval. Then the contribution of the 
part 0 ~ t ~ n -! of the integral term is, a ~ 0, 

(8.64.5) 

The same result holds if we have a = 0. The contribution of the other part 
n-! ~ t ~ xis 

(8.64.6) 0(1) 1"' n-ix-!n-1C't3Mn dt = 0(1)n-!x3Mn = Mn·o(1). 

Taking account of (8.64.3), and using the same argument as in §8.61, we find 
that 

(8.64. 7) 

(This is, of course, identical with the first bound in (7.6.8).) Therefore, in 
view of (8.64.5), (8.64.6), and (8.64.7), we obtain for the remainder term, if 
n-! ~ x ~ w\ 
O(x -!na./2- 914) + O(l)n -!iO(x -!na/2- 1) 

= O(x -!n a.t2-9t4) + O(xst2n a.t2-!) = O(xst2na.t2-'<). 

·----·--····-' 
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8.65. Method of Liouville-Stekloff; Hermite polynomials 

(1) The integral equation (8.64.3) assumes a particularly simple form in case 
a = ±~, that is, for the Hermite polynomials. Using (5.6.1) and (1.71.2), 
and writing n =2m, a= - t, and n = 2m+ 1, a = +!,respectively, we obtain 

e-x212Hn(X) = An COS (N!x- nrr/2) 

(8.65.1) 
+ N-! lox sin (N!(x - t) }t2e-1212H n(t) dt, 

where 

(8.65.2) 

according as n is even or odd, and N = 2n + 1. However, it is more con
venient to deduce this directly from the second equation in (5.5.2). 

\Ve prove (8.22.7) by mathematical induction. The statement is true for 
p = 0, replacing both sums I:.-;::01 by 0. In fact, if M n denotes the maximum 
of e-x212

1 Hn(x) I in a fixed real interval, we find from (8.65.1) that 

(8.65.3) Mn ~An+ O(n-!).Mn. 

Then Mn = AnO(l). 
(2) Now assuming (8.22.7) for an arbitrary p, we obtain from (8.65.1) 

e-x212Hn(x) =An COS (N!x- nrr/2) 

+ AnN-! {x sin (N!(x - t) l {cos (N! t - nrr/2) ~ t2 uv(t)N-v 
(8.65.4) }o v-o 

+ N-! sin (N! t - nrr /2) 1: t2 Vv(t)N-v} dt + An O(n -p-!). 
v-0 

The second term of the right-hand member contains expressions of the fol
lowing type: 

AnN-v-! lox sin (N\x- t)l COS (N!t- nrr/2)tk dt 

= (2k + 2) - 1 An N-v-! xk+l sin (N! X - nrr /2) 

+ !AnN-v-! lox l sin (N!(x - 2t) + nrr/2l dt, 

(8.65.5) 
AnN-v-I lox sin (N!(x - t) l sin (~ t - nrr/2)t1 dt 

= -(2Z + 2)-1 AnN-v-1x1
H cos (N!x- nrr/2) 

+ !"AnN-v-1 lox l COS (N!(X- 2t) + nrr/2l dt, 

where k is even and lis odd (k ~ 2, l ~ 3). Integration by parts furnishes 
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L" tk sin {N'(x - 2t) + n1r/2l cjt = !~txk cos (N' x - n1rj2) 

- !kN-l l~ tk-
1 cos {N'(x - 2t) + n1r/2l dt, 

(8.65.6) 

1"' t1 cos IN'(x - 2t) + n1r/2l dt = !N-!x1 sin (N'x - n1rj2) 

+ !ZN4 1"' t1
-

1 sin {N'(x - 2t) + n7r/2l dt; 

the second formula holds also for l = 1, and 

(8.65.7) 1"' sin IN'(x- 2t) + n7r/2l dt ={~-!cos (N!x _ n1rj2), 

according as n is even or odd. 
This consideration leads to a formula of the type 

e-"'
212 Hn(x) = Xn{cos (N'x- n1rj2) 'tu;l)(x)N-v 

v-o 

By repeated application of the same argument 

e-"'212 Hn(x) = Xn {cos CN' x - n7r/2) t u~2>(x)N-v 
•=0 

+ N-l sin (N' x - n7r/2) t v;2>(x)N-v + O(n-p-1
)}. 

v-0 

We readily see that u?> (x), u;2> (x); v;l) (x), v;2> (x) are polynomials of the same 
type as Uv(x); Vv(x), respectively, and Uv(x) = u;l)(x) = u;2>(x), v.(x) = v?>(x) = 
v?>(x), v ~ p - 1; whence (8.22.7) follows. 

The proof of Theorem 8.22.7 can be given along these same lines. 

8.66. Application to Laguerre polynomials 

(1) The asymptotic expansion (8.22.7), combined with the formula (5.6.5) 
of Uspensky, readily furnishes an asymptotic expansion of Hilb's type for the 
Laguerre polynomials L~">(x), at least for a > -t. We shall give only an 
outline of the proof. 

Substituting (8.22.7) in (5.6.5), we obtain an asymptotic expansion of which 
the general term is, apart from trivial constant factors depending on n, 
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Here the uv(x) and the Vv(x) are even and odd polynomials, respectively, and 
both are independent of n. The expression (8.66.1) is a linear combination of 
terms of the form 

(8.66.2) 

where k and l are non-negative integers, k even and l odd. If we expand 
T/Z kJZ • • b t b • f h fi • 1 f e r m a power senes a ou r = x, we o tam or t e rst mtegra terms o 

the type 

with q integral, and q ~ 0. This can be expressed in terms of Bessel functions 
[(1.71.6)]. A similar method furnishes for the second integral (8.66.2) terms 
of the type 

q again being integral, and q ~ 0. These can also be expressed in terms of 
Bessel functions (combine the second formula (1.71.5) with (1.71.6)). 

If we stop the expansion of the first expression (8.66.2) at a certain term, the 
remainder appears in the form 

(8.66.3) 

wheref(t) = Cmrm + Cm+ITm+r + · · · is an integral function with a zero of order 
mat r = 0; herem is an arbitrary integer. The remainder is of similar form 
for the second integral in (8.66.2). Writing 

g(t) = (1 - t2 )a-~f[x(I - t2
)], 

we see that the functions g(t), g'(t), g"(t), . ·. , g<m-r>(t) vanish at t = ± 1; 
they are all xmO(I), where 0(1) is uniformly bounded in -1 ~ t ~ +I, and in 
a fixed finite interval a ~ x ~ b containing the origin or not. Integrating by 
parts, we find for (8.66.3) a bound of the form O(n-K), where K is arbitrarily 
large with m, uniformly in x, a ~ x ~ b. 

Similar remarks hold for the second remainder. 
(2) The first term of this expansion furnishes (8.22.4). We also obtain 

readily an extension of (8.22.4) to the complex domain. 
Now assume 0 < E ~ x ~ w. Then applying (1.71.8), we find Perron's ex

pansion (8.22.2). (Cf. Uspensky 1, pp. 608-610.) There is no difficulty in 
deriving the complex formula (8.22.3) of Perron in the same way. 

--------···· 
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In all these considerations we assumed a > -!. An extension of Perron's 
formulas to arbitrary real values of a is possible by means of the second formula 
in (5.1.13). Concerning a second proof of Perron's formulas (by use of the 
method of steepest descent), see §8.72. 

8. 71. The method of steepest descent; Legendre polynomials and 
related functions 

(1) This method can be used for approximating integrals of the form 

(8.71.1) 

extended over a certain arc or closed curve, where F(t) = e1w and g(t) are 
given analytic functions regular in a certain part of the complex t-plane, and 
n ~ oo. According to Cauchy's theorem, a defqrmation of the contour is 
possible. In many cases it is convenient to make it pass through some of the 
points to at which f' (to) = 0 (saddle point); in addition, the direction of the 
contour at to (critical direction) must be determined according to the condition 
that (assuming !"(to) ~ 0) the expression 

(8.71.2) nf" (to) (t - to) 2 /2 

is real and negative if t is sufficiently near t0 • Then 

Hence under proper conditions concerning the behavior of f(t) on the comple
mentary part of the path of integration, the neighborhood 

(8.71.3) 0 < c < !, 
# 

of the saddle point furnishes the "principal" part of the integral as n ~ oo. 

Its contribution is of the form 

(R.71.4) 1+n6 ( )! 
enf<to> g(to)n -! exp (-a/) dp "" enf<to> g(to) .!!.._ ; a > 0, n ~ oo. 

-n6 an 

(Additional difficulties arise if f" (to) = 0; concerning a case of this type, cf. 
§8.75.) 

The term "method of steepest descent" arises from the following consider
ations. Let t = u + iv. Then representing u, v, mfj(t)] as cartesian coordi
nates in the ordinary euclidean space, we obtain a surface with a saddle point 
at t = t0 , and the curve with the critical direction is the "steepest" curve on 
the surface through this point. 

There is, of course, considerable freedom in the choice of the contour; only 
its direction through the saddle point is restricted. However, the exact "calcu
lation of the saddle points to from !'(to) = 0, and particularly that of the corre
sponding critical directions, might well be a complicated task in certain cases 
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For this reason, the following observation may greatly simplify matters. In
stead of the critical direction itself, any other direction through the saddle point 
can be taken for the path of integration, provided it forms an angle of less than 
1r/4 with the critical direction. Then the constant a in (8.71.4) becomes com
plex with a positive real part. Geometrically, this condition means that in 
passing through the saddle point on the surface, no higher level is reached in 
the neighborhood of this point than at the point itself. 

For our purposes, we shall prefer a contour satisfying the last condition, and 
along which 9?(f(t)] varies monotonically. Then the discussion of the integrand 
exterior to the neighborhood (8.71.3) becomes comparatively simple. 

Concerning the history, further details, and important applications of this 
method, the reader is referred to Watson 3, pp. 235-236. 

(2) As a first illustration let us consider the Legendre function of the second 
kind, that is, the special case a =. {3 = 0 of (4.61.1). Let x = cos 0 - iO, 
0 < 0 < 1r. Then 

(8. 71.5) Q~o,o) (cos 0 - iO) = Qn (cos 0 - iO) = l J (
2
! t

2 

-
1 )" ~t ( 

' t - cos 0 cos -

The original path of integration, -1 ~ t ~ + 1, can be deformed into the upper 
half of the unit circle described in the negative sense. The saddle point con
dition is 

(8.71.6) !!:_ (! t2 - 1 ) = ! t2 - 2t cos 0 + 1 = 0 whence t = e±iB 
dt 2 t - cos 0 2 (t - cos 0)2 ' ' 

and we see that the path of integration passes through the saddle point t = e•8
• 

·o If t = e' we have 

(8.71.7) (d)2

(1 t
2 

- 1 ) 1 
dt 2 t - cos 0 = i sin 0 ' 

so that near this point 

(8.71.8) 
1 t2 

- 1 •o (t - ei8
)

2 

2 t - cos 0 = e + 2i sin 0 + · · · · 
Along the critical direction, e -i<B+r/

2
) (t - ei8

)
2 must be real and negative; that is, 

(8.71.9) arg (t - ei8) = 0/2 + 37r/4 or 0/2 - 7r/4. 

Now, the angle between this line and the tangent to the unit circle at the point 
i8 • e IS 

(8.71.10) a 1 i(8/2+3r/4) • i(B+r/2)} /4 0/2 rg l e • e = 1r - , 

and I 7r/4 - 0/2 I ~ 7r/4 - E/2 if E ~ 0 ~ 1r - E. We can therefore use the 
circle I t I = 1 as the path of integration.49 

49 The critical direction is given by that of the bisector of the acute angle between the 
tangent at the point ei6 and the horizontal direction. 
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Substituting t = ei"', 0 ~ cp ~ 1r, we find that 

1

1 t
2 

- 1 / sin cp 
2 t- cosO.= ((coscp- cos0)2+ sin2cp}i 

(8.71.11) 

= { (cos ~i~ cpcos oy + 1 r-i 
is an increasing function of cp for 0 ~ cp ~ 0, and a decreasing function for 
{} ~ cp ~ 1r. We next consider the contribution of the arc 

(8.71.12) a a -n :::;; p:::;; + n , 

where o is a properly chosen positive number. On this arc we have 

ei<J> - eiB = eio (exp [in-! p] - 1) = eio {in-! P + (in~; p)2 + ... } ' 

and, in view of (8.71.8), 

2 2~ 

1 t - 1 iB e -1 2 11 + -! + ( -l )2 + ... } , 
2- t 

0 
= e -

2
--:--;--

0 
n p l c1 n p C2 n p 

-COS 2Slll 

provided o < t. Here c1, c2, · · · are certain functions of{} independent of n, for 
which Cm = O(Am) holds uniformly in E:::;; {} ~ 1r -E, and in m; A = A(E). 
Now 

(
1 t

2 
- 1 )n inB { ei

8 
2} w 

2 t - cos {} = e exp - 2i sin {} P e ' 

where 

~ 1 ( ei
8 

)" 1-• 2.(1 + -! + .. ·)". - L...J - -.-. - n p c1 n p 
•-2 v 22 sm {} 

Let o < !; then if M is an arbitrarily large positive integer, Wand ew can be 
reduced to a finite sum plus a remainder which is O(n-M). This yields the re
lation 

(1 t2 1 )n { i8 } - in8 e 2 
- = e exp - p 

(8. 71.13) 2 t - cos 0 2i sin {} 

· {1 + u1(p,O)n-! + U2(p,O)n-1 + ua(p,O)n-1 + · · · }. 
The series in the braces is an asymptotic expansion. If only m terms of this 
are taken, the error is less than an arbitrarily large power of n - 1 provided m is 
sufficiently large; here u.(p, 0) is a polynomial in panda function of 0, analytic in 
E :::;; {} :::;; 7r -E. In addition u.(- p, 0) = ( -1 r u.(p, 0). 
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(3) Now multiply (8.71.13) by 

1 __ d_t__ _ ! iei"' dcp _ 1 iei8 ein-!p n-1 dp 

2 cos fJ - t 2 cos fJ - ei<l> 2 cos() - eiB ein-!p 

i8 

== - 2~0 n-1{1 + c~n-tp + c~(n-1 p) 2 + · · ·l dp, 
sm 

where l c~ l is a sequence similar to l em l ; this does not change the essential 
character of equation (8. 71.13). We obtain, as the contribution of the arc 
(8.71.12), 

(8.71.14) 

_ ei<n+I)B n-! 1-n6 exp{- eiB /} 
2 sin() +n6 2i sin() 

· P + VI (p, fJ)n -! + v2(p, fJ)n -I + va(p, fJ)n -l + · · · l dp, 

where l v.(p, fJ) l is a sequence of polynomials similar to l u.(p, fJ) \. The last 
series is again an asymptotic expansion of the same type as (8.71.13). 

At the end-;points of the arc in question the modulus of the integrand of 
(8.71.14) is O(e-cp\ that is, O(e-cn

2
\ c > 0; the same is true of the contribution 

of the complementary arc becanse of the monotonic character of the function 
(8.71.11). Thus, 

Qn(cos fJ - iO) 

i(n+l)B 1+n6 { • i8 } 
= e

2
--.-

0 
n -! exp - 2~0 / (1 + vi (p, fJ)n -! + v2(p, fJ)n -I + · · · l dp 

Sln -n6 '/, Slll 

+ O(e-cn2\ 

The terms corresponding to the odd powers of n-! vanish after integration. 
Upon completing the interval of integration, we obtain 

(8.71:15) _ e -! e 1 + O( -i) 
i(n+I)8 { i(8-7r/2)}-! 

---n 1r n 
2 sin fJ 2 sin fJ 

= (
2 

~ )! exp !i[(n + !)fJ + 7r/4]l + O(n-1), 
n sm fJ 

the bound for the remainder holding uniformly for E ~ fJ ~ 1r -E. 

This method leads to a complete asymptotic expansion of Qn(cos fJ - iO) of 
the type (8.61.7) for E ~ fJ ~ 1r - E, but seems to be too difficult for use in 
finding the general law of the coefficients. 

From (8.71.15) we obtain the corresponding asymptotic expansion for 
Qn(cos fJ + iO) by merely replacing i by -i. From this, and (4.62.8), we 
easily derive Laplace's formula. Formula (8.61.7) can also be derived in this 
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way. At the same time we obtain a similar asymptotic expansion for Q~o,o) (cos fJ) 
= Qn(cos fJ) with the principal term (8.21.19). 

( 4) The analogous considerations for the Jacobi polynomials P ;_a.#) (cos fJ) 
are immediate. Here a and tJ are arbitrary and real, n ----; oo, and () again 
satisfies the conditionE ~ fJ ~ 1r- E. According to (4.4.6) we have 

p ;_a.f3) (cos fJ) = 29{ {~ f (~ t2·- 1 )n 
27r~ 2 t - cos () 

(8.71.16) 

( 
1 - t )a ( 1 + t ){3 dt } 

1 - cos () 1 + cos () cos () - t ' 

where the contour is the same as that used in (2). 50 The additional factor 

(8.71.17) 2 ( 1 - t )a ( 1 + t ){3 
7r~ 1 - cos () 1 + cos () 

does not cause any new difficulty and furnishes fort = ei8 

(8. 71.18) 2 ( . o)-a ( o)-13 . . 
1ri sm 2 cos 2 exp[da(fJ- 7r)/2 + {:JfJ/2\]. 

Therefore, we find (8.21.10) and an expansion of the type (8.21.12). 
(5) The same method can readily be applied to the functions Qn(x), P n(x), 

or more generally to Q~a ,!3) (x) and P~a ,!3) (x), where xi::; arbitrary real or complex 
but not on the segment [ -1, + 1]. This leads to (8.21.9) and also to th~ 
expansion (8.21.11). In the case of Q~a.f3J(x), we start from (4.61.1). It.is 
convenient to replace the half-circle u::;ed above by the circular arc through 
±1 and z = x - (x

2 
- 1)!, I z l < 1, (xi::; in the cut plane), which was intro

duced in §4.81 (1). The resulting integral iH the same as ( 4.82.4). Applying the 
method of HteepeHt descent, we obtain a formula of the type 

(8.71.19) (x- 1)a(x + 1) 13 Q~a,/3J(x) ""'n-i{x- (x2
- 1)!r+1 cf>(x), 

where I x - (x
2 

- 1)! I < 1, and cf>(x) iH independent of n, and regular and non
zero in the cut plane. 

8. 72. Method of steepest descent; Perron's formulas for Laguerre polynomials 

As a further application of this method we again prove the expansions (8.22.2) 
and (8.22.3). The present proof is based on the integral representation (5.4.1), 
which is valid for an arbitrary real a, provided n is sufficiently large. 

(1) Let x be arbitrary but nonzero. We start from the asymptotic expan
sion (1.71.8) of the Bessel function J a(z), z complex. The contribution of the 
segment 0 ~ t ~ 1 in (5.4.1) is (n!)-10(1). We can therefore confine our at
tention to values of t ~ 1, HO that (1.71.8) may be applied. Substitution of 
this expansion into (5.4.1) leadH to integrals of the type 

50 We must avoid the points t = ±1 by means of small semi-circles. 
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(8.72.1) 

~! loo e-tt+a12(tx)-m12- 114 c~s (2(tx)1 - a7r/2- 7r/4l dt, m even, 

~! 1oo e-tt+a12 (tx)-m12- 114 sin (2(tx)1 - a1rj2- 7r/4l dt, m odd, 

m = 0, 1, 2, · · ·. 

(Here the range of integration has again been completed to. 0 ~ t < oo .) The 
remainder term will be of the form 

(8.72.2) ~! 1oo e-tt+a/2
-q exp (2t1 J9{( -x)1 Jl dt, 

with q a fixed positive number which can be chosen arbitrarily large; the deter
mination of ( -x)1 is the same as in Theorem 8.22.3. If x is a fixed positive 
number, this is obviously O(na/2-q). If x is complex, the discussion of this 
remainder term requires greater care. Subsequent considerations furnish a 
bound in this case also. 

(2) For the sake of convenience we shall first discuss the integral 

1 100 

n+I -n 1oo I e~t t exp [t1 ~] dt = n ~ (e1-t t)n exp [n! t1 ~] dt, 
n. o n. o 

(8.72.3) 

(~ ~ 0, arbitrary complex) to which the integrals (8.72.1) and (8.72.2) can be 
reduced; here n ~ + oo, but n is not necessarily an integer. In the last integral 
the saddle point is "essentially" t = 1, and the positive real axis corresponds 
to the critical direction.61 If we write, as in (8.71.12), 

(8.72.4) t = 1 + n-! p, ~ ~ -n :::;; p:::;; +n, 
we obtain, for 0 < o < 1/6, 

(e1·-tt)n = exp {n(l - t) + n log [1 + (t - 1)]l 

= e-p212 exp { n 'f. ( -1),_1 (n-! p)"} 
~ •=3 v 

(8.72.5) 

= e -p
212

{1 + u1(p)n-1 + u2(p)n-1 + · · ·L 

where the u.(p) are polynomials in p independent of n. This is an asymptotic 
expansion similar in character to that in (8.71.13). Furthermore, 

exp [n! t! ~] = exp l n! ~ + n1 ~([1 + (t - 1)]! - 1) l 

(8.72.6) 

where the c. are certain numerical constants. This furnishes exp (n1 ~ + p~/2) 
61 This case is not a direct application of the method indicated in §8.71 (1) since the 

integrand has the form [F(t))n[G(t))n
1
1

2
• 
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multiplied by an expression similar to that in the braces in (8. 72.5). The 
coefficients corresponding to the u.(p) are in this case polynomials in p and ~. 
We also see that the contribution of the range of integration complementary to 
(8.72.4) is O(exp [ -cn2~]), c > 0. Therefore, we have in the same sense as in 
(8. 71.14) 

loo ( e1
-t t) n exp [n 1 t1 ~] dt 

= n-! exp [n1 ~] 1::6 

exp [ -//2 + p~/2] /1 + v1(p, ~)n-! + v2(p, ~)n-1 + · · ·l dp 

= n-! exp [n1 ~] 1:oo exp [ -//2 + p~/2] /1 + v1(p, ~)n-! + v2(p, ~)n-1 + · · ·l dp, 

where the v.(pt ~) are polynomials in .p and ~. Now if q is a non-negative integer, 
we have, in general, 

1.:oo exp [- //2 + p~/2] pq dp = e~218 J~oo e-p 212(p + ~/2)qdp, 

and the last integral is a 7rq in ~. (For q = 0 we get (21r) 1 e~ 218 .) According 
to Stirling's formula an expansion of the type 

exp (n1 ~ + ~2/8) /1 + v1(~)n-! + v2(~)n-1 + · · ·l 
results for (8.72.3), in which the v.(~) are polynomials. 

By applying this result to the expressions in (8.72.1), (replacing n by 
n + a/2 - m/2 - 1/4), we obtain the required expansions. The special case 
~ > 0 yields the required bound for the remainder term (8.72.2). 

8. 73. Method of steepest descent; Laguerre polynomials for 
1 < x < (4- TJ)n 

Here and in the next two sections we derive formulas (8.22.9), (8.22.10), and 
(8.22.11) by the method of steepest descent. vVe notice that in the first case 
the condition x = (4n + 2a + 2) cos2 cp, E ~ cp < 1r/2 - m-i, means that x 
satisfies the inequality xo < x < (4 - TJ)n, where E, Xo, and 'YJ are fixed positive 
numbers, E < 1rj2, 'YJ < 4, n large. The parameter a is arbitrary and real. 

(1) We start with formula (5.1.16) (cf. the remark at the end of §5.2), in 
which we replace x by ~2 and w by -w2/4; thus 

oo r<"'l(t2) 2: " '" c -w2/4)n = 2"'e-w2'4C~w)-"'e"' .. i'2 J .. ce-i .. ,2~w). 
n=O r(n +a+ 1) 

(8.73.1) 

Consequently, 

(8.73.2) 

·----------· 
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The integration is extended over a contour enclosing the origin. We choose 
it as a circle with center at the origin and radius to be determined later. The 
function (8.73.1) is real if w is real. 

Since~ = x!, 

(8.73.3) ~ = ln COS cp, ln = (4n + 2a + 2)\ 

Then ~ is bounded from zero. According to (1.71.9),' as I w I ----; co, we have 
uniformly in 0 ~ arg w ~ 1r, 

e'"ri 12 Ja(e-i"12 ~w) = (27r~w)-ieEwll + O(C'Iwr')l 
(8.73.4) ! 1 + (27r~W)- exp [ -~w + (a + !hi](l + O(C'I w !-) l. 

Hence from (8. 73.2), for ~ = ln cos cp, w = lnz, 

(8 73 5) (-l.)n L~")(f) = 2"t-"(2 t)-iz-2n-a-i2m{__!_ G + _!_ H + x} 
• • 4 r ( n + a + 1) <; 7r <; n a~ 27ri 27ri ' 

where 

G = J z-i exp l - i Z!i + Z!z cos cp - ! Z! log z l dz, 

(8. 73.6) H = e<a+D,.; f z-i exp l- i Z!i - Z!z cos cfJ - t Z! log z l dz, 

K = oc~-lr;;l) f I exp l- t Z!i ± Z!z cos cp- ! Z! log zlll dz I. 

Here the integration is extended over the upper half-circle I z I = 1, andlog z 
is zero if z is 1. In the last integral we choose the plus or minus of the ambigu
ous sign according to which gives the integral the larger value. If now we set 

(8.73.7) f(z) = - iz2 + z cos cp - ! log z, 

we find the saddle points of the first integral from the equation f'(z) = -z/2 
+cos cp- (2z)-1 = 0, that is, z = e±i<~>. Since f"(e;"') = sin cp e-•<4>+" 12

\ we have 
in the neighborhood of e;"', 

(8.73.8) 

Therefore, the critical direction can be found in a manner similar to that used 
in §8.71 (2). 

(2) On the circle z = e;.;, 

\8.73.9) 9{ lf(e"") l = - i cos 21/; + cos if; cos cp 

is increasing if 0 ~ if; ~ cp, and decreasing if cp ~ if; ~ 1r. Consequently, it 
suffices to consider the contribution of the arc 

\8.73.10) 1/1 = cfJ + r;.'p, ~ ~ 
-n ~P~+n, 
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where o is a fixed positive number, o < 1/6. ~ow we have 

if it/> r1 + ·z-1 + (il-;;
1
p)

2 + } z = e = e l ~ n p . 2! . . . ' 

(8.73.11) dz = e;"'il-;:1 { 1 + il-;;1p + (il;1

;)

2 

+ ... } dp, 

it/> it/> ·z-1 {1 + il-;;1

p + .. ·}. z-e =e ~nP -
2! 

Whence from (8.73.8) 

(8.73.12) f(z) = f(e;"') - t sin 4>ei<4>-"12 >l-;;2/(1 + c1l-;;1p + c2Cf;.1p)2 + ... l, 

where the c, are functions of 4>, independent of n and p, and Cm = O(A m) uni
formly in E ~ 4> ~ 1r - E, and uniformly as tom; A = A (E). (We note that 
this condition for 4> is more general than that in (8.22.9).) Hence, we have in 
the same sense as in (8.71.14), the following asymptotic expansion: 

G = e-i4>!2 exp (l~f(e;"') le'"'il-;:1 

(8.73.13) 

I " I " Ill Th . . I f . h where c1 , c1 , c2 , c2 , c2 , · · · are constants. e pnnc1pa term urms es 

(8:73.14) 

G = e-i4>!2 exp ll~f(e;"') I e;"'il-;;1(27r)i(sin 4>)-!e-i<<~>t2- .. 14> II + O(Z-;;2) I 

= ( _21r -)i exp 1- i(2n +a+ 1)4> + 37ri/41Z-;;1 

sm 4> 

·exp l ~ l~ cos
2 4> + ! l~ + !il~ sin 4> cos 4> Ill + O(Z-;;

2
) I, 

since the integrals with odd powers of p vanish. The bound for the error holds 
uniformly forE ~ 4> ~ 1r - E. 

The integral in H iH obtained by replacing 4> by 1r - 4>, so that 

H = ( .
2

7r Y exp ((a+ i)7ri- i(2n +a+ 1)(7r- 4>) + 37ri/41 
(8. 73.15) 8111 4> 

.z-;:1 exp \i l~ cos2 4> + t l~ - !il~ sin 4> cos 4> Ill + O(Z-;;
2
)}. 

Taking the absolute values of the integrands in G and H, we obtain, E ~ 4> ~ 
1r/2 - m·-i, 

(8.73.16) 

We easily see that, except for terms of higher order, H = -G. Therefore, 
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(8.73.17) 
w{2_2_. G + 2.]__ H + K} = ( ~ )

1 
Z-;1 exp It Z! cos2 cf> + t Z!} 

~ ~ rmncf> 

·(sin[! Z! sin <1> cos <1> - (2n + a + 1)<1> + 3r/4] + O(C1Z;1)}, 

since Z-;2 = O(C1Z-;;1). Introducing this into (8.73.5), we obtain 

( - .!)n L~a)(~
2

) = -1cs·n,~..)-lt-a-!2a+1z-2n-a-J (.! z2 2,~.. + l.l2l 
4 r(n +a+ 1) r 1 'f' <; n exp 2 n cos 'f' 4 n 

Now 

·(sin[! Z! sin <1> cos <1> - (2n +a+ 1) <1> + 3r/4] + O(C1Z;1)}. 

ln = 2n1 exp (a! 1) (1 + O(n~2)}, 
4nr(n +a+ 1) = r 122n+!nn+a+!e-n{l + O(n-1)}. 

And since n-1 
= O(C1Z;1), we have 

L~a) (~2) = (- 1t(r sin <t>)-!~-a-!nat2-1t4 

(8.73.18) 

·exp { -n - (a+ 1)/2} exp {t f + n + (a+ 1)/2} 

·/sin [t z; sin <I> cos <I> - (2n +a+ 1) <I> + 3r/4] + oc~-1Z-;; 1)}' 

e-FI2L~a)(f) = ( -1r(r sin cf>)-!~-a-!na/2-l 

·/sin [(n + (a+ 1)/2) sin 2cf>- (2n +a+ l)cf> + 3r/4] + oc~-1Z;1)}. 

This is identical with (8.22.9). 
We observe that in the application of this result to Hermite polynomials 

certain simplifications are possible. For a = ±! the 0-terms in (1.71.9) and 
(8.73.4) vanish identically, so that Kin (8.73.5) can be cancelled, and ~can be 
arbitrarily near zero. Therefore, (8.22.12) follows readily by use of (5.6.1). 

8.74. Method of steepest descent; Laguerre polynomials for 
( 4 + 11 )n ~ x ~ An 

We start again from (8.73.2) and integrate along a proper circle about the 
origin. Using a notation analogous to that in the previous section, we assume 
that 

(8.74.1) ~ = ln cosh cf>, E ~ cf> ~ W 1 
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where 

G
1 f -i 1 2 2 2 2 1 = z exp l - i ln z + ln z cosh cp - ! ln log z l dz, 

(8.74.3) H~ = e<a+i),.; J z-i exp l-il!i- Z!z cosh cp- !Z! log z} dz, 

K 1 
= O(C'r;;') J I exp l-il!i ± l~z cosh cfJ - !Z! log zlll dz 1. 

In each of G~ and H~, we integrate along both arcs 

-7r/4 ~ arg z ~ + 7r/4, 

of the circle I z I = e-"', while in G~ and H~ (which have the same integrands as 
G~ and H~, respectively) we take 7r/4 ~ arg z ~ 37r/4; in K 1 we take the arc 
0 ~ arg z ~ 1r of the preceding section. Then (8. 73.4) can again be used 
[ cf. (I. 71. 9) ]. 

In this case we discuss 

(8.74.4) f(z) = -iz2 + z cosh cp - ! log z. 

The condition f'(z) = 0 furnishes z = e±"', and we have f 11 (e-"') = (e2
"' - 1)/2 

= e"' sinh cp. Therefore, the circle I z I = e-<~> pttsses through the saddle point 
with the smaller modulus and has the critical direction at that point. For the 
second integral we obtain the saddle points -e±"', from which it follows that the 
circle I z I = e-4> can be used here again. Obviously, for z = e-HN·, 

(8.74.5) mU(z) l = -ie-2
"' cos 21/1 + e-"' cosh c/J cosy;+ efJ/2 

decreases as if; increases from 0 to 1r. 

On writing if; = r;:'p, -n~ ~ p ~ -t n~, 0 < o < 1/6, we obtain 

_ -<~>+if _ -<~> { 1 + ·z-' + Cir;;l p)
2 

+ } z - e - e . ~ n p ---,-· • . • ' 
2. 

(8.74.6) dz = e-4> il;;-1 
{ 1 + il;;-1 p + (il;'t)-2 

+ · ·.} dp, 

-<~> -<~> .1_, { 1 + iZ;;-' P + }· z-e =e ~ p - ··· 
·n 2! ' 

whence 

(8.74.7) 

I II I II Ill b I ) Here the coefficients c, , c2 , · · · (and also c, , c, , c2 , c2 , c2 , · · · e ow are 
analogous to those in §8.73. Hence, in the same sense as before, we have the 
asymptotic expansion 
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(8. 74.8) 
. (I + Z~1 (c~p + c~' /) + l~2(c~/ + c~' / + ct/) + ... l dp 

= e"'12 exp /l!J(e-"')le-"'iZ~\27r}(sinh¢)-!e"'12 {I + O(Z~2)l 

= ( . 
2

h1l' )! e<2n+a+l)</> iZ;-.1 exp ( Z! cosh2 ¢ - lZ! e2"' j (I + O(l;-.2) 1. 
sm ¢ 

The "principal parts" of G~ and H~ are given by the arcs 

respectively. If we replace z by ei .. z in H~, we see immediately that these 
principal parts are identical. Consequently, we have G~ = H~ except for terms 
which are of higher order than the remainder term in (8.74.8); furthermore, G~ 
and H~ are of higher order than the same remainder term. Therefore, because 
of C 1tn1 = O(l~2), we have 

2~iG~ + '2~iH~ +2m (2~ia~) + 2W (2~iH~) + K' 

= (11' si~h <Py e<2n+aH><~>z~1 exp (l! cosh2 ¢ - il!e
2"'l (I + O(l~2) j, 

(8.74.9) 

so that 

(8.74.10) 
( -Jc)n L~a\~2) = -1(. h,~..)-!t-a-! 2az-2n-a-J 

4 r(n + a+ I) 11' sm "~' ., n 

·exp(~2 - il!e2
"' + (2n +a+ I)¢}(I + O(tn

2
)}; 

or 
e -t2t2 L~a> (~2) = !( -Ir(7r sinh ¢) -! Ca-! n at2-t 

(8.74.II) 1 l 
·exp {[n +(a+ I)/2](2¢- sinh 2¢)j {I+ O(n-) . 

Returning to the variable x, we obtain (8.22.IO). From this result (8.22.I3) 
follows immediately. 

8.75. Method of steepest descent; Laguerre polynomials for 
x = 4n + O(n1

) 

(I) First, let t be real and bounded. We write as before 

X = ~2, ~ = ln - (6ln)-1t, W = lnZ1 

(8.75.I) L(a)(t2) {I I } 
(- 1)n n ., = 2aCa(27r~)-!Z~2n-a-!2m -.G" + -.H" + K" , 

4 r ( n + a + I) . 211'2 211'2 

where 
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(8.75.2) 

with 

(8.75.3) 

LAGUERRE POLYNOMIALS 

G" = J z-!exp U!J1(z)- 6-tz~tzl dz, 

H" = e<a+!),.i J z-! exp U!J2(z) + 6-tz~tz l dz, 

K" = O(l-;.
2
) J I exp U!f.(z) =F 6-tz~tzlll dz I, 

!() 1 2+ 11 1 z - - 4 z z - 2 og z, 

f ( ) 1 2 1 1 2 z - - 4 z - z - 2 og z. 
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., =I, 2, 

The integrals in (8.75.2) are extended over the upper half of a proper curve 
symmetric to the real axis for which I z I and I z \-1 are bounded. 

The "saddle point condition" f~(z) = -z/2 + I - (2z)-1 = 0 furnishes 
z = I, and we notice thatj~'(I) = 0 andj~"(I) = -1. Therefore, this saddle 
point is of a different character from the preceding ones. 

We first integrate along the segment 

(8.75.4) 

where o is a fixed positive number, o < I/6, then along the segment symmetric 
to this one with respect to the imaginary axis, and finally along the arc of a 

-I +I 
FIG. 9 

circle with center at z =:= 0 which connects the ends of the segments mentioned 
(see Fig. 9). For certain constants c4 , C5, ..• , we have 

(8.75.5) 
f1(z) = ft(l) + ~! (z - I)3j;" (1) + · · · 

= £ - l-;.2
/ + C4(z-;.Jp)4 + C0(l-;.1p)5 + · · ·. 

Furthermore, if r is the radius of the arc of the circle, then 

(8.75.6) mlft(rei"') l = - ir2 cos 21/; + r cos 1/; - t log r 

is decreasing for 0 ~ 1/; ~ 1r, sinee r cos if; < 1. \Y e now obtain the following 
expansiOn 
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G" = exp I il~ - 6-tzit l . 6t~ie2 .... 1 ~ 

(8.75.7) ·ln& exp (- /- pe2 
.... 

13t} ( 1 + (c~p + c~1p4) z-;;i 

+ (c~/ + c~/ + c~'p8)l-;;! + · · ·l dp. 

This is an asymptotic expansion in the usual sense. At the end-point p = n• 
we have the bound O(exp [ -cn

33
]), c > 0, for the integrand, which is at the same 

time a bound for the contribution of the remainder of the contour. (The slight 
modification of the circle around z = -1 is immaterial.) Thus 

G" = exp ( i l~- 6-tz~t l · 6i~Je2 .... 13 

(8.75.8) 
. ·{1" exp (- p' - pe"''"t) dp + O(r;;!)}. 

In the same way we see that the principal part of I-I" is due to the small segment 

(8.75.9) 

We find 

(8.75.10) 

Therefore, 

(8.75.11) 

and 

(8.75.12) 

H" = 

!2(z) = !2(- 1) + ]_ (z + 1)3h11
(- 1) + · · · 

3! 

= 3/4 - i1r/2 - z-;;2/ + 

(a+i).-i -i.-/2 p {3 z2 i7r z2 6-izi t} - e e ex 4 n - 2 n - n 

· 6
1r.1e''"{1" exp (- p' + pe''13t) dp + O{l:1)}, 

Now we can readily show that H" = - G" except for terms of higher order. 
Consequently, 

( - .!)n L~a) (~
2

) = -~ ?a+t 6t ca-t z-2n-a-7/6 e p I !!l2 - 6-i zi tl 
4 f(n+a+1) 7r.., .; n X \4n n 

·{s[e'•"' 1" exp (-p'- pe''"'t)dp]+ O(r;;')}. 

(8.75.13~ 

The imaginary part in the braces is Airy's function A (t) (Problem 2). Sub
stituting the approximate values of 4 n r(n + a + 1), l-;;2n-a-716 , and ca-l 
= z-;;"'-1(1 + O(l-;;413

)}, and observing that 

(8.75.14) ~2/2 = z~;2- 6-tz~t + O(z-;;i), 
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we obtain 

e-E212L~a\~2) = (-1)n7r-1 2-a-!3!n-!!A(t) + 0(tn"1)}, 

which is (8.22.9) with the less precise remainder term O(n -t). 
(2) Direct calculation of a further term in (8.75.5) leads to 

(8.75.15) C _ 1 j, (4)(1)64/3 Sri/3 _ 1 64/3 Sri/3 
4 - 4 ! 1 e - 'g' e . 

Furthermore, from (8.75.4) 

(8.75.16) 
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Consequently, the expression in the braces in (8.75.8) can be written as follows 

i"" exp (-/ _ pe2,i/3t)dp[1 +(-!6!e2ri/3P + t 64/3e8ri/3/)tn"1 + O(tn"4'3)]. 

The corresponding more precise form of (8.75.13) can be obtained by replac
ing the expression in the braces by 

3 [ e2ri/31"" exp (- / - pe2ri/3 t) dp J 
- ! 6t z-;;-1 3 [ e4ri/31

00 

exp (- / - pe2ri/3 t)p dp J 
+ t 64t3z-;;1 3 [ elori/3 i"" exp ( _ / _ pe2,i/3 t)/ dp J + O(tn"4/3) 

= A(t) + l!6!A'(t) + t6413 A<4>(t)jl-;;1 + O(Z:13) 

= A(t) + !6-1 z:-1 t2 A(t) + ocz-;;-413). 

Here the differential equation (1.81.2) has been used. Now (8.75.14) can be 
also written in the more precise form 

so that 

e-t
212 

= exp [-Z~/2 + 6!z~t]!I- !6-ttn"1t2 + O(tn"413)}. 

From this, (8.22.9) readily follows with the remainder term O(Z:13) = O(n-1). 
(3) The case of a general complex t can be settled by a slight modifica

tion of the argument in (1). 
The corresponding asymptotic formula for Hermite polynomials follows 

immediately by means of (5.6.1). 

8.8. Differentiation of certain asymptotic formulas 

Differentiation of an asymptotic formula with respect to a parameter occurring 
in that formula is in general not permitted. In some of our previous formulas, 
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however, the permissibility of differentiation is readily established. We must, 
of course, modify the remainder in a proper way. We shall discuss the formulas 
(8.21.18) and (8.22.6), involving Jacobi and Laguerre polynomials, from this 
point of view, using the important identities (4.21.7) and (5.1.14). 

(I) First let us consider (8.21.18) which contains Darboux's formula (8.21.10). 
We shall prove that 

:o IP~a,fl) (cos 0) l = ni k(O) 1- sin (NO + 'Y) + (n sin 0)-10(1)}, 
(8.8.1) 

. 1 1 -1 < -1 a>- ,{3>- ,en ;£0=1r-cn, 

with the same notation as in (8.21.10). We note that k'(O) = k(O)(sin 0)-10(1). 
In the proof, we write for the left-hand member of (8.8.1), 

-t sin O(n + a + {3 + l)P~~~1 .flH> (cos 0) 

- -t sin O(n + a + {3 + 1) (n - 1)-i k(O) 

· (sin; cos;) -
1
! cos (NO + 'Y - 1r/2) + (n sin o)-10(1)}, 

which establishes the statement. Evidently, the remainder term of (8.8.1) 
can be replaced by o-a-JO(n -!<) if en - 1 ;£ 0 ;£ 1r - E, and by O(n -l) if 
E ;5_ 0 ;;£ 7r - E. 

From (8.8.1) we derive the following important formulas: 

P~a,fl)(cos 01) - P~a,fl)(cos 02) 

01 - 02 

= n-ik(0
1
) cos (N01 + 'Y) -cos (N02 + 'Y) 

01 - 02 

+ 01a-!O(n-1) + (7r- 02)-fl-~O(n-i), 

(8.8.2) P~a,fl)(cos 01) - P~a,fl)(cos 02) 

cos 01 - cos 02 

= n-t k(0
1
) cos (N01 + 'Y) - cos (N02 + 'Y) 

COS 01 - COB 02 

Similar formulas hold with k(02) instead of k(01) in the right-hand member. 
For the proof we apply the mean-value theorem to 

¢(0) = p~a ,fl) (cos 0) - n -i k(O) cos (NO + ')'). 
Thus 
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¢'( T2) 
---.-, 

. sm r2 

fh < Tl < 82, 

81 < T2 < 82 • 

But, we have ¢'(r1) = n1k(r1)(n sin ri)-10(1), which is 81"-JO(n-1) or 
(1r - 82)-tH O(n-1), according as r1 ;;£ 1r/2 or r1 ~ 1rj2. Moreover, 

k(81) cos (N81 + 'Y) - k(82) cos (N82 + 'Y) 
81 - 82 

= k(81) cos (N81 + 'Y) - cos (N82 + 'Y) + cos (N82 + 'Y) ~_(81) - k(82). 
81 - 82 81 - 82 

The latter ratio is k'( r) = 01"-10(1) + (1r - 82)-tHO(I), 81 < r < 82 • A 
similar argument leads to the second formula in (8.8.2). 

If both 81 and 82 are confined to an interior interval E· ;;£ 8 ;;£ 1r - E of [0, 1r], 
the remainders in the formulas (8.8.2) are simply O(n -i). 

(2) Next we consider (8.22.6), which contains Fejer's formula (8.22.1). 
We write (8.22.6) in the form 

L~">(x) = k(x)n"12-l (cos [2(nx) 1 + 'Y] + (nx)-10(1)1, 

(8.8.3) k( ) -l x/2 -a/2-1 
X = 7r e X ', 'Y = -(a+ !h/2, 

> 1 -1 < < a - , en = x = w, 

where c and ware fixed positive numbers. By means of (5.1.14) we now obtain 

(8.8.4) d(~!) (L~">(x)l =·2k(x)n"12+1(- sin [2(nx) 1 + 'Y] + (nx)-~O(l)l, 

noting that d/k(x) l /d(x1) = k(x)O(x-1), and that (n - 1)! - n1 = O(n-1). 

The mean-value theorem furnishes, if both X1 and X2 belong to the interval 
-1 < < en = x = w, 

(8.8.5) = k(x1)na/2-l cos [2(nx1) 1 + 'Y}- c~s [2(nx2)
1 + !_] 

Xi -Xi 

+ x1at2-iO(n"'2-1) + x;at2-iO(n"'2-l), a > -1. 

The proof is similar to that used in the case of Jacobi polynomials. 

8.9. Applications; asymptotic properties of the zeros of Jacobi and 
Laguerre polynomials 

(I) We shall first point out some consequences of the formulas (8.21.18) 
and (8.8.1), which will be important for the discussion of interpolation with 
Jacobi abscissas (Chapter XIV). Setting c = 1 in (8.21.18), and using the 
same notation as before, we have the result: 
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THEOREM 8.9.1. Let a> -1, {3 > -1, and let 0 < 01 < 02 < ... <On< 1r 

be the zeros of P~a,fJ> (cos 0). Then 

(8.9.1) Or= n-1 jJnr + O(l)l, 

with 0(1) being uniformly bounded for all values ofv = 1, 2, ... n; n = 1, 2, 3, . · .. 
Furthermore, 

(8.9.2) 0 < o. ~ 71"/2, 

in the sense that the ratio of these expressions remains between certain positive 
bounds depending only on a and {3. 

Let p be a fixed number, 0 < p < 1rj2. Substitute in (8.21.18) 

(8.9.3) NO = (v - !)1r - 'Y ± p, v > 0, v an integer, 0 < 0 ~ 1rj2. 

Then the first term on the right, that is, ± ( -1)' n -!k(O) sin p, is the principal 
term provided the remainder o-a-J O(n -!) is less than n-! k(O) sin p. This 
is so if v and n are sufficiently large, v ~ M = M(a, {3, p). The same is true 
for the formula (8.8.1). We have also 0 > 0 if M is properly chosen. Further
more, let (v - !)1r - 'Y + p ~ N1rj2, so that 0 ~ 1rj2. Then for the values 
(8.9.3) 

(8.9.4) sgn P~a,fJ>(cos 0) = (-1)' and (-1)·+~, 

respectively. Hence P~a,fJ>(cos 0) has at least one zero between the bounds 
given by the values (8.9.3) and, since (8.8.1) shows that it is monotonic in this 
interval, it has only one zero there. Also, we see that in the same interval 

(8.9.5) 

and in the "complementary intervals" of [0, 1rj2], 

(8.9.6) 

The statements (8.9.5) and (8.9.6) hold in the sense that the ratio of the ex
pressions in question remains bounded from zero and infinity, uniformly in 0 
if 0 lies in the intervals mentioned; here n is sufficiently large, v ~ M(a, {3, p), 
and {v - !)1r - 'Y + p ~ N1rj2. 

Thus p~a,fJ>(cos 0) has no zeros in the "complementary intervals." 
In the interval 0 ~ 0 ~ N-1 

( (M - !)1r - 'Y - p} we have a bounded number 
of zeros which have the form n -1 (j~c + En), where j1c denote the positive zeros of 
J .. (z) and En ~ 0 (cf. (8.1.1) and (8.1.3)). This furnishes (8.9.1) for 0 < 
o. ~ 1rj2. Taking into consideration the formula (4.1.3), the full statement 
(8.9.1) follows. 

In addition, we find, by use of (8.9.5)1 that 

(8.9.7) 
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provided the conditions mentioned are satisfied. The extension to the total 
interval follows again by means of (8.1.1). Combining this result with (8.9.1), 
we obtain (8.9.2). 

For the zeros o. from a fixed interval [a, b] in the interior of [0, 1r], that is, 
0 < a < b < 1r, (8.9.1) can be written in the more precise form 

(8.9.8) Ov = N-1 
( (11 - !)7r - 'Y + K1r + Enl, 

where K is a fixed integer (depending only on a, {:3, a, b), and En~ 0. In this 
case, (8.9.2) attains the simpler form 

(8.9.9) 1 P~a ,p), (cos o.) I ~ n!. 

(2) The analogous statements for Laguerre polynomials follow from (8.22.6), 
(8.1.8), and (8.8.4). We use here the same notation as before. 

THEOREM8.9.2. Leta> -1,andletx1 < X2 < · · · <xnbethezerosofL~a>(x); 
then we have for the zeros x. from a fixed interval 0 < x ~ w 

(8.9.10) 2x! = n-!(111r + 0(1)1. 

Moreover, 

(8.9.11) I L (a)'( ) I -a/2-i a/2+i -a-J a+l n Xv ~ Xv n ,-....., II n . 

Let p be a fixed positive number. Introducing in (8.22.6) 

(8.9.12) 2(nx)! = (11 - !)1r - 'Y ± p, v > 0, 11 an integer, 0 < x ~ w, 

we obtain values of opposite signs provided 11 ~ M = Jlr!(a, p), and n is suffi
ciently large. Then we see from (8.8.4) that L~a> (x) is monotonic between 
the corresponding values of x, and hence L~a> (x) has precisely one zero in the 
corresponding interval. Taking (8.1.8) into account, we find (8.9.10) as in (1). 
Again, from (8.8.4) and (8.1.8), 0 < x. ~ w, 

I L~a>'(x.) I ~ x~!k(x.)na12+t. 

For the zeros x. from a fixed positive interval e ~ x. ~ w, e > 0, we obtain 

(8.9.13) I L (a)'( ) I a/2H n Xv ,..._, n . 

(3) Let a be arbitrary and real. The preceding results (especially formula 
(8.22.11)) enable us to discuss the largest zeros of L~a> (x~. Let i 1 < i 2 < 
i 3 < ... be the zeros of Airy's function A (t); then the only zeros of L~a> (x) in 
the interval 

(8.9.14) x = 4n + 2a + 2 - 2(2n/3)tt, t real and bounded, 

are those corresponding to the values t = i.. (Near t = i. we have precisely one 
zero if n is sufficiently large; this follows from the uniform validity of (8.22.11) 
for bounded complex t, by use of Theorem 1.91.3 (Theorem of Hurwitz).) 
On the other hand, the upper bound (6.31.7) of the zeros belongs to this interval. 
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Consequently, if we arrange the zeros x1 > x2 > x3 > . -. of L~a> (x) in decreasing 
order, we have 

(8.9.15) Xv = X,n = 4n + 2a + 2 - 2(2n/3)t(i. + En), Jim En = 0, 'II fixed. 
fl-00 

This is identical with (6.32.9). An analogous result holds for Hermite poly
nomials, namely (6.32.5). It follows immediately from (8.22.14). This 
formula was proved in §6.32 by use of Sturm's method. 

8.91. Applications; asymptotic properties of the maxima of Laguerre and 
Hermite polynomials 

Another application is the discussion of the magnitude of the Laguerre and 
Hermite polynomials for non-negative and for real values of x, respectively. 

(1) THEOREM 8.91.1. Let a be arbitrary and real, a > 0, 0 < 7J < 4. 
have for n --} oo 

(8 91 1) -:r/2 (a+1l/21 L(a)( ) I {na/2 . . max e X n X l'o.J +~ 
na/2 • 

if a ~ x ~ (4 - 71)n, 

if x ~a; 

(8 9
1 ?) -:r/2 af2+i I L(a)( ) I"-' {na/2-i if a~ X~ (4 - rJ)n, 

. ... max e X n X na/2_1112 .-.r 
"J x ~a. 

We 

These maxima are taken, respectively, in the intervals pointed out in the right
hand members. 

These asymptotic formulas play an important role in the discussion of 
Laguerre series (Chapter IX). 52 

A more exact characterization of these maxima when n ~ oo is also possible. 
·we can replace rv by l'o.J by introducing into the right-hand members the 
constant factors 

(2/7r)t(4 71 -
1 - 1)1, 1r -\12)1 max A (t); 

1r -!(4 71 -
1)t, 1r -

1(18) 8 max A (t), 
(8.91.3) 

respectively. This follows readily from the subsequent proof. We note that 
these factors are independent of a and a. The first maximum of A(t) is posi
tive, and is actually the greatest value of I A (t) I for all real values of t. (Cf. 
Theorem 7.31.1 and (1.81.2).) 

(2) Let t = j 1 be the first maximum point of A (t), 0 < j1 < i1 . Now choose 
two values t', t" such that 0 < t' < t" < j1 and denote the corresponding 

&2 Kogbetliant?. (22, p. 144; 23, pp. 39, 51-53), states erroneously the appraisal L~a) (x) = 

O(exf2z-af2-lf4naf2-l/4), x ~a. The error is made in 22, p. 154, where a certain bound valid for 
H n(x), if I x 1 < cn112 , is appiicd to an arbitrary Hm(x), m ~ n. Unfortunately, the main 
rcr,ults of the paper 23 (all!! partly also those of 24) arc based on this erroneous statement. 
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values of x in (8. 9. 14) by x' and x", respectively, so that x' > x" > x1n if n 
is sufficiently large. Then A (t') < A (t"), so that by (8.22.11) 

(8.91.4) 

Therefore, x' and x" both cannot'be on the left of the last extremum point of 
e-x 12L~a>(x), whence this extremum point lies in the interval (8.9.14). 

The same consideration applies to e-x12x)o.L~a>(x), where A is an arbitrary but 
fixed real number. Indeed, x)o. = (4n/ ( 1 + O(n-j) j. Thus, a formula analo
gous to (8.22.11) holds for e-x 12 x)o.L~a>(x) with the additional factor (4n/ in 
the right-hand member. 

(3) In the interval a ;;£ x ;;£ (4 - 71)n formula (8.22.9) can be applied. 
Since 

(a+l)/2 ( · ,~,.)-! -a/2-i a/2-i i ( • ,~,.)-! a/2-i a/2 ( t ,~,.)! X Sin '+' X n = X Sin '+' n rv n CO '+' , 

X af2+i (sin </>)-!X- a/2-i n a/2-i = (sin </>)-I; n a/2-i' 

the maxima in question are rvn af2 and n a/2
- 1, respectively. 

In order to calculate the maximum in the interval x ~ a, we use Theorem 
7.6.2. The sequence of the relative maxima of 

(8.91.5) 

is increasing for x > Xo , where xo is a certain non-negative number depending 
on a, and n is sufficiently large. Therefore, ori account of (1), the absolute 
maxima of the functions (8.91.5) for x ~a are attained in the interval (8.9.14). 
According to (8.22.11) these maxima are ""' n<a+l)f2n-t and na12+in-l, respec
tively. Between a and Xo, Fejer's formula (8.22.1) must be used. This 
furnishes the complete proof. 

(4) We also readily prove the following more general theorem: 

THEOREM 8.91.2. Let a and A be arbitrary and real, a > 0, 0 < 71 < 4. Then 
for n ~ oo 

(8.91.6) 

where 

(8.91.7) 
_ jmax (A - !, a/2 - t) if a ;;£ x ;;£ (4 - 71)n, 

Q - lmax (A - t, a/2 - t) if x ~a. 
In the first case, that is to say, in the interval a ;;£ x ;;£ (4 - 71)n, we again 

apply (8.22.9). Now 

)o.( . ,~,.)-! -a/2-i a/2-i 'lo.-1;( ,~,.)2'1o.-a- !(si· ,~,.)-! x sm '+' x n ""' n cos '+' n '+' • 

This expression attains its maximum in the interval E ;;£ </> ;;£ 1rj2 - m-l 

for <J> = E or <J> = 1r/2 - En-l according as A ~ a/2 + t or A < a/2 + i. 
The maxima are rvn'lo.-! and n'lo.-!(n-!) 2)..-a-! = na/2-t, respectively. This 
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establishes the first part of the statement. We also see that the maximum is 
attained near x = ( 4 - 71)n if A ~ a/2 + i, and near x = a if A < a/2 + t· 

In the interval (4 - 71)n ~ x ~ 4n + O(n\ we have 

max e-"'12x"l L~a)(x) I"-' n"!.-(a+I)/2 max e-"'12x<a+I)/2 \ L~a)(x) 1. 

Because of (8.91.1), this furnishes the second part of the statement. The 
maximum is attained near x = 4n if A - t > a/2 - i, and near x = a if 
A - i < a/2- t· 

(5) By use of (5.6.1), or directly from (8.22.12) and (8.22.14), we obtain the 
corresponding results for Hermite polyno~ials. 

THEOREM 8.91.3. Let A be arbitrary and r~al, a > 0, 0 < 71 < 2. Then 

(8.91.8) 

where 

(8.91.9) S= {
max (A/2 - 1/4, -1/4) if a ~ I xI ~ [(2 - 71)n]!, 

max (A/2 - 1/12, -1/4) if I xI ~ a; x real. 

We have, for instance (Theorem 7.6.3), 

(8.91.10) max e-"'212
1 Hn(x) I~ (2nn!)!2t3t7r-!n-1112 max A(t). 

Here x and t range over all real values. (Cf. Hille 1, p. 436, (30).) 

8.92. Further results 

( 1) Gatteschi (1, 2) investigated various asymptotic formulas involving the 
classical polynomials and their zeros, and replaced the (usually unspecified) 
constants occurring in the 0-terms by numerical values. As an illustration we 
mention the following remarkable refinements of Theorem 8.21.6. 

We have 
Pn (cos e) = (fJ/sin fJ)!Jo{ (n +!)e) + u 

where 
\u\ < 0.09 fJ 2 if 0 < () ~ 1r / (2n ), 

\u\ < 0.63 ()!n-a if 7r/(2n) < () ~ 1rj2. 

The following formula is even more informative: 

where 

(si~ey Pn(cosfJ) = Jol(n+!)e)-
24

(n(J+!)Jd(n+!)e) +u' 

\u'\ < 0.03()4 if 0 < () ~ 7r/(2n), 

\u'\ < 0.25 ()~n-~ if 7r/(2n) < () ~ 1rj2. 

These formulas can be )J.sed for the asymptotic evaluation of the "first" zeros 
with specified constants in the error terms. See also Tricomi 4. 
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(2) Further information concerning the asymptotic behavior of the Jacobi 
and Laguerre polynomials and their zeros can be found in Bateman Manuscript 
Project, vol. 2, Chapter 10, pp. 196-202; also Tricomi 5, pp. 219-224, Thorne 1, 
and Erdelyi-Swanson 1. See also the literature quoted at these places. 

Recently, Erdelyi 3 has obtained two new asymptotic formulas for the 
Laguerre polynomials L~al(x) valid for x ~ a(4n + 2a + 2) and for x ~ 
b(4n + 2a + 2) where a and b are fixed, 0 < b < a < 1. These formulas 
involve Bessel functions and Airy's function, respectively, and hold on the 
above ranges which overlap and cover the entire real axis. This is an important 
result. 

Erdelyi only proved these asymptotic formulas for a~ 0. They were ex
tended to a> -1 by recurrence relations by Muckenhoupt 1. 

(3) The formula (8.2l.i) of Laplace-Heine has been used in the estimation 
of the smallest eigenvalue of the truncated Hilbert matrix (1/( i + j + l))f:J=o· 
See Szego 27 and Widom-Wilf 1. The size of this eigenvalue gives a measure 
of the degree of difficulty in finding the inverse of this matrix. 

(4) The remark in §8.4 (3) is not quite correct. The infinite series corre
sponding to Darboux's formula (8.21.4) is convergent for 1r/6< 8 < 57r/6, 
but it converges to 2Pn(cos0) rather than Pn(cosO). See Olver 1. While 
asymptotic series in the sense of Poincare must converge to the "right" function 
if they converge this is not true of more general asymptotic expansions; so 
great care must be exercised when using them. 



CHAPTER IX 

EXPANSION PROBLEMS ASSOCIATED WITH THE 
CLASSICAL POLYNOMIALS 

The formal expansion of a function in terms of general orthogonal poly
nomials having been defined in §3.1 (cf. (3.1.3)), we shall now turn our atten
tion to expansions in terms of the classical polynomials. In this connection we 
shall deal with the following problems: 

Expansion of an analytic function in series of Jacobi, of Laguerre, and of 
Hermite polynomiah;; discussion of the domain of the convergence. 

Expansion of an "arbitrary" function in series of Jacobi,. of Laguerre, and 
of Hermite polynomials; discussion of equiconvergence and summability 
theorems. 

In the main, our principal concern will be with ·the second problem, and we 
agree that "arbitrary" function shall mean a function restricted only by certain 
conditions of integrability, or continuity, and by conditions involving the 
existence of certain integrals. 

Two series L::-o Un and .Z::-o Vn are called equiconvergent if the series 
.Z::-o (un - Vn) or, more generally, if 

00 

L (un - Avn), A r£ 0, 
n=O 

is convergent. We shall try to find simple trigonometric (Fourier) expansions 
equiconvergent with a given type of polynomial expansion. Such a procedure 
will enable us to reduce the discussion of the polynomial expansion to the dis
cussion of trigonometric series under very general conditions. 

Of the various methods of summability, we shall be primarily interested in 
that of Cesaro. A series L::-o Un is called (C, k)-summable, k > -1, with 
the sum s if 

. s~k) 
lim <k> = s, 
n-+oo C n 

where 
00 00 

(1 - r)-k-l L Un rn = L s~k) rn' 
n=O n=O 

Obviously, k = 0 corresponds to convergence in the ordinary sense. If k' > k, 
it is readily shown that (C, k)-summability involves (C, k')-summability with 
the same sum. 

244 
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A necessary condition for (C, k)-summability, k ~ 0, is un = O(nk). 
Cesaro summability of any order k implies Abel summability; that is, the 

existence of the 
00 

lim .L: 'Un r n 
r-I-0 n=O 

with the same sum. 

9.1. Results 

(1) The formal expansion of a function f(x) m a Jacobi series is (compare 
(4.3.3)) 

00 

f(x) ""' L anP~a,fJ) (x), 

(9.1.1) 
n=O 

The expansion of f(x) in a Laguerre series is (cf. (5.1.1)) 

00 

f(x) ""' L anL~a) (x), 
n=O 

(9.1.2) 

r(a + l)(n ~ a) an = l+oo e-x xaf(x)L~a>(x) dx; 

and in an Hermite series it is (cf. (5.5.1)) 

00 

f(x) ""' L anH n(x), 
(9.1.3) 

n=O 

71J2nn!an = L:oo e-x2 f(x)Hn(x) dx. 

In all these cases f(x) is a measurable function, and the existence of all 
integrals occurring is required. 

In what follows we assume a > -1, {3 > -1 in the Jacobi case and a > -1 
in the Laguerre case. 

(2) In this connection the following results may be stated: 

THEOREM 9.1.1 (Expansion of an analytic function in a Jacobi series). Let 
f(x) be analytic on the closed segment [-1, +1]. The expansion of f(x) in a 
Jacobi series is convergent in· the interior of the greatest ellipse with foci at ± 1, 
in which f(x) is regular. The expansion is divergent in the exterior of this ellipse. 
Using the notation (9.1.1), we have the following representation for the sum R of 
the semi-axes of the ellipse of convergence 

(9.1.4) R = lim inf I an ,-l/n. 
n-oo 
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THEOREM 9.1.2 (Equiconvergence theorem for Jacobi series in th!e interior 
of the interval -1, +1). Letf(x) be Lebesgue-measurable in [-1, +~],and let 
the integrals 

(9.1.5) 
1

+1 
_

1 
(1 - x)"(1 + x)P lf(x) I dx, 

r+I J_
1 

(1 - xr"12
-

1(1 + xl12
-t lf(x) I dx 

i 
exist. If sn(x) denotes the nth partial sum of the expansion of f(x) inl a Jacobi 
series, and Sn(cos 0) the nth partial sum of the Fourier (cosine) series oJ 

(9.1.6) (1 - COS O)"'f2+i(l + COS 0)PI2Hf(cos 0), 

then for -1 < x < + 1, 

(9.1.7) lim {sn(x) - (1 - x)-a/2-t(l + xrM2
- 1sn(x) l = 0, 

n-oo 

uniformly in -1 + E ~ x ~ 1 - E, where E is a fixed positive number, 1 E < 1. 

THEOREM 9.1.3 (Summability theorem for Jacobi series at the ehd-points 
x = ± 1). Let f(x) be continuous on the closed segment [ -1, + 1 ]. The ~xpansion 
of f(x) in a Jacobi series is ( C, k )-summable at x = + 1, provided k :::j. a + ! . 
This is in general not true if k = a + ! . An analogous statement hJlds for x 
= -1, a being replaced by {3. 

THEOREM 9.1.4 (Generalized summability theorem for Jacobi seri~s). Let 
f(x) be Lebesgue-measurable in [ -1, +1] and continuous at x - +L! Then if 
we assume the existence of the integral · 

(9.1.8) /_~
1 

(1 - x)"'(1 + x)f3 I f(x) I dx, 

the Jacobi series is (C, k)-summable, k > a + !, at x = +1, provided t~at in the 
case ! 

(9.1.9) {3 > -!, a + ! < k < a + {3 + 1, 

the following additional "antipole condition" is satisfied: the integral 

(9.1.10) L: (1 + x)P12-t I f(x) I dx 

exists. (Fork ~ a+ {3 + 1 no antipole condition is necessary.) Fork 'I~ a+ ! 
or fork > a + !, but without the antipole condition, the statement is not true. 

i 
I 

THEOREM 9.1.5 (Equiconvergence theorem for Laguerre series for I x > 0). 
Let f(x) be Lebesgue-measurable in [0, + oo ], and let the integrals 

(9.1.11) i·t x., I f(x) I dx, 
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exist. lf the condition 

(9.1.12) ioo e -:~:f2xaf2-13/12 I f(x) I dx = o(n -!), n~ oo, 

is satisfied, and if sn(x) denotes the nth partial sum of the Laguerre series of f(x), 
we have, for x > 0, 

(9.1.13) lim {sn(x) - 1r -
1 {"'t+s f(l) sin { 2~'(x' - r) l dr} = 0, 

n-oo }:>:t-o X - T 

where o is a fixed positive number, o < x1. This holds uniformly for every fixed 
positive interval E ~ x ~ w, o < El. 

The same equiconvergence theorem (9.1.13) is valid if the integrals (9.1.11) tfXist 
and condition (9.1.12) is replaced by the following: 

100 

e -"'12 xa12- 1 1 f(x) I dx 

i'o e-"'xa,-2 lf(x) l2dx = o(n-1), 

is convergent; 

(9.1.14) 

n ~ oo. 

THEOREM 9.1.6 (Equiconvergence theorem for Hermite series, x arbitrary 
and real). Let f(x) be Lebesgue-measurable in [- oo, + oo], and let the integral 

(9.1.15) J~a I f(x) I dx 

exist for every a > 0. If the condition 

(9.1.16) n ~ oo, 

is satisfied, and if sn(x) denotes the nth partial sum of the Hermite series of f(x), 
we have, for an arbitrary and real x, 

(9.1.17) lim {sn(x) - 71"-1 1:>:+/J f(t) sin { (2n)l(x - t) l dt} = 0, 
n-oo :>:-& X - t 

where o is a fixed positive number. Moreover, (9.1.17) holds uniformly in every 
finite interval. 

The same equiconvergence theorem (9.1.17) holds if the integral (9.1.15) exi$ts 
and we replace condition (9.1.16) by the following: 

(9.1.18) 

100 

e-'"
212

x-1{lf(x) I+ Jf(-x) J} dx 

100 

e-"'
2 
x-

4
11 f(x) 1

2 + If( -x) 1
2

} dx = o(n-
3

)., 

is convergent, 

n ~ oo, 

THEoREM 9.1.7 (Summability theorem for Laguerre series at x = 0). Let 
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f(x) be Lebesgue-measurable in [0, + oo] and continuous at x = 0. lf we assume 
the existence of the integral 

(9.1.19) loo e-x/2Xa-k-i if(x) I dx, 

the Laguerre series of f(x) is (C, k)-summable at x = 0 with the sumf(O) provided 
k > a+ !. This statement is not true fork ~ a+!. 

9.11. Remarks 

(1) Theorem 9.1.1 is well-known in the Tchebichef and Legendre cases.53 

The determination (9.1.4) of the ellipse of convergence is analogous to the well
known Cauchy-Hadamard formula. 

(2) The importance of Theorem 9.1.2 is due to the possibility of applying it 
to convergence and summability ·problems for Jacobi series similar to those 
which are found in the classical theory of ordinary Fourier series. This theorem 
has been proved in the special case a = {3 = 0 (Legendre series) by Haar (2) 
and W. H. Young (1) with conditions concerning f(x) somewhat different from 
those arising from our general theorem in the special case a = {3 = 0. W. H. 
Young considers also series proceeding in terms of Legendre polynomials, with
out being Fourier expansions in the ordinary sense. The proof of Theorem 
9.1.2 given in §9.3 is due to Szego (17, pp. 88-92). Recently, Obrechkoff (2) 
has treated the same problem, using as his main tool Darboux's formula in the 
more precise form (8.21.18). 

Summability theorems for interior points were investigated earlier (in the 
ultraspherical case) by Adamoff (2) and (in the ultraspherical as well as in the 
general Jacobi case) by Kogbetliantz (1, 2, 3, 7, 18, 19). Concerning properties 
of these expansions analogous to those treated in Riemann's theory of trigo
nometric series (in particular theorems of uniqueness) see Kogbetliantz (6, 20) 
and Zygmund (1). 

In setting up the expansion in Jacobi series, we must require the existence of 
the first integral (9.1.5). Using an obvious notation, we readily see that 

(9.11.1) 

according as a ~ -! or -1 < a ~ - t. That the condition of the existence 
of the second integral cannot be improved upon for a > - t follows when we 
consider the special function f(x) = (1 - x)"' with 11- = -a/2 - 3/4 (cf. §9.3 
(4)). The existence of both integrals (9.1.5) follows from that of 

(9.11.2) 

63 The Legendre case is usually attributed to F. Neumann (cf. Whittaker-Watson 1, 
pp. 322-323). 
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Instead of (9.1.6) the function 

(9.11.3) 

may also be considered ( cf. Szego, loc. cit.). The change, necessary in (9.1. 7) 
for this function, is at once apparent. Both functions (9.1.6) and (9.11.3) are 
integrable in -1r ~ 0 ~ +1r. The difference (9.1.7) may be written as 

where the notation (4.5.2) has been used. Comparison of sn(x) = sn(a, {3; x) 
with sn('Y, o; x), where 'Y and o are arbitrary, is also possible. 

(3) Theorems 9.1.3 and 9.1.4 have an extensive literature. Gronwall (1, 2) 
has investigated the special case a = {3 = 0 (Legendre series). His proofs have 
been simplified to a considerable extent by Lukacs (2), Hilb (1), and Fejer (8). 
The ultraspherical case has been considered in great detail by Kogbetliantz 
(2, 4, 19; 21, pp. 70-73) (cf. also Obrechkoff 1). The method used in §§9.4-9.42 
is new and comparatively simple. It is based on a peculiar relationship between 
the Jacobi polynomial P~"H+I.tll(x) and the "kernel" of the kth Cesaro mean 
of the Jacobi series which corresponds to the parameters a and {3. (In the case 
of Laguerre series the corresponding relation is trivial (cf. §9.6).) The case 
of a Legendre series (if we consider the series at the end-point x = + 1) is equiva
lent to a Laplace series; whence the term "antipole condition". At the end
point x = -1 a similar theorem holds; in this case the summability index k 
must ~xceed {3 + !, and an "anti pole condition" must be satisfied near x = + 1. 

Theorem 9.1.3 furnishes the convergence of the Jacobi series at the end-point 
x = + 1 provided f(x) is continuous in [ -1, + 11 and -1 < a < -! (cf. also 
Rau 1; Szego 17, §20; Lorch 1, 2). 

In the case of Legendre series the "kernels" of the Cesaro means of the second 
order are non-negative (Fejer 4). This fact has, of course, important conse
quences. Concerning similar theorems in case of ultraspherical expansions, 
cf. Kogbetliantz 19. 

In the special case of Legendre series Kogbetliantz (16) gave important 
refinements of Theorems 9.1.3 and 9.1.4. He studied, among others, the C
summability of proper order at the end-points x = ± 1 if f(x) becomes infinite 
of a certain order at the antipole. 

As regards certain older (very complicated) results on the convergence of ultra
spherical expansions at the end-points x = ± 1, see Adam off 2. 

(4) The equiconvergence problem for Laguerre and Hermite expansions 
has been treated (the first only in the specia.l case a = 0) by Rotach (1), and 
(in all cases) independently by Szego (10). For the special Laguerre case a = 0 
the conditions of Szego are more restrictive than those of Rotach, and the same 
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is true in the Hermite case. The conditions formulated in §9.1 are, however, 
slightly more general than those of Rotach.s4 

That the condition of the existence of the second integral (g.l.ll) cannot be 
improved upon is shown by considering the expansion of the functionj(x) = xp., 
p. = -a/2 - 3/4, in a Laguerre series (§9.5 (6)). 

Neither of the two sets of sufficient conditions formulated in Theorem 9.1.5 
contains the other. Indeed, the function f(x) = ex12x-a12-i satisfies (9.1.14), 
but not (9.1.12). On the other hand, if 

(9.11.5) ·-x/2 af2j( ) {1, m2 ~ X < m2 + 1, 
e X X = . · 

0, otherw1se, m = 1, 2; 3, · · · , 

then (9.1.12) is satisfied, but not the second part of condition (9.1.14). 
Condition (9.1.12) implies, of course, that the integral on the left side exists. 

From the condition (9.1.12) the first part of (9.1.~4) follows. In fact, if we write 

(9.11.6) u(x) = Ioo e-t{2taf2-13/121 j(t) I dt, 

we find from (1.4.4) that 

(9.11.7) 1"' x1du(x) = w1u(w)- u(1) -!1"' x-1u(x)dx 

is bounded asw ~ oo, since u(x) = o(x-1). 
A sufficient condition for the validity of (9.1.13) is that 

(9.11.8) 0 > 0, X~+ oo. 

Then (9.1.14) is satisfied. On the other hand, for j(x) = ex12x-a12H conditions 
(9.1.11) are satisfied, but not (9.1.12) and (9.1.14), and (as we are going to show 
in §9.5 (7)) the Laguerre series is divergent for x > 0. 

A sufficient condition for the validity of (9.1.17) is that 

(9.11.9) 0 > 0, X~ oo. 

Then (9.1.18) holds. An analogous "Gegenbeispiel" here is f(x) = xex212. 
From Theorems 9.1.5 and 9.1.6 there follow the usual theorems on the con

vergence and the summability of Laguerre and Hermite expansions. Indeed, 
the integrals occurring in (9.1.13) and (9.1.17) are essentially the partial sums 
of order [ni] of a Fourier series (cf. (1.6.4)). 

As early as 1907 Adamoff (2) obtained a convergence theorem for Hermite 

64 Rotach's second condition b~ on p. 8 makes the first part of b; superfluous. His 
first set of conditions is equivalent to (9.1.11) plus (9.1.14) (for a= 0), whereas his second 
set is more restrictive than (9.1.11) plus (9.1.12). In the theorem on p. 6, the second 
condition b2 must be corrected to read "fie-• 2

14 IJC±z) I z312 dz exists." (I owe this to a 
written communication from Mr. Planchercl.) This, of course, implies b1. Here the 
first set of conditions is more restrictive than (9.1.18), and the second set is more restrictive 
than (9.1.16). (Rotach's notation differs from ours; we must write z = 2! x.) 
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expansions. There is an extensive further literature on this subject; E. R. 
~eumann (1), Galbrun (1), \Yigert (1), Hille (1, 2, 3), Cramer (1), Uspensky (1), 
Korous (1, 2), Stone (1), :\Hintz (1), and Kowallik (1) have all given direct 
treatments of Laguerre and Hermite expansions of an "arbitrary" function. 
(Concerning the expansion of an analytic function intG Hermite series see \Vat
son 1 (first paper).) These authors have obtained convergence and summability 
results but. no equicom·ergence theorems, except Korous (loc. cit.). The con
ditions which all these authors use at x = cc are more restrictive than those in 
our theorems. For instance, in case of Laguerre expansions, the convergence of 

(9.11.10) j"" e-x12xaf2-llf(x) I dx 

is required by Korous; for Hermite expansions, convergence of the integrals 

(9.11.11) 

are required by Uspensky and Kov~·allik, respectively. In addition, we mention 
the earlier treatment of Laguerre and Hermite expansions by means of the 
theory of integral equations (:\1yller-Lebedeff 1, ''r eyl1). 

Concerning Kogbetliantz 22, 23, 24, see the footnote in §8.91. Concerning 
Theorem 9.1.7, see Szego 10 and Kogbetliantz 10. The condition regarding 
(9.1.19) is satisfied if 

(9.11.12) 0 > 0, X -} + oo. 

On the other hand, the series is not (C, k)-summable for the function f(x) = 
ex12xk-a' k > a + 1/2 (cf. §9.6 (3)). 

Gibbs' phenomenon in the case of Hermite expansions has been studied by 
Jacob (2). 

9.2. Expansion of an analytic function in Jacobi, Laguerre, and Hermite series 

(1) THEO~EM 9.2.1. Assume a> -1, {3 > -1, and let P~a,fJJ(x), Q~a,fJJ(x), 
and h~a,fJJ have the same meaning as in Chapter IV (see §4.61 and (4.3.3)); then 

(9.2.1) ta (h~a,,S) l-1 p~a,{J) (x)Q~a,{J) (y) = ~ (y - 1~-~YX + 1)-fJ 

where x lies in the interior of, andy in the exterior of, an arbitrary ellipse with foci 
at ± 1. This expansion holds uniformly if x and y belong to closed sets which are, 
respectively, in the interior and exterior of the ellipse mentioned. 

The functions (y - 1)a(y + 1)fJQ~a,fJJ(y) are single-valued and regular in the 
complex y-plane cut along [ -1, + 1]. 

This important formula is well-known in the special case a = {3 = 0 (Heine 3, 
p. 78). The general formula is obtained from the identity (4.62.19) by letting 
n approach 00. We write X = Hz + Z-

1
), y = Hr + r-1

); 1 < i zl < I r I. By 
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use of (8.23.1) and (8.23.2) we find the "remainder term" of (4.62.19) to be 

2-a-tl r(n + 2)r(n +a+ {3 + 2) 

2n +a+ {3 + 2 r(n + a + 1)r(n + {3 + 1) 
(9.2.2) 

. P~+~)(x)Q~a,fl)(y)- p~a,fl)(x)Q~~q> (y) = O(n)O[(I z I + E)"]O[(I r l-1 +E)"] 
x-y 

as n-----+ oo, with E > 0 arbitrarily small. This tends to 0 as n-----+ oo provided E is 
sufficiently small. 

(2) Now let f(x) be regular if xis in the interior of the ellipse I z I = R > 1. 
On multiplying (9.2.1) by (7r'i)-\y - 1)a(y + 1)tlf(y) and integrating over 
the ellipse I t I = R - E, 0 < E < R/2, we obtain an expansion of f(x) in a Jacobi 
series whicn is uniformly convergent for I z I ~ R - 2E. The usual term-by
term integration over the segment [ -1, + 1] identifies this expansion with the· 
expansion (9.1.1), and for the coefficients a,. we obtain the representation 

(9.2.3) 
a,.= {rih~a.tl)}-1 f (y- 1)a(y + 1)tiQ~a,tl)(y)f(y)dy, 

n = 0, 1, 2, ... , 

where the integration is extended over the ellipse I t I = R - E in the positive 
sense. 

(3) By means of (8.23.1) we can discuss formal series of the type 

(9.2.4) aoPaa,fl>(x) + a1P~a,t1>(x) + ll2p~a.tl>(x) + ... + a,.P~a.tl>(x) + · .. , 

which are not necessarily Fourier expansions in the ordinary sense. Let R 
have the same meaning as in (9.1.4), and assume R > 1. Then (9.2.4) has as its 
domain of convergence the ellipse of Theorem 9.1.1. In the interior of this el
lipse it represents an analytic function. 

(4) Expansions in terms of Jacobi's functions of the second kind, which are 
the analogues of Laurent expansions, can also be readily discussed. 

THEOREM 9.2.2. Assume a > -1, {3 > -1, and let F(y) be regular at y -
oo with F( oo) = 0. Then 

(y - 1)-a(y + 1)-tiF(y) = boQaa,fl>(y) + b1Q~a,fl>(y) + b2Q~a,fl>(y) 
(9.2.5) ( fl) 

+ · · · + bnQna, .(Y) + • • · • 

This expansion is convergent in the exterior of the smallest ellipse with foci at ± 1, 
in the exterior of which F(y) is regular. It is divergent in the interior of this ellipse. 
The sum of the semi-axes of this ellipse is given by 

(9.2.6) p = lim sup j b,. 1
11

". 
n-oo 

Obviously, p ~ 1. In case p = 1 the statement needs a slight modification. 
The following representation holds for the coefficients: 
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(9.2.7) n = 0, 1, 2, · · · , 

where the integration iR extended over the ellipse I z I = p + E, x = Hz+ z-1
), 

E > 0, in the positive sense. For the proof we again use (9.2.1). 
Formal series proceeding in terms of Jacobi's functions of the second kind can 

also be discussed. 
(5) The boundary of the convergence domain of a Laguerre series 

(9.2.8) aoLaa>(x) + a1L~a>(x) + a2L~a>(x) + · · · + a,.L~a>(x) + 
can be characterized by the condition m ( ( -x)i l = const. Therefore, this 
boundary is a parabola with its focus at the origin. The series is convergent in 
the "interior" of this parabola and divergent in its "exterior". The analogue 
of Cauchy-Hadamard's formula holds. The proof is based. on (8.23.3). 

For an Hermite series 

(9.2.9) 

the corresponding condition is I.S(x) I = const., which defines a strip with the 
real axis as axis of symmetry (cf. (8.23.4)). The series is convergent and di
vergent in the "interior" and in the "exterior" of this strip, respectively. The 
analogue of Cauchy-Hadamard's formula holds again. 

Concerning the expansion in an Hermite series of a given analytic function 
regular in the strip I .S(x) I ~ a, a > 0, see Watson 1 (first paper). 

9.3. Proof of Theorem 9.1.2 

(1) First let us replace f(x) by a polynomial p(x). Then s,.(x) = p(x) if n 
exceeds the degree of p(x). Furthermore, (1 - x)-a/2

- 1(1 + x)-tl12- 1s,.(x) ----+ p(x) 
as n ---+ cx:::, according to elementary tests for the convergence of Fourier series 
(see for instance Zygmund 2, p. 25). Now the integral 

(9.3.1) 1:1 

(1 - tt(l + t)b I f(t) - p(t)l dt, 
fa= min (a, a/2- 1/4), 
lb = min ({3, {3/2 - 1/4), 

can be made arbitrarily small by proper choice of p(x) (cf. Theorem 1.5.2). It is 
therefore sufficient to show that the difference (9.11.4) admits an estimate 

(9.3.2) 1
+1 

0(1) _
1 

(1 - tt(l + t)b 1 f(t) I dt + o(1), 

where both bounds hold uniformly in x, - 1 + E ~ x ~ 1 E, and 0(1) is 
independent of f(x). 

(2) In subsequent considerations we use Darboux's formula (8.21.10) for 
p~a.tl>(cos 8), as well as the second formula (8.8.2) for the difference ratio. In 
the latter case we assume that both arguments 81 , 82 lie in an interval which is 
entirely in the interior of [0, 1r]. 

According to (4.5.2), we have 
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K~a,tl) (x, t) 

(9.3.3) 
{ 

p<a,tl)(t) p<a,fl)( ) p<a,tl)(t) p<a,fl)( )} = '\ p<a,fl)(') n+1 - n+1 X _ p<a.tl)() n - n X 
1\n n X t n+1 X t ' -x -x 

where 

(9.3.4) An = 2-a-tl-1{n + 0(1)}. 

Writing x = cos 8, t = cos~' and using the notation of (8.21.10), we find for 
-1 <X< +1, -1 < t < +1, 

K~a,fl>(x, t) = 2-a-fl-lk(())k(~){cos (N() + -y) cos[(N +1)~+-r]- cos[(N+ 1)8+ -y] 
cos~- cos() 

(9.3.5) 

_ cos [(N + 1)8 + -r] cos (N~ + -r) - cos (N8 + -y) + 0(1)} 
cos~- cos() 

= 2-a-fl-2k(())k(~) {cos [N(~ + 8) + ~ + 2-y] + cos [N(~ - 8) + ~] 
cos~- cos() 

_ cos [N(~ + 8) + 8 + 2-y] + cos [N(~ - 8) - 8] + 0(1)} 
cos~- cos() 

= 2-a-tJ-2k(())k(~) {sin [(N + 1)(~ + 8) + 2-y] 
. ~ + () sm-

2
-

+ sin [(N + !)(~ - 8)] + 0(1)}. 
sin~ - () 

2 

Now assume -1 + E ~ x ~ 1 - E. Then 

1
1

-•

12 
(1 - t)a(1 + t)flj(t)K~a,tl)(x, t) dt 

-1+•/2 

= ["-'1 2a+t1+1 (sin ~ya+l (cos ~ytl+l f(cos ~)K~a,fl) (x, t) d~, 

where cos 1J = 1 - E/2. Next replace K~a,fl>(x, t) by (9.3.5). By Riemann's 
lemma (Zygmund 2, p. 18), the result will be 

~ - () 

1
.,._'1 sin (2n + 1) --

1
1-•/2 

2~ f(cos ~) . ~ _ () 
2 d~ + 0(1) . -1+•/

2
1/(t) I dt+ o(1), 

sm-
2

-(9.3.6) 

as n----+ co. 

The bound of the term 0(1) is independent of f(x). When we replace a and {3 

by -!, andf(t) by (1 - tt1
2+1(1 + t)ti!Hif(t), repeated application of Riemann's 

lemma yields 
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~- () 
1 1 .. -, sin (2n + 1) --

= 2- (1- cos~t'2+i(l + cos~)PtHlf(cos~) 2 d~ 
7T'" • ~-() 

sm-
2

-

+ 0(1) 11
-•

12
1/(t) I dt + o(1) 

-1+•/2 
(9.3.7) 

~- () 
1 1 

.. _, sin (2n + 1) --
=-2 (1-cosO)a/Hl(1+coso)M2+l f(cos~) 2 d~ 

7r " • ~-() sm-
2

-

+ 0(1) 11

-•

12

jj(t) I dt + o(1). 
-1+•/2 

Consequently, the part of (9.11.4) which corresponds to - 1 + E/2 ~ t ~ 
1 - E/2 has the form (9.3.2). 

(3) We consider now the expressions 

(9.3.8) 11 I p<a.p) (t) p<a,p) ( ) I 
O(n) ! p~a,p) (x) I n+1 - n+l X (1 - t)a(1 + t)P lf(t) I dt, 

-•/2 t - X 

O(n) I p~-!.-!> (x) I 
(9.3.9) 

11 lp<-l.-!>(t) p<-l.-iJ( ) l 
. n+1 - n+1 X (1 _ t)a/2-1(1 + f)P/2-ljj(t) I dt, 

-•/2 t - X 

and the corresponding integrals extended over -1 ~ t ~ -1 + E/2. The first 
integral is 

O(n)O(n-i) [I {jP~+~>(t) I+ /P~+~l(x) /}(1- tt(1 + t)P lf(t) /dt 
11-•/2 

From (7 .32.6) and (7 .32. 7) it follows that the first term of the right-hand mem
ber is 

{" 1+1 0(1) }o ~-a-i~2a+1 1/(cos ~)I~= 0(1) _
1 

(1- t)a/2-i(l + tl12
- 1 lf(t) I dt, 

or 1s 



25G EXPANSION PROBLEMS FOR THE CLASSICAL POLYNOMIALS [ IX ] 

r~ 1~ 0(1) }o ~2a+l I f(cos ~) I d~ = 0(1) _
1 

(1 - t)a(1 + t)P I f(t) I dt, 

according as a ~ -! or a ~ - t. In view of (4.1.7) the expression (9.3.9) is 

O(n)O(n-1)0(~-!) e (1 - t)a/2
- 1(1 + t)M-i I f(t) I dt 

11-•/2 

1
~ 

= 0(1) _
1 

(1 - t)a12
- 1(1 + t) 1312

- 1 1 J(t) 1 dt. 

The integrals corresponding to -1 ~ t ~ -1 + E/2 are similarly treated. 
(4) Finally, we consider the Jacobi series of the function (see, in the special 

case a = {3, Kogbetliantz 19, p. 184, (62)) 

(9.3.10) f(x) = (1 - x)", 

and we show that for proper values of 1-' the first integral in (9.1.5) exists, but 
that the second does not. Moreover, the Jacobi series is divergent in -1 < x < 
+L Here a> -t. 

To this end we note that, according to (4.3.1) and (4.3.3), 

1
+1 

{h~a,{j) }-1 
_

1 

(1 - t)!'+a(l + t)P p~a,{j)(t) dt 

(a,{j) -1 ( -1)" JJ.(JJ. - 1) · · · (JJ. - n + 1) = {h,. } -- 2 r 
"n. 

(9.3.11) 

-~<-1 

::::::::: 2-a-P n 2n+~<+a+P+1 -14-a-1 r( + + 1) 
- n2"f(-JJ.) n 1-' a 

as n -----+ co. 

If we assume that 1-' +a> -1, 1-' ~ 0, 1, 2, · .. , and take 0 < () < 1r, the general 
term of the Jacobi series has the form n - 214

-a-J cos (NO + 'Y). The required 
values of 1-' are thqse which satisfy the condition 

(9.3.12) -1 - a < 1-' ~ - a/2 - 3/4. 

9.4. Proof of Theorem 9.1.3; preliminaries 

(1) We first derive the following important identity: 

(9.4.1) 

p<a+k~.P>( ) = 2a+H1 r( + 1) f(n + {3 + 1) 
n X a f(n + a + {3 + k + 2) 

. t r(n + v +a+ {3 + k + 2) C~k~.{h~a.P> ~-1 p~a,P>(l)P~a.P>(x), 
•=0 r(n· + v +a + {3 + 2) 

where h~a .PJ and C~k> have the usual meaning (see (4.3.3) and the introduction to 
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Chapter IX). This is a generalization of (4.5.3) (last identity), to which it re
duces when k = 0. 

For the proof we calculate 

(9.4.2) 
r+1 . 1-

1 
P~a+H1 .tll (x)P}a,fl) (x)(1 - xt(1 + xl dx. 

According to (4.3.1), this last expression is equal to 

<2.:( j_:1 p~a+H1.tl) <x) (:x)" t (1 - xr+a<1 + xr+tll dx 

= _!_ (+1 (1 - x)"+a(l + xy+t~ (!!:_)" {P~a+H1,fl>(x) l dx; 
2•v! 1-1 dx 

or, by (4.21.7) and (4.3.1), it is equal to 

1 1 
2•v! 2- (n +a+ {3 + k + 2)(n +a+ {3 + k + 3) · · · (n +a+ {3 + k + v + 1) 

(-1)"-· r(n+a+f3+k+v+2) 
- 2n+• v! ( n - v)! r( n + a + {3 + k + 2) 

= 

1
+

1 
(1 - x)-k-1 (.!__)"-• { (1 - x) n+a+k+1(1 + x) n+tl} dx 

-1 dx 

(k + 1)(k + 2) · · · (k + n - v) r(n + a+ {3 + k + v + 2) 
2n+•v!(n- v)! r(n +a+ {3 + k + 2) 

·1+1 (1 - x)-k-1-n+•o - x) n+a+k+1(1 + x) n+tl dx, 
-1 

which, if (1.7.5) is taken into account, furnishes the statement. 
(2) On substituting the explicit expressions for P~a,fl>(1) and h~a,fl> (see (4.1.1) 

and (4.3.3)), we obtain 

(9.4.3) 

p~a+k+l.tl)(x) = r(n + {3 + 1) t r(n + v +a+ {3 + k + 2) 
r( n + a + {3 + k + 2) •=0 r( n + v + a + {3 + 2) 

·C(k) (2 + + R + 1) r(v +a·+ {3 + 1) p<a.tl)(x). 
n-• v a 1.1 r(v + {3 + 1) • 

Since this is an identity in a, {3, k, we may replace a by a + k + 1 and k by 
-k - 2. Whence the inversion formula 

(9.4.4) 

p<a,fl)(x) - r(n + {3 + 1) t r(n + v +a+ {3 + 1) 
n - r(n + a+ {3 + 1) •=0 r(n + v +a+ {3 + k + 3) 

.c<-k-2)(2 + + R + k + 2) f(v +a+ {3 + k + 2) p<a+k+l,fi)(X) 
n-• v a 1.1 r(v + {3 + 1) • 
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follows. Consequently, 
n 

S~k\x) = L C~k2m(h~a,fl> }-1 p~a,t1>(1)P~a,fl>(x) 
m-o . 

(9.4.5) 
2-a-fl-1 n 

= r(a + 1) ~ G.(n, k)(2v +a+ {3 + k + 2) 

. r(v + a + {3 + k + 2) p<a+k+l,fl) ( ) 
f(v + {3 + 1) • X ' 

with 

(9 4 6) G ( k) = ~ c<k) c<-k-2) (2 + + R + 1) r(m + v + a+ {3 + 1) 
. . , n, ~ n-m m-• m a 1.1 r(m + v + a + {3 + k + 3)' 

The expression S~k> (x) represents the numerator of the nth Cesaro kernel of 
order k. 

9.41. Continuation; the Lebesgue constants of order k 

(1) For the proof of Theorem 9.1.3, according to Theorem 1.6 (Reily's the
orem), it is sufficient to show that the sequence of the "Lebesgue constants" 

(9.41.1) L~k) = { c~k)} - 1 i:1 
(1 - xt(1 + x)tl I s~k) (x) I dx, 

is bounded if and only if k > a + 1/2. Since fork > a + t (cf. (7.34.1), first 
and third case), 

[:1 (1 - x)a(1 + x)tl j p~a+H1,fl) (x) I dx 

(
9

.41.
2

) = 0(1) 1\1 - xt I p~a+H1 .tl>{x)j dx + 0(1) 1\1 - x)tlj P~·a+k+I>(x)ldx 
= O(nk-a-1) + O(n-i) = O(nk-a-1), 

we have from (9.4.5) 

n 

(9.41.3) L~k> = O(n-k) L I G.(n, k) I v2k+l. 
•=0 

The last factor v2k+l must be replaced by 1 for v = 0. 
(2) First let k be a non-negative integer. Then in (9.4.6) we must consider 

only the terms v ~ m ~ v + k + 1, so that G.(n, k) can be written in the form 
G(n - v - 1), where55 

66 If v + k + 1 > n, certain additional terms not permitted by (9.4.6) occur in G(u). 
However, these terms vanish if we substitute u = n - " - 1, except if " = n and m = 
n + k + 1. Now the contribution of this term to G(u) = G(-1) is O(m)(m + v)-k-2 = 
0 (n-k-1

). This multiplied by the factor v2k+1 = n2k+1, which occurs in (0.41.3), furnishes 
a total contributionO(n-k)O(nk) = 0(1). 
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G (u) = ·~ 
1 
( -1) m-• (u + k + 1 - m + v) 

m-• k 
(9.41.4) 

·(k + 1) (2m+ a+ l3 + 1) ~m + v +a+ 13 + 1) 
m - v r(m + v + a + 13 + k + 3) · 

This is a 'Irk in u, containing v and k as parameters. ~ewton's formula shows us 
(cf. Markoff 5, p. 15; notation as in (2.8.4)) that 

(9.41.5) G(u) = t (u) t:l G(O); 
p=O p 

and from (9.41.4) it follows that 

t:lG(O) =•!1(-1)m-•(k +1-m+ v)(k + 1) 
m-• k - p m- v 

(9.41.6) 

. (2m+ a+ 13 + 1) r(m· + v +a + 13 + 1) 
r(m + v +a+ 13 + k + 3) 

= 1 t "!
1 

( -l)m-•(2m +a+ 13 + 1) tm+•+a+f1(1 _ t)k+l dt 
(k-p)!}o m-• (m-v)!(p+1-m+v)! 

= -2 L ( -1)m-•-l -----:----:-: 
. 1 ll{ •+P+1 tm+•+a+tl(1 - t)k+l 

(k- p)! 0 m-•+1 (m - v - 1)! (p + 1 - m + v)! 

•+~I m-• r+•+a+fl(1 - t)k+I } 
+ (2v +a +13 + 1) 

11
!=:, (-1) (m _ v)!(p + 1 _ m + v)! dt 

= 1 t{ -2(p + l)t2•+a+fl+I(1 _ t)k+p+I 
(k- p)!(p + 1)! }o 

+ (2v + a + 13 + 1)t2•+a+fl(l - t)k+P+2}dt 

= O(v -k-p-2) + O(v )O(v -k-p-3) = O(v -k-p-2), v ~ 1. 

The last integral formula also shows that t::.kG(O) = 0, v ~ 1; in particular, 
G(u) = 0 for k = 0, v ~ 1. Both facts hold also for v = 0, as analytic con
tinuation with respect to a + 13 shows. This settles the case k = 0 in view of the 
remark in the last footnote. Fork > 0, 

k-1 

(9.41.7) G.(n, k) = L (n - v )P O(v -k-p-2), 
p-0 

to which (according to the same remark) the term O(n -k-I) must be added if 
v = n. In this case the factor (n - vY, in the case v = 0 the factor v-k-p-2, 
must be replaced by 1. Fork > a + ~'this provides, as desired, 

k-1 n-1 k-1 
L ~k) = O(n -k) L nP + O(n -k) L L (n - v Y v -k-p-2 v2k+1 

(9.41.8) 
p=O •=1 p=O 

{

k-1 ' 

+ 0 ( -k) "" -1..-p-2 2k+I + -k-1 2k+I ~ O(J) n LJn n n n r= . 
p-0 
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(3) We now consider the case k > a + !, knot an integer. Then, according 
to the previous result, 

(9.41.9) . n = 0, 1, 2, ... , 

'vhere k' = [k] + 1, and A is a proper constant inJependent of n. 
Let(]'> k'. If we write Un(x) = lh~a,p) r 1 p~a,/l)(l)P~a,fl)(x), the definition 

(9.4.5) furnishes 
~ ~ 

L s~k') (x)rn = (l - r)-k'-1 L Un(x)rn. 
n~ n~ 

Thus, 

~ ~ ~ 

L s~u)(x)rn = (1 - r)k'-u(l - r)-k'-1 L Un(x)rn = (1 - r)k'-u L s~k')(x)r\ 
n~ n~ n~ 

h S (u) ( ) "'n c<u-k'-1) s<k') ( ) d 
SO t at n X = L.Jm=O n-m m X an 

n n 

I (u) < IC(u) l-1 ""c<u-k'-1) c<k') L(k') <A {C(u) ~-1 ""c<u-k'~1) c<k') 
..Jn = n .L...J n-m 1n m = n J .L...J n-m m • 

m=O m=O 

Consequently, 

(9.41.10) (]' ~ k', n = 0, 1, 2, .... 

This holds in particular if (]' = k + 1, k + 2, .. · . 
(4) Now we prove the identity 

r(n t_v +a+ 13 + ~ + 2) c~k) P = !'!~~±-~ + 13 + 2k + 3) £ ( -] )P 
r(n + V +a + 13 + 2) - r(2n +a + 13 + k + 3) p=O 

(9.41.11) 

(k+p) (k+p) k(k- 1) ... (k- p + 1) 
· p Cn-• (2n + ~-+{3-+ k + 3) · · · (2n +a+ 13 + k-+ -P-+ 2)' 

0 ~ v ~ n. 

The series on the right converges absolutely if n ~ 1. (For p = 0, the last 
fraction is to be replaced by 1.) For the proof we use the following trans
formation of the left-hand member: 

r(2n +a+ 13 + 2k + 3) _ _ 1 t tn-•H(1 _ t) n+•+a+fl+k+1 dt 
r(n + v + a + 13 + 2) (n - v)! r(k + 1) )o 

r (2n + a + 13 + 2k + 3) 1 
r(n + v +a+ 13 + 2) (n- v)!r(f+"l) 

• £ ( -J)P (k) t tn-•+k+p(1 -t) n+•+a+fl+l dt. 
p=O P )o 

Calculation of the last integra.! completes the proof. Term-by-term integra
tion is permitted, since the terms are, save for a finite number of exceptions, 
all of the same sign. 
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Consequently, from (9.4.1) we have the representation 

p~a+k+l,fJ) (x) = 2a+fJ+1 r(a + 1) 

. r(n + {3 + l)r(2n +a+ {3 + 2k +3) t ( -1)P (k + p) 
(9.41.12) r(n +a+ {3 + k + 2)r(2n +a+ {3 + k + 3) p-0 p 

k(k - 1) ... (k - p + 1) (k+ ) 
-;-::::------,--___:_,-~---,-:...:..-~~:..._...,::---__ S P (x) 
(2n +a+ {3 + k + 3) · · · (2n +a+ {3 + k + p + 2) n 1 

or 

s~k) (x) = { 2a+fJ+l r(a + 1) 

. r(n + {3 + 1)r(2n + a + {3 + 2k + 3) }-
1 

p<a+k+1,fJ) (x) 
r(n +a + {3 + k + 2)r(2n +a+ {3 + k + 3) " 

(9.41.13) - i: ( -1 y (k + p) 
p-1 p 

k(k - 1) ... (k - P + 1) s<k+p> < ) 
(2n + a + {3 + k + 3) · · · (2n + a + {3 + k + p + 2) " x · 

On account of (9.41.2), this gives 

(9.41.14) L~k) = O(n-k)O(n'x+1)0(nk-a-1) + O(n-k)An = 0(1) + O(n-k)A,. 1 

where 

f (k + P) 1 k(k - 1) · · · (k - p + 1) 1 

An = p-1 p (2n +a+ {3 + k + 3) · · · (2n +a+ {3 + k + P + 2) 
(9.41.15) 1+1 

• _
1 

(1 - x)a(1 + x)fl 1 s~k+p) (x) I dx. 

Now, according to (9.41.10), 

An~ A f (k + P) 
p=1 p 

1 k(k - 1) .. · (k - p + 1) I c<k+p) 

(2n +a+ {3 + k + 3) · · · (2n +a+ f3 + k + p + 2) n 

(9.41.16) = 0(1) ~I(:) I (n ~ k) 
(n + k + 1) · · · (n + k + p) 

(2n + a + {3 + k + 3) · · · (2n + a + f3 + k + p + 2) 

_ k ~ I (k) 1 (k + 2) · · · (k + p + 1) = O(nk) 
- O(n) ~ p (a + {3 + k + 5) · · · (a+ {3 + k + P + 4) ' 

since (n + k + l)/(2n +a+ {3 + k + l + 2) decreases as n increases provided 
l > a + {3 - k + 2. This completes the proof of the first part of the statement 
in Theorem 9.1.3. 
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(5) Finally, let k = a + ~. Using the previous notatiori, we have 

L (J..:) > {2a-r-B-1 r( + 1) r(n + (3 + I)r(2n + a + (3 + 2k + 3) }-
1 

n a r(n + a+ (3 + k + 2)r(2n + a+ (3 + k + 3) 

·{C~J..:)l-1 1:
1 

(1- x)"(l + x)Pip~a+k+LB>(x) ldx- {C~k)l- 1 An 

from (9.41.13). The first term on the right is~ n"+1n-kn-! log n = log n (ac
cording to the second part of (7.34.1) 56

); the second term is bounded, according 
to the result of (4). That is, 

(9.41.17) L~k) > A log n, A > 0, k =a+~' 

so that the expansion of a continuous function in Jacobi series is, in general, not 
(C, k = a+ !)-summable. 

9.42. Proof of Theorem 9.1.4 

(I) Let f(x) be continuous at x = 1, let f(l) = 0, and assume k > a + !. 
First we discuss the integral 

(9.42.1) 1
+1 

_
1 

i f(x) I (1 - x)"(l + x)P J p~a-':-k+1 .,9)(x) I dx 

as n -t ex;. Denoting byE an arbitrary positive number, E < 1r /2, we decompose 
the interval 0 ~ e ;;£ 1r, X = COS e, into 

(9.42.2) 

The corresponding integrals I, II, III, can be estimated as follows (cf. (9.41.2), 
(7.32.6), and (7.32.7)): 

I = max i f(cos e) i 11 

(1 - x)"(l + x)P i P~a+k+1 .P>(x) j dx 
o;;;o;:;;. cos • 

= max If (cos e) I O(nk-a-1
), 

0~0~< 

II = O(n-!) = o(nk-a-1
), 

III= 

1~.1 f(cos e) I (7r - e)2,9+10(n-!) de = O(n-!) = o(nk-a-1
), 

1~f i !(cos e) 1 (1r - e)
2
P+lo(np) de 

= O(nk-a-1
) 1~. I !(cos e) I (7r - e)~B+1 de, 

i~f lf(cos e) I (7r- e) 2,9+1(7r- e)-P-!o(n-!)de = O(n-!) = o(nk-a-1
), 

66 If we use only (7.34.2), we obtain L',,k>-+ oo as n-+ oo; this is sufficient for our purpose. 
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according as - 1 < {:J ;§; - ~, - ~ < {:J ;§; k - a - 1, or {:J > k - a - 1. In 
the last case we use the antipole condition of Theorem 9.1.4. Since E is arbi
trarily small, it appears that in all cases the integral (9.42.1) is o(nk-"-1). 

(2) Next we introduce the constants 

(9.42.3) 
M~k) = IC~k)}-1 ~-~

1

lf(x) I (I- x)"(l + xll s~k)(x) I dx, 

n = 0, 1, 2, ... , 

where ~J(x) has the i:iame meaning as in (9.4.5). We obtain the following 
analogue of (9.41.3); 

n 

M~k) = O(n-k) L I G.(n, k) I o(/k+1
). 

v=O 

The last factor o(v
2
k+

1
) must be replaced by 1 for v = 0. Therefore, if k is any 

positive integer, we have as in (9.41.8), 

k-1 n-1 k-1 

M~k) = O(n-k) L nP + O(n-k) L L (n - v)Pv-k-p-2o(v2k+1) 

p=O v=1 p=O 
(9.42.4) 

+ O(n-k) {~ n-k-p-29(n2k+l) + n-k-lo(n2k+l)} = o(I). 

The same holds if k = 0, for then G(u) = 0 (see the remark in the footnote of 
§9.41 (2)). 

(3) For non-integral k we use (9.41.13) again. Let E be an arbitrary positive 
number, and let no be so chosen that, fork' = [k] + 1, 

(9.42.5) if n ~no. 

Then for n ~no, (]' > k' we find, as in §9.41 (3), 

n 

M <u) < {c<u) l-1 ~ c<u-k'-1) c<k') M<k') 
n = n L..J n-m m m • 

m=O 

We decompose the latter sum into the sums L:~~~o1 and L::.=no. In the sec
ond part (9.42.5) can be applied so that 

no-1 n 

M~u) ;§; { c~u) l-1 L c~u::,~'-1) c~~') M~~') + d c~u) l-1 L c~u::,'-1) c;~'). 
·m=O tn=no 

The second term of the right-hand member is less than E. Therefore, 

(9.42.6) 

where A is a positive constant depending on E and independent of (]'. This 
holds in particular if (]' = k + 1, k + 2, . . . . vVe must replace C~u-k'-1 ) by 
c~u.=-::+~) if(]' < k' + 1, which occurs when (]' = k + 1, but not when (]' ~ k + 2. 
Consequently, we obtain, as in (9.41.14), 
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M~k) < O(n -k)O(na+l)o(nk-,a-1) + O(n -k) f: (k + P) 
p=l p 

! k (k - 1) · . · (k - P + 1) I 
(9.42. 7) (2n +---;-+ "-+f+-ar-:-:-~2n +-~ -+ " -tk--+- -p-+ 2) 

·\EC~k+p) + AC~k+p-k'-l) }. 

(For p = 1 we must replace C~k+p-k'-l> by C~~~;;-~~- 1 > .) The first term of the 
right-hand member is o(1). The second term can be decomposed into two parts. 
The first part has the form EO(I), according to §9.41 (4). To estimate the 
second part we use the fact that 

c~k+p-k'-l) = r(n + k + P - k'Lr(_k_± -~± 1) < B (---k + P_)k'+l 
--C~k.f.p)-- r(n + k + p + 1 )r(k + p - k') n + k + p 

where B > 0 depends only on k. For the second part we therefore obtain the 
bound (cf. (9.41.16)) 

0(1) f, l(k)l------- (n + k + 1) ... (n -t_~±_cl___ ___ -- -
p=l _P (2n +a+ {j + k + 3) · · · (2n +a+ {j + k + p + 2) 

·( k+p )k'+l 
n+k+p 

Decomposing this sum into the sums L~=l and L~P+l, where Pis an arbitrary 
positive integer, we obtain the bound 

p ( k + )k'+l 
0(1) ~ n + k ~ P 

+ 0(1) t l(k)l-----~-±-~_: ___ ~ p +___!1_ ______ . 
p=P+l p (a + {j + k + 5) · · · (a + {j + k + p + 4) 

The first term tends to zero as n ---+ oo. The second term is arbitrarily small if 
P is sufficiently large. Therefore M~k) = o(I) as n ---+ oo. 

Concerning the case k = a + !, compare §9.41 (5). 
( 4) REMARK. The continuity at x = + 1 can be replaced by the more general 

condition 

(9.42.8) l" I !(cos e) - J(1) 1 de = o(o), o- +O. 

Only the estimation of the integral I (cf. (9.42.2)) mm;t be slightly modified. 
We have, by use of (7.32.5), ifj(I) = 0, 

I= O(n"+H1) {n-
1 

e2"Hjj(cos e)jde + O(n-i) {~ ea-k-i !f(cos e)jde. 
}o }n 1 

In both integrals we integrate by parts (cf. Fejer 8, p. 280). Let 



[9.42] PROOF OF THEOREM 9.1.4 265 

18 

I /(cos t) I dt = F(O). 

Then we :find 

I = O(na+k+1)n-2a-1F(n-1) + O(na+k+1) ln-1 ()2"F(O) d() 

+ O(n-;) \ Ea-k-iF(E) + nk-a+;F(n-1
)} + O(n-;) 1~ 1 ()a-k-!F(O) d() 

= o(nk-a-1
) + o(nk-a-1) + O(n-;) + o(nk-a-1) + O(nk-a-1) max {0-1F(O)} 

0<8~· 

= o(nk-a-1) + O(nk-a-1) max { ()-1F(O)}. 
0<9~· 

(5) Finally, we show that the assertion of Theorem 9.1.4 does not hold in 
general if the "antipole condition" is not satisfied. We consider the function 
(cf. §9.3 (4)) 

(9.42.9) f(x) = (1 + x)'"'. 

Its expansion at the point x = 1 is 

(9.42.10) 

f {h~a,,9)}-1 (n + a)1+1 (1- x)"(1 + x)'"'Hp~a,P>(x)dx 
n-o n -1 

= f (-1)n\h~a,,9)}-1(n + a)1+1 (1- x)'"'+P(1 + x)"P<.f·">(x)dx. 
n-O n -1 

According to (9.3.11), up to a fixed constant nonzero factor, the principal part 
of the general term of (9.42.10) is 

(9.42.11) 

But (9.42.10) cannot be (C, k)-summable if k ~ a - {3 - 2J.L - 1 = X. Indeed, 
0() 

(9.42.12) (1 - r)-k-1 L: ( -1r c~>->rn ~ (1 - r)-k-1(1 + r)->.-1 

n-O 

Darboux's method (§8.4) yields for the coefficient of rn in the power series 
expansion of this function, the principal term 

(9.42.13) AC~k> + B( -1rc~>->, 

where A and B are fixed constants, different from zero. 
Now let (9.1.9) be satisfied. If we take 

(9.42.14) -{3 - 1 < 1J. ~ !(a - {3 - k - 1), 

the Jacobi series exists, the integral (9.1.10) is divergent, (since we have 
!(a - {3 - k - 1) < -{3/2 - 3/4), and the series (9.42.10) is not (C, k)-sum
mable. 
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9.5. Proof of Theorems 9.1.5 and 9.1.6 

(1) We start from the representation 

(9.5.1) 

of the nth partial sum of the Laguerre series of the function f(x), where the 
"kernel" K~")(x, t) has the meaning in (5.1.11). \Ve write the formula given 
there in the more convenient form 

+ 1 L (a) ( )L(a-1) () L(a-1) ( )L(a) (t) 
f(a + 1)K~")(x, t) = n n+l X n+1 t - n+1 X n+l 

(nta) x-t 

(9.5.2) 

This follows from (5.1.11) if for L~"\x) we substitute L~+>1 (x) - L~~1 1 )(x), 
and similarly for L~")(t) (cf. (5.1.13)). 

First we assume that the integrals (9.1.11) exist and that the condition (9.1.12) 
is satisfied. Then the first integral (9.1.14) exists (cf. the remark in §9.i1 (4)). 
Let f(x) be a polynomial p(x); then the statement (9.1.13) is true. Therefore, 
according to the closure property pointed out in Theorem 5.7.3, it suffices to 
show that the difference in (9.1.13) admits an estimate of the form 

(9.5.3) 0(1) 11 

ta I f(t) I dt + 0(1) 1oo e- 112 t" 12
-:1 I f(t) I dt + o(1), n--+ oo, 

where a = min (a, a/2 - 1/4), and the bounds 0(1) and o(1) hold uniformly in 
x, E ~ x ~ w. Furthermore, both factors 0(1) are independent of f(x). 

(2) Let us consider the contribution to sn(x) of the interval 0 ~ t ~ E/2. In 
accordance with the first formula (9.5.2) and (7.6.9), for a ~ ~ this is 

(9.5.4) = 0(1) le t"12H I f(t) I dt + 0(1) 1· t"12
-i I f(t) I dt 

= 0(1) le t"12-i I J(t) J dt. 

If - ~ ~ a < ~'we use (7.6.9) and (7.6.10); if a < -~'we use (7.6.10). In the 
first case the result (9.5.4) remains valid, while in the second case we obtain 
0(1) SO t" I f(t) I at. 
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(3) We next consider the contribution of the interval E/2 ~ t ~ 2w, and we 
apply (8.8.3) and (8.8.5) to the f3econd formula (9.5.2). Here the variables are 
confined to a fixed positive interval; so the remainders in (8.8.3) and (8.8.5) 
depend only on n. We find (notation as in (8.8.3)) 

(9.5.5) 

K (a) ( t) _ 1-a a/2-l (a-1)/2-f k(x)k(t) 
n x, - n n n xi + ti 

·{ti cos [2(nx)i + 'Yl sin [2(nt)i + 'Y] - sin [2(nx)i + 'Y) 
ti - xi 

_ xi sin [2(nx)i + 'Yl cos [2(nt)i + ~l = ~~s [2(nx)i + 'Yl + O(l)} 

The mean-value theorem allowf3 us to replace n' = n + 1 by n. Suppose, 
for instance, that cp(m, t) = cos (2mit + 'Y). Then 

[cp(n', t) - cp(n, t)] - [cp(n', x) - cp(n, x)] a2 cp 
=-(n'-n)(t-x) am at 

taken at a proper place in, l, where fii is between n and n', and lis between x 
and t. This readily furnishes 

K (a)( t) _ k(x)k(t) if [2( )i + ]sin [2(nt)i + 'Y]- sin [2(nx)i + 'Y] 
n x, - xi + ti x \cos nx 'Y ti - xi 

(9.5.6) _ sin [2(nx)i + 'Y] ~os [2(nt)~_+ 'Yl - cos [2(nx)i + 'Yl + O(l)} 
ti - xi 

= ~xilk(x)\2Cisin (21:i(ti ~xi)\ +0(1). 
t - X 

Thus, according to Riemann's lemma, if E < 1 < w, 

(9.5.7) 

+ 0(1) 11 

t" if(t)! dt+ 0(1) loo e- 112 t"12-i if(t) \ dt + o(I). 

( 4) In the interval 2w ;£ t ;£ 3n (n large), we have, according to the first 
statement (8.91.2), 

(9.5.8) 

Consequently, from the first formula (9.5.2) it follows that 



2()8 EXPANSION PROBLEMS FOR THE CLASSICAL POLYNOMIALS [ IX ] 

(9.5.9) 

which is equal to 

(9.5.10) 0(1) 100 

e-112 ta/
2-t I f(t) I dt. 

In the interval 3n ~ < + oo, Theorem 8.91.2 (x ~ a, >-. - a/2 + 1/12), 
tells us that 
(9.5.11) e-t/2ta/2+1/121 L~a)(t) I = O(na/2-l). 

Therefore, from (5.1.11), on account of (9.1.12), we have 

1~ e -Ita f(t)K~a) (x, t) dt 

(9.5.12) = O(n1-a)na/2-l1
00 

e-1 ta-1 I f(t) I { I L~a)(t) I + I L~~1(t) I} dt 
a .. 

= O(n1-a)na/2-l na/2-l roo e-1/2 ta/2-13/12 I f(t) I dt = o(1). 
}an 

(5) If the condition (9.1.12) is replaced by the requirements of (9.1.14), a 
treatment of the interval 2w ~ t ;:;:; 3n, the same as that given in (4), applies. 
In 3n ;:;:; t < + oo we use Schwarz's inequality: 

(9.5.13) 

O(ni-a/2) roo e-t ta-1 I f(t) II L~a)(t) I dt 
}3n 

The last integral is O(na) (see (5.1.1)), and this establishes the statement. 
(6) Let 

(9.5.14) f(x) = x~~o 

(Blumenthal 1, pp. 32-33). We shall show that for proper values of IJ. the 
first integral in (9.1.11) exists, but that the second does not; furthermore the 
Laguerre series is divergent for x > 0. Here a > - !. 

The coefficient a,. of the corresponding Laguerre series is given by 

r(a + l)(n ~ a)a .. = loo e-:r:xa+~~oL~a\x)dx 
(9.5.15) 

= .!_ 100 

at(!!)"{e-:r:xn+a}dx 
n! 0 dx 
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(see (5.1.5)). On integrating by parts, we have 

(9.5.16) r(.u + a + 1) r(n - JJ.) 
all = r( -IJ.) r(n + a + 1)" 

Here we assume 1J. + a > -1, 1J. ~ 0, 1, 2, · ·. . Then an""' n-,.-a-\ and in 
view of Fejer's formula (8.22.1), the principal term of the Laguerre series 
behaves like 
(9.5.17) n-p.-a/2

-
614 cos {2(nx)1 - a1r/2 - 7r/4} 

for x > 0. This series is therefore divergent (cf. Problem 47) when and only 
when 1J. + a/2 + -i ~ !. If a > -t and 

(9.5.18) -a - 1 < 1J. ~ -a/2 - 3/4, 

the first integral (9.1.11) exists, but the second does not, and the series 1s 
divergent for x > 0. 

(7) We consider also the function 

(9.5.19) f(x) = e:z12x"', 

and we show that for a proper value of 1J. (particularly for IJ. = - a/2 + 1/4) the 
integrals (9.1.11) exist, but the conditions (9.1.12) and (9.1.14) are not satis
fied; in addition, the Laguerre series is divergent for x > 0. Here a > -1, 
a+J.L> -1. 

The integral 

(9.5.20) r(a + 1)(n ~a) an= la> e-x12 xa+,.L~a>(x)dx 

can be calculated by means of the generating function (see (5.1.9)) 

:t r(a + 1) (n + a) anrn = (1 - r)-a-1 {"" e-:z<Hr/(1-r)) xa+~~o dx 
n-o n )o 

(9.5.21) = r(a + IJ. + 1)(1 - r)-a-1 (! + _r_)-a-p.-1 
2 1- r 

= r(a + IJ. + 1)2a+p.+l(1 - r)"'(1 + r)-a-p.-1. 

Thus, Darboux's method (§8.4) gives for an the principal term 

(9.5.22) n-too, 

where A and B are fixed constants, A ~ 0, B ~ 0. We have A = 0 if 
p. = 0 1 2, .... 

If x '> '0, this shows, on account of Fejer's formula (8.22.1), that anL~a>(x) 
does not tend to zero if p. = -a/2 + 1/4. 

(8) Finally, we discuss the Hermite series 

(9.5.23) 

Writing y = x2
, we readily see that (see (5.6.1)) 

00 00 

L ~mH2m(x) and L ~m+1H2m+1(x) 
m=O m-o 
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are the expansions of 

{f(x) + f( -x) l /2 = {f(yi) + f( -yi) J /2 and 

X-
11f(x) - f( -x) J /2 = y-i lf(yi) - f(- yt)} /2 

into a Laguerre series with the parameters a = -!and a = +!,respectively. 
Applying Theorem 9.1.5 to these functions with a = -! and a = +!, respec
tively, we obtain the conditions (9.1.11), (9.1.12), and (9.1.14) in the fol
lowing form: 

1
1 

y-i lf(±yi) I dy = 21
1

if(±x) I dx exists; 

100 

e-"
12
Y-! I f(±yi) I dy = o(n-i), or 100 

e-x212 x-& I f(±x) j dx = o(n-1); 

too e-"/2y-1 I f(±yi) I dy = 21oo e-z2f2x-1, I f(±x) I dx exists; 

loo e-11 y-1 
I f(±yi) 1

2 dy = o(n-1), or 1oo e-:r
2 
x-4

1 f(±x) j2 dx = o(n-3). 

This establishes (9.1.17), provided x belongs to an interval not containing 
the origin. 

In order to accomplish the proof, if x lies in an interval of the form l-E, 
+ E], we have only to show that 

(9.5.24) e-t2 f (2.v!7ri)-1H.(x)H.(t)- 7r-1sin {(2n)i(x- t)} = 0(1) 
•-0 X - t 

uniformly if both x and t belong to [ -E, +E]. The first member of this dif
ference is, according to (5.5.9), 

(9.5.25) (2n+In!7ri)-1e-t2{Hn+1(x) Hn(t!_::_ Hn(x! _ Hn(x) Hn+1(t) - Hn+1(x)}· 
x-t x-t 

Now, by using the the notation of Theorem 8.22.6, we obtain 

-,...-;,1 e -:r212 H n(x) = cos (NiX - n7r /2) + O(n -!)' 

A-;;1 e:._~:r~~~ Hn(x) - e-~~~~HnCD = ~os (Nix-:-. n1r/2)- cos (Nit- n1rj2) + 0(1). 
x-t x-t 

The second formula follows by an argument similar to that used in §8.8 (cf. 
the first formula in (5.5.10)). Its left member can also be written in the form 

>.:;,1e-o:2;2 Hn(x) - Hn(t) + O(l). 
X- t 

Replacing Ni by (N + c)i, c a fixed constant, we find the error committed in 
the right-hand member to be 0(1). 

These asymptotic formulas furnish for (9.5.25), by use of Stirling's formula, 
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(2n+ln! 11"~)-1 AnAn+lex
2

-
12 {sin (Nix - n71"/2) 

cos (Nit- n71"/2) - cos (Nix - n71"/2) 
X - t 
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_ cos (N~x _ n71"/2) ~~n (Nit - n71"/2) - sin (Nix - n11"/2! + 0(
1
)} 

x-t 

_ -1 sin !Ni(x - t)} + 0(1) _ --1 sin I (2n)i(x - t) l ( ) 
- 71" X - t - 71" ---- X - t + 0 1 . 

9.6. Proof of Theorem 9.1.7 

(1) The Cesaro means of the Laguerre series at x = 0 can be represented in a 
particularly simple form. For, from (5.1.7), 

(9.6.1) 

Hence, by applying (5.1.9), the Cesaro means of order k are foun~ to be 

(9.6.2) IC~k)r(a + 1) }-1 1oo e-ttaf(t)L~a+k+l)(t) dt. , .. 

Assume k > a + !, and subdivide the interval [0, + oo] into [0, E], [E, w], 
and [w, + oo ]. Then we find for (9.6.2) 

0( n -k) max I f(t) I 1e ta I L~ a+k+l) (t) I dt 
O;:ijt;:ije 0 

(9.6.3) + O(n-k) j"' e-tta I f(t) II L~a+k+1)(t) I dt 

+ O(n -k) 100 

e-tta I f(t) II L~a+k+l) (t) I dt. 

By use of (7 .6.8) the first integral becomes 

(9.6.4) 

The second integral is O(n<a+k+l)t2
-
1) = o(nk). Now, using Theorem 8.91.2, 

with a replaced by a + k + 1, and A = k + !, we see that A - ! = 
k > (a+ k + 1)/2 - i; whence the third integral is 

(9.6.5) 0(1) 100 

e -l/
2 ta I f(t) I ck-} nk dt = O(nk) 100 

e -tt2 ta-k-A I f(t) I dt. 

Thus (9.6.2) can be represented in the form 

(9.6.6) 0(1) max I f(t) I + 0(1) 1"" e-112 ta-k-} I f(t) I dt + o(1). 
O;:ijl;:ije "' 

Here the bounds of the terms 0(1) are independent of E and w. If it is assumed 
that f(O) = 0, the s~atement is established. 
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(2) Let k = a + t, and apply Theorem 1.6 (Helly'~-:> theorem) to the linear 
operations 

(9.6.7) 
Un(f) = I C~k> r(a + 1) r-1 11 

e- 1 t"j(t)L~a+k+1 > (t) dt, 

U(f) = j(O). 

It suffices to show that the second condition in (1.6.10) is not satisfied. As a 
matter of fact, if this condition is not satisfied, then a continuous function 
f(x), 0 ~ x ~ 1, exists for which 

lim Un(f) = U(f) 

does not hold. Extending the definition of this function to .r > 1 by means 
of the condition j(x) = 0, we obtain the "Gegenbeispiel" required. (By use 
of the remark made in connection with Theorem 1.6, a continuous function 
f(x) can be constructed for which (9.6.2) is unbounded when n--+ oo .) 

Now if n is a positive constant independent of n, 

(9.6.8) 

{C~k>r(a + 1)}-1 11 

e-tta I L~a+k+1>(t) I dt 

where A is positive and independent of n and n. The last expression is, ac
cording to (8.1.8), 

r-.J jo zaz-<a+k+1'12
1 Ja+k+1(2i) 1 dz = lo z-t I Ja+k+1(2z~ I dz. 

This integral becomes arbitrarily large with n. 
(3) Integral (9.1.19) exists if 

(9.6.9) f(x) = O(elt;12 xk-a-f-a), 0 > 0, X --+ + oo. 

On the other hand, there is no difficulty in proving that the Laguerre series 
L::-o anL~a>(x) of f(x) = elt;12xk-a is not (C, k)-summable at x = 0. Here the 
condition k > a + ! is satisfied. Indeed, from (9.5.21) we obtain, p. = k - a, 

(9.6.10) (1 - r)-k-1 ~ anL~a)(O)rn = ~~~! g 2k+1(1 - r)-a-1(1 + r)-k-1. 

Darboux's method furnishes for the coefficient of rn in the expansion of this 
function the number 

(9.6.11) C > 0, n--+ oo. 

This establishes the statement. 
We also notice that the Laguerre series is (C, k)-summable at x = 0 with 

an arbitrary k > a + 1/2, provided j(x) is continuous at x = 0, and 

(9.6.12) j(x) = O(elt;12x-116
), x--+ + oo. 

Again, the Laguerre series of the special function f(x) = elt;12i is not (C, k)
summable at x = 0 with any k > a + 1/2. 
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9.7. Further results 

(1) Using a generalized translation operator which can be defined by means 
of (4.10.21) it is possible to use Theorem 9.1.3 to show that the Jacobi series 
of a continuous function is uniformly ( C, k) summable fork> max( a+ t, {3 +f) 
when a,{3 ~ - t, or a +!3 ~ -1, and a,{3 > -1. See Askey-Wainger 4 and 
Gasper 3, 4. 

(2) For a = {3 ~ - t Kogbetliantz 19 proved the positivity of the ( C, 2a + 2) 
means of the formal reproducing kernel. A simple proof was given in Askey
Pollard I. For the general Jacobi case it is likely that the ( C, a + {3 + 2) means 
are positive when a,{3 ~- t. This has been proven for max({3 -1, -{3) ~ 
a~ {3 + 1 and max({3- 2, 3- {3) ~a~ {3 +2. See Askey 8. 

(3) Theorem 9.1.2 can be used with the Carleson-Hunt theorem (Carleson 
1, Hunt 1) to obtain almost everywhere convergence of Jacobi series when 
the function satisfies the conditions of both theorems. 

( 4) Slightly stronger equiconvergence theorems for Laguerre and Hermite 
series were obtained by Muckenhoupt 4. Again almost everywhere convergence 
theorems follow from these results. These improvements and the mean con
vergence results to be given below use Erdelyi's relatively recent asymptotic 
formulas in an essential way. These estimates are described in 8.92 (2). 

( 5) If f_\ I/( x) I Pdx < oo, if f( x) is expanded in a series of Legendre poly
nomials, and if Sn(X) denotes the partial sums of this series, then Pollard I 
proved that 

for 4/3 < p < 4 and these bounds are best possible (Newman-Rudin 1). This 
theorem has been extended to Jacobi series (Pollard 2, 3, M uckenhoupt 5), 
and Laguerre and Hermite series (Askey-W ainger 1, M uckenhoupt 2, 3). A 
slight simplification in the proof was given in Askey 6, and this result and 
the positivity of some Cesaro mean was used in this paper to solve a problem 
of LP convergence of Lagrange interpolation at the zeros of Jacobi polynomials. 

( 6) There are a number of other interesting positive summability methods, 
e.g. the analogues of Poisson-Abel summability (Bailey 1); Gauss-Weierstrass 
summability (Bochner 2, Karlin-McGregor 3); and the de Ia Vallee-Poussin 
method which uses Bateman's formula (4.10.23). Horton 1 used this formula 
to prove that the de la Vallee-Poussin method is positive and variation 
diminishing. 

(7) Muckenhoupt-Stein 1 have introduced a number of the deeper functionals 
from classical Fourier series into the study of orthogonal polynomials and 
were able to construct a theory of H P spaces associated with singular Cauchy
Riemann equations and prove an analogue of the Marcinkiewicz multiplier 
theorem. Another proof of this theorem by mapping the theorem for Fourier 
series to Jacobi series was given by Askey-W ainger 2 and Askey 3. Another 
extension of the Marcinkiewicz theorem was proved by Bonami-Clerc 1. They 
were motivated by work of Coifman-G. Weiss 1. 

( 8) Hirschman 1 has constructed a theory of variation diminishing trans
formations associated with orthogonal polynomial expansions which paraillels 
Schoenberg's classical theory. 



CHAPTER X 

REPRESENTATION OF POSITIVE FUNCTIONS 

In the present chapter we deal with an extension of Fejer's representation of 
non-negative trigonometric polynomials, given in §1.2, to certain general classes 
of non-negative functions. In particular, we are interested in the discussion 
of this representation if the given function is subjected to certain continuity 
conditions. Extensions of Fejer's theorem in this direction are important for 
the investigation of the asymptotic behavior of the general orthogonal poly
nomials associated with a distribution on a finite real interval or on the unit 
circle (Chapter XI). It seemed convenient to separate these considerations 
from the subject proper. 

Concerning the results of this chapter see Szego 6, 7, 8, 9. See also Grenan
der-Szego 1, 1.12-1.1.3. 

10.1. Fatou's theorems 

THEoREM 10.1.1. Let f(O) be integrable in Lebesgue's sense, and let 

(10.1.1) 1 L+"' 1 - r
2 

f(r, 0) = 2- f(t) 1 2 (t 8) + 2 dt 
1r _,.. - r cos - r 

be the corresponding Poisson integral. Then we have almost everywhere m 
-7r ~ () ~ +7r, 
(10.1.2) lim f(r, 0) = f(O). 

r-1-0 

See Zygmund 2, p. 54, §3.442. 

THEOREM 10.1.2. Let 

(10.1.3) F(z) = Co + C1Z + C2i + · · · + CnZn + · · · 
be regular for I z I < 1, and let the integral 

(10.1.4) ;7r i:"' I F(re'
8

) 1
2 

dO 

be bounded for r < 1. (This condition is equivalent to the convergence of 

(10.1.5) I Co 1
2 + I C1 1

2 + I C2 1
2 + " • + I Cn 1

2 + • " .) 
Then we have almost ev'erywhere in - 1r ~ 0 ~ + 1r 

(10.1.6) lim F(re18
) = F(e18

). 
r-1-0 

Furthermore, F(/8
) is measurable, and I F(e18

) 1
2 is integra_ble in Lebesgue's sense. 

The Fourier series of F(ei8
) is obtained by writing z = e'8 in (10.1.3). 

274 
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This theorem is due to Fatou (1). vVe say that F(z) is of the class H 2 • A 
function F(z) which is regular and bounded in I z I < 1 belongs to this class. 
Concerning the more general classes H&, see F. Riesz 2 and Smirnoff 2. In 
particular, if F(z) is of the class H1 , the boundary values F(ei8

) exist (almost 
everywhere), I F(ei8

) I is integrable in Lebesgue's sense and Cauchy's theorem 
can be applied on I z I = 1. (Cf. F. Riesz, loc. cit., p. 94, c); Smirnoff, loc. cit., 
pp. 337-338.) 

10.2. Generalization of Fejer's representation 

Concerning this section, see Szego 7. 
(1) Let g(O) be a non-negative trigonometric polynomial not vanishing 

identically. According to Theorem 1.2.2, there exists a polynomial h(z) of the 
same degree, uniquely determined by the following conditions: 

(a) g(O) = lh(z) 1
2

, wherez = / 8
; 

(10.2.1) (b) h(z) is different from zero in I z I < 1; 
(c) h(O) is real and positive. 

We obviously have 

(10.2.2) log g(O) = 2m{log h(z) l, 

The function log h(z) is regular for I z I ;;;; 1 except at the points z = ei8 which 
correspond to the zeros of g(O), at which both functions log g(O) and log h(z) 
become logarithmically infinite; log h(O) is real. The function 2m (log h(z)} 
is regular and harmonic for I z I < 1 and has absolutely integrable boundary 
values log g(O). Applying the mean-value theorem of Gauss, we obtain 

(10.2.3) 1 1+"' 
2

11' _,.. logg(O)dO = 2m{logh(O)} = 2logh(O), 

so that 

(10.2.4) 

The last expression is called the geometr'ic mean of. the function g( 0). 
(2) The relation (10.2.2) enables us to extend this consideration to arbitrary 

non-negative functionsj(O) (instead of g(O)), defined in [ -11', +11'] and integrable 
in Lebesgue's sense, provided ®(f) > 0. This last condition is equivalent to 
the existence of the integral 

(10.2.5) 1+,.. log j(O) dO = ( log j(O) dO + ( log j(O) dO. 
_,.. }o~/(8)~1 }!(8)>1 

The existence of the second integral on the right follows from the integrability 
of j(O). Thus, the condition ®(f) > 0 is equivalent to the existence of the 
first integral on the right-hand side. This is a restriction on the "nearness" 
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of f(O) to 0. A consequence of this condition is that j(O) can vanish only on a 
set of measure zero. 

We now introduce the harmonic function u(rei8
) defined by.: Poisson's integral 

of! logj(O) 

(10.2.6) 
iB - r 1 1+,.. 1 2 

u(re ) = 411' _,.. log j(t) 1 - 2r cos (0 - t) + r2 dt, O~r<l. 

In the case of a continuous function j(O) > 0_, we know that (see for instance 
Zygmund 2, p. 51) 

(10.2.7) lim u(rei8
) = ! log j(O), 

r-1-0 

uniformly in 0. In the general case considered above, this is true only with 
the exception of a set of measure zero and without uniformity in general (see 
Theorem 10.1.2). If now u is completed to an analytic function u + iv = k(z) 
with the condition that k(O) is real, then k(zj is uniquely determined. Writing 
D(z) = l<•>, we obtain the analogue (generalization) of the function h(z) con
sidered before. This function D(z) = D(f; z) has the following properties 
(Szego 7, p. 237): 

(a') D(z) is of the elass H2 (§10.1); almost everywhere in -11' ~ 0 ~ +11', 

(10.2.8) lim D(t/8
) = D(ei8

) exists, and j(O) = I D(ei8
) 1

2
; 

r-1-o 

(b') D(z) ~ 0 in I z I < 1; 
(c') D(O) is real and positive. 

We have again (D(0)} 2 =®(f); this is obvious from (10.2.6). Furthermore, 
we show that for an arbitrary continuous function F(O) of period 211', 

(10.2.9) 

If D(z) = do + d1z + d2i + . · . , according to Schwarz's inequality, we have 

{J_:"' II D(ei
8

) 1
2 

- I D(rei
8
) 1

2
1 dO r 

~ L:" (I D(ei8
) I - I D(rei8

) 1)2 dO· L:" (I D(e18
) I + I D(rei

8
) 1)2 

dO 

for r-? 1 - 0. Here (a') is used. (See also Smirnoff 2, p. 338.) 

·-----..,...---------..,...--· -----·--······ 
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It should be observed that the function D(z) is not uniquely determined by 
the conditions (a'), (b'), and (c'). For instance, we can multiply it by 
exp (-(1 + z)/(1 - z)}. For this point see Szego 7, p. 241. 

(3) By means of (10.2.6) we can obtain the following explicit representation 
of D(z) in terms of j(O): 

(10.2.10) { 
1 1+"' 1 + -it l D(z) = D(J; •~) = exp -

4 
log j(t) 

1 
ze . dtf, 

1r -... - ze-4t lz I< 1. 

If j(O) is an even function:, the expansion of D(z) around z = 0 has real coeffi
cients. Let JI(O) and !2(8) be arbitrary functions satisfying the same condi
tions as j(O), and let p be a.rbitrary and complex, p ~ 0. Then 

(10.2.11) D(JI; z)D(h; z) = D(Jd2; z); (D(J; z) }P = D(f'; z). 

As an example we mentilon the casej(O) = g(O) considered in (1). We have 

(10.2.12) D(g; z) = h(z), D(g-1
; z) = {h(z) }-1

• 

In the second formula we assume that g(O) is positive. 
A further example is 

f(O) = 2'Y+a(1 -· cos o)'Y(1 + cos o)'; 
(10.2.13) 

D(f; z) = (1 - z)'Y(1 + z)'; 

'Y > -!, 0 > -!. 
10.3. Further studly of the representation of positive functions 

The derivation of an asymptotic formula for the polynomials orthogonal on 
the unit circle requires some further properties of the representation defined 
before. In particular, we shall deal with the behavior of the function D(z) on 
the unit circle I z I = 1. In this connection certain restrictive conditions on the 
function f(O) are necessary. 

(1) First let us consider again the case of a non-negative trigonometric 
polynomial g(O) not identically zero, and let g(O) = I h(z) 1

2
, z = ei8

, be the 
normalized representation defined in Theorem 1.2.2. Then, by (10.2.10), we 
have for 0 ~ r < 1, 

iB { 1 1+"' 1 + reiCB-t> } (10.3.1) D(g; z) = h(z) = h(re ) = exp 47r · _,.. log g(t) 
1 

_ reiCB-e> dt · 

Whence 

sgn h(rei8
) 

(10.3.2) 
iB) ~-1 ( iB) [ i 1+"' ( ) 2r sin (0 - t) d} 

= I h(re h 1·e = exp'\47r _., log g t 1- 2r cos (0- t) + r2 t 

f i 1+" 2r sin (0 - t) } 
= exp '\ 47r _,.. [log g(t) - log g(O)] 1 - 2r cos (0 - t) + r2 dt . 

Therefore, for all values of 0 with the exception of the zeros of g(O), 

-------....,...------------
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(10.3.3) { i 1+"" 0 t } = exp 
4

7r _,.. log g(t) cot 
2 

dt 

{ . 1+"" 0 t } = exp 
4
2
7r _,.. [log g(t) - log g(O)] cot 

2 
dt . 

The first integral is taken in the sense of Cauchy's principal value; the second 
integral is absolutely convergent. 

(2) This consideration can easily be extended to a positive continuous func
tion j(O) which satisftes certain conditions sufficient for the existence of the 
integrals corresponding to those in (10.3.3). Since j(O) is continuous, defining 
D(z) as in §10.2 we now have, uniformly for all values of 0, 

(10.3.4) lim I D(rei8
) 1

2 
= j(O). 

r-+1-0 

If the integral 

(10.3.5) )~+,.. I 0 t I __ ,.. I log j(t) - log j(O) I cot 
2 

dt 

exists, then 

(10.3.6) 1+,.. (} - t 
_,.. log j(t) cot -

2
- dt 

exists in the sense of Cauchy's principal value. We then show the existence 
of the boundary values of 

i8 { i 1+"' () 2r sin (0 - t) } sgn D(re ) = exp -
4 

logf t 1 2 (O t) 2 dt 
1r _,.. - r cos - + r 

(10.3.7) } 

{ 
£ 1+"' 2r sin (0 - t) 

= exp 47r _,.. [logj(t) - logj(O)] 1 - 2r cos (0 - t) + r2dt . 

Indeed, if Eisa fixed positive number, we have 

. 1 2r sin (0 - t) 
hm [logj~t) -- logj(O)] 1 _ 2 (O _ t) + 2 dt 

r-+1-0 18-t 1 >e r cos r 

= ( [log j(t) - log j(O)] cot 0 
2 

t dt. 
}18-tl>e 

On the other hand, 1 - 2r cos (0 - t) + r2 > 2r (1 - cos (0 - t)}; so 

I r [log j(t) - log· j(O)] 2r sin (0 - t) dt I 
}18-tl~e 1 - 2r cos (0 - t) + r2 

1 I sin (0 - t) I 
~ 18-tl~e llogj(t) - logj(O) 11 - cos (0 - t) dt, 

and the last integral is arbitrarily small with E. 

------------------------
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Therefore, under the condition mentioned, 

(10.3.8) lim D(rei8
) = D(e;8

) 
r-1-0 

exists, and a representation analogous to (10.3.3) holds for sgn D(e;8
), 

sgn D(e;
8

) = exp {
4
i7r 1: ... logj(t) cot 0 

2 
t dt} 

{ . 1+... 0 t } = exp 4
2

11" -..- [log j(t) - log j(O)] cot 
2 

dt . 

(10.3.9) 

In this case we have j(O) = I D(e;8
) 1

2
• 

The condition (10.3.5) is satisfied if the function j(O) fulfills the Lipschitz
Dini condition 

(10.3.10) I f(O + o) - f(O) I < L I log o l-1
-\ 

L and X being fixed positive constants. This is assumed in the present section. 
Then (10.·3.8) exists uniformly in 0, and D(e;8

) is continuous. 
The preceding exposition could be considerably simplified by using the 

theory of conjugate functions (see Zygmund 2, pp. 50, 54, 55, §§3.321 and 3.45). 
(3) Let m be a positive integer. Then there exists a positive trigonometric 

polynomial g(O) of degree m such that 

(10.3.11) lf(O)- (g(0)}-1 I < P(log m)_1
_\ 

where Pis a constant, depending on the minimum and maximum of j(O) and 
on L and X. This follows by applying Theorem 1.3.2 to the function (j(O) l-\ 
which satisfies the Lipschitz-Dini condition 

I (j(O + o)}-1 
-- (j(0)}-1

1 < (minj(0)}-2L I log 0 l-1->-. 

If D(z) and h(z) denote the functions defined in §10.2 which correspond, respec
tively, to j(O) and g(O), we can show that 

(10.3.12) I D(z) - ( h(z)} - 1 I < Q(log mr·>-

uniformly for I z I ~ 1. The constant Q depends on the minimum and maxi
mum of j(O) as well as on L and X. 

It suffices to prove this for I z I = 1. An analogous inequality for the differ
ence of I D(z) I and I h(z) ~--1 is trivial (even with (log m)-1->-). We therefore 
need a bound only for 

sgn h(e;8
) (sgn D(e;8

) - sgn [h(e;8)r1
} 

(10.3.13) 

{ . 1+"" 0 t } = exp 
4

2
11" -..- (log j(t) - log [g(t) ]-1

} cot 
2 

dt - 1; 

or, what amounts to the same thing, for 

-·----·---r--,----------
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(10.3.14) 1~ 0-t 
-r (logj(t) - log [g(t)r1

} cot -
2
- dt. 

To this end, we use Theorem 1.22.1. We have 

(10.3.15) 

so that 

(10.3.16) 

I !7(0 + o) - g(O) I ~ om(max g(O) l, 

I log g(O + o) - log g(O) I ~ om m~x gt~. 
mmg 0 

[X] 

Let E = E(O, m, X) denote the set of t-values defined by the condition 
I 0 - t I ~ m-

1 
(log m)->-, and let E' be the complementary set with respect to 

[- 1r, +1r]. On writing (10.3.14) in the form 

1 (logf(t) - logj(O) -log [g(t)r1 +log [g(0)]-1
} cot 8 

2 
t dt 

(10.3.17) 
( 1 0-t 

+ }s' (logj(t) - log [g(t)J- l cot -
2

- dt, 

and using (10.3:10) and (10.3.16), we obtain for the first integral 

0(1) Lllog I 0 - t 11-l->. I 0 - t l-1 
dt + O(m) 110 - t 11 cot 0 

2 
tjdt 

= O[(log m)->-] + O(m)O[m-1(log m)->-] = O[(log m)->-]. 

On the other hand, (10.3.11) yields the bound 

O[(Iog m)-1->.] 1, I cot 0 
2 

t I dt == O[(Iog m)->.] 

for the second integral. This establishes the statement. 

10.4. "Local" properties of the representation of positive functions 

In this section we prove certain theorems on the representation and approxima
tion of positive functions, important for the purposes of Chapters XII and XIII. 

(1) We have the following theorem: 

THEOREM 10.4.1. Let j(O) be integrable in Riemann's sense, and let it have 
the form 

(10.4.1) f( e) = •i>( e) I (z - z1)"' (z - z2)"2 
• • • (z - z1)" 1 I, i8 

z = e , 

where 0 < A ~ 4>(0) ~ B, and Zv = e;e, are distinct points on the unit circle, 
(fv > 0, v = 1, 2, · · ·· , l. Let j(O) be differentiable at the fixed point 0 = a, 
a = eia =/= z., v = 1, 2, ... , l, and let the following be bounded near 0 = a: 

(10.4.2) 
j(O) - j(a) - f' (a) (0 - a) 

(0 - a)2 

------.,..----------,...---·· --------------·-
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lj D(J; z) denotes the analytic junction corresponding to j(O) 
§10.2, there follows the exi~:tence of the limits 

in the sense of 

lim D(J; re.:a) = D(J; e.:a) = D(J; a), 
r-1-0 

(10.4.3) 
lim D'(J; re.:a) = D'(J; e'a) = D'(J; a). 

r-1-0 

This is true under more general conditions (see Zygmund 2, pp. 52, 53, §3.44, 
and pp. 62, 63, example 1.3). The following elementary argument is based on 
the formula (10.2.10). 

If we integrate with respect to t only over a fixed arc not containing a, the 
corresponding limits obviously exist. If t is near a, we can write 

(10.4.4) log j(t) == c + d(e-.:e - e-ia) + 0(1)(t - a) 2
, 

where c and d are certain constants. But if I z I < 1, then 

1 1+"' 1 + -it (10.4.5) -
2 

{ c + d(e-it- e-.:j} ze . dt = c - de-.:a. 
1r _,.. 1 - ze--ot 

Hence it suffices to show that if E > 0 is small enough, the function 

(10.4.6) [+• 0(1)(t - a)21 + ze-i.e dt J-• 1 - ze--ot ' 

as well as the derivative of this function with respect to z, is arbitrarily small 
if z = re.:a, r --+ 1 - 0. This is true for the derivative since 

(10.4.7) 

.-::---. = dt 1+• (t - aY dt 1+• (t - a) 2 

-• 11 - re•<a-t) 12 -• 1 - 2r cos (a - t) + r2 

<- a dt. 1 1+• (t - )2 
4r -• . 2 a- t sin -

2
-

The argument is even simpler for the function itself, for in the last denominator 
we then have I sin {(a - l0/2} I instead of sin2 {(a - t)/2}. 

(2) Now we prove the following theorem: 

THEOREM 10.4.2. Let j(O) be £ntegrable in R£emann's sense, and assume 
0 < A ~ j(O) ~ B 2j -1r ~ 0 ~ +1r. Also suppose j(O) differentiable at the 
fixed po£nt () = a and the expression (10.4.2) bounded near 0 = a. 

If E is an arbitrary pos£ti've number, there exist pos£tive trigonometric polynom£als 
g1(0) and g2(8) such that 

(10.4.8) J1(8) ~ j(O) ~ J2(8), fi(a) = h(a), 

where !I ( 0) = ( g1 ( 0) } -\ !::( 0) = ( g2( 0)} -\ and 

(10.4.9) 

-------------------
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Let m and M be the lower and upper bound of (10.4.2) for -1r ~ 8 :::; +1r. 
The function f1 ( 8) is greater than a positive number depending only on m, A, 
f(a), and f'(a); similarly h(O) is less than a number depending only on M, f(a), 
and f'(a). 

We observe that (10.4.8) implies 

(10.4.10) 

so that the integral in (10.4.9) exists; furthermore, (10.4.9) implies 

(10.4.1l) J_:"logf2:8)
2

; ~o!f1Ce) de< E', 

Sin~ 

where E' is arbitrarily small with E. 

For the proof we apply Theorem 1.5.4 to the functions 

(10.4.12) 

(e) = {f(e:)} -l - c - d sin (8 - a) 
P . 8-a ' 

S1n2 --
2 

q(O) = f(O) - f(a) - f'(a) sin(O - a), 
. 8-a 

S1n2 --
2 

d = -f'(a){f(a)}-2
, 

which are both integrable in Riemann's sense. Therefore, given o > 0, there 
exist certain trigonometric polynomials P(O) and Q(O) such that 

p(O) ~ P(O), 1+ ... 
-... {P(O) - p(O)} dO < o, 

(10.4.13) 

q(e) ~ Q(e), 1+ ... 
-..- { Q(O) - q(O)} dO < o. 

Here max P(O) and max Q(O) are less than certain constants depending on 
m, A, f(a), f'(a), and on M and f'(a), respectively. Writing 

(10.4.14) g1(B) = c + d sin (8 - a) + P(e) sin2 8 
2 

a, 

we find that (!(8) }-
1 ~ g1(8), or f1(8} ~ 'f(O), f1Ca) = f(a), and that 

L:" f(~)2 ; ~1(:) de= f-:" f(O)f1(e) g1 (e~ ~8 {~(e~}-
1 

de~ B 2 o. 
sm - 2 sm -

2
-

(10.4.15) 

Heref1(8) is greater than a positive constant depending on m, A,j(a), andf'(a). 
On the other hand, considering the continuous function 
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G(o) 

(10.4.16) 

~ ~(a)+ /'(a) sin (8 - a) + Q(O) sin' ~r- c- d sin (8- a) 

= 

. 20-a 
sm -

2
-

{ R(O)} -
1 

- c - d sin (fJ - a) R-1 
- c - d sin (0 - a) 

> ' . 20-a . 20-a 
sm. -

2
- s1n -

2
-

we have f(O) ~ R(O) < .R, where R is a positive constant depending on M, 
f(a), and f'(a). Now according to Theorem 1.3.1, a trigonometric polynomial 
S(O) can be determined sueh that 

(10.4.17) R-
1 

- c - d sin (O - a) < S(O) < G(O) < S(O) + o . 
. 20-a 

sm -
2

-

If we write 

(10.4.18) g2(0) = c + d sin (0 - a) + S(O) sin2 0 

2 
a, 

we find that 

(10.4.19) 

Furthermore, g2(0) < (j(O) l-1
• On account of the last inequality in (10.4.19) 

and (10.4.13) we have 

r ( ) . 2 0 - a}-1 
( ) r j,(O; 8-!~dO~ r~_o + 0 SI~O~ - f 8 d8 

sm -
2

- sm -
2

-

1
+ .. {g2(0) r·1 

- {g2(0) + 0 sin2 0 
2 a }-

1 

+ dO 
-.- • 2 0 - a 

sm -
2

-

1
+ .. R(O) - f(O) 1+ .. {g2(0)} -1 - {g2(0) + o sin2 0 2 a} -1 

< · dO + dO 
-.- • 2 0 -- a -.- . 2 0 - a sm -- sm --

2 2 

(10.4.20) 

--·--------·--------- ·------r---------.....--· ____________ ... _ 
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The last integral is arbitrarily small with o (since g2(8) > R-1). 

Combining (10.4.15) and (10.4.20), and taking o sufficiently small, we ob
tain the statement above. 

(3) THEOREM 10.4.3:. For the analytic functions D(f1 ; z), D(f; z), D(j2 ; z), 
corresponding to the functions f1(8), f(8), h(8) of Theorem 10.4.2 in the sense of 
§10.2, the following inequalities hold: 

(10.4.21) I D(f; a) - D(f. ; a) I < E', I D'(f; a) - D'(f.; a) I < E', 

where a = eia, v = 1, 2; here E
1 is arbitrarily small with E. 

The symbols D(J; a), D'(J; a) have the same meaning as in (10.4.3). 
According to (10.2.10) we have for I z I < 1, v = 1, 2, 

1 1+r 1 + ze-it 
log D(f; z) -· log D(f.; z) = 471' _.., {log f(t) - log f.(t) l 

1 
_ ze-it dt, 

(10.4.22) ' 
D'(f; z) D'(f.: z) 1 (+... -it 

z D(f; z) - .z D(f.; z) = 271' )_... {log f(t) - log f.(t)} (1 ~ ze-it)2 dt, 

and for z = reia = ra, r ~ 1 - 0, 

i 1+... a-t log D(f; a) - log D(f.; a) = 
4

71' _.., {log f(t) - log f.(t)) cot -
2
- dt, 

(1 0.4.23) a D' (j; a) _ a D' (f.; a) = _ _!_1+ ... log f(t) - log f.(t) dt. 
D(f; a) D(f.; a) 811' -r . 

2 
t - a 

sm --
2 

Both integrals are absolutely convergent and arbitrarily small with E (see 
(10.4.11)); D(J; a) is a. fixed number different from zero. 

(4) THEOREM 10.4.4. Letf(8) be afunction satisfying the conditions of Theorem 
10.4.1. Given an arbitrary positive number E, there exist positive trigonometric 
polynomials g1(8) and g2(8), such that on putting 

(10.4.24) 

we have 

(10.4.25) 

and 

(10.4.26) 

f1(8) = {g1(8)} - 1 I (z - z1)(z - z2) · · · (z - z1) I", 
f2( 8) = { g2( 8)} -\ 

iB 
z=e, 

Here (f is the least even number greater than max C(f1, (12, · · · , (11); max h(8) is 
bounded from above, while min {g1(8) }-1 is bounded from below, and both bounds 
are independent of E. 

-·----------------- ·-~----,--------.,--·---------·---" 
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For the functions D(j1 ; z), D(f; z), and D(j2; z), corresponding, respectively, to 
!1(8), f(O), and !2(8), a statement. similar to that in Theorem 10.4.3 holds. 

REMARK. We can choose for (f any even number which is greater than 
max (0'1 , 0'2, • • • , 0'1); in particular, we can choose an even number divisible 
by 4. This is important for certain later purposes (cf. §13.5 (2)). 

Let the function ](8) be identical with f(O) except in certain closed intervals 
around e., v = 1, 2, · · · , l, in which ](8) = 1. These intervals are chosen so 
small that they do not overlap, they do not ·contain a, and in each of them 
f(O) ~ 1. Furthermore, let 

1+"' log ](e) - log f(O) de < ~ . 
-r • 2 () - a 4 

sm -
2

-
(10.4.27) 

Then f(O) ~ ](8) for each 8, and f(O) = ](8) in a certain neighborhood of a 
which can be chosen independent of E provided E is small enough. The func
tion ](8) = ](E; 8) satisfies the conditions of Theorem 10.4.2 and depends on E, 
although it has an upper bound independent of E. The same is true for the 
upper bound M of the ratio corresponding to (10.4.2). 

We now determine the trigonometric polynomial g2(8) such that, for !2(8) -
{g2(8)}-\ 

(10.4.28) 1+ .. log !2(8) - ~og ](e) de < ~. 
_,. • 

2 
8 a 4 

sm -
2

-

We observe that max !2(8) is less than a number independent of E. (Here we 
use the independence of M of E.) 

On the other hand, let f(O) be identical with f(O) except in certain closed 
non-overlapping intervals around e., v = 1, 2, · · · , l, not containing a, and 
such that in these intervals 

(10.4.29) J(z - z1)(z - z2) · · · (z - z1)l" ~ I (z - z1)"1(z - z2)"2 · · · (z - z1)"1 I, 
z = ei8

• In these intervals we define 

(10.4.30) j(O) = 4>(8) J(z - z1)(z - z2) · · · (z - z1)i", 

Furthermore, assume 

1+ .. log f(O) - log /(8) dO < ~. 
-r • 2 () - a 4 

sm -
2

-
(10.4.31) 

Then f(O) ~ f(O), and f(O) = f(O) near 8 = a. Moreover, 

(10.4.32) f(O) i(z - z1)(z - z2) · · · (z - z1)i-", 

i8 z = e . 

i8 
z = e , 
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satisfies the conditions of Theorem 10.4.2 and depends on E, although it 
has a positive lower bound independent of E; the same is true for the (not 
necessarily positive) lower bound 'Itt of the ratio corresponding to (10.4.2). 

We determine a positive trigonometric polynomial g1(()) such that 

(10.4.33) \gl(e) l-1 ~ j(e) I (z - Z1)(z - z2) ... (z - zl) r", 

with equality for () = a, and 

i8 z = e , 

1+ .. log lf(e) J(z- z1)(z- z2) · · · (z- zl)r"l -log (gl(e) l-1 d E (10.4.34) () < -. 
-.- • 2 () - a 4 sm -

2
-

Then, using the notation (10.4.24), we obtain 

c1o.4.35) 1+.- log j(e) --: log f1Ce) de < ~. 
-.- • 2 () - a 4 s1n -

2
-

Addition of the inequalities (10.4.27), (10.4.28), (10.4.31), and (10.4.35) es
tablishes (10.4.26). We observe that min (g1(e) l-1 is greater than a positive 
constant independent of E. 

The assertion concerning D(f1 ; z), D(f; z), and D(f2 ; z) follows as in Theorem 
10.4.3. 

(5) THEOREM 10.4.5. Let f(e) be an even function which satisfies the conditions 
of Theorem 10.4.1; assume that 4>(()) = 4>(- e), and that all non-real "zeros" z. of f(e) 
occur in conjugate pairs with the same "multiplicity." Also, let 0 < a < 1r. 

Then the functions f1(e) and f2(e) of Theorem 10.4.4 can be chosen as even func
tions, and we have instead of (10.4.26) 

(10.4.36) ( .. lo~ f2(e) - log f)1~e) d() < E. 

}o cos () - cos a 

An analogous supplement can be made to Theorem 10.4.2. Previous proofs 
need only a slight modification. Instead of the first ratio in (10.4.12), consider 

{f(e)) - 1 
- c - d (cos() - cos a) 

(10.4.37) (cos() - cos a)2 

c = {!(a))-\ d sin a = f' (a) {!(a)) - 2
• 

(10.4.37) 
(cos() - cos a)2 

is bounded from 0 and oo if 0 ;:£ () ;:£ 1r. 

-·---·---·---------- ·-------r-----------,r---------------······ 
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CHAPTER XI 

POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE 

A weight function on a given curve having been assigned, we may extend the 
definition of polynomials orthogonal on a real interval to the more general 
complex domain. The corresponding polynomials are then orthogonal with 
this given weight function on the specified curve in the complex plane 
(Chapter XVI). 

Of all the special instances, that of a circle is most interesting, and in the 
present chapter we shall consider the polynomials orthogonal on the unit circle 
with a given weight function. It will be seen that these polynomials possess 
properties which are in some respects simpler than those derived for poly
nomials orthogonal on a real interval. Moreover, there exists a relation between 
the case of the circle and that of a real, finite interval which enables us to 
apply certain results of this chapter to polynomials orthogonal on a real interval. 

Concerning §§11.1-11.4 see Szego 4. See also Grenander-Szego 1, Chapter 2. 

11.1. Definition; preliminaries 

(1) Let f(O) be a non-negative func,tion of period 211", integrable on [ -11", +11"] 
in Lebesgue's sense, and assume 

(11.1.1) 
(h 

)_" f(e) de > o. 

We introduce the Fourier constants 

(11.1.2) Cn = 
2
1 {~" j(O)e-inB de, 
11" J-7r n = 0, ± 1, ±2, · · · . 

Obviously, C-n = Cn, so that the matrix of "Toeplitz' type" 

(11.1.3) v, J.L = 0, 1, 2, · · · , n, 

is Hermitian.. The corresponding Hermitian form 

n n 1 1+" (11.1.4) Hn = L L Cv-p.Up.il• = -
2 

j(O) I Uo + U1Z + UzZ2 + · · · + UnZn 1

2 
dO, 

v=O p.-0 11" -1r 

where z - ei8
, is positive definite and has the positive determinant 

(11:1.5) v, J.L = 0, 1, 2, · · · , n. 

(2) DEFINITION. If we orthogonalize the system 57 

&r Cf. the last remark in §2.1 ( 4). 
287 
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(11.1.6) ~. 0 1 2 z=e ,n=,, ,···, 

we obtain a system of polynomials 

(11.1. 7) ~(z), c1>1(z), cf>2(z), · · · , cl>n(z), · · · 

with the following properties: 
(a) cl>n(z) is a polynomial of precise degree n in which the coefficient of z" is real 

and positive; 
(b) the system l cl>n ( z) l is or.thonormal ; that is, 

(1_1.1.8) 11+,. -
271' _,. f(e)cpn(z)cj>m(z) de = Onm, iB 

z = e ; n, m = 0, 1, 2, · · · . 

Moreover, the system ( cl>n(z) l is uniquely determined by conditions (a) and (b). 
If f(e) is an even function, that ·is, if f(e) = f(- e), the coefficients of cl>n(z) 
are real. 

(3) We show (see §2.2 (2)) that 

Cn-1 Cn-2 Cn-3 C-1 

CoZ - C-t 

......................................... 
Cn-1 Z - Cn-2 Cn-2 Z - Cn-3 

ct>o(z) = nc;t' n = 1, 2, 3, · · ·. 

The coefficient of zn in cl>n(z) is 

(11.1.10) 

The analogues of the representations (2.2.10) and (2.2.11) can also be readily 
derived. 

(4) We pass now to considerations corresponding to those of (1), (2), and 
(4) of §3.1. 

THEOREM 11.1.1. Let F(ei6
) be a given measurable function for which 

(11.1.11) 

exists. The weighted quadratic deviation 

(11.1.12) 1 1+.-271' ~. f(e) I F(z) - p(z) 1
2 
de, 

i6 z = e , 

-----------------------------------------------··········-·· 
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where p(z) ranges over the set of all 11"n, is a minimum if p(z) is the nth partial 
sum of the Fourier expansion 

(11.1.13) 1 (+" 
Pn = 2; J-1r f(e)F(z)4>n\z) de, i6 

z = e ; n = 0, 1, 2, • • •• 

As a ready consequence, there follows Bessel's inequality 

(11.1.14) I Fo 1

2 + I F1l
2 + I F2l

2 + · · · + I Fn 1
2 + · · · ~ 2~ i:"f(e) IF(e'8) 1

2 de. 

In addition, Parseval's formula (that is, (11.1.14) with the equality sign) holds 
if one of the following sets of conditions is satisfied: 

(i) F(z) is regular and bounded for I z I < 1. 
(ii) f(e) is bounded and F(z) is of the class H2 (see §10.1); 

Concerning a more general condition, see Smirnoff 2, p. 363. 
A consequence of Theorem 11.1.1 is the following: 

THEOREM 11.1.2. The polynomial K-;;14>n(z) minimizes the integral 

(11.1.15) iB z = e , 

if zn + a1zn-
1 + · · · + an ranges over the set of all 11"n with the highest term zn. 

The minimum is K-;;
2

• 

11.2. Example 

An important special case in which the system ( 4>n(z) l can be calculated 
explicitly, except for a finite number of terms, is 

(11.2.1) f(e) = {g(e)l-\ 

where g(e) is a positive trigonometric polynomial of degree m. 

2 ·e 
THEOREM 11.2. Let f(e) be defined by (11.2.1), and let g(e) = I h(z) I , z = e', 

be the normalized representation of g( e) defined in Theorem 1.2.2. Using the 
notation of (1.12.4), we have 

(11.2.2) 4>n(z) = zn-mh*(z) = znh(z-1
), n=m m+1 m+2 ···· J ' J 

Evidently, condition (a) of the definition in §11.1 (2) is satisfied. In order 
to show the orthogonality, let p(z) be an arbitrary 11"n_1 • Then, if z = e'8, 

we have, according to Cauchy's theorem, 

1 1+" () ( )- 1 J {h( )-( -1))-1 n-( -1) ( -1)dz - f e 4>n z p(z) de = -2 z h z z h z p z --;-
211" -r 11" lzl=-1 tZ 

1 fr zn-1 p(z--,1) 
=- dz = 0. 

27ri 1~1-1 h(z) 
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In addition 

2~ i:"f(O) I<Pn(z) l
2

d8 = 2
1

71" J:" lh(z) l-2 lznh(z-1
) l

2 de = 1. 

The simplest case is f(O) = 1. Then 

(11.2.3) n = 0, 1, 2, .. · . 

Concerning other cases in which an explicit calculation of <Pn(z) is possible, 
we refer to Szego 4, pp. 187-188; and 12, pp. 245-247. See also (11.5.3) and 
(11.5.4). ' 

11.3. A maximum problem 

Because of the similarity between this problem and that treated in §3.1 (3), 
we can omit details. 

(1) THEOREM 11.3.1. Let p(z) be an arbitrary 11"n subject to the condition 

(11.3.1) 

For a fixed value of a, the maximum of I p(a) )2 is attained if 

(11.3.2) p(z) = dsn(a, a) l-tsn(a, z), 

where 

n 

(11.3.3) Sn(a, z) = L ;p.(a)q,.(z). 
•-0 

The maximum itself is sn(a, a). 

iO z = e . 

IE I = 1, 

These "kernel polynomials" sn(a, z) can be used for the representation of the 
partial sums of the expansion (11.1.13) in form of integrals (see (3.1.11)). 

(2) THEOREM 11.3.2. For a ~ 0 the polynomials (11.3.2) satisfy the following 
identity: 

(11.3.4) ( ) ( - ) n c--1 --1) Sn a, z = az Sn z, , a . 

Furthermore, 

n 

(11.3.5) Sn(O, z) == L cp.(O)cj>.(z) = Kn Zn i/>n(z-1
) = Kn cj>: (z 

v=O 

where Kn has the same meaning as in (11.1.10); finally 

n 

(11.3.6) Sn(O, 0) = L I cp.(O) 1
2 = K! = Dn-d Dn . 

v=O 

The last formula also holds for n = 0 if D_1 = 1. 
Introducing p*(z) = r(z) or p(z) = r*(z), we have 
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(11.3. 7) 

and, for a ~ 0, 

(11.3.8) 

A MAXTMU::\1 PROBLE::\f 2!) 1 

iB z = e , 

This yields sn(a, a) = I a l
2nsn(a-r, a·- 1

), that is, (11.3.4) for z = a, and also 

(11.3.9) 

where e is a proper constant with I e I = 1. (The symbol * refers to the 
variable z.) On combining this with the first result, we obtain (11.3.4). In 
the limiting ca~.;;e a = 0, the identity (11.3.5) arises, from which, for z = 0, 
(11.3.6) follows. 

(3) THEOREM 11.3.3. Let log j(e) be integrable in Lebesgue's sense. 58 Then 
the following limits exist: 

(11.3.10) 

(11.3.11) 

(11.3.12) 

(11.3.13) 

00 

lim sn(a, a) = L I cp.(a) 1
2

, 
n-+oo v=O 

00 

lim Sn(a, z) = L cj>.(a)cj>.(z), 
n-+oo v=O 

lim Kn = K > 0, lim z-n cj>,.(z), 
n-+0 

lim cl>n(z) = 0, 
n-+oo 

I a I < 1, 

lal<1, lzl<1, 

I z I> 1, 

I z I < 1. 

We first consider the special case j(e) s J-L > 0, assuming I a I < 1. Let 
p(z) have the same meaning as in (11.3.2). Then we have, because of Cauchy's 
inequality (see (7.1.4)), 

1 1 1+"" I p(a) 1
2 ~ ---- - I p(z) 1

2 de 
(11.3.14) 1 - I a 12 271" _,. 

-1 1 1+"" ~ _J-L_I_I~ -
2 

j(e) I p(z) 12 de = 
1 - a 71" _,. 

-1 
J-L i8 z = e ; 

consequently, the same inequality holds for n ---+ a:;, Thus (11.3.10) and 
(11.3.11) are established in this case. For a = 0, (11.3.6) and (11.3.5) show 
that the limits (11.3.12) exist; (11.3.13) follows from the convergence of 
(11.3.10). 

In order to prove the statement generally, we first observe that the maximum 
in the problem of Theorem 11.3.1 is attained for a polynomial p(z) which is 
different from zero for I z I < 1; here again I a I < 1. In fact, if Zo is a zero of 
p(z), I zo I < 1, then 

bB cr. §10.2 (2). 
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__!__ 1+ .. f(O) I p(z) 1_- z;; z 12 dO = 1; 
271" _,. z - Zo I 

- 2 
2 1 - zoa; I p(a) I < p(a) i , 

a- Zo 1 

Now assume a = rei<P, 0 ~ r < 1, z = e;9
; according to (1.11.3), 

[XI] 

i9 z = e . 

1 = 2
1

71" 1:,. f(O) I p(z) 1

2 
dO ~ : + ~ 2

1
71" [:,. f(O) I p(z) 1

2

1 _ 2r c~s Co: 4>) + r2 dO 

2::: -- exp - log f(O) dO 1 - r { 1 1+.- 1 - r
2 

} 

- 1 + r 21r _,. 1 - 2r cos ( 0 - 4>) + r2 

{ 
1 1+.- 1 

2 
} ·exp -

2 
log lp(z) 1

2

1 2 
C r ) 2 d0. 

1r -.. - r cos 0 - 4> + r 

The last integral is Poisson's integral of the harmonic function 2~ log [p(z)], 
which is regular for I z I < 1. The last exponential factor is therefore equal to 

exp 12m log (p(a)] l = I p(a) 12 ; 

this establishes the boundedness of max I p(a) 1
2 

= sn(a, a). 
The further formulas follow as before. Later (§12.3 (6)) we shaH calculate 

the limits (11.3.10)-(11.3.12). 

11.4. Algebraic properties 

(1) Let a be fixed, I a I < 1. The above considerations show that the zeros 
of sn(a, z) lie in I z I ~ 1. The same is true, of course, for I a I ~ 1. From 
(11.3.5) we find that the zeros of 4>n(z) lie in I z I ~ 1. 

We now prove the following more informative statement: 

THEOREM 11.4.1. For I a I < 1 the zeros of sn(a, z) lie in I z I > I ,for I a I > 1 
in I z I < 1, and for I a I = 1 on I z I = 1. The zeros of 4>n(z) lie in I z I < 1. 

Let z0 be an arbitrary zero of sn(a, z). If we put 

(11.4.1) fl(O) = f(O) I Sn(a, _z) 12, 
z- Zo 

and consider all the linear functions p(z) with 

(11.4.2) 

i9 z = e , 

i9 z = e , 

it is clear that max I p(a) 1
2 is attained for p(z) = const .. (z - zo). It therefore 

suffices to discuss the case n = 1. From (11.1.9) 

(11.4.3) 
s1(a, z) = 4>o(a) 4>o(z) + 4>I(a) 4>1(z) 

with the zero 

(11.4.4) 
C1 ii - Co z = ---- ····- . 
Co a - C1 

---------·--·-·-·--··---··· 
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This establishes the statement concerning sn(a, z) since I c1 I < c0 (se~ (11.1.2) ). 
The statement concerning 4>n(z) follows from (11.3.5). 

(2) THEOREM 11.4.2. We have the identity 

sn(a, z) = i: 4>v(a)4>.(z) = cf;~4>:+1(z) - ~-;:.-;;(a)4>n+l(z) 
v=O 1 - az 

(11.4.5) 

and the "recurrence formulas" 

(11.4.6) 

(11.4.7) 

KnZ4>n(z) = Kn+14>n+l(z) - 4>n+l(0)4>:+1(z), 

Kn4>n+l(z) = Kn+IZ4>n(z) + 4>n+l(0)4>:(z). 

The first identity corresponds, in some respects, to the Christoffel-Darboux 
formula (3.2.3). The proof can be given along the same line as the proof in 
§3.2 (3). As in the case of a real interval, we can characterize sn(a, z) by the 
equation 

(11.4.8) 
1 [+" 

27r )_, f(O)sn(a, z)p(z) dO = p(a), 

which holds if p(z) is an arbitrary 7rn . But 

__!__ 1+" f(O) ~~+l(a)4>:+1(z) - _4>n+l(a)4>n+:~! P(Z) dO 
21r _, 1 - az 

= p(a) __!__ 1+" f(O) ~~a)4>:+1(z) - -~~~-l~_f!_)4>n+_1C~! dO 
(11.4.9) 27r -rr 1 - az 

i9 z = e , 

1
+ -- -

1 " - ------ - * --- p(z) - p(a) + -2 .f(O) 14>~+1(a)4>n+l(z) - 4>n+l(a)4>n+l(z) l --
1
--_ - · dO, 1r _, - az 

i9 z = e . 

The last integral vanishes, for if we write p(z) - p(a) = (z - a)r(z), we have 

(11.4.10) 

Therefore, 

(11.4.11) 

,e 
z = e . 

where c is independent of <:. Interchanging a and z and taking the conjugate 
complex values of both sides, we see that c is also independent of a. Writing 
z = a = 0, we obtain 

n 

(11.4.12) 2 
Kn+l - l4>n+l(O) 1

2 = C L l4>v(O) j
2

, 
v=O 

so that c = 1, by (11.3.6). 

-----·-·----···· 
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Comparison of the coefficients of an in (11.4.5) leads to (11.4.6). By taking 
the reciprocal polynomials of both sides of (11.4.6), and eliminating 4>:+1(z), 
we find (11.4.7). 

11.5. Relation to polynomials orthogonal on a real interval 

(1) THEOREM 11.5. Let w(x) be a weight function on the interval -1 ~ x ~ + 1, 
and let 

(11.5.1) j(e) = w(cos 0) I sin () ). 

Further let IPn(x) l and I qn(x) l be the orthonormal sets of polynomials which 
belong respectively to w(x) and (1 - x

2)w(x) in -1 ~ x ~ + 1, and (<Pn(z) l the 
orthonormal set associated with f(O) on z = e'9

• Then, on writing x = Hz+ z-1), 

we have for n ~ 1 

Pn(x) = (27r)-! {1 + 4>2n(O)}-! (z-n cP2n(z) + Zn cP2n(Z-1)} 
K2n 

See Szego 6, pp. 204-206. The second equation follows from the first one, 
and similarly, the fourth follows from the third, by means of (11.4.7). The 
function f(O) is even; so the polynomials <Pn(z) have real coefficients. 

The constant factors in these equations are different from zero (see (11.3.6)). 
These formulas, except the second one, hold also for n = 0. 
(2) The right member of the first equation represents a 7rn in x; the property 

of orthogonality can be expressed in the form 

1
+,. 

_ .. Pn(cos 0) cos vO·w(cos 0) I sin ()I dO = 0; 

i9 or, for z = e , 

This is the case because 

and Ci>2n(z) = cP2n(z). Moreover, 

v = 0, 1, 2, . · · , n - 1. 
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For the third formula the proof is similar, except that it is convenient now to 
express the orthogonality in the form 

1+,. ( ) sin (v + 1)0 . 2 ( ) I . I qn cos 8 ----;----- sm O·w cos 0 sm 0 dO = 0 
-r Sin 0 · ' 

v=012 ... n-1 ' ' ' . ' . 
A new proof for the formulas (2.6.2) and (2.6.3) can be derived from the first 

and third formulas in (11.5.2) by use of (11.2.2). 
If in the last two equations of (11.5.2) we replace n by n - 1, we can express 

z-"¢2n(z) and z-"+ 1¢zn-J(z) as linear combinations of Pn(x) and (l - X2
) 

112qn-l(x), 
where x = Hz+ z-1

). (See Szego 18, pp. 9-11.) These relations enable us to 
calculate the polynomials ¢n(z) associated with 

(11.5.3) f(O) = I (1 - z)..,(1 + z) 8
j

2 = 2..,H(1 - cos Of(1 + cos 0) 8
, z = e;9

, 

in terms of Jacobi polynomials. vVe find 

z-n ¢2n(z) = AP~..,--!.8-!l I Hz + z-1
) l + B(z - z-1)P~~i!.H!l I Hz+ Z-

1
) l, 

(11.5.4) z-n+1¢2n-1(z) = CP~-y-!.8-!ll Hz + Z-
1
) l 

+ D(z - z-1)P~~i!,H!ll Hz - z-1
) l, 

where A, B, C, Dare proper real constants. 

·----------·----------------------------·----·-···. 



CHAPTER XII 

ASYl\1PTOTIC PROPERTIES OF GENERAL ORTHOGONAL 
POL YN0:\1IALS 

The following sections deal with the asymptotic properties of polynomials 
orthogonal on the unit circle, or on a real, finite interval, when the degree 
n of these polynomials becomes infinite. In both cases the weight function 
will be restricted merely by certain conditions of continuity and boundedness. 

T\vo important problems appear in connection \Vith polynomials orthogonal 
on the unit circle. These are (a) the asymptotic behavior exterior to the unit 
circle, (h) the behavior on the unit circle itself. For a weight function iden
tically unity, the system in question is I zn j. This latter instance is typical to a 
certain extent. 

The corresponding problem'-> for polynomials orthogonal on a finite segment 
are (a') the asymptotic behavior in the complex plane cut along the given seg
ment, (b') the corresponding question on the segment itself. (See Chapter 
VIII.) \Ve give the following illustration as characteristic: 

Problems (a) and (a') are simpler, and relative to them comparatively general 
results will be obtained. It is only recently that problems (b) and (b'), which 
are much more difficult than (a) and (a'), have been treated by S. Bernstein 
and G. Szego. We remark that the weight function conditions in case (b) are 
more restrictive than those in case (a). A similar comment may be made 
concerning (a') and (b'). 

The results of Chapter X are applied in discussing the above problems. Our 
investigation is first concerned with questions (a) and (a'). As regards (b') 
we may state that S. Bernstein's main result is obtained in a new way which 
is shorter than his original argument. Then there follows Szego's older method 
as applied to (b'). 

12.1. Results 

(1) Let G denote the class of functions f(O) ~ 0, defined and measurable in 
[- 1r, +1r], for which the integrals 

(12.1.1) J_:" \log f( e) I dO 

exist with the first integral supposed positive. With such a function f(O) we 
associated in §10.2 a uniquely determined analytic function D(f; z) = D(z), 
regular and nonzero for j z I < 1 with D(O) > 0. The conditions for the class G 
imply the existence of the "geometric mean" ®(f) = (D(O) l2 of f(O). 

296 
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THEOREM 12.1.1 (Asymptotic formula for the polynomials orthogonal on the 
unit circle, considered for z exterior to the unit circle). Let f( 0), belonging to the 
class 0, be a weight function on the unit circle z = e;9

• If l<t>n(z)} denotes the 
corresponding orthonormal set of polynomials, then in the exten:or of the unit circle 

(12.1.~~) I z I> L 

This holds uniformly for I z I ~ R > 1. 

THEOREM 12.1.2 (Asymptotic formula for the polynomials orthogonal on the 
segment [-1, +1], considered for x exterior to this segment). Let w(x) be a 
weight function on the interval -1 ~ x ~ + 1 such that w( cos 0) I sin 0 I = f( 0) 
belongs to the class G. If D(f; z) = D(z) denotes the analytic function corresponding 
to f( 0) in the sense mentioned, the orthonormal polynomials I Pn (x) l, associated with 
w(x), possess the asymptotic formula 

(12.1.3) 

Here x is in the complex plane cut along the real segment [- 1, + 1], and x = 
Hz + z-1

), where I z I > 1. Formula (12.1.3) holds uniformly for I z I ~ R > 1. 

(2) In order to obtain the deeper asymptotic formulas valid on I z·l = 1 and 
on -1 ~ x ~ + 1, respectively, we must impose certain further restrictions on 
f(O) and w(x). 

THEOREM 12.1.3 (Asymptotic formula for the polynomials orthogonal on the 
unit circle, considered for z on the unit circle). Let f(O) be a positive weight 
function on the unit circle, which satisfies the Lipschitz-Dini condition 

(12.1.4) I f(O + o) - f(O) I < L I logo I -1->-, 

where Land X are fixed positive numbers. Then we have, for I z I = 1, 

(12.1.5) 

where limn-+oo En(z) = 0, uniformly for I z \ = 1. More precisely, 

(12.1.6) 

the positive constant C depends on L, X, and the minimum and maximum of f(O). 

THEOREM 12.1.4 (Asymptotic formula for the polynomials orthogonal on the 
segment [ -1, + 1], considered for x on this segment). Let w(x) be a weight 
function on the interval - 1 ~ x ~ + 1, x = cos 0, such that the function 
w(cos 0) I sin 0 I = f(O) sat?:sfies the conditions of Theorem 12.1.3. Putting 

(12.1.7) 

we have uniformly on the segment -1 ~ x ~ + 1 or 0 ~ 0 ~ 1r, x = cos 0, 

(12.1.8) 
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The constant factor in the 0-term depends only on L, X, and the minimum and 
maximum of f(O). 

(3) Finally, we prove two theorems similar to Theorems 12.1.3 and 12.1.4 
under conditions possessing a kind of "local" character. 

THEOREM 12.1.5 (Asymptotic formula for the polynomials orthogonal on the 
unit circle for I z I = 1, and with weight function subject to a "local" condition). 
Letf(O) satisfy the conditions of Theorem 10.4.1. Then (12.1.5) holds for z = a = 
eia, in the less informative form 

(12.1. 9) En--+ 0. 

From this we obtain the following theorem of "local" character, which cor
responds to Theorem 12.1.4: 

THEOREM 12.1.6 (Asymptotic formula for the polynomials orthogonal on the 
segment [ -1, + 1] for x on this segment, and with weight function restricted 
by a "local" condition). Let w(x) be integrable in Riemann's sense, and let it 
have the form 

(12.1.10) w(x) = t(x) I x - X1 I Tt I x - X2 I T 2 
• • • I x - xz I TZ, 

where 0 < A ~ t(x) ~ B, and -1 ~ x1 < X2 < · · · < xz ~ 1, r. > 0, v = 1, 2, 
... , l. 

59 
Further let w(.x) be differentiable at the fixed point x = ~' where -1 < ~ 

< + 1, and~ rf x., v = 1, 2, · · · , l, and let 

(12.1.11) 
w(x) - w(~) - (x - ~)w'(~) 

(x - ~)2 

be bounded if x is near to ~. 
Then (12.1.8) holds in the less informative form 

(1 - ~2) 1 (w(~;)) 1 pn(~) = (2/-rr} cos (na + 'Y(a) l + En, 
(12.1.12) 

~ = cos a, 0 < a < 1T', lim En = 0, 

where 'Y(a) has the same meaning as in (12.1.7). 

12.2. Remarks 

n-+oo 

(1) Theorems 12.1.2, 12.1.4, and 12.1.6 follow readily from 12.1.1, 12.1.3, 
and 12.1.5, respectively. We observe that D(z) = D(z) in (12.1.3); that is, 
D(z) is in this case a "real" function. 

In Theorems 12.1.3-12.1.6 the function D(z) has boundary values at the point 
considered (in Theorems 12.1.3 and 12.1.4 even continuous boundary values 
on the whole unit circle I z I = 1). This follows from the considerations of 
Chapter X. 

The important function 'Y(O), defined by (12.1.7), is completely determined 

6g For x1 = -1 it suffices to assume r1 ~ -1/2; similarly for xz = + 1. 
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save for an integral multiple of 21r. If we choose (see (10.3.9)) 

1 [+" 0 - t 
(12.2.1) 'Y(O) = 

4
7r )_, [log j(t) - log f(O)] cot -

2
- dt, 

then 'Y(O) is continuous. In the cases occurring in Theorems 12.1.4 and 12.1.6, 
'Y(O) can easily be expressed in terms of the weight function w(x). Let 

(12.2.2) f(O) == w(cos 0) I sin 0 I = W(cos 0). 

From (10.3.9) we obtain (seeS. Bernstein 2, p. 132), 

1 lh 0 - t 'Y(O) = 
4
- Pog W(cos t) - log W(cos 0) l cot--- dt 7r _, . 2 

(12.2.3) 

= _.!_ {1r l!og W(cos t)- log W(cosO)l {cot 0-~-t +cot O_±_t}dt 
47r }o 2 2 

1 11r ~nO = -
2 

(log W(cos t) - log W(cos 0) l · dt 
7r 0 cos t - cos 0 

= _.!_ (+1 log W(~) - log ~~x] (1 - x2)i d~ x = cos 0. 
27r J-1 ~ - X 1 - ~2 ' 

In this case 

(12.2.4) 'Y(- 0) = -')'(0). 

For the functions I (f(0)) 1<t>n(z) l, z = ei9
, n = 0, 1, 2, ... , which form an 

orthonormal system in the usual sense (see the Definition in §11.1 (2)), we 
obtain from (12.1.5) the simple asymptotic expression zneir<e> = /I nHr<e> l. 

(2) Theorem 12.1.1 is a direct consequence of Theorem 12.1.3 provided con
dition (12.1.4) is satisfied. In fact, the function z -n<Pn(z) - I D(z - 1

) l-1 is regular 
for I z I > 1 and continuous for I z I ~ 1. In this special case, (12.1.2) follows 
in the more informative form 

(12.2.5) 

uniformly for I z I ~ 1. 
(3) Concerning Theorems 12.1.1 and 12.1.2, see Szego 6. Under more re

strictive conditions than those in Theorem 12.1.2, Faber (4) proved 

(12.2.6) lim I Pn(X) l11
n = I Z I , I z I > L 

n-+oo 

This less informative statement suffices for various applications, for instance, 
for the purposes of §12.7 (2) and (3). Theorem 12.1.3 is new, while 12.1.4 is 
due to S. Bernstein (2). The proofs of Theorems 12.1.3 and 12.1.4, given in 
§12.4 and 12.5 (2), respectively, are based essentially on an idea of S. Bernstein, 
used in his original proof, and on another idea similar to that used in connection 
with the method of LiouviHe-Stekloff (§8.61). As mentioned, this arrange
ment seems to be simpler than S. Bernstein's original line of argument. The-
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orem 12.1.51 and Theorem 12.1.6 which is its consequence, are due to Szego (8). 
The conditions required in the present treatment are slightly more general than 
those in the paper just cited. 

S. Bernstein assumes (2, p. 132, (18)) 

I W(x + o) - W(x) I <L I log 0 l-1->.; -1 ~ X ~ +1, -1 ~ X+ 0 ~ +1, 

instead of (12.1.4). These conditions are, however, equivalent since 

log {I cos fh - cos fJ2I-1} 
log II o1 - o2 l-1} 

is bounded from 0 and oo if fJ1 and fJ2 are arbitrary in [0, 1r], I fJ1 - fJ2 I ~ !.60 

12.3. Proof of Theorem 12.1.1; applications 

(1) Before we proceed to this proof, let us consider the special case f(O) 
(g(fJ) }-1, where g(fJ) is a positive trigonometric polynomial of degree m. Let 
h(z) have the same meaning as in §10.2 (1). According to the second formula 
in (10.2.12) we have D(f; z) = {h(z) }-1. On the other hand, by (11.2.2) 

(12.3.1) 4>n(z) = znh(z-1
) = zn(D(z-1

)}-\ n ~ m. 

The limit relation (12.1.2) can therefore be replaced by one of equality in this case 
provided n ~ m. 

(2) Now let f(O) again be an arbitrary function satisfying the conditions of 
Theorem 12.1.1. Let p(z) = zn + a1zn-1 + · . · + an be an arbitrary 7rn with 
the highest term zn. According to Theorem 11.1.2, the minimum P.n(f) of 

(12.3.2) 1 1+,. 
27r _,. f(O) I p(z) 12 dfJ, 

is K.n - 2
, attained for p(z) = K-;:

14>n(z). 

i9 z = e , 

LEMMA. Let f(O) satisfy the conditions of Theorem 12.1.1, and let P.n(f) have 
the previous meaning. Then 

(12:.3.3) lim P.nCf) = @(f), 

where @(f) is the "geometric mean" off( fJ). 61 

If p(z) is any one of the polynomials considered, then zp(z) is a 7rn+1 with the 
highest term zn+l, and I zp(z) 12 = I p(z) I 2 if z = ci9

• Thus Ji.n+1(f) ~ P.nCf). 
(This follows also from (11.3.6).) Consequently, limn ..... oo P.n(f) = p.(f) exists, 
and p.(f) ~ 0. We must show that p.(f) = ®(f). · 

(3) Using the inequality for the arithmetic and geometric means, we have 
'9 for z = et, 

60 If I 81 - 82 I = o, o ,;:;; 7r/2, is given, the maximum and minimum of I cos 81 - cos 82l 

are 2 sin (o/2) and 2 sin 2 (o/2), respectively. 
ot Cf. §10.2. 
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1 [+" { 1 [+1( } 
27r )_, f(O) I p(z) 1

2 
dO ~ @(f) exp 27r )_, log I p(z) 1

2 
dO 

(12.3.4) 

= @(f) exp {2
1

71" L:" log I p*(z) 1
2 

dO} ~ @(f) I p*(O) 1
2 

= @(f), 

according to Jensen's theorem (see, for example, Titchmarsh 1, p. 125). There
fore, p.,.(f) ~@(f), and p.(f) ~@(f). 

On the other hand, let T(O) be a non-negative trigonometric polynomial of 
degree k, not vanishing identically, and let T(O) = I P(ei9

) I 2 be the correspond
ing normalized representation in the sense of Theorem 1.2.2. Then @(T) -
(P(O) \2

• The highest coefficient of !P(O) l-1P*(z) is 1, so that 

®(f) ~ p.(f) ~ J.Lk(f) ~ 2~ i:" f(O) I !P(O) l-1
P*(z) 12 

dO 

(12.3.5) 

= (@(T)\-
1 

2
1

71" £:" f(O)T(O)dO, 

By Weierstrass' theorem, the inequality 

(12.3.6) 

i9 z = e . 

holds for an.arbitrary positive and continuous function T(O) which has the period 
21r. F'or the special case in which f(O) is positive and continuous, the lemma 
follows from this by writing T(O) = lf(O) l-1

• 

(4) Now in the general case assume first f(O) ~ p. > 0, and let E be an arbi
trary positive number. By Theorem 1.5.3;. we can find a trigonometric poly
nomial 4>( 0) such that 4>( 0) ~ p. and 

(12.3.7) 
1 [+" 

2; )_, I f(O) - 4>(0) I dO < €. 

We then have 

(12.3.8) log 4>( 0) - log f( 0) ~ p. - 1 I 4>( 0) - f( 0) I; 
hence ®(4>) ~ @(f)e"'-

1
'. In (12.3.6) we write T(O) = (4>(0) l-1

• Then 

(12.3.9) 12
1

71" £:" f(O) T(O) dO - 11 ~ J1. -
1 

2
1

71" £:" I f(O) - 4>(0) I dO < J1. -
1
€, 

so that 

(12.3.1 0) 

whence, since E is arbitrary, p.(f) = @(f). 
In the general case we use the obvious inequality p.(f) ~ p.(f + t:) = 

@(j + t:), E > 0, from which p.(f) = @(f) follows again. This establishes the 
proof of the lemma. 
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(.5) For the proof of Theorem 12.1.1 let us now consider the function 

(12.3.11) D(z)¢:(z) ·- 1 = [D(O)Kn - 1] + dnlZ + dn2Z2 + · · · , 
which is regular for I z I < 1. If r < 1, we have 

2
1
rr 1:" I D(rei

8
)¢: (rei

8
) - 1 1

2 
dO = 

2
1
rr 1:" I D(rei8

) 1
2 I¢: (rei8

) 1
2 dO 

(12.3.12) 

+1)- 2ffi {2
1
rr i:" D(rei8)¢:(re;8

) do} 

The third term is evidently -2ffi[D(O)¢:(o)] = -2D(O)Kn. As r ~ 1 - 0, 
we obtain, by use of (10.2.9), 

r~~o 2171' 1:" I D(r/
8
)¢: (rei

8
) - 1 1

2 
dO = 2

1
71' 1:" f(O) I¢: (ei

8
) 1

2 dO + 1 - 2D(O)Kn 

1 1+" ·e 2 = 271' -r f(O) I ¢n(et) I dO + 1 - 2D(O)Kn = 2 - 2D(O)Kn 

= 2 - 2( @(f) l t l J.Ln (f) \-; j 

or in another form, 

I D(O)Kn - 1 1

2 + I dnl 1

2 + I dn2 1
2 + I dna 1

2 + • • • 
(12.8.13) ' 

= 2- 2(@(!)} (J.Ln(f)}-!. 

In consequence of Cauchy's inequality this yields, for I z I < 1, 

I dnlZ + dn2i + dnai + · · · 12 ~ (I dn1J
2 + J dn2l

2 + I dnal2 + · · ·) 
1 
~ ~~: !2 

(12.::U4) 
2 

~ 1 ~!lzl2[2- 2l®(f)}'lJ.Ln(f)r-i], 

and as n ~ oo, the last expression tends to 0 uniformly in z for I z I ~ r < 1. 
The same is true for I D(O)Kn - 1 1

2. Theorem 12.1.1 now follows at once 
from (12.3.11). 

(6) As an application we calculate the limits occurring in Theorem 11.3.3. 
The second limit in (11.8.12) is given by (12.1.2); the special case z = oo yield~ 

(12.3:.1.5) lim Kn = lim lim lz-" ¢n(z)} = lD(O)} ·l = l ®(f) r·'. 
n-+oo n-+ooz-+oo 

The same formula (12.1.2) furnishes, for I z I < 1, 

(12.3:.16) 
n-+oo n-+oo 

and a similar formula holds for ¢:+I(a), l a l < 1. Sinec ¢n+I(a) ~ 0 and 
<PnH(z) ~ 0 (sec (11.3.13)), we have from (11.4 . .5) 
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(12.3.17) • 
00 

- 1 1 1 
hm Sn(a, z) = L ¢.(a)¢.(z) = -- =-. 
n-.oo •=o 1 - az D(a) D(z) 

For instance, 

(12.3.18) I z I < 1, 

and in particular (see (11.8.6)) 

( ) ~ I (O) 12 l' 2 l' Dn-1 1 1 
12.8.19 L.., ¢. = 1m Kn = 1m -D = I D( ) 12 = ru(f) · 

P=O n-+oo n-+oo n 0 ~ 

From the last equation (12.8.15) follows again. 

12.4. Proof of Theorem 12.1.3 

(1) Let g(O) be a positive trigonometric polynomial of degree m, determined 
as in §10.8 (8), and let D(g; z) = h(z), as there, so that D(g-1

; z) = lh(z)\-1
• 

Let l ifin(z) l be the orthonormal set of polynomials associated with the weight 
function jg(O) l-1 on the unit circle. We have, by Theorem 11.2, 

(12.4.1) ifin(z) = znh(z - 1
), n ~ m. 

In close relationship with an idea of S. Bernstein (2, p. 158, (75)), we shall 
now express the polynomial ¢m(z), associated with f(O), in terms of the poly
nomials if;.(z), corresponding to lg(O) l-1

: 

m 1 [+" {m-1 } 
¢m(z) = ~a. if;.(z) = am ifim(z) + 

2
7!" )_,. jg(t) \-1 ¢m(f) ~ if;.(f)if;.(z) dt 

(12.4.2) 1 r+r {m-1 } 
= am ifim(z) + 27!" J-r [lg(t) \-

1 
- f(t)]¢m(f) ~ if;.(f)if;.(z) dt 

1 [+" {m-1 } + 27!" )_,. f(t)¢m(f) ~ if;.(f)if;.(t) dt, 
it r = e . 

The last term vanishes because of the orthogonality of ¢m(z). 
Let K"' and K: = h(O) be the highest coefficients of ¢m(z) and iflm(z), respec

tively; then a, = K,K;,-;-1 
= Km!h(O) l-1

• Furthermore, by §12.8 (2), we have 

l D(O) \
2 = @(f) ~ /J.m(f) = K-;;.

2 ~ 2~ l:" J(O) llh(O) l-1 h*(z) 12 dO 

= lh(O) l-2 2~ L:" I D(z)h(z) 12 
dO, 

and because of (10.8.12) this equals 

I h(O) l-2 11 + O[(log m)->-Jl - I D(O) \ 2 + O[(log m)->-], 

so that 

(12.4.3) Km = !D(O) l-1 + O[(log m)->.], 
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(2) We shall next try to find a bound for 

(12.4.4) max I ¢m(z) I = M = M(m). 
Jz J=1 

Using (10.3.11), we find from (12.4.2) that 

(12.4.5) M ~ 0(1) + O[(Iogm)-1->-]·M·~,~~ l:,.l%1/t.(f)ljt.(z)ldt, f = / 1
• 

Because of (11.4.5), the sum under the integral sign can be represented in 
the form 

(12.4.6) 'I: 1/t.(f)l/t.(z) = h(flh(z) - fi*Tf)h*(z) 
v=O 1 - fz 

We now show that 

(12.4.7) I:" I h(f)h(z\-=- r:)h*(z) I dt = O(log m), it r = e ' 

uniformly in z for I z I = 1. Indeed, the numerator is a 7rm in z, which vanishes 
for z = r, Therefore, the theorem of S. Bernstein (seeM. Riesz 1, especially p. 
357) furnishes O(m) for the integrand. Thus the. contribution of the arc I r- z I 
~ m-1 is 0(1), while the complementary arc 1 r - z 1 > m-1 supplies 

1 dt 
0(1) II _ I = O(log m). 

11-zJ>m-1 - rz 
Returning to (12.4.5), we obtain 

M ~ 0(1) + O[(log m)->-]M, 

so that M = 0(1). Hence, in view of (12.4.3), (12.4.1), (10.3.11), and (12.4.7), 
equation (12.4.2) yields 

(12.4.8) ¢m(z) = ll + O[(log m)->-]lzmh(z-1
) + O[(log m)-1->-]0(l)O(log m). 

The assertion of Theorem 12.1.3 now follows because of (10.3.12). The con
stants of all 0-terms of this section depend only on L, )1., and the minimum 
and maximum of f(O). 

12.5. Asymptotic formulas for the polynomials on a finite segment; proof 
of Theorems 12.1.2 and 12.1.4 

Theorems 12.1.2 and 12.1.4 follow from Theorems 12.1.1 and 12.1.3, respec
tively, almost immediately by using (11.5.2). It suffices to use the first formula. 

(l) If x and z have the same meaning as in Theorem 12.1.2, we have 

lim z-2n¢2n(z) = ID(z-1
)\-

1
; lim ¢2n(z-1

) = 0; 

(12.5.1) 
n--+oo n--.oo 

lim ¢2n(O) = 0; lim K2n = K > 0. 
n-+oo n--+oo 
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Here we took into account (12.1.2), (11.3.13), and (11.3.12). If (11.5.2) is 
taken into consideration, this establishes Theorem 12.1.2. 

(2) F'or the proof of Theorem 12.1.4, let n be an arbitrary integer, m = n - 1, 
and let g(B), as well as h(z), be determined as in §10.3 (3). Then by (12.1.5) 
and (12.1.6), 

1 1+.- 11+.-
¢,.(0) = 211" -.- ¢n(z)dB = 

2
11" -.- zn[lD(z)\-1

- h(z)]dB 
(12.5.2) + 

+ 2~ l .... zn h(z) dB + O[(log n)->'], i8 z = e . 

The first integral on the right is O[(log n) ->-], while the second vanishes, since 
h(z) is a 11"n-l. Therefore, 

(12.5.3) 

The sequence lK2nl is bounded from 0 (K~ ~I ¢o(O) 1
2 ~ lmaxf(B) l-\ accord

ing to (11.3.6)), so that 

Pn(x) = (211")-lll + O[(log n)->-]l2ffilzn[D(z)r1 + O[(log n)->-]l 

(12.5.4) 

'8 x = cos () z = e' 
' ' 

which is identical with (12.1.8). The assertjon concerning the constant of the 
0-term is immediate. 

The same result is obtained from the second formula in (11.5.2). 

12.6. The asymptotic problem under "local" conditions ; proof 
of Theorems 12.1.5 and 12.1.6 

In this section essential use is made of the approximations given in Theorems 
10.4.4 and 10.4.5. 

(1) First the following problem will be considered: 

PROBLEM. Let "J\, J.L, and a be arbitrary complex numbers, and let f(B) be an 
arbitrary weight function on the unit circle. We intend to determine the maxi
mum of 

(12.6.1) 

when p(z) ranges over the set of all 11"n which satisfy the condition 

(12.6.2) 

Concerning the special case )1. = 0, J.L = 1, see §11.3. 
We write 

i8 z = e . 

·--------·---------------------------------·--·-·-··-····-· 
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where (<Pn(z) l is the orthonormal set associated with f(B). Then .L::=o I Uv 12 

= 1, and with the notation of (11.3.3), according to Cauchy's inequality, 

(12.6.3) I Xp(O) + J.Lp(a) 12 
= I~ Uv l X<t>v(O) + J.L<t>v(a) l r ~ ~ I X<t>v(O) + J.L<t>v(a) I~ 

= I X 1
2 

Sn(O, 0) + 2ffij>,J.LSn(O, a) l + I J.L 1
2 Sn(a, a). 

The expression in the right-hand member is the desired maximum. 
(2) For clarity we now write sn(f; a, z) instead of sn(a, z) and use an analogous 

notation for the orthonormal polynomials <Pn(z) = <Pn(f; z), associated with f(B), 
and their highest coefficients Kn = Kn(f). Then the preceding solution of the 
maximum problem showR immediately that for the functions /1(8), f(B), /2(8) of 
Theorem 10.4.4, 

I X 1
2 

sn(fl ; 0, 0) + 2ffi [XJJ.Sn(fl ; 0, a) l + I J.L 1
2 sn(fl ; a, a) 

(12.6.4) ~ I X 1
2 

sn(f; 0, 0) + 2ffi ( XJ.LSn(f; 0, a) l + I J.L 12 sn(f; a, a) 

~ I X~~ Sn(f2 ; 0, 0) + 2ffi(XJ.LSn(f2 ; 0, a) l + I J.L 12 Sn(f2 ; a, a). 

In particular, we have for arbitrary a 

(12.6.5) 

Furthermore, we find 

I Sn(f; 0, a) - Sn(/2 ; 0, a) 1
2 

(12.6.6) ~ ( Sn(f; 0, 0) - sn(f2 ; 0, 0) ll sn(f; a, a) - Sn(/2 ; a, a) l 
~ ( Sn(fl ; 0, 0) - Sn(/2 ; 0, 0) \( Sn(fl ; a, a) - Sn(/2 ; a, a)\. 

Then, by virtue of (11.3.5) and (11.3.6), 

I Kn(f)<t>! (f; a) - Kn(/2)<1>: (!2 ; a) 1
2 

~ l[Kn(/1)]
2 

- [Kn(/2)]2\lsn(fl; a, a) - Sn(/2; a, a)\. 

Here <t>! denotes the polynomial reciprocal to <Pn . If I a I = 1, the same 
inequality holds for <l>n , that is 

Now, if n is sufficiently large, 

(12.6.8) 

(see Theorem 11.2). Next, according to (12.3.15), 

(12.6.9) !~ Kn(f) = (@(f)l-t = exp {- 4~ 1:" logf(B) dB}; 
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and similar relations hold for /I , f 2 • By Theorem 10.4.4, 

l @(f1)l-1 - l @(/2)\-1 

~ exp {-L r log f,(B) dD }{ exp (2: r [log f,(B) - log f, (8) 1 dD) - I} 

< l @(f)l-\e•12" - 1). 

Thus 

I• I (J ) {@(f)}f n I l-112 ~~ .... s~p ¢n ; a - @(!
2

) a lD(f2; a) 

~ (e.
12" - 1) lim sup l sn(f1; a, a) - sn(/2; a, a) l, 

n->oo 

or (see Theorem 10.4.4) 

lim sup I ¢n(f; a) - an(D(f; a) l-1 12 

n->oo 
(12.6.10) 

< e" + (e• 12" - 1) lim sup l sn(f1; a, a) - sn(f2; a, a) l, 

where e" is arbitrarily small with e. This reduces the proof of the statement to 
the discussion of the difference 

sn(f1 ; a, a) - sn(f2 ; a, a). 

(3) Let us use the abbreviation D([21
; z) = h(z). We find from (11.4.5) 

and Theorem 11.2 that 

(f 
. ) _ h({i)h(z) - (az)n+1 h(a)n(z - 1

) 
Sn 2, a, Z -

1 
_ 

- az 
(12.6.11) 

provided n exceeds the degree of lf2(0) l-1 
= g2(0); consequently using !'Hospi

tal's rule, a = ei"', we obtain 

sn(f2; a, a) == (n + 1) I h(a) 12 
- 2ffi l ah(a)h'(a) l 

(12.6.11') 
== lf2(a) l-1

{n + 1 + 2ffi [a ~(~2 / :;]}. 

( 4) The discussion of sn(f1 ; a, a) i~ slightly more complicated. From 
(10.4.24) it follows that 

(12.6.12) 

Now let p(z} range over the set of the 11"n satisfying the condition 

(12.6.13) 
1 [+" 

211" )_,. /1(0) I p(z) 1

2 
dO = 1, 

which can be written in the form 

i8 z = e , 

----------------------------------------··-····-··--··· 
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(12.6.14) 

Therefore, by Theorem 11.3.1, if l' = ul/2, 

[XII] 

i8 z = e . 

Sn+l'(g1
1
; a, a) ~max I (1 - i1a)(1 - Z:!a) · · · (1 - iza) I" I p(a) 12 

(12.6.15) 
= I (1 - i1a)(1 - i2a) · · · (1 - iza) I" sn(fl ; a, a). 

Making use of the previous result, we find that 

sn(f1; a, a) ~ I (1 - i1a)(l - ~a) · · · (1 - z1a) 1-u 
(12.6.16) 

·g1(a) {n + l' + 1 + 2ffi [a ~(~;1
1

/:~]}, 
provided n + l' exceeds the degree of g1(0). Now from (12.6.12) we have 

a D'(g1
1
; a) = a D'(f1; a) _ ~ ±, -az. 

D(g1-I; a) D(f1; a) 2 •=1 1 - z.a' 

2ffi [a D'(g11; a)] = 2ffi [a D'(f1; a)] - ~l. 
D(g11;a) D(f1;a) 2 

(12.6.17) 

Consequently, the important inequality 

(12.6.18) 

holds provided n is sufficiently large. Since f 1(a) = /2(a) = f(a), we have 

lim sup (sn(f1; a, a) - snU2; a, a)} 
n--+oo 

(12.6.19) ~ lf(a)l-12ffi {a D'(f1; a) - a D'(/2; a)} 
D(f1; a) D(f2; a) 

~ 2 lf(a)}-11D'(/I; a)_ D'(f2; a) I· 
D(f1; a) D(f2; a) 

But this expression iH arbitrarily small with e, which establishes the proof of 
Theorem 12.1.5. 

(6) Under the assumptions of Theorem 12.1.6, the function 

(12.6.20) f(O) = w(cos 0) j sin 0 I 
satisfies the conditions of Theorem 12.1.5 or of Theorem 10.4.1. Indeed, we 
have, if x. = cos o.' 0 ~ o. ~ 71', ei8

" = r.' 

(12.6.21) 
f(o) = 2-T~-T2- .. ·-q-

1 t( cos o) J (i - 1) IT (z - r .r· (z - f .r·[, 
v=l 

i8. z = e , 



[ 12.7 1 APPLICATIONS 309 

whence 

(12.6.22) 

We also observe that f(B) is differentiable at B = a and that the ratio (10.4.2) 
is bounded near B = a. 

As in §12.5, we use Theorem 11.5, particularly the first formula in (11.5.2), 
and find that K2n = K2n(f) tends to a positive limit and limn--.oo <f>2n(O) = 0. Thus 

Pn(~) = Pn(cosa) = (2/1l·)!p +en}ffi[an(D(f;a)}-1
], limen= 0. 

n--+oo 

By use of the function -y(c~) discussed in §12.2 (1) we obtain 

ffi(an\D(f:a)}-1
] = \ D(f; a) \-1 ffi(anei'Y<a>l = lf(a)l-t cos Ina+ -y(a)\. 

This establishes Theorem 12.1.6. 
The validity of the asymptotic formula (12.1.9) has been extended lately 

hy G. Freud (3). 

12.7. Applications 

(1) By means of Theorem 12.1.2 we can readily derive certain asymptotic 
formulas for the highest coefficients of the orthonormal polynomials IPn(x) \. 

THEOREM 12.7.1. Let w(x) be a weight function on the interval -1 ~ x ~ +1, 
satisfying the conditions of Theorem 12.1.2, and let 

(12.7.1) Pn(x) = kn~Xn + kn1Xn-1 + kn2Xn-2 + ... ' n = 0, 1, 2, ... ' 

be the associated orthonormal system. Then as n ---t co , 

(12.7.2) kno'""' 1r -l2n exp {- 2~ 1:1 
log w(x) (1 ~xx2)l}' 

and 

kn1""' -11' -! 2n-1 1+1 X log w(x) ( ~X 
2
)! 

-1 1 X 

(12.7 .3) { 1+1 d } 
·exp -~; -1 log w(x) (1 _xx2)i . 

Coneerning these formulas, see Shohat 2, p. 577. If the right-hand member 
of (12:1.3) vanishes, we read (12.7.3) as follows: limn--.oo 2-nkn1 = 0. There is no 
difficulty in deriving corresponding formulas for the later coefficients knv, v fixed. 
(See Problems 54, 55, 56.) From (12.7.2) we readily derive an asymptotic 
formula for Dn/Dn-1, where Dn·is the determinant of Hankel's type defined 
by (2.2.7) (see (2.2.15)). The first asymptotic investigation of these deter
minants is due to Szego (:L, p. 517). The coefficient kno was denoted by kn in 
Chapter II (see (2.2.15)). 

The proof follows immediately from (12.1.3). If 

D(z) = do + d1z + d2i + · · · , 

we have 
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I. 2-n (1 + (1 - x-2)!)-n (k k -1 k -2 ) 
n~ 2 . nO + nl X + n2 X + · · ' 

= (27r)-'(do + d1z-1 + · · · )-1 = (27r )_, (do1 - ~ x--l + ... ) . 
2d6 

Now we use Titchmarsh 1, p. 95 anrl. (10.2.10). We note that on account of 
the mean-value theorem of Gauss, 

{ 1 1+.. } { i 1+.. 11 - i I } exp - 411" -.- log I sin 0 I dO = exp - 411" -.- log --
2
-- dO 

= exp (-~log~) = 2t, 
iO z = e . 

Combining Theorem 12.7.1 with the formulas (3.2.2), we obtain for the 
coefficients An, Cn of the recurrence formula (3.2.1), 

(12.7 .4) lim An= 2, lim Cn = 1, 
n-+oo n-+oo 

provided the conditions of Theorem 12.7 .1 are satisfied. If we compare the 
terms with xn-l in (3.2.1), we obtain 

(12.7.5) 

Thus, under the same conditions, 

(12.7.6) lim Bn = 0. 
ft-+00 

The formulas (12.7.4) and (12.7.6) are noteworthy from the point of view 
of a classical theorem of Poincare on recurrence formulas (see Blumenthal 1, 
p. 16). 

(2) For the further applications we need only the less informative form (12.2.6) 
of our asymptotic formula. 

THEOREM 12.7.2 (Distribution of the zeros). Let the weight function w(x) 
satisfy the conditions of Theorem 12.1.2, and let 

(12.7 .7) X1n , X2n , · • • , Xnn 

denote the zeros of the orthogonal polynomial Pn(x). Let Xvn = cos Ovn , 0 < Ovn < 1r. 

If Ji'(O) is an arbitrary Riemann-integrable function, we have 

(12.7.8) lim F(Oln) + F(02n) + · · · + F(Onn) = 1r -1 { .. F(O) dO. 
n-+00 n }o 

Using the terminology of Weyl, we say that the values l Ovn l are equally 
distributed in the interval [0, 1r] (see P6lya-Szego 1, vol. 1, p. 70). This 
result is proved under slightly more restrictive conditions by Szego (1, p. 531). 
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It is rather remarkable that the asymptotic nature of the distribution is inde
pendent of the weight function. As a consequence of (12.7.8) we obtain the 
following result: Let [a, b] be a subinterval of [-1, -j-1], and let a = cos a, 

b = cos /3, 1r ~ a > {3 ~ 0. If N = N(n, a, b) denotes the number of the zeros 
of Pn(x) in the interval [a, b], we have 

(12.7.9) lim N(n, a, b) =a -{3. 

n-~ n 71" 

Thus the "density" of the zeros Xvn towards the end-points of the interval 
[ -1, + 1] becomes large. 

For the proof of Theorem 12.7.2 we write (12.2.6) in the following form (see 
(12.7.2)): 

n-~ 

= lim n - 1 t log 
1

\1 - ~ \ 
n-~ v=1 X 

(12.7.10) 

1 

z I -1 r,. I coso 1 = log 2x = 1r }o log 1 - x dO. 

Here I z I > 1. The last formula follows from Gauss's mean-value theorem, 
smce 

1

1 _ r + r-1 ~1 = I cr - z)(r - z! I 

z + z-1 2xz ' 

Thus, 

(12.7.11) !~~ n-
1 ~ ffi {log (1 - co:Ovn)} = 1r-

1 1" ffi {log(l -co: 
0
)} dO, 

so that (see Titchmarsh 1, p. 95) 

(12.7.12) . -1 ' k -1 k 
n 1" !~~ n £; (cos Ovn) = 1r 

0 
(cos 0) dO, 

This establishes the statement (see P6lya-Szego 1, loc. cit.). 
(3) Further applications are the following theorems: 

k = 0, 1, 2 ..... 

THEOREM 12.7.3 (Expansion of an analytic function in terms of orthogonal 
polynomials). Let the weight function w(x) satisfy the conditions of Theorem 
12.1.2, and let IPn(x) l be the associated orthonormal system of polynomials. Let 
f(x) be an analytic function regular on the segment [- 1, + 1], and let 

f(x) "'foPo(x) + f1P1(x) + · · · + fnPn(x) + · · · , 
(12.7.1:3) 1

+1 
f,. = _

1 
f(x)pn(x)w(x) dx, n = 0, 1, 2, · · ·, 

be its Fourier expansion. Let R be the sum of the semi-axes of the largest ellipse 
with foci at ±1 in the inte1·ior of which f(x) is regular. Then the Fourier expan
sion (12.7.13) is convergent (with the sum f(x)) in the interior and divergent in 
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the exterior of this ellipse. 
in the interior of the ellipse. 

The convergence is uniform on every closed set lying 
Moreover 

(12.7.14) lim inf lfn ~- 1/n = R. 
n-+oo 

THEOREM 12.7.4. Let the weight function w(x) satisfy the conditions of Theorem 
12.1.2, and let 

(12.7.15) fopo(x) + f1P1(x) + hP2(x) + · · · + fnPn(x) + · · · 
be an infinite series proceeding in terms of the orthonormal polynomials Pn(x) 
associated with w(x). Let 

(12.7.16) lim inf lfn ~- 1 /n = R. 
n-+oo 

Then the series (12.7.15) is convergent in the interior of the ellipse with foci at ±1, 
whose semi-axes have the sum R; it is divergent in the exterior of this ellipse. The 
series represents an analytic function which is regular in the interior of the ellipse 
and has at least one singular point on the ellipse itself. The expansion associated 
with this function is identical with (12.7.15). 

Thus the "ellipse of regularity" coincides with the "ellipse of convergence"; 
(12.7.14) and (12.7.16) are the analogues of the Cauchy-Hadamard formula (see 
(9.1.4)). Concerning these theorems, see Szego 1, p. 538; 6, p. 193. Theorem 
12:1.4 must be modified in an obvious way if R ;:?. 1, or if R = oo. 

As a consequence of (12.2.6), we see that the domain of convergence of series 
of type (12.7.15) is always an ellipse I z I = canst. To prove Theorem 12.7.3, 
we use Theorem 1.3.5. We can find a 7rn-1, say p(x), such that 

(12.7.17) I f(x) - p(x) I < M(R-1 + E) n. 

Here E > 0 is arbitrarily small, and M = M(E) is independent of n. Thus, 

1+1 1+1 
f,. = _

1 
f(x)pn(x)w(x) dx = _

1 
!f(x) - p(x) }pn(x)w(x) dx, 

so that 

lfn \2 ·~ M
2
(R-

1 + E)
2
n i:1 

(pn(x) }2w(x) dx 1-:1 

w(x) dx; 

whence lim supn-+oo lfn \11n ~ R-1
• This furnishes the statement of Theorem 

12.7.3 concerning the convergence. Now the last relation must be an equality, 
for otherwise, the expansion would be uniformly convergent in the interior of 
an ellipse larger than that of the ellipse of regularity, and f(x) would be regu
lar therein. This argument also furnishes the divergence in the exterior of the 
ellipse of regularity. 

Theorem 12.7.4 can also be established without difficulty. It is quite re
markable that the domain of convergence of expansions of type (12.7.13) and 
(12.7.15) is independent of the weight function w(x) (compare Theorem 9.1.1). 



CHAPTER XIII 

EXPANSION PROBLEMS ASSOCIATED WITH GENERAL 
ORTHOGONAL POLYNOMIALS 

We shall now prove four theorems of the equiconvergent type in the sense 
of Chapter IX (see the introduction). Two of them, Theorems 13.1.2 and 
13.1.4, deal with expansions of a preassigned function on a finite segment in 
terms of polynomials orthogonal on this segment. The other two Theorems, 
13.1.1 and 13.1.3, are concerned with the expansion of the boundary values of 
an analytic function, regular in the interior of the unit circle, I z I < 1, in 
terms of polynomials orthogonal on the unit circle. In all cases the expansions 
in question are compared with trigonometric and power series expansions, and 
the weight functions are subject to conditions similar to those in the asymptotic 
theorems of Chapter XIL The function developed is very general and merely 
satisfies certain integrability conditions. 

The basic idea of the method used in the proof of Theorems 13.1.1 and 
13.1.2 is due to Szego (see 9 where 'only the case of a segment is considered). 
Our present treatment of these theorems is slightly different from and more 
general than in Szego 9. The two other theorems are new. It is noteworthy 
that no direct use is made of the asymptotic results of the previous chapter. 
The methods, however, are very closely related. 

After having finished the manuscript, I came into possession of three im
portant papers of Korous (3, 4, 5). 

In 3, Korous deals with the expansion problem of Theorem 13.1.2. His con
ditions are of "local" character but less restrictive than those of Theorem 
13.1.2. Also·, his method. is entirely different from that used by Szegi;i in 9 or 
from that of the present treatment. 

In 4 and 5, Korous proves two other equiconvergence theorems generallzing 
the Laguerre series of Theorem 9.1.5. 

13.1. Results and remarks 

(1) THEOREM 13.1.1 (Equiconvergence theorem on the unit circle I z I = 1 
if the weight function is subject to "local" conditions). Det f( e) be a weight 
function on the unit circle which satisfies the conditions of Theorem 12.1.5 
( = 10.4.1). Let F(z) be an analytic function regular in I z I < 1 and of the 
class H2 (§10.1). 

If sn(z) denotes the nth partial sum of the expansion of the boundary values 
F(z), I z I = 1, in terms of the orthonormal polynomials (<Pn(z) l associated with 
f(O), and if sn(z) is the nth partial sum of the ordinary power series expansion of 
F(z), we have 

313 
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(13.1.1) lim (sn(a) - Sn(a)} = 0. 
n-+oo 

Here a eia has the same meaning as in Theorem 12.1.5. 

THEOHEM 13.1.2 (Equiconvergence theorem on a finite real segment if the 
• weight function is r,;ubject to "local" uonditions). Let w(x) be a weight functio'n 

on the segment [ -1, +1) subject to the conditions of Theorem 12.1.6. Let <I>(x) 
be an arbitrary real-valued function, measurable 1·n Lcbesgu,e's sense, for which 
the integrals 

(13.1.2) 1
+1 

_
1 

I <Nx:) )2 w(x) dx, 

exist. 
If sn(x) and s:(x) denote the nth partial sums of the expansions of <I>(x) in terms 

of the orthonormal polynomials \Pn(x) l associated with w(x) and of the Tchebichef 
polynomials I cos ne l, cos e = x, respectively, we have 

(13.1.3) lim (sn(~)- Sn(~)\ = 0. 
n-+oo 

Here -1 < ~ < + 1, and ~ has the same meaning as in Theorem 12.1.6. 

It is remarkable that in both cases a wide class of expansions displq,y the 
same convergence behavior. The expansion into a series of cos ne occ~1rring 
in Theorem 13.1.2, is, of course, the ordinary cosine expansion of <I>(cos fJ). A 
comparison of sn(~) with other special expansions can also be readily made. 
In making such comparisons, existence of certain other integrals must be re
quired. By the use of theorems thus obtained, the customary convdgence 
and summability theorems of the classical Fourier expansions can be 1easily 
extended to the general expansions in question. Theorem 13:1.2 can be 1easily 
extended to an arbitrary finite segment instead of the seg:rp.ent [-1, +1]. 

·These theorems hold under the conditions of "local" character of Theorems 
12.1.5 and 12.1.6. 

(2) The following theorems correspond to the conditions of "S. Bernstein's 
type" occurring in Theorems 12.1.3 and 12.1.4. 

THEOREM 13.1.3 (Equiconvergence theorem of S. Bernstein's type on the 
unit circle). Letf(O) be a weight function on the unit circle z = ei0 which satisfies 
the conditions of Theorem 12.1.3 with ;>.. > 1. Let F(z) be an analytic fu~ction, 
regular and bounded for I z I < 1. Employing the same notation as in Theorem 
13.1.1, we have 

(13.1.4) lim (sn(z) - Sn(z) l = 0, lz 1: ~ 1, 
n-->oo 

uniformly in the whole closed unit circle I z I ~ 1. 

The function F(z) has integrable boundary values F(ei
0

) (for almost all: 0). 
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THEOREM 13.1.4 (Equieonvergence theorem of S. Bernstein's type on a finite 
real segment). Let w(x) be a weight function on the interval -1 ~ x ~ + 1, 
x = cos e, which satisfies the conditions of Theorem 12.1.4 with A > 1. Let 
<P(x) be an arbitrary bounded function, which is meas'IJi"able in Lebesgue's sense. 
Employing the same notation as in Theorem 13.1.2, we have 

(13.1.5) lim ( Sn(x) - Sn(x) l = 0, -1 <X< +1, 
n-+oo 

uniformly in the interval [ -1 + E1 1 - E], 0 < E < !. 
In the proofs of Theorems 13.1.3 and 13.1.4 essential use is made of Theorems 

12.1.3 and 12.1.4, respectively. 

13.2. A maximum problem on the unit circle 

(1) Let f(e) and F(z) have the same meaning as in: Theorem 13.1.1. We 
write G(e) = (27r)-1f(e)F(ei0

), so that 

(13.2.1) J_:r I G(e) I de 

is convergent. In what follows we may vary f(e), but G(e) is supposed to'be a 
fixed function for which (13.2.1) exists. 

PROBLEM. Let A and f..l· be arbitrary complex numbers, and let I a I = 1. We 
intend to determine the maximum of 

(13.2.2) 

for p(z) ranging over the set of all 7rn which satisfy the condition 

(13.2.3) 2~ 1-:r j(e) I p(z) 1
2 de = 1, 

i8 z ==:= e , 

Concerning the special ease A = 1, f..l. = 0, see §11.3. Compare also with §12.6 
(1). We write again 

(13.2.4) p(z) = Uo</>o(z) + Urcf>r(z) + · · · + Uncf>n(z), 

where lct>n(z) l has the usual meaning. Then L:'..o I u. 12 = 1, and 

I 1+.- 12 J n { l+r } 2 
Ap(a) + JJ. -• {i(e)p(z) de! = 

11

?; u. Acf>v(a) + JJ. _., G(e)¢.(z) de ! 

(13.2.5) n 

1
+.. 

2 

~ ~I Acp.(a) + JJ. -r G(e)cp.(z) de I · 
i8 

z=~:e. 

Here, as in Theorem 13.1..1, sn(a) is the nth partial sum of the expansion. of 



316 EXPANSION PROBLEMS FOR GENERAL POLYNOMIALS ; [XIII] 

21rG( e) !f( e) )-1 in terms of the polynomials lct>n(z) l, and 

(13.2.6) n 11+r 12 Hn = ~ _,.. G(e)q,.(z) de 1 

The right-hand member of (13.2.5) is the maximum in question. 

. i8 z = e . 

(2) For clearness, as in §12.6 (2), we now write sn(f; a, z), sn(f; a), ¢n(f; a), 
H nCf) for the expressions involved in the previous considerations, wh~ch are 
associated with the weight function j(e). We note that sn(f; a) is tihe nth 
partial sum of the expansion of 21rG(e) If( e) }-1 in terms of the polyriwmials 
ct>nU; z) associated with j(e). \Ve add that in all subsequent conside~ations, 
even if j(e) is replaced by some other weight function, we shall keep th~e func
tion G(e) usPd before. 

Applying Theorem 10.4.4 again, we obtain 

I A l
2
snCfr; a, a) + 2ffi{A.Usn(fr; a)} + I JJ.I

2
HnCfr) 

(13.2.7) ~ I A l
2sn(f; a, a) + 2ffi { A.Usn(f; a)} + I JJ. I

2
H ;..(f) 

I 

~ I A l
2
sn(f2; a, a) + 2ffi{A.Usn(h; a)} + I JJ.I2Hn(f2). 

In particular, we have 

(13.2.8) 

(13.2.9) 

snCfr ; a, a) ~ sn(f; a, a) ~ sn(f2 ; a, a), 

I snCfi a) - Sn(f2 i a) 12 ~ (H nCf) - H n(f2) }{sn(f; a, a) - Sn(f2 ; a, a)} 
(13.2.10) . 

~ Hn(f){snCfr;a,a)- snU2;a,a)}. 

13.3. Proof of Theorem 13.1.1 

(1) Bessel's inequality enables us to obtain 

(13.3.1) 

Whence (12.6.19) shows that 

(13.3.2) 

lim sup I sn(f; a) - Sn(h; a) 1
2 

n-+oo 

~ 
2
1
71" L:" \ F(ei

0
) 1

2 
j(e) de·li~-s~p {sn(f1; a, a) - sn(h; a, a)\ 

~ __!_ [+r I F(eio) 12 j(e) de. 2 {!(a) ~-1 I D'(f1 i a) - D'(f2 i a) I· 
21r )_, D(f1; a) D(h; a) 

The right-hand member is arbitrarily small with the positive number E occ~rring 
in Theorem 10.4.4. ·. 

(2) Next we discuss the behavior of the partial sum sn(f2 ; a) as n H oo. 

As in §12.6 (3), we use the abbreviation D({;1; z) = h(z). We find thalt if n 
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is sufficiently large (see (12.6.11)), 

Sn(f2; a) = r+r G(61)sn(f2; z, a) de = [+r G(e) ~(a)~ - (az) ~+I h(a)h(:z) de 
J-1r )_, 1 - az 

(13.3.3) 
= J:..l+•·j(e)F( ) h(a)h(z) - (az)n+r h(a)h(z) d = ,6 

2 z 1 - e, z e . r -7r - ~ 

Comparing this latter expression with 

(13.3.4) 1 1+7r 1 ( -)n+I 
Sn(a) = -

2 
F(z) ~ az _ de, 

r -1r - az 
we obtain 

sn(f2; a) - Sn(a) == 
2
1 j+r F(z) j(e)h(a)hG)_ - 1 de 
r -1r 1 - az 

tO z = 1 e 
I 

(13.3.5) +7r -
_ __!__ ( F(z)j(e)h(a)h(z)_- 1 (az)n+r de, z =:. e•o. 

2r J-1r 1 - az 

The second integral approaches zero as n ---+ oo, since 

(13.3.6) j(e)h(a)h(z) - 1 
1 - az 

has a limit at e = a. The first integral can be written as follows: 

(13.3.7) 

since (see the remark at the end of §10.1) 

(13.3.8) ( F(z) 1 - h(a)/h(z) dz = 0. 
Jlzl-1 a - z 

By virtue of Schwarz's inequality, 

4r
2 lim sup I sn(f2; a) - Sn(a) 1

2 

n-+oo 

~ r I F(z) I' d9 r I~' (9), ~ ~9~' lf<aW' IJ,(9W' d9 
sm -

2
-

~ (4f(a)}-
1 1:1r I F(z) 1•zde 1-:1r f2 :e~; !~de 

sm -
2
-

~ {4f(a) }-1 maxf2(e) [:" jF(z)j2de 1:7rlogf2_(e~e-~o!j(e) de, 
sm -

2
-

i i() z =:e , 
I 

I ·o 
z ='e'. 

I i(} z=e. 

·--·-·--··- ······ 
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Combining this result with (13.3.2), we find lim SUPn-+oo I sn(f; a) ~ Sn(a) I 
to be arbitrarily small with the positive number E occurring in Theorem 10.4.4. 
This establishes the statement. 

13 .. 4. A special case of Theorem 13.1.2 

(1) In this section we consider the special case 

(13.4.1) 

where p(x) is a 7rz which is positive in the interval [ -1, + 1]. The corresponding 
orthogonal polynomials (for 2n > l) have been calculated in §2.6. \fe shall 
verify the validity of Theorem 13.1.2 in this special case. To this: end it 
suffices to assume the existence of the integral 

( 13.4.2) 1
+1 

_
1 

I cfs(x) I (1 - i)-t dx, 

a condition which is more general than that required in Theorem 13.1.2. As 
in that theorem we have ~ = cos a, -1 < ~ < +1, 0 < a < 1r. 

By virtue of the Ch:ristoffel-Darboux formula (3.2.3) 

Sn(~) = kn 1+1 <P(x) Pn+r(x)pn(~) - Pn(X)Pn+1(~) w(x) dx; 
kn+1 -1 X-~ 

or 

(13.4.3) == (" <P(cos O) Pn+r(cos e)pn(cos a) - Pn(cos e)Pn+t(cos a) 
}o cos e - cos a 

·(p(cos e)} - 1 de. 
Assume now 2n > l. Use formuias (2.6.2) and write (2/7r)!ein8 h(ei8) ~ un(e) 
+ ivn(e). Then 

Pn(cos e) = Un(e), 
(13.4.4) "8 . 

Pn+1 (cos e) = 9?(e' [un(e) + ivn(e)]j = Un(e) cos e- Vn(e) sin ~I 

so that 

(13.4.5) 

Pn+l(cos e)pn(cos a) - Pn(cos e)PnH(cos a) 
cos e- cos a 

= (un(e) COS e- Vn(e) Sin e}un(a)- Un(e) (un(a) COS a- Vn(a1 Sin a} 
cos e- cos a . 

' sine - sin a = Un(e)un(a) - Vn(e)un(a) ----
cos e- cos a 

+ 
Un(e)vn(a) - Vn(e)un(a~ . 
---------+ sm a. 

cos e- cos a : 

·-------,--------------r------·------------·----~------------------~ 
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In view of Riemann's lemma, this leads to 

kn+l ( ) kn Sn COS a 

(13.4.6) = sin a (" <I>( cos e) Un(e)vn(a) - Vn(e)un(a) ( (cos e)} - 1de + o(1) 
}o COS e - COS a p I 

Now 

(p(cos e)}-1 (un(e)vn(a)- Vn(e)un(a)} 

- -(p(cos e)}-13(un(e) + ivn(e)}lun(a)- ivn(a)} 

(13.4. 7) - ~ (p(cos e)} - 131 ein(B-a) h(ei8)h(eia)} 
7r 

__ ~ ()( { in(8-a) h(eia)} 
7r '-' e h( e•"B) . 

Repeated application of Riemann's lemma shows that h(e'.a) (h(ei8) }-1 can be 
replaced by 1, and 

. -1 . . a e . a- e 
{ + }

-1 

sma(cose-cosa) =Sma 2sm-
2
-sm-

2
-

by (2 sin (a- e)/2}-
1

• Thus the right-hand member of (13.4.6) assumes the 
form 

! ( r <I>( cos e) sin n(e - a) de + o(1) 
7r }o . e - a 

sm--
2 

= ! 1+" <l>(cos e) sin (n + ~)(e - a) de+ o(1). 
7r -'II • e - a 

sm-
2

-

Finally kn/kn+1 = ! when n is sufficiently large (see (2.6.5)). This establishes 
the statement. 

(2) In the same special case we intend to calculate Kn(~, 0, where Kn is the 
kernel polynomial defined by (3.1.9). We have, by (3.2.4), 

(13.4.8) 

Now, by (13.4.4), for a su1ficiently large n, 

sin a p:(cos a) := -u~(a), 

(13.4. 9) sin a P:+1( cos a) 

= -u:(a) cos a + v:(a) sin a+ Un(a) sin a + Vn(a) cos a, 

---------~------------~---
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and kn/kn+1 = !. Thus, 

2 sin a Kn(cos a, cos a) = (-u~(a) cos a+ v~(a) sin a 

+ Un(a) sin a + Vn(a) cos a)un(a) 

+ u~(a)iun(a) cos a- vn(a) sin a) 

= sin a 3i[un(a) - ivn(a)][u:(a) + iv~(a)Jl 
+ Un(a)3{[un(a) + ivn(a)]eiaj; 

hence 

2 sin a ( ) . {u:(a) + iv:(a)} 
I_(_)_ + . ( ) l2 Kn cos a, cos a = sm a3 ( ) . ( 

Un a Wn a Un a + Wn a) 

+ !. s· + l0\ {[un(a) + ivn(a)]
2 ,·a} 

2 ~m a h) I Un(a) + ivn(a) 12 e · 

[
. ia h'(eia)J [ h'(a)J 

= n - 3 ~e h(ei<>) = n - 9? a h(a) ' 

we get the important formula 

1r(p(~) )-
1 Kn(~, ~) = n + ! - 9? [a r(;1 J 

(13.4.10) 

+ (z · )-10\ [ 2n+l h(a)J t ia sm a -0 a h(a) , , = em; a, a = e , 0< a < 1r. 

This holds for sufficiently large values of n. 

13.5. Preliminaries for the proof of Theorem 13.1.2 

(1) Let w(x) and cf>(;c) have the same meaning as in Theorem 13.1.2. Write 
G(x) = w(x)<P(x), so that the integral 

(13.5.1) 
[+1 

J_
1 

I G(x) I dx 

is convergent. In subsequent considerations we may vary w(x), but G(x) is 
supposed to be a fixed function for which the integral (13.5.1) exists. 

(2) In what follows we apply Theorem 10.4.5 with j(e) = w(cos e) I sin e I· 
This function satisfies the conditions of the theorem mentioned (see §12.6 (5)). 
We define the functions w1(x) and w2(x) by 

(13.5.2) j.(e) = w.(cos e) I sin e I, v = 1, 2. 

Obviously, ~ = cos a, 0 < a < 1r, 

(13.5.3) 0 ;£ w1(x) ~ w(x) ;£ w2(x), 

·--.--,---------------..,._·--·-----·-····· 
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Moreover, w2(x) is of the form (13.4.1), while w1(x) = k(x)u(x) = (r(x) }2u(x). 
Here u(x) is of the form (13.4.1), and r(x) is a polynomial of degn~e al/4. (See 
the remark to Theorem Jl0.4.4.) 

(3) PROBLEM. Let A and JJ. be arbitrary complex numbers, and assume that 
- 1 < ~ < + 1. We intend to determine the maximum of 

(13.5.4) I Ap(~) + }J. £:1 

G(x)p(x) dx r 
when p(x) ranges over the set of all 'Trn which satisfy the condition 

(13.5.5) 1
+1 

_
1 

I p(x) 1
2 w(x) dx = 1. 

This is the problem corresponding to that of §13.2. We substitute again 

(13.5.6) p(x) = ·uopo(x) + Urp1(x) + · · · + UnPn(x), 

where lPn(x) l is the orthonormal set ~f polynomials associated with w(x). 
Then L.:::=o I u. 1

2 = 1, and according to Cauchy's inequality 

(13.5.7) ~ ~ I Ap.(~) + JJ.1:1 G(x)p.(x) dx 12 

= I A 1
2 Kn(~) + 2ffi[XJ,J.Sn(~)] + I JJ.I 2 Hn. 

Here Kn(~) = Kn(w; 0 has been written for the "kernel" Kn(~, 0, and 

(13.5.8) Sn(~) = sn(w; ~) = ~ p.(~) £:1 
G(x)p.(x) dx = £:1 

G(x)Kn(~, x) dx, 

(13.5.9) Hn = Hn(w; ~) = ~ {1:1 
G(x)p.(x) dx Y. 

We notice that sn( ~) is the nth partial sum of the expansion of <I>(x) = 
I w(x) }-1G(x) in terms of the polynomials Pn(x) associated with w(x). 

The right-hand member of (13.5.7) is the maximum in question. Hence 

i A 12 
Kn(W1; 0 + 2ffi[XJJ.Sn(W1; ~)] + I JJ.I 2 Hn(w1) 

(13.5.10) ~ I A 1
2 

Kn(w; ~) + 2ffi[XJJ.Sn(w; ~)] + I JJ.I
2 

Hn(w) 

~ I A 1
2 

Kn(W2 ; 0 + 2ffi [XJJ.Sn(W2 ; ~)] + \ JJ.i 2 
H n(w2). 

----------------------------------------------·····. 
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In particular 

(13.5.11) 

(13.5.12) 

Furthermore, 

Kn(w1 ; ~) ;;;; Kn(w; ~) ;;;; Kn(w2 ; ~), 

H n(w1) ;;;; H n(w) ;;;; H n(w2). 

I Sn(w; ~) - Sn(W2; ~) 1

2 ~ (Hn(w) - Hn(w2)) (Kn(w; ~) - Kn(W2; ~)) 
(13.5.13) 

if we observe Bessel's inequality. We next show that the last difference is 
arbitrarily small with f, uniformly in n. 

13.6. Pr.oof of Theorem 13.1.2 

The main tool of this proof is the special equiconvergence theorem of 
§13.4 (I) and the representation (13.4.10) of the kernel. The latter yields 
immediately the representation 

(13.6.1) 
7rf(a)Kn(w2; ~) = n + ~ + m [a ~(~2 : :;] 

+ (2 . )-10< [ 2n+1 D(f2; a) J 
sm a '-' a D(f2; a) , 

since (g2(a) l-1 = h(a) = f(a). We derive, on the other hand, an inequality 
for Kn(w1 ; ~) analogous to that in (12.6.18). Using the notation introduced 
in §13.5 (2) and writing ~al = l', we obtain as in §12.6 (4), 

(13.6.2) Kn+l'/2(u; ~) ;;;; (r(~) )2 Kn(W1; ~) = k(~)Kn(W1; ~). 

(13.6.3) 

+ (2 . )-1()( [ 2n+Z'+1 D(g1
1

; a) J 
Sin a '-' a ( ) , 

D g11 ; a 

where, as before, ~ = cos a, a = eia.. Now we can use (12.6.17). Moreover 
from (12.6.12) 

(13.6.4) 

---, ---·---·-------r-----
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On comparing this with (13.6.1), we have 

Kn(w1; ~) - Kn(w2; ~) 

~ (1rf(a)} -t {m [a. D'(f1; a) _ a D'(f2; a)] 
D(h; a) D(f2; a) 

(13.6.6) + (2 · )-10< [ 2n+1 D(JI; a) _ a2n+1 _!!_(~)__]} 
sm a '"' a D(f1; a) D(f2; a) 

~ (1rj(a)}-t1D'(f1; a)_ D'(f2; a) I 
D(f1; a) D(f2; a) 

• _ 1 I D(JI; a) _ D(h; a) I· + (27rf(a) sm a} -D~) D(h; a) 

The left-hand side is non-negative, while the right-hand ::;ide is arbitrarily small 
with E. 

Returning to (13.5.13), we notice that sn(w2 ; ~)is the nth partial sum of the 
expansion of !w2(x) }-1G(.x) = lw2(x) r-1w(x)<I>(x) in terms of the polynomials 
associated with w2(x). Since I w2(x) }-1w(x) ~ 1, and since the second integral 
in (13.1.2) exists, the result of §13.4 (1) can be applied. Thus sn(w2 ; ~) = 
sn(w2 ; cos a) can be replaced by the nth partial sum of the corresponding 
Fourier expansion with an error o(1), n ~ oo. Also ( w2(x) }-1w(x) = 1 for 
x = ~~ so that the partial sum can be replaced by that of <I>(x), which is sn(~). 
This completes the proof of Theorem 13.1.2. 

REMARK. It is easy to show that the difference 

(13.6.7) 

occurring in (13.5.13), is also arbitrarily small with E. If this fact were used, 
it would suffice to obtain an upper bound for the first difference in (13.6.6). 
This remark furnishes a slight variation of the preceding argument. 

1:3:.7. Proof of Theorem 13.1.3 

(1) It is sufficient to discuss the statement for I z I = 1. The partial sums 
in question are 

1 1+,.. 1 1+,.. 1 - (fzt+1 
· 

(13.7.1) -
2 

F(t)sn(S', z)f(x) dx and 
2
- F(s) 

1 
_ - dx, s = e'%, 

7r _,.. 7r _,.. rz 

·---.....,..-----------------·---------·---...... 
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where sn(s, z) has the usual meaning. We introduce the difference of the 
"kernels" 

(I3.7.2) I - (fz)"H Lln(s, z) = sn(s, z)f(x) - _ , 
I- rz 

and show that 

(I3.7.3) [+>< 
!~ )_" F(s)lln(s, z) dx = o, 

uniformly on the unit circle I z I = 1. 

ix r = e : 

(2) First, as a consequence of the Lipschitz-Dini condition (10.3.10) assumed 
for j(e), we prove that a similar condition (with the exponent -X instead of 
-I - X) holds for D(f; z) = D(z); that is, 

(13.7.4) I D(ei<BH)) - D(e'8
) I < L' /logo 1-\ 

where L' is a positive constant. Let m be an arbitrary integer. By use of 
(10.3.I2) we obtain 

jD(ei<BH))- D(e;e) I< 2Q(logm)-A + /lh(ei(BH))l-1- \h(e;e)l-1/. 

The last term, according to Theorem I.22.2 is equal to oO(m); whence the 
bound O[(Iog m)-A) + oO(m) follows. Putting m "-' o-1 I log 0 1-A, \Ve have 
(log m)-A rv I log o ,-~, and om ,....__,I log o 1-A, which establishes the statement. 
This furnishes, for the function 'Y(e) = 31log D(ei8

) l defined by (12.1.7), also 
the relation 

(13.7.5) I 'Y(e + o) - 'Y(e) I < L" /log o 1-\ 

where L" is a po~itive com;tant. TheHe results hold for an arbitrary X > 0. 
By the same argument the following more general inequality follows: 

(I3.7.6) I D(z1) - D(z2) I < L' I log I z1 - z2jj-A, 

where z1 and z2 are arbitrary in the unit circle I z I ~ 1. 
(3) Let I z I = I r I == I, z ~ r. From (I1.4.5) and Theorem I2.1.3 it is seen 

that 

(I3.7.7) 

An(s, z) = ID(f)D(z) l ~1 -I (fz)_"H(D(r).D(Z) l-1 I D(s) 12 
- rz 

- I - (fz_)"H + /I - fz l-1 O[(log n)-A] 
I - rz 

= D(() (D(z) ~-1 

- I _ (fz)nH D(f) (D(z) l_-1 - I 
I - rz I - rz 

+ II - fz /-1 O[(log n)-A]. 

Now, according to Cauchy'i-i theorem, 
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(13.7.8) 

since the integrand is a function of r which i:;; of the class li 1 (see the remark 
at the end of §10.1). Here we u~ed the condition X > 1. And by Riemann's 
lemma, 

(13.7.9) r ix 
~ = e . 

(Concerning the uniformity cf. below.) Therefore we obtain, if e is an arbi
trary positive number, E' = E(z, n, e) is the set on I r I = 1 with I r - z I ~ 
en-\ and E' the complementary set, the relations 

1F(s)An(S,z)dx = -1 F(s)fD(s)(D(z)i_
1

_ ~- (fzr+1 D0(15(z)~-1 -l}dx 
E' l 1 - tz 1 - SZ 

+ o(l) + O( (log n)-'l 111 - fz l-1 dx 

= 0(1) ,[,II - fz l-1 I log I z - r II-A dx 

+ o(l) + O( (log n)-Al 111- fz l-1 dx 

= O((logn) 1-Al + o(l) + O((logn)-AlO(logn) 

= o(l), 

On the other hand, the numerator of (11.4.5) is bounded in the present case 
so that Theorem 1.22.2 yields (see §12.4 (2)) sn(s, z) = O(n), and hence also, 
An(s, z) = O(n). This holds uniformly for I z I = I r I = 1. Therefore, we 
have 

1 F(s)An(s, z) dx = O(n)en-1 
= eO(l), 

E' 

,. ix 
~ = e ' 

where 0(1) is independent of e and n. This establishes the statement. 
(4) The uniform validity of (13.7.9) needs some explanation. According to 

(13.7.4) (see the remark at the end of (2)), 

QiiliPCz)l~=-_I = K(s) 
1- rz 

is a function of s which is of the class H 1 • If Pn(r) denotes the nth Cesaro 
mean of the partial sumE: of the power series expansion of F(r), we have 

·----·---r·--
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where E1 is the set on I r I = 1 with I r - z I ~ e, and E~ the complementary 
set. The integral o,·er 1!.\ as n ------7 cx:; is 

0(1) 1
1 
I F(s) - Pn(S") I dx = 0(1) 1-:1r I F(s) - Pn(S") I dx 

= o(l). 

The integral over E~ (~:ince F(r) - Pn(r) is uniformly bounded) is equal to 

0(1) r' I K(f) I dx, JEt 
that is, it is arbitrarily small with e. 

13.8. Proof of Theorem 13.1.4 

(1) We show that 

(13.8.1) 1
+1 

!~; _
1 

<I>(~)A: (~, x) (1 - ~2) -! d~ = 0, 

uniformly in -1 + e ~ x ~ 1 - e; here A:(~, x) is the difference of the 
"kernels"; that is, according to Christoffel's formula 

A:(~, x) = (1 _ ~2); w(~) ~ Pn+1(x)pn(~) - Pn(x)pn+t(~) 
kn+l X - ~ 

(13.8.2) . 1 Jsin (2n + 1) ~ sin (2n + 1) 
0~1 

- 21r i . e + ct> + . e - ct> ' l sm - 2- sm -
2

- ) 

~ = cos ct>, x = cos e. 
The symbol kn is used for the highest coefficient of Pn(x). 

(2) We first notice that from (11.5.2) for n ~ 1 

(13.8.3) 

kn = (27r)-1{1 + c/>2n(O)}-! 2n(K2n + c/>2n(O) l 
K2n 

= (27r)-!{1 + c/>2n(O)}! 2n K2n 
K2n 

follows so that on account of formulas (12.4.3) and (12.5.3) (see also Theorem 
12.7.1) 

(13.8.4) 

From (12.1.8) we conclude, using the notation (12.2.2), that 

·-----------------·----
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A:(~, x) = A:(cos<t>, cos,9) 

= 1r-1(x- ~)-1 (W(x) l-!(W(~) l!(cos [(n + 1)e + -y(e)] cos [n<t> + -y(</>)] 

- cos [ne + -y(e)] cos [(n + 1)</> + -y(<t>)Jl 

(13.8.5) _ __!_ ! sin (2n + I) ~ + sin (2n + I) 'L~ !) 
21r l . <1> + e . <1> - e sm-

2
- sm -

2
-

+ I x - ~ l-1 O[(log n)-A] 

= An(</>, e) - Bn(</>, e) + I X - ~ 1-! O[(log nr-AJ. 

The first term can be written in the form 

( ) ( )-1{2 . <I>+ e . <I>- e')-11W( )l-!IW( . )l! An </>, e = 21r sm- 2 -- sm --2- f r cos e l cos <1> 

·(cos [n<t> + (n + 1)e + -y(<t>) + -y(e)] +cos [n<t>- (n + 1)e + -y(<t>)- -y(e)] 

-cos [(n + 1)</> + ne + -y(</>) + -y(e)]- cos [(n + 1)</>- ne + -y(<t>)- -y(e)]l 

= {21rsin <I>~ e sin~> 
2 

e}-
1

(W(cose)l-t(W(cos<t>)l! 

·{sin [ (2n + 1) ~~ ~ e + -y(<t>) + -y(e) J sin 4>_ 
2 

e 

(13.8.6) [ <P - e J <1> + e} +sin (2n + 1) --2 + -y(<t>) - -y(e) sin -
2

-

1 {sin [ (2n + 1) <I> ~ e + -y(</>) + -y(e) J 
= 

2
71" (W(cos e) l-t (W(cos </>) l; -· . <I>+ e 

sm-
2

-

+ si_n[ (2n +~ ~~ + ~(q,) -~(e) J}· 
,~,.- e sm "~' __ 

2 

(3) The integrals 

(13.8.7) 

[
:,.. I W(cos e) l-! I W(cos </>) l! cos [ -y(<t>) ± -y(e) l ---: __ ! 

-.. . <I> ± e d<t>, sm-
2

-

sin [-y(<t>) ± -y(e)] 
. <t>±e sm-

2
-
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exist (see (12.2.4), (12.11.4), and (13.7.5)), so that by Riemann's lemma, 

(13.8.8) ~i!:!c I:·· <P(cos cf>) IAn(c/>, e) - Bn(cf>, e) l dcp = 0, 

uniformly in e. Let 1J bP an arbitrary pof;itive number, E = E(e, n, TJ) the 
set I cos cf> - cos e I ;;;: r1n~\ and E'' the complementary set. We have 

1-:71' cf>(cos c/>)A~(cos cf>, cos e) dcp 

~ J. <!>(cos .P) I A" (.p ,8) - H "(.P, 8) I d.p + 0[ (log n) _,1 /.1 cos .p - cos 8[-·'d.p 

(13.8.9) + ( <P(cos ¢)A~(cos cf>, co~ e) dcp 
)E' 

Now 

(13.8.10) 

= -1, <P(cos cf>) IAn(c/>, e) - Bn(cf>, e) l dcf> + o(1) 

+ O[(logn)~:~Jllcoscp- cosel- 1dcf> + ( <i>(coscp)A~(cos¢, cose)dc/>. 
E )E' 

I ( ) I -1 {max W(x)}! { sin I 'Y(c/>) + 'Y(e)} 
An c/>, e ;;£ 1r min W(x) 2n + 1 + 

2 sin cf> + e 
2 

+ ~~J.!(cf>) - 'Y(e) l } 
. ¢- e 

2sm- 2 
= O(n) + 0(1) I cf> - e l-1 I log I cf> - e II--A, 

I Bn(cf>, e) I ~ 7r--
1(2n + 1)' 

so that the first term in the right-hand member of (I :~.8.9) is 

n ~ oo, 

where the bound of 0(1) in the terrn TJ0(1) is independent of 'YJ· The third 
term is O[(log n)-"]O(Iog n). Finally, in the last term we apply Theorem 
1.22.3. Since the polynomial Pnn(x)pn(~) - Pn(X)Pn-tl(~) is uniformly bounded, 
-1 ~ x ~ +1, -1 ;;£ ~ ~ +1, we have A~(~, x) = O(n), uniformly in x and 
~' confined to an interval of the form [ -1 + e, 1 - e). Thus, for the term 
in question, the hound 1Jr,~~10(n) = TJO(l) ean he obtained. Here 0(1) is again 
independent of 'YJ· This completes the proof of Theorem 13.1.4. 
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CHAPTER XIV 

INTERPOLATION 

In this chapter we shall consider certain problems of interpolation related to 
the theory of orthogonal polynomials. In particular, we are interested in inter
polations whose abscissas are the zeros of the orthogonal polynomials Pn(x) 
associated with a given distribution of the type da(x) or w(x)dx. We dear with 
the ordinary Lagrange polynomials and with the "step polynomials" (Treppen
polynome) introduced by Fejer. This topic is naturally very closely related 
to that of the next chapter on mechanical quadrature. 

Concerning the subject matter of this and of the next chapter, see the 
recent monograph of Feldheim (4). 

l.4.1. Definitions; problems 

(1) Let [a, b] be a finite or infinite interval, and let 

(14.1.1) X1n ~ a, Xnn ~ b 

denote a set of n distinct points of this interval. Let l(x) be a 7rn, not iden
tically zero, vanishing at x: = Xvn, v = 1, 2, · · · , n; it is determined save for a 
constant nonzero factor. When there is no ambiguity, we shall write xv instead 
of Xvn . The polynomials 

(14.1.2) 
l(x) 

lv(x) = l'(xv)(x - Xv)' v = 1, 2, · · ·, n, 

are called the fundamental polynomials of the Lagrange interpolation cor
responding to the set Sn. They have the property 

(14.1.3) v, J.L = 1, 2, ... , n. 

Let !1, h, · · · , fn be arbitrary values. Then the expression 
n 

(14.1.4) Ln(X) = L fvlv(x) 
v=1 

represents the uniquely determin8d 7rn-1 which assumes the value fv at x = Xv. 
This is the nth Lagrange polynomial corresponding to the abscissas Sn . It is 
readily seen that 

(14.1.5) l1(x) + l2(x) + · · · + ln(x) = 1. 

(2) Now let Sn, n = 1, 2, 3, ·. · , be a sequence of sets of abscissas. If f(x) 
is a given function defined in [a, b], we can consider the sequence of the cor
responding Lagrange polynomials Ln(x), n = 1, 2, 3, . · · , defined by (14.1.4) 
withfv = f(xvn). Various convergence and divergence properties of this sequence 
have been studied under proper conditions of continuity concerning f(x). In 

329 
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what follows we shall be interested exclusively in the case in which the abscissas 
Sn are the zeros of the orthogonal polynomials associated with a preassigned 
distribution. Different types of "convergence" can then be considered; for 
instance: 

(a) ordinary convergence: limn-oo Ln(x) = f(x); 
(b) convergence in mean: limn-oo f~ I Ln(x) - f(x) 1

2 dx = 0; 
(c) generalized convergence in mean, arising from (b) by replacing the ex

ponent 2 by p, where pis positive; 
(d) quadrature convergence: limn_oo f~ ILn(x) - f(x) )dx = 0. 

The last type is partieularly important from the point of view of Chapter XV. 
Of course, a certain flxed weight function can be introduced into the integral 
conditions. 

(3) Let a and b be finite. If only the continuity of f(x) is assumed, the 
behavior of the Lagrange polynomials is rather irregular. Faber (2; see also 
Fejer 11, pp. 450-453: and Marcinkiewicz 1) proved that for a given arbitrary 
sequence I Sn l there exists a continuous function f(x) such that the sequence 
ILn(x) l is not uniformly convergent. S. Bernstein (4) has even proved the 
existence of a continuous function for which Ln(x) is unbounded at a preassigned 
point Xo. According to Helly's theorem (§1.6), this is equivalent to the un
boundedness of the sequence of "Lebesgue constants" 

n 

(14.1.6) L llv(Xo) I , as n --7 oo. 
v=l 

In the case of the special sequence 

rr 
Xvn = <·os(2v - I) 

2
n, v = 1, 2, · · · , n, 

a = -1, b = +1, that is, for the zeros of Tn(x), much more is known. GrUn
wald (1) and Marcinkiewicz (2) proved the existence of a continuous function 
f(x) for which the sequence of Lagrange polynomials corresponding to these 
Xvn is everywhere divergent, even everywhere unbounded. 

(4) In order to obtain convergent sequences of interpolation polynomials, 
it is necessary to introduce additional restrictions concerning either: (a) the 
functicm f(x), particularly, restrictions concerning its modulus of continuity 
(see Theorem 1.3.2), or (b) the interpolation polynomial, such as conditions 
concerning its derivative, and the like. 

We introduce the polynomials 

{ 
l"(xv) } 2 

hv(x) = 1 - l'(xv) (x - Xv) llv(x)) 

(14.1.7) = Vv(x) llv(x) )2
, 

Qv(x) = (x - Xv) !lv(x) )2
, 

called the fundamental polynomials of the first and second kind of the "Hermite 
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interpolation" corresponding to the Ret Sn . These 7rzn-l are completely deter
mined by the conditions 

(14.1.8) 
hv(xl') = Ov~> , h~(x") = 0; f)v(x") = 0, f)~(x") = Ov~> , 

v, J.L = 1, 2, ... , n, 

and for any given set of values fv, f~ , 
n n 

(14.1.9) W n(X) = L fv hv(x) + L f~ f)v(x) 
v-1 v-1 

represents the uniquely determined 7r2n-l for which 

(14.1.10) W n(Xv) = fv, w:(xv) = j~, v = 1, 2, ... , n. 

(5) Again, let Sn, n = 1, 2, 3, · · · , be a sequence of sets of abscissas. If 
f(x) is a given function having a derivative in [a, b], we can take fv = f(xvn), 
f~ = f'(xvn) and consider the corresponding "Hermite polynomials"62 W n(x), 
n = 1, 2, 3, · · · , defined by (14.1.9). If only the continuity of f(x) is known, 
we may choose f~ arbitrarily; for instance, we may take f~ = 0. Iff~ = 0, we 
call W n(x) the step polynomials corresponding to I Sn l. In the more general 
case I!~ I < A, where A i~: a consta.nt independent of v and n, they are called 
generalized step polynomials. 

The simple and generalized step polynomials Wn(x) display a more regular 
behavior as n ----7 oo than do the ordinary Lagrange polynomials Ln(x). They 
coincide with the given function f(x) at the same points as do the corresponding 
Lagrange polynomials, but they satisfy certain additional restrictions concerning 
their first derivatives. Their degree is 2n - 1 instead of n - 1. We shall 
show that for certain sequences I S-n l the step polynomials (even the generalized 
step polynomials) are uniformly convergent if f(x) is an arbitrary continuous 
function. 

The step polynomials and their generalizations have been introduced and 
investigated by Fejer (10, 11, 13, 16). The trigonometric analogue for f~ = 0 
had been previously considered in the simplest case of equidistant abscissas by 
.Jackson (4, p. 145, Theorem VI). 

For the fundamental polynomials (14.1.7) the following important relations 
hold: 

(14.1.11) ·,n n 

~= Xv hv(x) + L f)v(x) = X. 
v=l v=l 

An important com;equence of the first identity may be pointed out for the step 
polynomials, that is, when f~ = 0. Let the set I Sn l be such that 

(14.1.12) a ~ x ~ b, v = 1, 2, ·. · , n. 

62 We write "Hermite polynomials" in quotation marks in order to avoid confusion 
with the Hermite polynomials of Chapter V. 
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Then (14.1.9) implies 

(14.1.13) min f.~ Wn(x) ~ maxf., a~ x ~ b, n = 1, 2, 3, · · ·. 

We observe further that (14.1.12) is equivalent to the fact that the linear 
functions 

(14.1.14) l" (x.) 
v.(x) = 1 - l'(x.) (x - x.) 

do not vanish in the open interval a < x < b, or, what amounts to the same 
thing, that the "conjugate points" 

(14.1.15) l' (x.) 
x. + l"(x.)' v = 1, 2, · · ·, n, 

lie outside of this interval. (See Fejer 13, 16.) 

14.2. Fundamental polynomials of the Lagrange interpolation 

(1) THEOREM 14.2.1.
63 

Let da(x) be an arbitrary distribution on the interval 
[a, b], \pn(x) I the associated orthonormal polynomials, and l1(x), l2(x), · · · , ln(x) 
the fundamental polynomials (14.1.2) of the Lagrange interpolation corresponding 
to the set of zeros of Pn(x). Then we have 

(14.2.1) lb l.(x)lll(x)da(x) = X. Ovp, v, fJ. = 1, 2, · .. , n, 

where X. are the Christoffel numbers defined by (3.4.1). 

This follows immediately from (3.4.1), since l.(x)lll(x) vanishes at the zeros of 
Pn(x) if v r! f.J.. For v === fJ. the zero x. is the only exception, and we have !Z.(x.) )2 

= 1. 
Also, by (14.1.8), 

[b h.(x)da(x) = X., 

(14.2.2) b 1 f).(x)da(x) = 0, 

[b h:(x)da(x) = [o xh:(x)da(x) = 0; 

1° f)~(x)da(x) = x.' 1° xf):(x)dx = x.x.; 

v = 1, 2, ... , n. 

(2) We obtain atl an important consequence the following result: 

THEOREM 14.2.2. Let Kn(Xo, x) have the same meaning as in (3.1.9). Then 
the following identity holds: 

n-1 n 

(14.2.3) Kn-J(Xo' x) = L p.(xo)p.(x) = L x;1 l.(xo)l.(x). 
v=O v=l 

63 Erdos-Turan 1. 
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Indeed, let p(x) be an arbitrary 11"n-I . The polynomial Kn_1(xo, x) is uniquely 
determined by the condition (3.1.12). But by (14.1.4) and (14.2.1), 

1b {t1 X~1 
l,(xo)l,(x)} {~ p(xl')ll'(x)} da(x) 

n n 

= L p(x,)l~(xo) = L p(x,)l,(xo) = p(xo), 
v=l v=l 

and this establishes the statement. 
On setting Xo = x = x, in (14.2.3), we obtain a new proof of (3.4.8). 
(3) In view of (14.2.1), (14.1.4) shows that 

(14.2.4) j" I Ln(X) 1

2 
da(x) = ~ X,lf, j2• 

Furthermore, let f(x) be an arbitrary complex-valued function for which the 
integrals f~f(x)x" da(x), v = 0, 1, · .. , n - 1, exist. Then (14.2.3) yields the 
identity 

(14.2.5) n-1 I ro 
1

2 n llo 12 f.; J a f(x)p,(x) aa(x) = ~ x~l a f(x)l,(x) aa(x) I· 
Thus, according to Bessel's inequality (see (3.1.5)), 

(14.2.6) 

provided the last integral exists. 

14.3. Convergence in mean of Lagrange polynomials 

(1) THEOHEM 14.3.1.64 Let da(x) be an arbitrary distribution on the finite inter
val [a, b], and let lPn(x) l be the corresponding set of orthonormal polynomials. For 
the complex-valued function f(x) let the R.iemann-Stieltjes integrals 

(14.3.1) 1° I f(x) 1

2 
da(x), n = 0, 1, 2, . · · , 

exist. Then if Ln(x) denotes the Lagrange polynomial of degree n - 1 which 
coincides with f(x) at the ze?·os of Pn(x), we have 

(14.3.2) 

The eonvergenee in mean in the usual sense follows from (14.3.2) for any f(x) 
integrable in Riemann',.., scrL'ie in the case where da(x) = w(x)dx, w(x) ;:;;, fJ. > 0. 

For the proof we use (14.2.4), (14.2.6), and the later Theorem 15.2.3 on 
quadrature convergence. Now 

64 Cf. Erdos-Turan 1 and Shohat 8. 
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(14.3.3) 

lNTERPOLATIO:K [XIV] 

- 2m ~ f(x.) 1b f(x)l.(x) da(x) 

~ lb lf(x) 12 
da(x) + t1 X. lf(x.) 12 

+ 2{t, A,/J{x,) I'}' {t, A~'/ t f(x)l,(x) da(x) /'}' 

~ 1b lf(x) 12 
da(x) + ~X. IJ(x,) 12 

+ 2{~ X. lf(x,) I
2Y{ib lf(x) 12 

da(x) y. 
Hence, using Theorem 15.2.3, we obtain 

(14.3.4) 

Next let e be an arbitrary positive number, and p(x) a polynomial for which 
(Theorem 1.5.2) 

(14.3.5) 

If Ln(f;x) denotes the Lagrange polynomial of degree n - 1 corresponding to 
f(x), we have 

(14.3.6) f(x) - Ln(f;x) = f(x) - p(x) - Ln(f - Pix), 

provided n exceeds the degree of p(x). This establishes the statement. 
(2) In case da(x) = (1 - x

2
)-tdx, a = -1, b = + 1 (that is, for the Tchebichef 

abscissas of the first kind) Erdos and Feldheim showed that we may even assert 
the validity of the following theorem: 

THEOREM 14.3.2.
65 

Let p be an arbitrary positive number, and let f(x) be a 
continuous funct2"on. Then for the Lagrange polynomials corresponding to the 
Tchebichef abscissas of the first kind, 

(14.3.7) 1
+1 

!~ _
11 

I f(x) - Ln(x) IP (1 - x~-! dx = 0. 

It suffices to show this for even integral values of p. In the proof which is 
based on induction with respect to the even integer p essential use is made of the 
property of the Tchebiehef abscissas formulated in Probl-em 57 (see below). 

B& Erdos-Feldheim 1; cf. also Feldheim 2 and 3, pp. 33-36. 

-~-------------------------
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Feldheim points out (2, p. 330) that (14.3.2) is not true in general if da(x) = 
(1 - x2)!dx, a= -1, b = +1 (that is, for the Tchebichef abscissas of the second 
kind), and if the exponent 2 is replaced by p = 4. For the same abscissas it is 
also not true that 

(14.3.8) 
[+1 

1~~~ )_1 
I f(x) - Ln(x) 1

2 
dx = 0. 

In both cases the superior limit of the integrals in question may be + oo if f(x) 
is a properly chosen continuous function. 

(3) From Theorem 14.3:.1 the mean convergence in the sense of (14.3.8) fol
lows immediately for the Jacobi abscissas, that is, for the zeros of the Jacobi 
polynomial P;,aJj)(x), provided max (a, {3) ~ 0 (cf. Erdos-Turan 1); here f(x) 
is au arbitrary continuom', (or even Riemann-integrable) function. 

Recently, A. Hollo (1) proved this mean convergence for the Jacobi ab
scissas with max (a, /3) < ~ provided f(x) is continuous. The bound ! is 
the precise one, on account of the last result of Feldheim mentioned in (2). 
Hollo also investigated the validity of 

(14.3.9) !~~ 1:1 

I f(x) - Ln(f) I dx = 0, 

where f('£) is continuous, and showed that (14.3.9) holds for max (a, /3) < l 
The latter bound is again the precise one, at least in the sense that for 
max (a, {3) > i and for a proper continuous f(x), the statement (14.3.9) does 
not hold. (This follows from the second part of Theorem 15.4.) 

14.4. Lagrange polynomials for Jacobi abscissas 

For the following discussion Theorem 8.9.1 will be found invaluable, while 
the bounds of P~a,/3J(cos 8) obtained in §7.32 will also be used. 

(1) Assume a > -1, {3 > -1, and let X1 > X2 > · · · > Xn denote the zeros 
of the Jacobi polynomial P~a,/3J(x) in decreasing order. Here Xv = cos Ov, 

0 < ev < 7r. '1'hen we may assert the following theorem: 

THEOREM 14.4. Let f(x) be continuous in [ -1, + 1] with the modulus of con
tinuity w(o). 66 'l'hen the Lagrange polynomt-'als wZ:nct-'dt-'ng with f(x) at the zeros 
of P~a,/3J(x) converge uniformly tof(x) in every interval[-!+ e, 1 - e], where 
0 < e < !, provided that u.1(o) = o( I logo I -1

). The same holds in the interval 
[ -1 + e, 1] if either a ~ --~and w(o) = o( I logo I -I) or fJ. - J ~ a < fJ. + ~ 67 

and f(x) has a continuous derivative of order fJ. with modulus of cont,z:nuity w11 (o) 
satisfying the condition w11 (o) = o(oa-l'+l), fJ. = 0, 1, 2, .... 

In case a < - } the Lagrange polynomials are conve1 ent at the point x = + 1 
if f(x) is an arbitrary continuous function. 

There ext-'st functions contt-'nuous t-'n [ -1, + 1] whose Lagrange polynomials are 

GG Cf. Theorem 1.3.2. 
67 For,.,. = 0 the equality ~i1gn, that is, the e1.1~e a = -1/2, is excluded. 
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divergent (unbounded) at a preassigned point x0 , - 1 < x0 < + 1 ; the same is true 
at the point Xo = + 1 provided that a ~ - ~. 

Similar statements hold in the interval [ -1, 1 - e] and at the point x = -1 
if we replace a by {3. The convergence is uniform in the whole interval [ -1, +I] 
provided max (a, /3) ~ -~and w(o) = o( jlog o I -1

), or fJ. - q ~ max (a, {3) < 
fJ. + ~ and f(x) has a continuous derivative of order fJ. with modulus of con-

• • (~) ( maxi'a /l)-1'+!) 0 1 2 A · l 1' ' ' tmmty w~' u = o o · · , fJ. = , , , . . . . gam ti1e equa 1ty s1gn m 
case fJ. = 0, that is, the case max (a, [3) = -~'is excluded. 

Compare Fejer 13, pp. 22, 24, 27; Shohat 5, p. 146. The present results are 
more precise than those obtained in these papers. 

(2) We shall start with a discussion of the "LebeHgue constants" 

n 

(14.4.1) L IZ.(xo) I, 
v=1 

where -1 < xo < + ll. Let o be a fixed positive number, o < 1 - I Xo I· 
Then p~a,/l\xo) = O(n-·!), so that 

"" IZ ( ) I 0( -!) "" I Pn(a,/l)'(x .. ) l-1 
£...J " Xo = n L....J , 

) 
lx.-xol>~ lxv-xol>~ 

(14.4.2 
n 

= O(n-!) L I p~a,/l)'(x,) l-1. 
v=1 

According to (8.9.2) 

n n n 

(14.4.3) L I P·~a,/ll'(x,) ~-I = 0(1) L vaHn-a-2 + 0(1) L vll+~n-tl-2 = O(n!). 
v=1 v=1 v=1 

Consequently, 

(14.4.4) L IZ.(xo) I = 0(1). 
lx.-xol>~ 

On the other hand, assume I x. - Xo I ;£ o. For a fixed v we have (see (8.8.2)) 

-l p~a,/ll(x,) - p~a,/ll(xo) 
Z.(xo) = O(n ) ---- --- ·· · = 0(1), 

x.- Xo 
(14.4.5) 

so that if Xo = cos Oo , 0 < Oo < 1r, 

L IZ.(xo)l = 
) 

lxv-xol;:;~ 
(14.4.6 

= O(n-!)O(n-!) L I e. - Oo l-1 + 0(1), 
n- 1 <16.-0ol;:;~' 

where o' is a fixed positive number. According to (8.9.1) the last expression is 
O(log n). The same bound holds for (14.4.1), and does so uniformly if t.he con
dition -1 + e ~ Xo ~ 1 - e is satisfied. 

We can also show that 

-------------·-------



[ 14.4 J LAGRANGE POLYNOMIALS FOR JACOBI ABSCISSAS 337 

(14.4.7) 

if n tends to + oo over a proper sequence of integers. It suffices to choose n so 
that I cos(Ne + y) [ ~cos E1 where N and 'Y have the same meaning as in Dar
boux's formula (Chapter VIII), and e = ! min (eo, 1t - e0). This is obviously 
possible since from 

(m + !)?t - e < Neo + 'Y < (m + !h + E, 

m integral, the inequalities 

( m + ~) 1t + e < ( N + 1) eo + "}' < ( m + j) 1t - e 

follow. Now the formula of Darboux coupled with the previous argument 
and (8.9.1) gives us the desired proof. 

(3) As a consequence of the last result, we may conclude by means of Theorem 
1.6 (Helly's theorem) the existence of a continuous functionf(x) whose Lagrange 
polynomials are unbounded at the interior point x = x0 • On the other hand, 
let f(x) have the modulus of continuity w(o) = o( [log o [ - 1

), and let Ln(f; x) 
be the Lagrange polynomial of degree n - 1 corresponding to f(x). Approxi
mate f(x) by a ?tn-1 = p(x) such that 

(14.4.8) f(x) - p(x) = o[(log n)-1
], 

(Theorem 1.3.2). Then (see (14.3.6)) 

[ Ln(f; x) ·- f(x) [ = [ Ln(f - Pix) - \f(x) - p(x)) [ 
(14.4.9) 1 

= o\ (log n)- ) O(log n) = o(1). 

(4) Assume 1 - o ~ Xo ~ 1. On putting J.L = n + 1 - v, J.L = O(n), we 
have, by Theorem 7.32.2 and (8.9.2), 

L [Z.(xo) [ == 0(1) [ P~a.~)(xo) [ L [ P~a.~)'(x.) [-1 

I x,-xo I>~ 

(14.4.10) 

a = max (a, ,!). 

We now pass to the determination of an upper bound for 

L ll.(xo) I == L I p~a.~)(cos eo) It p~a.~)'(cos e.) 1-l 
lx.-xol~~ cos eo- cose. 

a+J -a-2 
( ) I (a.~) ( ) [ "' v n 

== 0 1 p n cos eo L...J I e5 - e; I ' 
(14.4.11) 

(since (e~ - e
2
)/(cos eo - cos e) is bounded). In what follows we use both 

bounds (14.4.11). We have by (4.21.7), 

------------
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I p<a.fJ)( e) p<a,fJ)( e)' 
I n cos o - .. cos -~ /

1 
p~a.{J)'(eos e.)

1
-l 

(14.4.12) cos eo - cos e. 

where r is between eo and e • . 
Let eo = n·-J~' and: consider first the case ~ = 0(1). Let v = 0(1); then 

(14.4.12) becomes O(Jl)na·Hva+ln-a-l = 0(1). On the other hand, if vis larger 
than a sufficiently large fixed positive number, the second expression in the right
hand member of (14.4.11) becomef-l (see the second bound in (7.32.5)) 

(14.4.13) 0(1)na L va+ln-a-2 e.-2 = 0(1) L va.:..! = O(na+!), 0 (log n), 0(1), 

according as a > - ! , a = - } , or a < - ?t. 
Now let~ be "large" and~ - v1r = 0(1), so that the number of these values of 

vis bounded. Then we obtain for (14.4.12) (see the first bound in (7.32.5)) 

. (14.4.14) 0(1)r-a-~n-!vaHn-a-·l = 0(1)(v/n)-a-!n-!va+~n-a-l = 0(1). 

Finally, assume that both ~ and ~ - v1r are "large". Then the second ex
pression in the right-hand member of (14.4.11) becomes (see the first bound in 
(7.32.5)) 

(14.4.15) 

where the summation is extended over v1r ~ U2, U2 < v1r ~ 3U2, v1r > 3U2, 
respectively. Here we have to take into account the fact that the ratio 

I 
e - 1 V7r + o ( 1) )

2
1 

e - v27r2 

has a positive lower bound. In the second Hum I~ - v1r I is larger than a fixed 
positive constant. v\Te find now 

(14.4.16) 

according as a> -.},a= -~'or a< -~. 
Recapitulating, we obtain for the Lebesgue constant (14.4.1), the bounds 

O(naH) and O(log n), uniformly in -1 + e ~ x0 ~ 1, according as a > -!or 
a ~ - ~. A similar result is found for the interval - 1 ~ xo ~ 1 - E by re
placing a by {3. In the whole interval -1 ~ x0 ~ +1 we obtain the bounds 
O(n-rH) and O(log n) for 'Y > -~and 'Y ~ -!,respectively, where we have 
'Y = max (a, /3). 

Now an argument similar to that in (3) must be used. Assume first that 



[14.5] STEP POLYNOMIALS IN CLASSICAL CASES 339 

-1 + E ~ Xo ~ 1, and let f(x) satisfy the conditions of Theorem 14.4. 
According to Theorem 1.3.3 a ?rn-1 = p(x) exists such that 

(14.4.17) f(x) - p(x) = 1 
n-~'o(n-:-a+r~) = o(n-a-~), 

o [(log n)-1
], -1 ~ x ~ +1, 

according as a > -! or a ~ - ~. This establishes the statement concerning 
the convergence in the interval [ -1 + E, 1] .. The proof is obviously the same 
for [- 1, 1 - E] and for [ -1, + 1]. 

(5) There remain to be discussed the "Lebesgue constants" for x0 = +1, 
that is, the expressions 

n n 

(14.4.18) L ll.(1) I "-' na L (1 - x.)-1 I P~a,/3)'(x,) l-1
• 

v=l v=l 

The positive zeros.x. furnish a contribution.--..., na L (v/n)-2vaHn-a-2 = L va-~, 
which is O(naH), O(log n), 0(1), according as a > -!,a = -~,a< -~. The 
contribution of the negative zeros is 

a '"" I p<a.,/3)/( ) ~-1 a '"" /3H -{3-2 aH n L....J n x. "-' n L....J v n ,....., n . 

And now, one more step, na,mely, the application of Helly's theorem, yields the 
desired proof of Theorem 14.4. 

14.5. Preliminary discussion of the step polynomials in the classical cases 

We calculate the linear functions v.(x) occurring in (14.!.7) for the Jacobi, 
Laguerre, and Hermite abseissas, respectively. We assume a > -1, {3 > -1 
in the first and a > -1 in the second case. 

(1) From (4.2.1) we obtain in the Jacobi case, since ~(x.) = 0, 

l"(x.) a - {3 + (a + {3 + 2)x. (14.5.1) = 
l'(x.;i 1 - x; 

Whence 

(14.5_2) v.(x) = 1 - x[a - {3 + (a + {3 + 2ix~ ! (a -_{3)x. + (a + p_±})x;. 
v 

In particular, 

(14.5.3) 

v.( _ 1) == (1 + a) (1 + x.) - /3(1 - x.), 
1- x. 

(+ 1) .- (1 + /3)(1 - x.) - a(1 + x.) 
v. ·- 1 + x. . 

The zeros x. are everywhere dense in [ -1, + 1] (Theorem 6.1.1) if n is large. 
Thus v.( -1) is non-negative for each v and n if and only if {3 ~ 0. Similarly, 
v.( +1) ;;;; 0 if and only if a ~ 0. Since v.(x) is linear, we· obtain the following 
result: 

~---·---·---- ·---,--..,-----------------·--------.. ----- ... 
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THEOREM 14.5. The fundamental polynomials h.(x) of the first kind associated 
with the Jacobi abscissas, are non-negative in -1 ~ x ~ + 1 for all values of v and 
n, if and only if 

(14.5.4) -1 <a~ 0, -1 < {3 ~ 0. 

(2) In tpe Laguerre case ( cf. ( 5.1.2), first equation) 

v,.(x) = ~.(x. - a) + x(a + 1 - x.); 
x. 

(14.5.5) v.(O) = x. - a. 

Here v.(x) changes its sign for all values of a if v and n are properly chosen. 
In the Hermite case ( cf. ( 5.5.2), first equation) we obtain 

(14.5.6) v.(x) = 1 - 2x.x + 2x;. 

14.6. Step polynomials and "Hermite polynomials" for Jacobi abscissas 

We again assume a > -1, {3 > -1 and use the same notation as in §14.4. 

THEOREM 14.6. Let f(x) be continuous in [ -1, +1]. The generalized step 
polynomials (14.1.9) [f. = f(x.), If: I < A] converge uniformly to f(x) over every 
interval [ -1 + E, 1 - E]. The same holds over the interval [ -1 + E, 1] provided 
a < 0. The step polynomials are in general divergent at x = + 1 if f(x) is merely 
continuous and a ~ 0. 

The "Hermite polynomials" (14.1.9) [f. = f(x.), f: = f'(x.)] converge uniformly 
to f(x) in [ -1 + E, 1] if a < t and f(x) has a continuous second derivative, or if 
J.L/2 ~ a < (J.L + 1)/2 andf(x) has a continuous (J.L + 1)st derivative with modulus 
of continuity w11+I(o) salisfying the condition w11+l(o) = o(o2

a-11), J.L = 1, 2, 3, .... 

Similar statements hold in [ -1, 1 - E] and at x = -1 if we replace a by {3, 
and in the whole interval [ -1, +1] if we replace a by max (a, /3). (Cf. Shohat 5, 
pp. 138-139; Szego 14.) 

(1) We start with the discussion of the convergence for -1 < Xo < +1. 
Here again Theorem 8. 9.1 is virtually indispensable. 

If x = x. , the numerator of v.(x) in (14.5.2) is 

1 - x.[a - {3 + (a + {3 + 2)x.] + (a - {3)x. + (a + {3 + 1)x; 
(14.6.1) 2 

= 1 - x. > 0. 

Therefore, v.(xo) is positive if I x. - xo I is sufficiently small, that is, I x. - xo I 
:S o. The same is of course true for h.(x0). Furtherrp.ore, v.(xo) has for these 
v a positive lower bound which is independent of o. We therefore obtain, on 
account of the first identity in (14.1.11), 

(14.6.2) 

and from (14.1.7) we :see that 

-,-----·---·----
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Here the bound 0(1) is independent of o. 
vVe shall now find a bound for the corresponding sums if I x. - x0 I > o. From 

(14.5.2) and (8.9.2) we have 

L I h.(xo) I = 0(1) L (1 - x;)-1 \Z.(x0) )
2 

lx.-xoi>B lx.-xol>~ 

= 0(1)\P~a.~)(xo) )2 L (1 - x;)-1 \P~a.~)'(x.)) - 2 
lxv-xol>~ 

(14.6.4) n n 

= O(n-1) :E (v/n)-2v2a+an-2a-4 + O(n-1) L (v/n)-2v2~+3n-2~-4 
v~l v=l 

Moreover, we notice 

L I f).(xo) I = 0(1) L \ l.(xo) )2 
lx.-xol>~ lx.-xol>~ 

(14.6.5) 
= 0(1) \P~a.~)(xo) )2 L \P~a,~)'(x.)) - 2 

lx.-xol>~ 

n n 

= O(n -1) L v2a+a n-2a-4 + O(n-1) L /~+an -213-4 
v=1 v=1 

= O(n - 1
). 

This yields the convergence of the generalized step polynomials of a continuous 
function if -1 < xo < +1. Indeed, according to (14.1.9) and (14.1.11), 

n n 

I w n(Xo) - f(xo) I ~ L I f(x.) - f(xo) I I h.(xo) I + A L I f).(xo) I 
v=1 v=1 

(14.6.6) 
~ max I f(x.) - f(xo) I L h.(xo) + 0(1) L I f).(xo) I 

lx.-xol;:io• · lx.-xol;:i~ lx.-xol;:i~ 

+ 2 max IJ(x) I L I h.(xo) I + 0(1) L I f).(xo) I 
lx.-xol>~ lx.-xol>~ 

max I f(x.) - f(xo) I 0(1) + o0(1) + O(n-1) + O(n-1). 
I x,-xo I~;~ 

The factors 0(1) in the last expression are independent of o. 
(2) Now assume a < 0 and 1 - o ~ xo ~ 1. The second formula in (14.5.3) 

shows that v.(xo) and h.(xo) are again positive and v.(x0) ·is bounded from zero 
if I x. - xo I ~ o, provided o is sufficiently small. (We have v.(xo) ~ v.( +1) 
if a - {3 + (a + {3 + 2)x. > 0.) Then the analogues of (14.6.2) and (14.6.3) 
follow immediately. In (14.6.4) and (14.6.5) a slight modification is necessary 
due to the fact that in this case P~a.~)(xo) = O(na), a = max (a, - !). (The 
formulas corresponding to (14.6.4), (14.6.5) hold for arbitrary a > - i; this 
remark is used in (3).) Since a < 0, the conclusions of (1) remain valid; this 
establishes the convergence of the generalized step polynomials if a < 0 andf(x) 
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is continuous. (Of course, the same is true for the "Hermite polynomials" if 
f'(x) is bounded.) 

(3) We postpone the discussion of the step polynomials at x = + 1 if f(x) is 
continuous and a ~ 0, and we pass on to a discussion of the "Hermite poly
nomials" for 1 - o ~ Xo ~ 1 with a arbitrary but greater than -1. First we ob
serve that the numerator of (14.5.2) vanishes for x = x. = + 1; thus we have 
for I x. - Xo I ~ o, 

(14.6.7) I v.(xo) I < (1 - x;)-1e(o), 

where e(o) ---? 0 if o---? 0. Now, 

(14.6.8) 

By use of the notation and argument of §14.4 (4), we obtain for the sum above: 
(a) O(n2

) if~ = 0(1), v = 0(1); 
(b) 0(1) L v2a-1(v/n)-2 = O(n2a), O(n2 log n), O(n2), according as a > 1, 

a = 1, a < 1, if~ = 0(1), and vis "large"; 
(c) O(I)(v/n)-2 = O(n2) if~ is "large" and~ - v1r = 0(1); 
(d) O(I)r2a-l L v2o+a(~2 - v27r2)-2 (v/n)-2 = L~ + L~ + L~ if both~ and 

~ - v1r are large. The summations in the last three sums are extended over 
the same values of vas in (14.4.16). We have 

L~ = O(C2a·-5) L v2a+a(v /n)-2 = O(Ca n2) = O(n21' 
v ,.;;;~12 

(14 6 9) L~ = 0(1) L (~- v7r)-2(v/n)-2 = O(C2n2) = O(n2), 
· · ~/:2<v,.;;;aU2 

O(n2 log n), 

according as a > 1, a = 1, or a < 1. To these cases the bounds 

(14.6.10) L I h.(xo) I = e(o)O(n2a), e(o)O(n2 log n), e(o)O(n2) 
jx.-xo 1 ;;;6 

correspond. 
In order to obtain the analogous bounds for l).(xo), we cancel in (14.6.8) the 

factor (I - x;)-1 
,....._, (v/n)-2

• Thus, we readily obtain 

(14.6.11) L I f).(xo) I = oO(n2a), oO(log n), oO(l), 
jx.-x0 j;;;6 

according as a > 0, a := 0, or a < 0. 
The corresponding bounds for I x. - Xo I > o are O(n2a) (cf. the remark made 

in (2)). Thus, (14.1.9) and the first formula in (14.1.11) give the result 
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I Wn(xo) - f(xo) I ~,,.~,~~6 lf(x.) - f(xo) I e(o) O(n2 log n) 
{

O(n
2

a) } 

O(n2
) 

(14.6.12) {O(n2a) } 

+ 1 ,~,~~6 lf'(x.) I o O(log n) +max lf(x) I O(n2a) 

0(1) . 

+max lf'(x) I O(n2a); a = max (a, - !). 

In the first term we have the alternative a > 1, a = 1, or a < 1, in the second 
term a > 0, a = 0, or a < 0. The 0-expressions are independent of f(x) and o. 

We now apply the usual argument. Let Wn(f; x) be the "Hermite poly
nomial" corresponding to f(x), and p(x) an arbitrary '1!"2n_1 • Then 

(14.6.13) W n(f; Xo) - f(xo) = W n(f - p; Xo) - lf(xo) - p(xo) }. 

Under the condition mentioned in Theorem 14.6 we can determine p(x) (cf. 
Theorem 1.3.3) such that 

f(x) - p(x) = o(n-2
), f'(x) - p'(x) = o(n-1

) if a < !, 
(14.6.14) f(x) - p(x) = o(n-2a-1), f'(x) - p'(x) = o(n-2a), 

if !JL ~ a < !CJL + 1), J.' = 1, 2, 3, · · · . 

Thi~ establishes the statement concerning the "Hermite polynomials." 
(4) Finally, we discuss (ef. 14.5.3)) 

(14.6.15) :t I h.(l)l == :t ·~· g __ j-2)_Q.-=~=-- ~~~-+ ~~ lll.(1) }2• 

•-1 •=1 . 1 + x. 

The part of this sum defined by x. ~ 1 - o is, for a ~ 0, 

(14.6.16) "-~n2a L (1 - x.)-21P~a,!9),(x.) l-2 "-' n2a L (v/n)-4v2a+3n-2a-4 
"'•~1-6 x.!1;1-6 

which is of the order n2
a or 1, according as a > 0 or a < 0. This shows 

that the step polynomials (and also the generalized step polynomials) of a 
continuous function are in ge.neral divergent at x = + 1 if a > 0. (The con
vergence for a < 0 has be-en proved in (2).) The possibility of divergence in 
case a = 0 follows by choosing f(x) = 1 - x. The corresponding step poly
nomial is in fact 

~ h.(1)f(x.) = (1 + (3) ~ (~ ~ ~:
2 

{ Z.(1) \
2 

(14.6.17) n 

= (1 + (3) L (1 + x.)-1{P~o.!9)'(x.) ~-2 
v~l 

"" ( I ) -2 2!9+a -2!9-4 1 ""'L...J vn v n ,....._,, 
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so that it cannot tend to f(1) = 0. Still simpler is the proof of the divergence 
of the step polynomials of f(x) = (1 + ,6)(1 - x) - a(1 + x) if a > 0, since 
f(1) = -2a < 0. . 

14.7. Step polynomials for Laguerre abscissas 

Assume a > -1, and let x1 < X2 < · · · < Xn denote the zeros of the Laguerre 
polynomial Ln(a)(x). We prove the following theorem: 

THEOREM 14.7.68 Let f(x) be continuous for x ~ 0 and f(x) = O(xm) if 
x---? + oo; herem is an arbitrary but fixed positive number. The generalized step 
polynomials (14.1.9) (f.= f(x.), If: I <A) converge uniformly tof(x) over every posi
tive interval e ~ x ~ w. The same holds in the interval 0 ~ x ~ w provided a < 0. 
The step polynomials are in general divergent at x = 0 if f(x) is continuous and 
a~ 0. 

For the proof we shall need considerations similar to those in the Jacobi case 
(§14.6). In particular, we shall use Theorem 8.9.2. Some modifications in the 
argument are necessary due to the fact that the zeros are unbounded. The 
mechanical quadrature appears as an important new tool (cf. (15.3.5)). 

(1) Assume 0 < e ~; xo ~ w. If v.(x) has the same meaning as in (14.5.5), 
the values v.(xo) and h.(xo) are positive, and v.(xo) is bounded from zero and 
infinity provided I x. - x0 I is sufficiently small. Thus for small o, 
(14.7.1) 

(14.7.2) L: I o.(xo) I = o0(1) L: h.(xo). 
Jx.-x0 J~6 Jx.-xoJ~6 

Here 0(1) is independent of o. 
If x. is small, v.(xo) = O(x;-1

); if x. is large, v.(xo) O(x.). Therefore (cf. 
(7.6.8)) 

{ 
L(a)( ) }2 L I h.(xo) I = 0(1) L x;-1 

(a)' n Xo 
Jx.-xoJ>6 x.<xo-6 Ln (x.)(xo - x.) 

(14.7 .3) 

n 

= O(na-!) L x;-1 {L~a)'(x.) l-2 

•=1 

But combining (15.3.5) with (3.4.5), we find 

(14.7.4) ~ .-11 L<a)'( )l-2 _ r(n + 1)r(a + 1~ f=t a .• \ n x. - r(n +a+ 1) ' 

which yields the bound O(na-!)O(n-a) = O(n-!) for (14.7.3). 

es Cf. Shohat 6, p. 139; Szego 14, p. 597. 
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More generally, we find from (1.5.3.5) and (3.4.1), if m is a positive integer, 
m ~ 2n - 1, that 

(14.7.5) :t x':'-I{L~,a)'(x.) 1-z = r(n + l)r(m +a)+ 1). 
v=l I'(n +a+ 1 

Hence the :same argument as before leads to 

(14.7.6) L x~' I h.(xo) I = O(n4 ), 
lx.-xo I >tl 

m fixed. We have also 

(14.7.7) 

Equations (14.7.1), (14./'.2), (14.7.6), and (14.7:7) establish the uniform·con
vergence of the step polynomials in the interval e ~ x0 ~ w (cf. (14.6.6)). 

(2) Now assume a < 0 and 0 ~ x0 ~ o. If o is sufficiently small, and 
I x. - xo I ~ o, both v.(xo) and h.(xo) are positive, and v.(xo) is bounded from 
zero. Hence (14.7.1) and (14.7.2) are again valid. In (14.7.3) only the bound 
of IL~a)(xo) l2 must be changed. According to (7.6.11) this will be O(n2a) 
where a = max (~a - t, a). Therefore, 

(14.7.8) 

and the same bound holds for the sums in (14.7.6) and (14.7.7). Since the ex
ponent 2a - a = max (- !, a) < 0, these sums tend to zero. From this the 
uniform convergence in 0 ~ x ~ w follows. 

(3) The case xo = 0, a ~ 0, can be readily disposed of by choosing f(x) 
x - a. We have 

n n 
"'"" ,~, 2 2 
L....J f(x.)h.(O) = ,C... (x. - a) U.(O) l 

(14.7.9) 
v=l •=1 

Since this expression is positive, it cannot tend to f(O) = -a if a is positive. 
If a = 0, the last expression in (14.7.9) is 1 (cf. (14.7.5), m = 1), andf(O) = 0. 

14.8. Lagrange polynomials for certain general classes of abscissas 

(I) Let X1n > X2n > · · · > x,.,. denote the zeros of the nth orthogonal poly
nomial Pn(x) a:s:sociatccl with the weight function w(x) in the interval -1 ~ 
x ~ +I. We consider two classes A, B of weight functions characterized by 
the following conditions: 

A. There exists a positive number iJ. such that 

(14.8.1) w(x) ~ JJ., 

B. There exists a positive number iJ. such that 
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(I4.8.2) -I<x<+I. 
By using this notation we prove the following statement: 

THEOREM I4.8. Let f(x) be defined in -I ~ x ~ + 1. Let !Ln(f; x) l denote 
the sequence of the La17range polynomials coinciding with f(x) at the zeros Xvn 

of the orthogonal polynomials Pn(x) associated with the weight function w(x), 
-I ~ x ~ + 1. Then limn-oo Ln(f; x) = f(x), uniformly in the interval [-I, +I], 
provided thatw(x) belongs to A andf(x) has a continuous derivative in [-I, +I]. 
The same conclusion holds if w(x) belongs to B and w(o) = o(o!). Moreover 
limn-oo Ln(f; x) = f(x), uniformly in the interval [-I + e, I - e], where 
0 < e < I, provided that w(x) belongs to A and w(o) = o(o!). 

Compare Shohat 7, Grunwald-Thran 1. Here, as before, w(o) is the modu
lus of continuity of f(x) in [-I, +I]. 

(2) We show that for the fundamental polynomials of Lagrange interpolation 

(I4.8.3) i; ll'.(.r) I= O(n!), -I~ x ~+I, 
{

O(n), -I ~ x ~ +I, 

Q (n !) , -I + E ~ X ~ I - E, 

where w(x) belongs to A in the first and third case, and to Bin the second case. 
From (I4.8.3) the statement follows by reference to Theorems 1.3.2 and 1.3.3. 

Let X be fixed, Ev = sgn l,.(x). We write in the case A 

(I4.8.4) 
n n-1 

p(t) = L e,.l.(t) = L c.Pv(t), 
~~1 ~~o 

where P.(t) is the vth Legendre polynomial. Then 

p(x) = 'i:, ll.(:r;) I = 'f c.P,(x) ~ {'f +c; 
1
}!{'f (v + !)[P.(x)]2}! 

v=1 v~o .~o v 2 v~o 

(I4.8.5) = {f-:1 

(p(t)]
2 dtY{~ (v + t)[P.(x)]2y 

~ il-
4 {i:1 

w(t)[p(t)]
2 dtrf~ (v + !)[P.(x)]

2r. 
Now, according to (I4,.2.4), 

(I4.8.6) 1-:1 

w(t)[p(t)]
2
dt = ~X.[p(x.)]2 

= t;x.e; =~X.= 1:1 

w(t)dt. 

Statement (I4.8.3) is readily derived by using (7.21.I) and (7.3.8). 
The only essential modification of the proof in the case B is that we write 

n n-1 

(I4.8.7) p(t) = L e.l.(t) = L d. T.(t), 
Jl-==1 Jl=0 

where T.(t) is Tchebichef's polynomial of the first kind. 
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14.9. Further results on interpolation 

We indicate briefly a few more recent results on interpolation. 
(I) We employ the notation of §14.8. Let the weight function w(x) be con

tinuous with a positive minimum in (-I, +I] and let e > 0. Then 

max ll.(x)l ~I as n ~ oo 

where the maximum is taken in the interval [-I + e, I - e] and the limit 
relation holds for any sequence v = v(n) for which the corresponding zero 
x. = Xm is in [-I + e, I ·- e]. (Erdos-Lengyel!.) 

(2) The result of GrUnwald (1) and Marcinkiewiez (2) mentioned in §I4.I (3) 
has been deepened by Erdos-GrUnwald and Erdos. We consider the zeros of 
T n (x) as the set of abscisE.as. 

Erdos-Grunwald (1) ., have shown the existence of a continuous function 
f(x) = f(cos 8) the Fourier series of which is uniformly convergent and at the 
same time the sequence of the corresponding Lagrange polynomials Ln (x) is 
everywhere divergent, even everywhere unbounded. 

Erdos (2) has shown that if x 0 = cos (p1r/ q ), p and q odd, there exist continuous 
functions f(x) for which Ln(xo) ~ oo. Erdos-Turim (1) have shown previously 
that this cannot hold for any other points xo; see also Erdos 2, p. 3I3. 

(3) Important results have been obtained by Erdos for the "normal" sets of 
abscissas introduced and investigated by Fejer. They are characterized by the 
property that the "conjug~ate points" (I4.l.I5) lie outside of the interval [a, b] 
of interpolation. 

Fejer showed that for a normal set x. - x._ 1 tends to zero as n ~ oo. ErdoH
Turan (2) have sharpened this result and Erdos (1) proved that 

-- - ?!: (I - 2)-t + 0( -~) x. x._1 - x. . n 
n 

provided that x. = Xm is restricted to a fixed interval (-I + e, I - e]. 
Erdos (1) solves the following remarkable extremum problem. We consider 

all normal sets lxml, v and n fixed. (We follow the notation (I4.l.I).) What 
is the minimum and maximum of xm? They are given by z. and -Zn-• where 
z. = Zm are the zeros of Pn(z) + Pn-1(z). 

(4) GrUnwald (2) and Webster (1) have studied a certain type of "sum
mability" for Lagrange polynomials similar to a procedure of '\V. Rogosinski for 
the partial sums of Fourier series. The abscissas used are the zeros of the 
Tchebichef polynomials of the first and second kind, respectively. 

GrUnwald (3) gives a survey of divergence properties of the Lagrange poly
nomials. This paper contains also a discussion of the convergence of the 
Lagrange and Hermite interpolation polynomials under the condition that the 
abscissas form a normal set. 

(5) Babizs-Turim (1, 2) and Suranyi-Turim (1) have investigated various 
properties of certain polynomials of interpolation connected with ultra
spherical abscissas. The novel feature of this investigation is the study of inter-
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polation polynomials for whichf(x) andf"(x) are prescribed. 
(6) Erdos (3) has investigated the "Lebesgue function" 

n 

L: lUx) I, 
·=l 

[XIV I 

see (14.1.6). Denoting the maximum of this function m the interval - 1 
~x ~ 1, by Mn, he proved the following inequality 

Mn > (2/11'-) log n -c. 

This is a rather deep result. It is known that for the zeros of Tchebichef 
polynomials 

Mn < (2/11'-) logn +c. 
Here c is a positive absolute constant. 

( 7) The more diffieult analogous problem concerning the fundamental 
polynomials ~.(x) of Hermite interpolation has been solved by Erdos-Turim 
( 4), who prove that 

n 1 (2 ) _ 1~a;+1 ~I b.(x) I~ n ; logn -c2loglogn . 

This is "asymptotically best possible" as the case of Tchebichef abscissae 
shows. 

The paper Erdos-Twran 4 also contains a proof that 

n 2 
max L ll.(x) I > - log n - c3log log n, 

-1;ax;a+1 •=1 7r 

which is weaker than the result cited in ( 6) above, but preceded it in time. 
(8) If Ln(x) is the Lagrange interpolation polynomial of a continuous 

function f(x) with interpolation at the zeros of p~a,P>(x), a,fJ ~ - t, then 

(14.9.1) !~U.: J_1

1
ILn(x) -f(x) I P(l -x)a(l +x)Pdx =0 

when p<min(4(a+1)/(2a+1),4(fJ+1)/(2fJ+l)') =A(a,fJ) and for p> 
A(a,/3) there is a continuous function f(x) for which (14.9.1) fails. See Askey 6. 

(9) By simple methods of interpolation Egervary-Turan 1 have proved the 
following beautiful identity 

1 _ [Pn(x) )2 = ± 1 - x: { ' Pn(x) } 
2
' 

•=1 1 - x. Pn(x.) (x- x.) 

where the x. are the zeros of the Legendre polynomial Pn(x). From this they 
derive a new proof of 1lhe inequality (7.21.1). By similar reasoning one can 
obtain a new proof of the inequality ( 7 .21.3). See Egervary-Turan 2. 



CHAPTER XV 

MECHANICAL QUADRATURE 

The reader will recall that the Gaust;-Jacobi mechanical quadrature was 
studied in §3.4. In the present chapter we turn to other mechanical quadra
ture problems which are also connected with the theory of orthogonal poly
nomialH. 

15.1. Definitions 

(I) Let [a, b] be a finite or infinite interval, and let 

(15.1.1) Sn : X1n < X2n < • • • < Xnn , 

denote a >3et of n distinct points in [a, b]. Furthermore, let 

(15.1.2) An : A1n , A2n , • • • , Ann 

be a Het of real numbers. If f(x) is an arbitr~ry function defined in [a, b], we 
write 

" (15.1.3) Qn(f) = L Avnf(Xvn). 
v=l 

We call the numbers x.,. the abscissas and the numbers X.n the Cotes numbers 
of the "mechanical quadrature" Qn(f). Having been given the sequences of 
corresponding sets I Sn l and IA,.l, n = 1, 2, 3, · · . , >Ve are interested in the 
convergence properties of the sequence 

(15.1.4) 

a>3~;ociated with a given function f(x). 
As in Chapter XIV we write x. and X. instead of Xvn and Avn when there is 

no ambiguity. 
(2) An important speci1~l case is the following. Let the set I Sn l be an 

arbitrary set of distinct numbers in [a, b], and let u(x) be a given non-decreasing 
function. vVe shall define the Cotes numbers x. by requiring that 

(15.1.5) Qn(f) = ib f(x) du(x) 

shall hold if f(x) is an arbitrary 11"n-l • Obviously, uhder such a condition, 

(15.1.6) X. = ib Z.(x) du(x), v = 1, 2, · · ·, n, 

where Z.(x) denote the fundamental polynmhials (14.1.2) of the Lagrange inter-
349 



350 MECHANICAL QUADRATURE [XV] 

polation corresponding to the abscissas I Sn }. In this case Qn(f) is called a 
quadrature of the interpolatory type. 

The Gauss-Jacobi quadrature is seen to be a special case of the interpolatory 
type when the abscissas I Sn l are the zeros of the orthogonal polynomials 
associated with the distribution du(x). Another remarkable case of the inter
polatory type is u(x) = x with ISnl arbitrary. The integral (15.1.5) is then 
the ordinary integral of f(x) over the interval [a, b], which is assumed to be 
finite in this case. 

We shall use the previous notation throughout the whole chapter. 

15.2. A general convergence theorem on mechanical quadrature; 
theorem of Stekloff-Fejer 

(1) THEOREM 15.2.1.69 Let [a, b] be a finite interval, and let the system I Sn} 
(in [a, b]) and IAnl be arbitrary; let Qn(f) be defined by (15.1.3). Denote by u(x) a 
non-decreasing function 1 and assume the "quadrature convergence" 

(15.2.1) 

for an arbitrary polynomial f(x). Then a necessary and sufficient condition for 
the validity of (15.2.1) for an arbitrary continuous function f(x) is the bounded
ness of the sequence of the "Lebesgue constants" 

(15.2.2) I An1 I + I An2 I + ' ' ' + I Ann I' 

This theorem is an immediate consequence of Theorem 1.6 (Helly's theorem). 
It is to be noted that condition (15.2.1) holds for an arbitrary polynomial f(x) 
if the quadrature is of the interpolatory type (cf. §15.1 (2)). 

(2) As an application we shall prove the following important theorem of 
Stekloff and Fejer: 

THEOREM 15.2.2.70 Let [a, b] be a finite interval, and let the Cotes numbers 
I An l be non-negative. If the quadrature convergence (15.2.1) for an arbitrary 
polynomial f(x) is assumed, the same convergence can be stated for an arbitrary func
tion for which the Riemann-Stieltjes integral in the right-hand member of (15.2.1) 
exists. 

The expression (15.2.2) remains bounded in the present case, since 

n n 

(15.2.3) L I Avn I = L Avn = Qn(1) 
.~1 ·-1 

has a limit as n ---? oo. Therefore, (15.2.1) holds for a continuous f(x). The 

eg Cf. P6lya 4, p. 267, Theorem I. 
1o Cf. Stekloff 2, pp. 176-179; Fejer 16, p. 291; P6lya 4, p. 282, d); Shohat 7, pp. 474-476. 
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extension to Riemann-integrable functions is made by means of Theorem 1.5.4. 
Theorem 15.2.2 holds without change if the Cotes numbers {Anl are non

negative only for sufficiently large values of n. 
(3) A remarkable special case of Theorem 15.2.1 is obtained by considering 

an arbitrary quadrature of the interpolatory type (defined by a monotonic 
non-decreasing function u(x)), and by choosing for the set {Snl the zeros of the 
orthogonal polynomials IPn(x) l associated with a preassigned distribution 
da(x). Here a(x) is in general different from u(x). Then (15.2.1) holds for an 
arbitrary polynomial f(x). 

The Gauss-Jacobi quadrature is derived as a special case by taking a(x) = 
u(x). The Cotes numbers are then identical with the Christoffel numbers of 
§3.4 and are all positive. Applying Theorem 15.2.2, we obtain the following: 

THEOREM 15.2.3. Let da(x) be an arbitrary distribution on the finite interval 
[a, b], and let Qn(f) be the corresponding Gauss-Jacobi mechanical quadrature 
(that is, Xvn are the zeros of the orthogonal polynomials Pn(x) associated with da(x) 
and Xvn the corresponding Christoffel numbers). Then the "quadrature con
vergence" 

(15.2.4) 

holds for an arbitrary function f(x) for which the Riemann-Stieltjes integral in the 
right-hand member exists. 

(4) Another remarkable special case arises upon choosing u(x) = x with 
a(x) arbitrary. Such a choice permits us to assert the following theorem: 

THEOREM 15.2.4.71 Let Xv be the zeros of the orthogonal polynomial Pn(x) asso
ciated with the arbitrary distribution da(x) on the finite or infinite interval [a, b]. 
If we define the mechanical quadrature Qn(f) of the interpolatory type by the re
quirement in §15.1 (2) with u(x) = x, the corresponding Cotes numbers can be 
represented as follows: 

(15.2.5) v = 1, 2, · · ·, n, 

with 

(15.2.6) Kn(x) - [b Kn(X, t) dt = [b {t Pv(x)pv(t)}dt = t Pv(x) 1b Pv(t) dt. 
a v~o v-0 a 

Here we use the symbols kn and Kn(Xo, t) in the sense explained in (2.2.15) and 
(3.1.9); Xv and Av stand for Xvn and Avn , respectively. 

For the proof we write (15.1.6) as follows: 

( 7) .., _ { 1 ( ) ( ) ~-1 [b Pn(t)Pn+l(Xv) - Pn+l(t)pn(Xv) dt 
15.2. ,..., - Pn Xv Pn+l Xv t ' 

a - Xv 

11 Szego 17, p. 94. 
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Comparison of this formula with equation (3.2.3) establishes the statement. 
According to (3.3.6) we have 

(15.2.8) sgn Av = sgn Kn(x.). 

In particular, if Kn(x) ~ 0 in [a, b], the Cotes numbers are non-negative. Then 
the Stekloff-Fejer theorem can be applied. 

The polynomial Kn(x) may be characterized by the following condition: 

(15.2.9) ib Kn(x)p(x) da(x) = ib p(x) dx, 

where p(x) is an arbitrary 11"n. In case da(x) = w(x) dx, we see that Kn(x) is 
the nth partial sum of the expansion of { w(x) l-1 in terms of the poly
nomials Pn(x). 

(5) In the next sections we consider the special cases previously mentioned, 
namely: 

(a) 

(b) 

u(x) = a(x) (cf. (3)), 

u(x) = x (cf. (4)); 

here the abscissas { Sn l are the zeros of the orthonormal polynomials associated 
with the distribution da(x) with the additional specialization that these poly
nomials are. the classical ones. 

15.3. Cotes-Christoffel numbers in the case u(x) = a(x) (Gauss-Jacobi 
quadrature) for the classical abscissas 

(1) We use the representation (3.4.7) of the Christoffel numbers A. and 
arrange the zeros x. in decreasing order in the Jacobi and Hermite case and in 
increasing order in the Laguerre case. Concerning the following results see 
Winston 1. The representation (15.3.5) has already been used in §14.7. 

By use of (4.3.4) and (4.21.6), the second formula (4.5.7) furnishes for the 
Jacobi abscissas 

(15.3.1) 
A _ 2a+,B+l r(n +a+ 1)r(n + {3 + 1) (1 _ 2)-l{p<a.tJl'( ) l-2 

p - r(n + 1)r(n +a+ {3 + 1) x. n x. ' 

v = 1,2, ... ,n;a > -1,{3 > -1, 

and, in particular, for the ultraspherical abscissas (cf. (4.7.1) and (1.7.3)) 

(15.3.2) 
A.= 22-2>-1T"{r(A)\-2 ri~ ~ ~~) (1- x;)-l{p~>-J'(x.)\-2, 

v = 1, 2, · · · , n; A > -t, A ~ 0. 

For A = 0, that is, in the "Mehler case" w(x) = (1 - x2)-!, we find 

(15.3.3) 
11" 

A.= -. 
n 

v=1,2, .. ·,n, 
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that is, A1 = A2 = · · · = An. For A = 1, that is, in case w(x) = (1 x2
);, 

we obtain 

(15.3.4) 7r ( 1 2) 7r • 2 V1r 
Av = n + 1 - x. = n + 1 sm n + 1' v = 1, 2, · · ·, n. 

For the Laguerre abscissas we have from (5.1.10) and (5.1.14) 

(15.3.5) Av = r(;(! ~ t 1) x;-1 {L~al'(x.) \-2
, v = 1, 2, · · · , n; a > -1, 

whereas for the Hermite abscissas, from the second identity of (5.5.10), 

(15.3.6) A. = 1r!2n+1n!{H:(x.) l-2, v = 1, 2, · .. , n. 

(2) In the Jacobi case the argument of §7.32 (2) shows that, for a> -!and 
{3 > -!, that part of the sequence A1 , A2 , · · . , An corresponding to the zeros 
x. > Xo (cf. (7.32.1)) is increasing, and that part corresponding to x. < xo is 
decreasing. The opposite is true if a < -!, {3 < -!. If a> -!, {3 < -!, 
or a < -!, {3 > -!, the whole sequence in question is increasing or decreasing 
according as the first or second pair of relations holds. 

In the ultraspherical case this argument furnishes 

(15.3.7) if A > 0, 

and 

(15.3.8) if A < 0. 

The symmetry relation (Problem 11) yields the analogous statement for the 
other A. . The values (15.3.3) correspond to the case A = 0. In the Legendre 
case we have (15.3.7). 

In the Laguerre and Hermite cases we use the argument of §7.6 (1). In the 
Laguerre case the sequence A1 , A2 , · · · , An is increasing for x. < a + !, and 
decreasing for x. > a + !. In the Hermite case we have (x1 > X2 > · · · ) 
(15.3.9) 

(3) In the Jacobi case, if x. = cos o. , and o. belongs to a fixed interval in the 
interior of [0, 1r], Darboux's asymptotic formula (cf. (8.21.10) and (8.8.1)) yields 

(15.3.10) 
2a+tl+l 7r ( • o.)2a+l ( o.)2tl+l 

Av = Avn ,......_, n sm 2 cos 2 

Here, for a - {3 = -! the symbol ,......_, can be replaced by =, according to 
(15.3.3). The same is true for a = {3 = +! (see (15.3.4)) if we replace n by 
n + 1. On the other hand, if v is fixed and n -? oo, we obtain, by use of equa
tion (8.1.1), 

(15.3.11) " _ " ,......_, 2 a+tl+l(. j 2)2a { J' (.) ~-2 -2a-2 
1\v - 1\vn = )v a )v n ' 
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where J. is the vth positive zero of J a(z). (Here the symboli'V can be replaced 
by = if a = {3 = -!.) Therefore, on account of the monotonic property 
proved in (2), we have uniformly in v, 

(15.3.12) if 0 < 0. ~ 1r - e, 

according as a ~ - !, or a ~ - !. Here e is a fixed positive number. 
By use of the argument and notation in §7.32 (3), we readily see that for 

increasing v, v ~ vo, 

(15.3.13) ( 
0 )-2a-1 ( 0 )-2tl-1 

~(0.) sin~ cos~ ;\. 

is increasing or decreasing according as a
2 ~ l or a

2 ~ !, and 0 < o. ~ o, 
where o is a sufficiently small positive number. (If n is sufficiently large, 
~(0.) > 0, v ~ vo .) Thus (15.3.13) has uniformly the "order" n if 0 < o. ~ o. 
In view of (15.3.10) and (15.3.11) for 0 < o. ~ 1r - e this yields (see (8.9.1)) 

(15.3.14) " 02a+1 -1 2a+1 -2a-2 
1\v ,.....,_, • n I'J v n ' 0 < 0. ~ 1r - e; 

that is to say, the ratio of these expressions is uniformly bounded from zero and 
infinity if v and n are arbitrary, 0 < o. ~ 1r - e. The expression in the right
hand member of (15.3.14) attains its greatest value for v r...~ nor v ,.....,_, 1 according 
as a ~ -! or a ~ - !. This again furnishes (15.3.12). 

Similar results can be obtained if o. is confined to the interval e ~ o. < 1r. 

(4) In the Laguerre case, if e ~ x. ~ w, we obtain (cf. (8.22.1) and (8.8.4)) 

(15.3.15) " " -x a+! -! 
1\v = 1\vn ~ 'Ire • x. n ' 

where e and w are fixed positive numbers. On the other hand, if v is fixed and 

n --? oo, we find from (8.1.8) 

(15.3.16) 

where J. has the previous meaning. 
Applying an argument similar to that in the Jacobi case to the fourth equa

tion in (5.1.2), and taking into consideration the argument of §7.6 (2), we find 
that the sequences 

(4n + 2a + 2- x. + 1 ~x~a)-
1 

e-x·x~+J{L~al'(x.)\ 2 , 
(15.3.17) 

( 4 + 2 + 2 + 1 - 4a
2
) x, -a-!" n a - x. 4x. e x. Av 

are monotonic as v increases provided a2 ~ l and 0 < x. ~ w. In case a
2 > l 

the same sequences con~:>ist of two monotonic parts (v ~ vo). On account of 
(15.3.15) and (15.3.16) we obtain for the second sequence (15.3.17) the uniform 
"order" n! so that 

' 
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"\ a+i -i 
1\v ,.....,_, x. n ' 0 < x. ~ w. 

Because of (8.9.10) we may write 

(15.3.19) 0 < x. ~ w. 

The condition x. = 0(1) is equivalent to v = O(n!). 

15.4. Quadrature of interpolatory type with u(x) = x for Jacobi abscissas 

(1) In this section we prove the following theorem: 

THEOREM 15.4. Assume a > -1, {3 > -1, and let the mechanical quadrature 
Qn(f) be defined by the following conditions: 

(a) P~a,/3)(x.) = 0, v = 1, 2, · · ·, n, 
(15.4.1) 

(b) Qn(xk) = f. AvX~ = 1+1 

xk dx, 
v~1 -1 

k = 0, 1, 2, · · · , n - 1. 

Assume max (a, {3) ~ 3/2. Then for an arbitrary function f(x) which is con
tinuous in [ -1, + 1], 

(15.4.2) 1
+1 

!~ Qn(f) = _
1 

f(x) dx 

holds. If the numbers a, {3 are such that max (a, {3) > 3/2, there exist continuous 
functions f(x) for which (15.4.2) is not true. 

Notice the difference between this statement and that of Theorem 15.2.3. 
Apart from the special case max (a, {3) = 3/2, a ~ {3, this theorem has been 
proved by Szego (17, pp. 102-108). The present proof is simpler; it is based 
on the bounds (7 .32.5) of P~ a •

13\x), and on Theorem 8. 9.1 concerning the zeros 
of p~a ·13\x). The notation of §14.4 is used. 

(2) First assume a ~ 3/2, {3 ~ 3/2. We must show the boundedness of the 
sum (15.2.2) if A. = Avn is defined by (15.4.1). We discuss ;\. only in case 
0 ~ x. < 1, or 0 < o. ~ 7r/2. For the remaining values, (4.1.3) can be 
used. According to (8. 9.2) 

(15.4.3) "\ . a+J -a-2 n COS • O dO i,.. p<a,/3)( 0) 
1\v ,.....,_, V n Sln . 

cos 0 - coso. 

We decompose the last integral into five parts I, II, III, IV, V, corresponding 
to the intervals 

(15.4.4) 
0./2 ~ 0 ~ 30./2, 

and we note that (0
2 

- o!)/(cos 0 - cos o.) is bounded in all these integrals. 
Since 01 = O(n-1

), 
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(15.4.5) 

Further, applying (8.21.18), we obtain 

[
8,12 -! k(O) 

II = ~ cos (NO+ -y) sinO dO 
If2 cos - cos o. 

(15.4.6) 

18,/2 o-a-! n -! 
+ 0(1) 2 2 dO. 

If2 o. - 0 

The first integrand can be written as follows: 

o-a+! 
(15.4.7) n-! 2 2 

~(o., O) cos (No+ -y), 
o. - 0 

where ~(0., 0) and its partial derivative with respect to 0 remain bounded in 
the interval considered (uniformly in v). Therefore, integration by parts gives 

[ 
0-aH ]8 ,12 18.121 a { 0-a+! } I (15.4.8) O(n-J) -
2

-
2 

+ O(n-J) -
0 

-
2
--

2 
~(o., 0) dO. 

o. - o 8If2 8If2 a o. - o 

Here the symbol [f(O)]~ means f(b) + j(a). A simple discussion gives for the 
first term of (15.4.8) (cf. (8.9.1)) 

(15.4.9) 

and for the second term 

(15.4.10) 
-J 18,/2 { o-a+! o-a-! o-a+J } 

O(n ) -2-2 + 2 2 + 2 2 2 dO. 
8If2 o. - 0 o. - 0 (0. - 0) 

We readily see that (15.4.10) can be combined with the second integral of II. 
On putting 0 = O.x in this int~gral, we obtain 

(15.4.11) -J d -a-J -J X d 18,/2 o-a-! !! -a-! 
n 2 2 0 = o. n 

2 
x. 

!12 0. - 0 1 - X 

The lower limit of integration is Ot/(20.) ,......, 1/v, so that the last integral is 
O(va-!), O(log v), or 0(1) according as a > ~'a = ~'or a < !. Consequently, 

(15.4.12) 

d. 1 - 1 .! accor mg as a > 2, a - 2, or a < 2 • 

Now by (8.8.2), 

III= r8,!2 n-!k(O.) cos (NO+ -y)- cos (NO.+ -y) sin OdO 
(15.4.13) }8,/2 cos 0 - cosO. 

+ 0(1)0;a-l n1 o!. 

Here n-!k(O.) = O(n-!o;a-!) = O(v-a-!na), and the same bound holds for the 
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second term. Furthermore, 

. No- o. 

138,/2 Sin -2- . ( 0 - o. ) sin 0 
---- sm N --- + NO. + -y dO 

,/2 • 0 - o. 2 . 0 + o. sm -
2

- sm-
2

-

(38,/2 sin N ° 2 °• ( 0 _ 0 ) 
= )

8
•
12 

• 0 _ 0.-- sin N -~ +NO. + 'Y dO+ 0(1) 
sm ---

2 . 

(15.4.14) 

1a8,!2 • N(O 0 ) 
= ! sin (NO.+ -y) ~m - • dO+ 0(1), 

,/2 . 0 - o. 
Sln -2-

since I sin 0 - sin (0 + o.)/2.1 < I (0 - o.)/2 j, and o.{sin (0 + o.)/2\-1 is 
bounded. The term with cos (NO. + -y) vanishes, since the integrand is an odd 
function of 0 - o. . The denominator in the last integral can be replaced by 
(o - o.)/2. Hence (15.4.14) is bounded, and 

(15.4.15) III = O(v-a-!na). 

Now, as in II, 

1
3'1r/4 6-a+! 13'1r/4 o-a-! -J 

(15.4.16) IV = n-! T------ 2 ~(0., 0) cos (NO+ 'Y) dO + 0(1) ~;- dO, 
8,/2 o. - 0 38,/2 (J - o. 

and the first integral is 

[ 
o-a+! ]3'1r/4 137r/41 a { 0-a+! } I 

O(n -~) r---:~ + O(n -J) -- ------
2 
~(0., 0) dO 

o - o. 38,/2 38,12 ao o2 
- o. 

(15.4.17) 
= O(n-J) + O(n-J)o;:-a-J + O(n-J) -:---2 + ~-2 1

3~r/4 { -a+! -a-! 

8 ,/2 0 - 0. 0 - 0. 

On putting 0 = O.x, we have 

(15.4.18) 
_ 137r/4 o-a-! _, -a- 13'1r/(48,l X -a-! -a- "' 

n! 2--:~dO = n '0. ! ~-dx = O(v 1n ), 
38,/2 0 - o. J x 2 - 1 

so that 

(15.4.19) 

Finally, the second mean-value theorem gives (compare (4.21.7) and also 
§7.32 (2)) 
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V =-(cosO.- cos [3·11-/4])-1 t' P~a,fJJ(cosO)sinOd6 
}a.-/4 

= O(n-1
) / P~'+11 'fJ- 1l(cos 0') - P~'+11 'fJ-1l(cos 37r/4) / 

= O[nmax ({J-2,-J)J = O(n -!)' 

Here we used the a~>sumption {3 ~ 3/2. Hence 

X. = O(l)va+~n-a-2(v-2na + v--a-!na + n-l) 
(15.4.21) ! ' 

= 0(1)va+~n-a-2 (v-a-!na + n-) = O(l)(vn-2 + va+~n-a- 1 ). 

In all cases we obtain 

(15.4.22) L jX.j=0(1), 
0~"'·<1 

[XV] 

and this establishes the boundedness of (15.2.2) and the first part of the 
statement. 

(3) Now assume a ~ {3, a > 3/2. We assume that o.lies in a fixed interval 
[a, b), 0 < a < b < 1r; then v ,.....,_, n, and the number of zeros o. satisfying this 
condition is also ,.....,_,n. Let e and w be fixed positive numbers, e <min (a, 1r- b). 
Decompose the integral in question into the parts I, II, III, IV, V, corresponding 
to the intervals 

(15.4.23) 
0 ~ 0 ~ w/n, w/n ~ 0 ~ 0. - e, 0. - e ~ 0 ~ 0. + e, 

0. + e ~ 0 ~ 1r - w/n, 1r - w/n ~ 0 ~ 1r. 

Then, 

I= (1- coso.)-1 1"''" p~a,fJ)(cosO)sinOdO 
+ 0(1) 1"''" I p~a,fJJ(cos 0) I 002 dO. 

(15.4.24) 

The first integral can be calculated according to (4.21.7), and we obtain (cL 
(7.32.5)) 

I (1 0 ) -1 2 {J)(a-1,/J-1)(1) p<a-1,{J-1) ( W)} = - COS v n+l - n+l COS -
n+a+f3 n 

(15.4.25) + O(na-4
) 

The bound of the term O(n a-
2

) is independent of w. In the same way we find 

iw/n p<fJ,a)( , O) 
V = ( -1) n-

1 " cos sin 0 dO 
cos 0 +coso. 

(15.4.26) 
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where O(nfJ-
2

) has a bound independent of w. (For {3 = 0 the first term 
vanishes.) 

Furthermore, 

(15.4.27) 
II+ IV= O(n-!) ie.-. o-a+!do + O(n-;) ("-win (1r- o)-tJ+!do 

win }e,+• 
= w-a+~O(na-2) + w-fJHO(ntJ--2) + O(n-!). 

Here the Harne remark applies to the 0-terms aH above. 
Finally, according to (8.8.2), 

III= n-1k(O.) (e·+• coH (NO f._2.~ -cos (No.+ -y) sin OdO + O(n-!) 
}e .-• cos 0 - cos 0, 

(15.4.28) . No- o. 

1
e.+• s1n --

= O(n-!) . 2 dO+ O(n-!) . 
• -. . . 0 - o. 

Sin --
2
--

The la:-;t integral is O(log n) (cf. .Zygmund 2, p. 172); whence 

(15.4.29) III = O(n-! log n). 

Now assume a > {3, a > 3/2; then the previous results give 

I+ II+ III+ IV+ V = na-2 {~ l + w-aH0(1)} 
(15.4.30) r(a) 1 - coso. 

where 0(1) is independent of w. Hence, by (15.4.3) 

(15.4.31) 

In the more complicated caHe a = {3 > 3/2 we find 

I + II + III + IV + V 
(15.4.32) 

= na-2 {_2_ 1 __ + -~- --~~~~ + w -aHO(l)} + o(na-2), 
r(a) 1 - coso. r(a) 1 + coso. 

where again 0(1) iH independent of w. This furnisheH the same result (15.4.31). 

15.5. An alternative method in the ultraspherical case 

In the ultraspberical eaHe a = {3 the convergence theorem (15.4.2) follows 
from the following theorem: 

THEOHEM 15.5. Let -1 < a = {3 ~ j. Then the Cotes numbers X., defined 
by (15.4.1 ), are positive provided that n is chosen sufficiently large. In the ca.<ws 
-1 < a = {3 ~ 0 and ~ ~ a = {3 ~ 1 the statement is true for all values of n. 
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In view of the Stekloff-Fejer theorem (Theorem 15.2.2; cf. the last remark 
1.'1 §15.2 (2)) this leads indeed to another proof of the convergence theorem of 
§15.4, even for Riemann-integrable functions. It is very probable that X. > 0 
for all values of n pro'vided -1 < a = {3 ~ j. 

Concerning this section, refer to Szego 17, pp. 95-99, 109-110, where the 
positiveness of X. is proved for - ~ ~ a = {3 ~ 0 and for certain other ::;pecial 
cases. 

(1) We prove X. > 0 by showing that the function Kn(x) = K~>-l(x) of §15.2 
is positive for -1 < x < +1; here da(x) = (1 - x2)>--! dx with X = a + ! 
(cf. (15.2.8)). We can assume that n is even, since the last integral in (15.2.6) 
vanishes if n is odd, and this assumption will be made throughout this section. 

According to (4.7.15), (4.7.14), and (4.7.3), we have (cf. (1.7.3)) 

K<;)(x) = 2a-2>-. _______ r(2~--- L X + m __ p;,;-l(x) 
(15.5.1) r(X + t)r(X - ~) (2X + m - 1)(m + 1) 

m = 0, 2, 4, · · · , n. 

Let X < 2. From a remark made in connection with (15.2.9), we have by 
Theorem 9.1.2, for -1 < x < +1, 

(15.5.2) 1. K<>-J( ) (1 - x2)!->-, Im n X = 

uniformly in - 1 + e ~ x ~ 1 - e. 

(2) First assume 0 < X < t. Then 

(15.5.3) m = 2, 4, 6, · · .. 

In addition, p;,;-l(cos e), as a cosine polynomial, has non-negative coefficients 
(cf. (4.9.19)). Therefore K<,;l(cos e) attains its minimum for e = 0, and 
this minimum decrea~es as n increases. Now 

" i>-) p<>-l(I) _ 22-2>-- _ r(2X) 
m-o~.... "' m - r(X + !)r(X - !) 

L (---- 1 + _1 )(2X+ m- 1) 
m=0,2,4.-·· 2X + m- 1 m + 1 m 

2-2>-- r(2X - 1) 
= 2 

rex+ !)r(x - t) 

m=o~ .... {(2X + n7- 2) + (2X ~~1- 1)} 
(15.5.4) 

_ 22-2>-- r(2X- 1) _ f. (2X + m - 2) = o, 
- r(X + t)r(X- !) m=O m 

and this establishes the statement for 0 < X < t. If X = !, we have d';:l = 0, 
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m == 2, 4, 6, · · o , and K~l(x) = 1. In the limiting case A ~ 0, we find (cf. 
(4.7.8)) 

(15.5.5) 
• (X) ( 2 2 "" ( 1 1 ) hm Kn cos e) = - - - L... -- - -- cos me, 

x-.o 1r 1r m - 1 m + 1 

m = 2, 4, · · ·, n. 

Therefore, this case can be discussed as before. (See Szego 17, p. 96.) 
(3) Next, assume that -t <A < 0. In this case d;:l > 0. According to 

(4.9.19), the coefficients of the trigonometric polynomial p;:l(cos e) are non
negative except for the highest coefficient, that is, that of cos me, which is 
negative, m > 0. Therefore, the coefficient of an arbitrary term cos me, 
m > 0 even, in K~l(cos e) appears as a sum of the form -uo + u1 + u2 + 
•• o + .uz with non-negative uo, u1 , ... , u1 where l = (n - m)/2. If m is 
fixed, n ~ oo, l ~ oo, this expression tends to the coefficient of cos me in 
(1 - x2)!-x = I sin e l1- 2x. But this is negative (cf., for example, P6lya
Szeg6 2, pp. 31-32), HO that the same iH true for the partial sums 
-uo + u1 + u2 + ·. · + Uz. Consequently, K~l(cos e) is again of the same 
type as in the previow; case, and it attains its minimum for e = 0. The terms 
d;:l P;:\1) are negative, except for m = 0. This establishes the Htatement. 

(4) In case 1 < A ~ i, we start with the following identity: 

(15.5.6) (1 - x2)K<;:l(x) = K<;:-1\x) + O"xP;;+21l(x), n even, 

where O"x is a proper constant. We readily show (we can write x = 1, or com
pare the highest terms, cf. (4.7.9)) that O"X < 0. For later purposes we give 
the value of O"X : 

(15.5.7) 
21-2X r(2A) n + 2 

O"x = 1 - A r(A + t)r(A - !) 2A + n - 1. 

To prove (15.5.6), let p(x) be an arbitrary 'lrn. Then, by (15.2.9), 

(15.5.8) 1:1 
{ (1 - x2)x-J [K~;-1 ) (x) + O"xP<;:+ll (x)] - 1\p(x) dx = 0, 

where O"X mw;t be determined so that the right-hand member of (15.5.6) vanishes 
for x = 1. 

According to the re:mlt in (2), the coefficient of cos me, m > 0, in the right
hand member of (15.5.6) is again non-positive, and the minimum is attained 
fore= 0, or X= 1; whence (1 - i)KC::l(x) > 0, -1 <X< +1. 

This argument needs only a slight modification for A = 1. (See Szego 17, 
pp. 96-97.) 

(5) We now prove K~l(x) > 0, -1 < x < +1, for sufficiently large values 
of n, provided t < A < 1, or i < A ~ 2. 

We may assume n even, 0 < x < 1. First let A < 1. By (7.33.6), we have 
fore ~ cn-1 

(15.5.9) 
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Now from (15.5.2), n even, we obtain 

(15.5.10) K;:>(eos e) ~ (sin e)1- 2x -
m~n+2,n+4.· · · 

The last sum is (cf. (15.5.1)) equal to 

(15.5.11) 

since n - 1 > m-1 and A < 1; this furnishes 

KC:) (cos e) > Hsin e) 1
-

2
A > 0, 

provid~d n i~-; :-:uffi<'iently large and e > r:n- 1
, where cis a proper po:-;itive eon

Rtant. 
This argument also holds for A = I with the following modification. We 

have (cf. (4.7.2)) 

K~1>(cos e) = ~ L --~ ... ~i_n_(~ _±J)~ = ._!_ - ~ L __ ! __ s~_nj~ + 1)e. 
1r m + 1 sm e sin e 1r m + 1 sin e 

Here m is even; in the first :-;urn m ~ n, in the second :-;um m > n. By (1.11.6) 
wefind • 

(15.5.12) 

provided e > cn-1
, c > 0. 

In the case ~ < f.. < 2 we usc (15.5.6) and (15.5. 7); taking the previous 
results into account, we find 

KC:-1
\ cos e) > Hsin e)1

-
2
(X-1)' 

(15.5.13) 
P <X-1)( , e) e1-XO(nX-2), O"X "+2 COS = 

-1 e >en ' 

which again shows that K<,;> (cos e) is positive provided e > c'n -1, where c' 
is a proper poRitive constant. For A = 2 we uRc (15.5.12). Since 0"2 = 
-2/7r + O(n-1), we obtain fore> c'n-1

, 

(15.5.14) 
sin2 e K~2>(cos e) > (1 - 2/7r)(sin e)-1 

(6) Finally, we assume e > 0, e = O(n-1), n even. According to (4.7.1), 
we have, A = a + ! , 

K~:) (cos~)= r(:; L (2~ + ~--±i)(m"+ 1) r~!~~ !\) p~a,a) (cos~), 
where m = 0, 2, 4, .. · , n. By (8.1.1) we obtain for a > 0: 

(15.5.15) 
K (X) ( • X) 2

1-a 2a _ 2a 2x "" {(mx)a-1 
J (mx)} n COS - = ---~ n X -- L..J - a 

n r(a) n n n 

+ L m2a-1 o(l) + 0(1)' m = 2, 4, · · ·, n. 
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If n ~ oo, the first term of the right-hand member is 

::::= 21-a(r(a) J-1n2ax-2afa(x), 

uniformly in x, 0 < x ~ xo , where 

(15.5.16) 

The second term is equal to o(n2a), a > 0. 
Obviously, limx-.+O x-2afa(x) exists and is positive. \Ve shall :-;how that the 

integral function !a(x) > 0 for x > 0 provided 0 < a ~ ~· 
The representation (Watson 3, p. 170, (3)) 

(15.5.17) ta-!J (t) = 1r t sm tu d 2a+1 -i 1"" -1 • 
a r(t- a) 1 (u2 - 1)a+i u, t > 0, 

holds for -! < a < +!. Assuming 0 < a < !, we can integrate by parts. 
We thus obtain the following represe~tation, valid for 0 < a < ~: 

(15.5.18) ta-1J a(t) = r 7r·-l j"" (tu)-1 sin tu - C!OS tu du, t > 0. 
r ~ - a) 1 u(u2 - 1)a-

This reduces the statement to the discussion of the special case 

(15.5.19) (7r/2)lfl(x) = 1z (t-1 sin t - cost) dt = 1z t-1 sin t dt - sin x. 

This function increases for 0 < x < t1 and decreases for t1 < x < t2 , where 
t1 and t2 are the least positive roots of sin t - t cost = 0; t1 < 21r < t2 . Thus 
we need only prove h (x) > 0 if x f;; 21r. We have, however, for x f;; 21r 

(15.5.20) 1z t-1 sin t dt = 1r /2 - 1"" t-1 sin t dt. 

According to the second mean-value theorem the modulus of the last integral 
is less than 2x-1 ~ 2(27r)-1

. The left-hand member of (15.5.20) is therefore 
greater than 1r/2 - 2(27r)-1 > 1. 

(7) The positivity of all the Cotes numbers A, for 0 ~a =11 ~ 3/2 has 
been proven in Askey-Fitch 1, and for a,{J f;; 0, a +11 ~ l in Askey 5. Two 
inequalities of Vietoris 1 for trigonometric polynomials give the positivity 
of another sum which is related to a more general quadrature problem (inter
polate at the zeros of PAa,tJ>(x) but integrate with respect to (1 - x) .,(1 + x) &dx). 
For this and a summary of other positive sums related to quadrature problems 
see Askey-Steinig 1. 

(8) A new proof of the divergence half of Theorem 15.4 was given by Locher 1. 



CHAPTER XVI 

POLYNOMIALS ORTHOGONAL ON AN ARBITRARY CURVE 

In Chapter XI there were introduced certain systems of polynomials which 
play a role with respeet to the unit circle similar to that which the orthogonal 
polynomials previously discussed do for a real interval. We shall now give a 
short survey of a further generalization which uses a rectifiable Jordan curve 
in place of either the unit circle, or a real interval. 

16.1. Preliminaries; definitions 

(1) Let T be a simply connected region in the complex x-plane, containing 
x = oo as an interior point; let the boundary C of T be a continuum consisting 
of a finite number of rectifiable Jordan arcs. When integrating along C, the 
parts of C are described in an arbitrarily fixed order; along the parts which 
have the character of euts, we must integrate twice. The integrals considered 
will have the form 

(16.1.1) lt(x) I dx I· 

Here f(x) is a Lebesgue-integrable function defined on C, and I dx I is the arc 
element on C. We denote the total length of the boundary C by L, counting 
the cuts twice. 

A particularly important case is that of a rectifiable Jordan curve. Another 
remarkable instance is that of a Jordan arc. The case of a finite interval is of 
this type. 

(2) Let 

(16.1.2) X = cp(z) = CZ + Co + C1Z-l + c2z-2 + · · · , C > 0, 

be the analytic function, regular and univalent for I z I > 1, which maps I z I > 1 
conformally onto the region '1', preserving the point at infinity and the direc
tion therein. According to a theorem of Osgood and CaratModory (Cara
tModory 1, p. 86), the function ¢(z) is continuous in I z I ~ 1 and furnishes a 
one-to-one and continuous correspondence between the unit circle I z I = 1 
and the boundary C ofT (described in the way indicated above). The function 
cp(z) is uniquely determined, and the number c is called the transfinite diameter 
(Robin's constant, capac£ty) of C (cf. §1 6.2 (5)). 

Let C be a Jordan curve, and let Xo be a preassigned point in the interior of C. 
In this case we may consider also the function 

(16.1.3) 

which is regular and univalent for I z I < 1, and which furnishes the conformal 
364 
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mapping of I z j < 1 onto the interior U of C; it carries the ongm z = 0 into 
x = Xo and preserves the direction at the origin; cp(z) is also uniquely deter
mined and continuous in I z I ~ 1. 

For the interval -1 ~ x ~ + 1 we have ¢(z) = Hz + z - 1
) (cf. §1.9), while 

t/;(z) has no sense in this case. For the cirele I x I = 1, x0 = 0, we have ¢(z) = 
t/;(z) = z. 

We shall denote the inverse function:-; of (16.1.2) and (16.1.3) by z = <P(x) 
and z = 'l'(x), respectively. 

A particularly simple case occur~-1 when the boundary C of 7' (or of U) con
sists of a finite number of analytic arcs. Then ¢(z) i:-; analytic on I z I = 1, 
apart from a finite number of point~-1 corresponding to the corner.s of C. The 

. J 
length of any subarc of C corn~sponding to z = e' , 01 ~ e ~ e2 , can be repre-
sented in the form 

(16.1.4) 

(similarly for the mapping (16.1.3)). 
(3) Let C be a .Jordan curve and w(x) a positive and continuous weight 

function defined on C. Then the con:-;idc~ration:-; of § 10.2 can be applied to 
the functions w !ct>(c -io) l and w I t/;(ei0

) l which are both positive and continuous 
on the unit circle z = e;0

, --1r ~ e ~ +1r. Substituting into the corresponding 
analytic function!'l D.(z) and D;(z) the functions z = l<P(x)}-1 and z = 'l'(x), 
we obtain certain analytic functions Ll.(x) and A;(x) which have the following 
properties: 

(a) Ll.(x) is regular in T including x = oo, .:l,(x) is regular in {!; 

(b) Ll.(x) ~ 0, .:l;(x) ~ 0; 
(c) Ll.(oo) and .:l,(xo) arc real and positive. 
Furthermore, we have 

(16.1.5) 

where Xe ~ x indicates an exterior approach to th, point x of C and x, ~ x 
stands for an interior approach t.o x of C. Tlw crmvcrgenrP is in hoth cases 
uniform with respect to x. 

These considerations can be gPneralized by replneing the continuity of w(x) 
by more general conditions, and also the~ curve C by more~ general point sets. 
If Cis an arc (for instance if C ii' a finite segment), A;(x) is mc~aninglcss. 

(4) We define the scalar product of two funetions j(x) and g(x), x on C, by 
the integral 

(16.1.6) (!, g) = ~ J f(xfg(x)w(x) I rlx 1. 

We can then orthogonalize the system 

(16.1.7) 

·------·---------------

1 2 n , X, X,···, X, 
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and this procedure will lead to a set of polynomials uniquely determined by 
the following requirements (cf. §§2.2, 11.1): 

(a) Pn(x) is a polynomial of precise degree n in which the coefficient of xn 
is real and positive; 

(b) the system {pn(x)l is orthonormal, that is, 

(16.1.8) 11 --y Pn(x)pm\X)w(x) I dx I = Onm, 
l.J c 

n, m = 0, 1, 2, · · ·. 

If C is a finite real segment, or the unit circle, we obtain the polynomials 
previously considered. In the next section we take up certain fundamental 
properties of the polynomials Pn(x) which can be classified as follows: formal 
properties (minimum-maximum properties, zeros), asymptotic behavior of 
p .. (x) if n ~ oo and x is in the interior of C, asymptotic behavior of Pn(x) if 
n ~ oo and x is in the exterior of C, asymptotic behavior of Pn(x) if n ~ oo 

and xis on C. 
In what follows we give only short indications of the proofs, particularly 

when no essential change is necessary in the arguments used for the previous 
special cases. 

Concerning the definition and principal properties of orthogonal polynomials, 
see Szego 6 and Walsh 1, Chapter VI. Most of these properties have analogues 
for the polynomials orthogonal on the interior U of C; they are associated with 
the following definition of scalar product: 

(16.1.9) (!, g) = 1 f f j(x)g(x) dO', 
u 

where A is the area and dO' the element of area of U. These polynomials have 
been investigated by Carleman (1, pp. 20-30). Here a weight function can 
also be introduced. 

16.2. Formal properties 

(1) Let Dn > 0 be the determinant of the positive definite quadratic form 
(cf. (2.2.8) and (11.1.4)) 

(16.2.1) 

(16.2.2) k.,. = i 1 x· x"w(x) I dx I 

(cf. (2.2.1) and (11.1.2)). The orthogonal polynomials Pn(x) can be represented 
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as follows (cf. (2.2.6), (2.2.10), and (11.1.9)): 

po(x) = Do1, 

(16.2.3) 

koo 

ko1 

kw 

ko,n-1 k1,n-1 · · · kn,n-1 

1 X 

(Dn-1Dn)·-t 1 1 ( ) ) ) 
= · · · X - Xo (x - X1 · · · (x - Xn-1 £nn! o o 

3G7 

· II I x. ·- x,. 1
2 

w(xo)w(x1) · · · w(Xn-1) I dxo II dx1 I · · · I dXn-1 1 . 
• ,,.~0,1,2,· · ·.n-1 

We have (cf. (2.2.7), (2.2.Jl1) and (11.1.5)) 

(16.2.4) = 
1 -· r . . . r rr 1 x - x 1

2 

£n+1(n + 1)! }o }o .,,.=0,1,2, .. ·,n • " 

· w(xo)w(x1) · · · w(x,.) I dxo II dx1 I · · · I dx,. 1. 

(2) 72 Let j(x) be a continuous function defined on C. Then the partial sums 
s,.(x) of the Fourier expansion 

f(x) ""fopo(x) + f1P1(x) + f2P2(x) + · · · + f,.p,.(x) + · · ·, 
(16.2.5) 

f,. = i 1 f(x)i1n(x)w(x) I dx I, n = 0, 1, 2, · · ·, 

minimize the integral 

(16.2.6) ~.11f(x) - p(x) 1
2 

w(x) I dx I 

if p(x) ranges over the class of al11r,.. The minimum is 

(16.2.7) 

This also yields Bessel's inequality 

(16.2.8) l!o 1
2 + l!1l

2 + lh 1
2 + · · · ~ i jlt(x) 1

2 
w(x) I dx I· 

Let C be a rectifiable Jordan curve, and letj(x) be an analytic function regular 
in the interior of C and continuous on C. Then the equality sign in (16.2.8) 

72 Concerning the considerations of (2), (3), (4), cf. §3.1, §11.1, §11.3. 



368 POLYNOMIALS ORTHOGONAL ON AN ARBITRARY CURVE [ XVI] 

is to be taken; that is, Parseval's formula holds. This follows from Theorem 
1.3.4. 

Smirnoff (1) investigated the validity of this formula for the more general 
class of functions j(x) for which 

(16.2.9) f!tf;(z) )D;(z) 11/t'(z) )1 

is of class H 2 in I z I < 1 (cf. §10.1); here we have used the symbols previously 
introduced. Parseval's formula holds for this class if and only if the map 
function t/;(z) satisfies the hypothesis 

'6' 1 1+~ · t 1 - r
2 

log I t/;' (re' ) I = - log I tf;' ( e' ) I ---- dt, 
(16.2.10) 21r -~ 1 - 2r cos (e - t) + r2 

O~r<l. 

(See Smirnoff 1, pp. 164-168.) According to Keldysch and Lavrentieff (1), 
there exist rectifiable curves for which the hypothesis (16.2.10) is not satisfied. 

(3) Let p(x) be an arbitrary 11"n in which the coefficient of xn equals unity. 
'Then 

(16.2.11) mini Ia I p(x) 12 
w(x) I dx I 

is attained if and only if p(x) = (Dn/Dn-1)'Pn(x), and this minimum is Dn/Dn_1. 
(~) Let xo be an arbitrary but fixed point in the complex plane, and let p(x) 

be an arbitrary 11"n with p(xo) = 1. Then the minimum of (16.2.11) is attained 
for p(x) = !Kn(Xo, Xo) l-1Kn(Xo, x), where 

(16.2.12) Kn(Xo, x) = l:Jo(xo)po(x) + P1(xo)PI(x) + · · · + Pn(Xo)Pn(x). 

The minimum is {Kn(Xo, xo) l-1
• (The same result can be expressed in terms 

of a maximum property; see §3.1 (3) and §11.3.) The "kernel polynomials" 
Kn(Xo , x) can be characterized by the condition 

(16.2.13) i 1 Kn(Xo, x)p(x)w(x) I dx I = p(x0), 

where p(x) is an arbitr:~ry 11"n (cf. (3.1.12)). 
Using Kn(Xo, x), we can express the nth partial sum sn(x) of the development 

(16.2.5) in the following form (cf. (3.1.11)): 

(16.2.14) s,.(x) = i 1 f(~)Kn(~, x)w(~) I d~ 1. 

(5) The extremum problem of (3) can be generalized as in the case of an 
intJerval (§3.11). For instance, the problem of the "Tchebichef deviation" 
corresponding to (16.2.11) consists of the determination of the minimum of 

· max I p(x) j, x on C, when p(x) is an arbitrary 11"n in which the coefficient of 
xn is 1. The polynomials which solve this problem have been investigated 
by Faber (3). 
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Let JJ.n be the minimum in question. Then (cf. Faber, loc. cit.) 

(16.2.15) 1• 1/ n 1m JJ.n = c, 

where cis the transfinite diameter defined in §16.1 (2). We shall see that a 
similar formula holds for the minimum of the problem in (3) (cf. (16.4.3)). 

Fekete (1) extended the definition of the transfinite diameter to an arbitrary 
closed set in the complex plane by showing that for the corresponding minimum 
values JJ.n (which have meaning if we replace the curve C by an arbitrary closed 
set), the limit (16.2.15) still exists. 

The general transfinite diameter is a remarkable set-function which can be 
calculated in various cases (cf. for instance Szego 6, p. 254). 

Concerning the extension of §3.11 (5) to an arbitrary curve, see Julia 1. 
(6) The zeros of Pn(x) lie in the least convex region containing the curve C. 

See Szego 6, pp. 236-241; Fejer 7. The proof can be based on an argument 
similar to that of §3.3 (2) (cf. also §16.4 (1), (a)). 

Concerning the location of the zeros of Kn(Xo , x), see Szego 6, pp. 241-244. 
See also Theorem 11.4.1 and Problems 5 and 49. 

16.3. Asymptotic behavior of Kn(x0 , x) in the interior of the curve C 

(1) In this section we assume that C is an analytic Jordan curve and the 
weight function w(x) defined on C is positive and continuous there. Let Xo 
be an arbitrary point interior to C; denote by z = 'lt(x) = 'lt(xo, x) the inverse 
function of the map function t/;(z) defined by (16.1.3). In the present case 
t/;(z) is regular and univalent in a certain circle I z I ~ P where P > 1. Let 
~i(x) have the same meaning as in §16.1 (3). vVe shall prove the following 
theorem: 

THEOREM 16.3. Let !Pn(x)} denote the set of orthogonal polynomials defined 
by the conditions (16.1.8). Then the series 

(16.3.1) K(xo, x) = i"i;;(xo)po(x) + PI(xo)PI(x) + · · · + Pn(Xo)Pn(x) + · · · 
is convergent provided Xo and x are arbitrary points in the interior of C. The 
convergence is uniform both in Xo and x if Xo and x are limited to a closed set in 
the interior of C. Furthermore, we have 

(16.3.2) 

In case w(x) = 1, see Szego 6, pp. 244-251. The assumptions of this theorem 
concerning w(x) and C can be generalized (cf. Smirnoff 2, pp. 353-356). For a 
Jordan arc (especially for a finite segment) these considerations have no sense. 
For the special case where C is the unit circle, see (12.3.17). 

As a conr:;equence of the convergence of (16.3.1) we notice that 

(16.3.3) lim Pn(x) = 0, 
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if x is in the interior of C (uniformly on every closed set in the interior of C). 
(2) Let p(x) be an arbitrary 'lrn, and let Xo be in the interior of C. Then 

according to Cauchy's theorem, 

(16.3.4) (p(xo) }2 = _!. J (p(x) }
2 

dx. 
21r1. X - Xo 

Consequently, 

( ) 
I 

( 
2 1 f I p(x) 1

2 
JJ. -

1 
L 1 ( ( 2 

16.3.5 p xo) I ~ 21r I x _ Xo 11 dx I ~ 21ro L }c I p x) I w(x) I dx I, 

where w(x) ~ p. and o denotes the least distance of x0 from the points x on the 
curve C. Taking into account §16.2 (4), we have 

(16.3.6) 

Hence the series K(xo, xo), and therefore (16.3.1), are convergent, as is readily 
shown by Cauchy's inequality. 

(3) Now we show that 

(16.3.7) K(xo, Xo) = lim Kn(Xo, Xo) ~ 
2
L (.L\i(Xo)}-2'lt'(xo). 

n-+oo 1r 

To this end we consider the function 

(16.3.8) 

which is regular in the interior of C, that is, for I z I < 1; x = t/;(z), z = 'lt(x). 
(The last factor is regular even for I z I ~ 1.) Let r be fixed, 0 < r < 1, and e 
an arbitrary positive number. According to Theorem 1.3.4 we can find a 
polynomial Q(x) such that 

(16.3.9) I F(rz) - Q(x) I < e, x on C. 

'Vriting p(x) = lQ(xo)}-1Q(x), we obtain from §16.2 (4), for a sufficiently 
large n, 

(16.3.10) /K(xo, Xo)}--1 ~ !Kn(Xo, Xo)}-1 ~ IQ(~) ~-
2 J IQ(x) l2 w(x) ldx I; 

whence, on allowing e to approach zero, we obtain 

(16.3.11) 

Now if r ---t 1 - 0, we have 

(16.3.12) 

which is equivalent to (16.3.7). 



[ 16.4] ASYMPTOTIC BEHAVIOR OF Pn(x) EXTERIOR TO THE CURVE C 371 

( 4) Finally, we consider 

J n = lim -£
1 1 I Kn(Xo' x).L\i(X) l 'lt'(x)} -i - 2L (.L\i(Xo)} - 1 

{ 'lt'(xo)} t /
2

1 dz I 
r-1-0 lz!==r 7r 

= i j1 Kn(Xo, x) l2 w(x) I dx I 
(16.3.13) 

lim 7r -I r (.L\i(Xo) l-11 '¥' (xo) l t r Kn (xo' x).L\i(X)i 'lt'(x) ~-~ ~z 
r-+1-0 J1z1~r '/.Z 

+ ~7r (.L\i ( x~J) } -
2
'lt' (xo). 

The first term equals Kn(~~o , Xo); for the second term we obtain 

(16.3.14) -7r -
1

(.L\i(Xo) l-1
/ •[!'(xo)} t · 27rKn(Xo, Xo).L\;(xo)i 'It' (xo)} -t = - 2Kn(Xo, Xo); 

so 

(16.3.15) Jn = -·Kn(Xo, Xo) + ir (.L\i(Xo)}-2'lt'(xo). 

Therefore, limn-+oo J n = 0 by (16.3.7). From this it follows, if I z I < 1, or if 
xis in the interior of C, that (cf. (7.1.4)) 

(16.3.16) 

which is the same as (16.3.2). 

16.4. Asymptotic behavior of Pn(x) in the exterior of the curve C 

(1) We shall introduce the assumptions concerning the curve C and the 
weight function w(x) used in §16.3. We denote by z = cJ>(x) the inverse func
tion of the map function x = ¢(z), defined by (16.1.2); in the present case ¢(z) 
is regular and univalent in the closed exterior of a certain circle I z I = r where 
r < 1. Let Ae(x) have the same meaning as in §16.1 (3). We may then make 
the following assertion: 

THEOREM 16.4. Let IPn(x) l denote the set of orthogonal polynomials defined 
by the condt'tions (16.1.8). lf x is in the exterior of the curve C, we have 

(16.4.1) 

The ratio of these expressions as n ~ oo tends to unity uniformly in every finite 
or infinite closed region exterior to the curve C. 

In case w(x) = 1, see s~:ego 6, pp. 260-263. 
We mention the following noteworthy consequences of (16.4.1): 
(a) The zeros of Pn(x) approach the closed interior of C uniformly as n ~ oo 

(apply Theorem 1.91.3 (Hurwitz's theorem)). 
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(b) If xis in the exterior of C, 

(16.4.2) lim Pn+l(x) = lim {pn(x) \ 11n = <I>(x). 
n· ... oo Pn(X) n->oo 

Cf. (12.2.6). 
(c) The convergence domain of the expansion (16.2.5) of an analytic func

tion, regular in the closed interior of C, is the interior of a level curve CR of the 
conformal mapping x = ¢(z) (cf. §1.3 (2)). The determination of R from the 
coefficients fn is analogous to that in the case of a power series (cf. Theorems 
1.3.5 and 12.7.3). 

(d) Let kn be the coefficient of xn in Pn(x). Then 

(16.4.3) kn "'-/ (;y {Ll.(oo)\-lc-n-t, 

where cis the transfinite diameter of C (cf. §16.1 (2); §16.2 (5)). This result 
can easily be expressed in terms of the determinants Dn introduced in (16.2.4). 

(2) The proof of (16.4.1) is based on an argument similar to that in §16.3; 
here the minimum property of §16.2 (3) is used. We first show that 

(16.4.4) I• -2n-lk-2 < 27r {A ( ) \2 
1m SUp C n = -L L.le 00 • 

n .... oo 

To this end we introduce the polynomials of Faber's type fn(x) (Faber 1), 
defined as the polynomial part in the Laurent development of the function 

(16.4.5) 

around x = oo. The function gn(x) is regular for I z I ~ r, and fn(x) is clearly 
a 'lrn. Let Cr be the eurve corresponding to I z I = r. On applying Cauchy's 
theorem to the ring-shaped region bounded by Cr and a large circle, we obtain, 
if xis on C, 

where the integration is extended in the negative sense. Hence 

(16.4.7) for x on C, 

where M depends only on C and r. The functions gn(x) are uniformly bounded 
if xis on C. 

Now let 'Y1 , 'Y2 , · · · , 'Y m 'be arbitrary constants, n > m. The polynomial 

-----·--------·-----· 
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is of degree n, and its highest coeffi.eicnt is unity. Then, according to §16.2 (3) 
and (16.4.7), 

k;
2 ~ (:~) -

1 

C
2

n+l i ]1 f,. (x) + 'Ydn-1 (x) + · · · 

+ 'Ymfn-m(x) l2w(x) I dx I 
(1H.4.9) 

= (::)-

1 

C
2
n+li Jlg,.(x) + 'Yign-t(X) + · · · 

+ 'Ymgn-m(x) l2w(x) I dx I + c2"0(r"), 

so that 

n-tooo 

(16.4.10) 

or 

(16.4.11) lim sup c--2
,._

1 k-;:2 ~ -£
1 1 I )'(z) 1

2 w(x) I dz I, 
n->oo JzJ=1 

where 'Y(z) is an arbitrary analytic function, regular for I z I ~ 1, with 'Y( oo) = 1. 
On putting 

(16.4.12) () _ fLl.{¢(Rz)l}-
1 

'Y z - l Ll.( 00) ' 

and allowing R to approach 1 + 0, we obtain the inequality (16.4.4). 
(3) Now we consider 

R > 1, 

J: = lim '-£
1 

( jp,.(x)Ll.(x){<I>'(x)l-!{<I>(x)l-"- (
2
L)1

1

2

Idzl 
R-+1+0 JJzJ=U 7r 

(16.4.13) = i J I p,.Cr:) 1
2 w(x) I dx I 

- lim 
2LR (

2
L )! { p,.(x)Ll.(x) { <I>'(x) l-! { <I>(x) ~-n ~z + 1. 

U->HO 7r }JzJ=U ~Z 

The second term is 

-~ (:~Y 21r !~~ p,.(x)Ll.(x){ct/(x)j-1{<P(x)l-" = -2(~Y Ll.(oo)c"Hk,.. 

Therefore, 

(16.4.14) I (27r)! ( ) n+! J n = 2 - 2 L Lle 00 C k,. . 

In view of (16.4.4), this implies lim,._."" J: = 0, which establishes the statement 
(16.4.1). 

--------------·----------------
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16.5. Asymptotic behavior of Pn(x) on the curve C 

Finally we have the following result: 

[XVI] 

THEOREM 16.5. The asymptotic formula (16.4.1) holds uniformly outside and on 
the curve C proV1:ded the function Ll. (x) is regular in the closed exterior of C; more 
precisely we have 

(16.5.1) Pn(x) == (~)' {Lle(x)l-1 {<I>'(x)j 1 {<I>(x)jn + O(hn), 

where 0 < h < 1; this constant h depends on C and w(x). 
The same form'ula holds in a sufficiently small neighborhood of C in the interior 

of C. 

(1) For the proof we use the polynomials F n (x) of Faber's type associated with 

(16.5.2) (J.;)' {Ll.(x)\-1 {<I>'(x)\ 1 {<I>(x)ln = Gn(x) 

(which is the "principal part" of the right-hand side of (16.5.1)) in the same way 
as the polynomials fn(x) defined in §16.4 (2) are associated with (16.4.5). If 
0 < r < 1 and r is sufficiently near to 1, the function Gn(x) is regular for I z I ;s; r. 
We have again 

(16.5.3) for x on C, 

where M depends only on C, r and w(x). The functions Gn(x) are uni
formly bounded on C. 

We write (cf. §16.4 (2)) 

(16.5.4) (£)-! p(x) = 
2

7r Ll.( oo )en+! Fn(x). 

This is a 'lrn with the highest coefficient unity. Hence 

k;/ ~ (~)-
1 

{Ll.( oo) \2c2n+l i Jl Fn(x) 1
2 w(x) I dx I 

(16.5.5) = (~)-
1 

{Ll.(oo)\ 2c2n+liJIGn(x)l2w(x) ldxl + c2n0(rn) 

= ~ {Ll.( oo) l2c2n+l + c2nO(rn). 

(The simpler nature of this argument is due to the fact that Ll.(x) is regular on C.) 
On the other hand, 

(16.5.6) 

1 = -£
1 j' I Pn(x) 1

2 
w(x) I dx I = 

2
1 1 I GPn((x)) /

2
1 dz I 

C 7r JzJ=1 n X 
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so that 

(16.5.7) 

consequently 

(16.5.8) 

(2) Now let 

(16.5.9) 

where Ao, A1, A2, · · · , An are proper constants, Av = A(v, n); we have 

(16.5.10) 

so that An is real and, by (16.5.8), 

(16.5.11) 

From the definition of F n(x) we conclude that 

CtY Lle(x){<I>'(x)}-l {pn(x)- AnFn(x)} 

(16.5.12) 

= (~ Y Ll.(x) { <I>'(x)}-! {AoFo(x) + A1F1(x) + · · · + An-1Fn-1(x)} 

= Ao + A1<l>(x) + A2 { <I>(x)} 2 + · · · + An-d <I>(x)} n-1 + )'1x - 1 

-2 + + 'Y2X • • • 

where 'Yv, 'Y; are certain constants. Therefore, 

I Ao 1
2 + I A1 1

2 + • · · + I An-1 1
2 

~ 2
L7r 2

1 1 1Ll.(x){<I>'(x)} 1 {pn(x) -AnFn(x)} l2ldzl 
7r Jzl-1 

(i6.5.13) = i 11 Pn(x) - AnF n(x) l
2w(x) I dx I 

= i 11 Pn(:r;) l
2
w(x) I dx I 

-
2~n i Pn(x)F n(X)w(x) I dx I + ?; [ IF n(x) l2w(x) I dx 1. 
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In the second term F n(x) can be replaced by x;1pn(x); in the third term we use 
(16.5.11) and (16.5.3) and obtain 

(16.5.14) I Xo 1
2 + I Xtl

2 + · · · + I An-11
2 ~ -1 + i 11 Gn(x) l

2w(x) I dx I+ O(rn), 

or 

(16.5.15) 

Now Fn(x) 
inequality, 

I Ao I 2 + I At 1
2 + · · · + I An-1 1

2 = O(rn). 

0(1), uniformly if x is on C. Whence, according to Schwarz's 

(16.5.16) XoFo(x) + X1F1(x) + · · · + An-lFn-t(X) = O(n1rn12
); 

and from (16.5.9), (16.5.11), and (16.5.3), 

(16.5.17) 
Pn(x) == XnFn(x) + O(n;rn12

) = Fn(x) + O(n1rn 12
) 

= Gn(x) + O(n1rn12
). 

This establishes the sta.tement. The extension of (16.5.1) to the interior of C 
also follows immediately, since (16.5.3) holds if x is in the interior of C and 
sufficiently near to C. 

--------------·----------------



PROBLEMS AND EXERCISES 

1. We denote by i1 < i2 < · · . the positive zeros of Airy's function A (x) 
(§1.81); then iv "'-/ v1 if v ~ oo. (Use (1.81.4), (1.81.1), and (1.71.7).) 

2. Let A(x) denote Airy's function (§1.81). We have, for real values of x, 

(): { 27ri/3 J('"" ( 3 27ri/3 ) d } ( ) 
0 e 

0 

exp - p - pe x p = A x . 

(Develop both sides in a power series in x; see (1.81.4), (1.81.1), and (1.7.3).) 
3. Let Pn(x) denote the Poisson-Charlier polynomial (2.81.2); then 

(·-1)na-n12(n!)!Pn(x) = Pn(x) 

satisfies, for x = 0, 1, 2, · .. · , the relation 

Pn(x) = p,(n). 

4. By use of the notation (2.2.1), (2.2.7), the "kernel" polynomials Kn(Xo, x) 
(cf. (3.1.9)) can be represented as follows: 

Co c1 c2 Cn 1 

c1 c2 C3 Cn+l io 
Kn(Xo, x) -D-1 ......................... n 

Cn Cn+l Cn+2 C2n -n Xo 

1 2 n 0 X X X 

(Use (3.1.12) with p(x) = :r·, v = 0, 1, ·. · , n.) 
5. Location of the zeros of the "kernel" polynomials Kn(Xo, x) (cf. (3.1.9)). 

Let a and b be finite, and let xo be an arbitrary non-real number. Every zero 
~of Kn(xo, x) lies in the area bounded by the interval [a, b] and by the circular 
arc through a and b whose eontinuation passes through xo. (Cf. Szego 5, p. 244. 
By (3.1.12) 

l b I (x -- xo) Kn (xo' x) 12 x - ~ da(x) = 0. 
X-~ X- Xo 

In the conformal mapping (x - ~) / (x - xo) = x', the image of a ~ x ~ b is a 
circular arc; the segment bounded by this arc and its chord contains x' = 0.) 

6. Derive from (3.2.1) the representation, n = 1, 2, 3, · · · , 

A1x + B1 C~ 0 

C~ A2x + B2 c~ 
Pn(x) = po(x) 

0 c~ 

0 0 0 
377 
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7. Prove the reality of the zeros of Pn(x) using (2.2.9), or using Problem 6. 
8. Let X1, X2, · · · , Xn be distinct values in [a, b], and letf(x) have a derivative 

of order 2n in [a, b]. If H(x) is the 7r2n-1 satisfying the conditions 

v = 1, 2, ... , n 
' there exists a value ~ == ~(x) in [a, b] such that 

J(2n) (~) 
f(x) - H(x) = (

2
n)! (x - xJ2(x - x2)

2 · · · (x - xn) 2
• 

(See A. Markoff 6, pp. H-8. Let x be a fixed value, x r!' Xv ; and to the function 
of z given by 

( ) ( ) f(x) - H(x) \2( 2 2 f z - H z - ( )2( )2 ( )2 (z - Xv z - x2) · · · (z - Xn) , 
X - X1 X - X2 • • • X - Xn 

apply Rolle's theorem.) 
9. Let f(x) have a continuous derivative of order 2n in [a, b]. By using the 

notation of Theorem 3.4.1 obtain 

i b !~W 
f(x) da(x) = Xd(xl) + Xd(x2) + · · · + Xnf(x,) + (

2
n)! k·;/. 

Here ~is a proper value in [a, b], and kn is the highest coefficient of the ortho
normal polynomial Pn(x) associated with the distribution da(x) (cf. (2.2.15)). 
(See A. Markoff 6, p. 81; use the preceding problem.) 

10. Let X1 , X2 , • • • , Xn be the zeros of the orthogonal polynomial Pn(x) asso
ciated with a given distribution da(x) on the interval [a, b], and let X1, X2, · · · , 
'An denote the Christoffel numbers (3.4.3). Define the scalar product of two 
functions f(x), g(x) by 

n 

(f, g) = L 'Avf(xv)g(xv). 
v-1 

The functions 1, x, x2
, • • • , xn-1 are linearly independent; by orthogonalization 

we obtain the polynomials po(x), p1(x), · · · , Pn-1(x) which are the same as 
those associated with da(x). 

11. If da(x) = w(x)dx, w( -x) = w(x) and a + b = 0, we have for the Chris
toffel numbers (3.4.3) 

v = 1, 2, . ·. , n. 

12. For the Jacobi polynomial p~-t.t>(x) the Christoffel numbers are 

27r 
Av = 2n + 1 (1 + Xv), v = 1, 2, · · ·, n. 

(Cf. (4.1.8) and (15.3.1).) 
13. In the special case p~-i.-i>(x), the numbers Yv = cos 4>v, 0 < 4>v < 1r, of 

the separation theorem of §3.41 are 
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<P~ = (n - v)n/n, v = 1, 2, ... , n - 1. 

Verify the separation theorem for p~-i.-i>(x), p~t.i>(x), p~-U>(x). 
14. Let X1, X2, · · · , Xn be the zeros of p~a,fJ>(x). Then 

(Cf. (4.21.2).) 

X1 + X2 + · · · + Xn = (ft - a) =---n--,--
2n+a+tJ 

15. New proof of (4.7.31). Combining the second part of (4.1.5) (polynomials 
in 1 - 2x2) with the first formula in (4.22.1), we find 

p~>->(x) = 2"(n + ~ - 1
)x"F(-n/2, (1- n)/2, -n- X+ 1;x-~. 

16. The generating functions (4.7.16) and {4.7.23) of the ultraspherical poly
nomials p~>->(x) are identical if and only if X = !, that is, in the Legendre case. 

17. The functional equation 

(i - x)f'(x) = Xf( -x), 

where X is a parameter, has a polynomial solution f(x) ~ 0 if and only if X = 

( -1)"(n + 1) andf(x) = const. (Pn(x) + Pn+1(x)}, n = -1, 0, 1, · · · ; P -1(x) 
= 0. (Write 

N 

f(x) = L Cv{Pv(x) + Pv+1(x)}, 
v--1 

where c-1 , Co , • • • , eN are constants, and use 

(1 - x)IP~(x) + P:+1(x)} = (n + 1){Pn(x) - Pn+1(x) }, 

which follows from (4.7.27).) 
18. Show that 

Q'(o)-(- 1)"'2 2·4···n 
n - 1·3 .. ·(n-1)' n even, 

Qn(O) = (- 1)(n+0/2 2·4 · · • (n- 1) 
1 3·5 · · · n 

n odd. 

Here Q~(O) = 1, Q1(0) = --1. (Use the recurrence formula (4.62.13), (4.62.14), 
(4.62.3).) 

19. The "Laplace transform" 

f(8) = 1"" e_,, F(t) dt, 

of Laguerre's function F(t) = taL~a>(t) is 

f( ) - r(n + a + 1) -n-a-1( - 1)" 
8 - r(n + 1) 8 8 • 

(Cf. Sonin 1, p. 42; use the method of the "generating function".) 
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20. Writing 

X0L~a>(x)(f(n +a+ 1))-1 = f(n, a; x), 

we have, for a> f3 > -1, 

f(n, a; x) = r(a ~ f3) 1"' (x - u)a-~-1f(n, {3; u) du. 

{Kogbetliantz 22, p. 1J56. Take the generating function of both sides and use 
{5.1.16); the resulting :formula for Bessel functions can be verified by means of 
(1.71.1) and (1.7.5).) 

21. Writing e-"'12xa12L~a>(x) = fn(x), we have 

(-1)n 1oo i f,,,(x) = -
2

-
0 

Ja{(xy) }fn(y)dy. 

(Hardy 1, p. 139; use (5.1.9) and (1.71.1).) 
22. Assume x ~ 0, y ~ 0, max (x, y) > 0. Then 

e-:r:·-11 f Ln(x)Ln(y) = (oo Cle-' dt. 
n-o n + 1 .fmax (:r:,u) 

(E. R. Neumann 1, Watson 6. Apply Theorem 9.1.5 and use the formula 

(n -1- 1) 1"' Ln(t) dt = x{Ln(x) - L:(x)} 

(cf. (5.1.2)).) 
23. From (5.1.15) derive Mehler's formula 

~ Hn(x)Hn(y) ( / 2)n = (1 _ 2)-1 {2xyw - (x
2 + y']w2

} 
L...t I w w exp 1 - Ao.2 • n-o n. ·ur 

(See Watson 6, Erdelyi 2.) 
24. From (5.1.9) and (5.6.1} derive the following generating function for 

Hermite polynomials: 

to H~7) wn == (1 + 4w')-1(1 + 2xw + 4w2
) exp (1 4~

2

~~), 
where m = [n/2]. (Cf. Doetsch 1, p. 590, (7).) 

25. Assume k > -~ and let H~k>(x) denote the orthogonal polynomials cor
responding to the weight function e-"'

2 I x l
2
k in [- oo, + oo ]. Then the follow

ing differential equations are satisfied: 

xy" + 2(k - x']y' + (2nx - ex - 1)y = .0, 
E _ {0, n even, 

2k, n odd; y = H~k>(x); 

z" + { 2n + 2k + 1 - x2 + ( - 1); - k
2

} z = O; 

(Generalizations of (5.S.2).) 
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26. For fixed {J, n, and x we have 

lim a-n p~a,{j\x) = _!_(X + 1)n. 
a-+00 n! 2 

(Use (4.21.2).) 
27. Let (xv} be the zeros of p~a,fJ>(x) in decreasing order, a > -1, {3 > -1. 

Then for v = 1, 2, . · · , n 

lim Xv = -1, 
a-++oo 

lim Xv = +1. 
tl-++oo 

In the first case {3 and n, and in the second case a and n, are fixed. (Use Prob
lem 26 and (4.1.3).) 

28. Let (x.} be the zeros of P~'Jo.>(x), X > 0. We have for fixed n 

lim Xv = 0. 
'Jo.-++oo 

(From (4.7.6) lim'Jo.-.oo (2X)-n P~'Jo.>(x) = xn/n!; see also (5.6.3n 
29. Assume a> -1; {3 > -1_; if (xv} and (x;} denote the zeros of p~a,tl)(x) 

and L~a>(x) in decreasing and increasing order, respectively, we have (a, n, and 
v fixed) 

lim {3(1 - Xv) = 2x;. 
tl-++oo 

(Use (5.3.4).) 
30. For fixed nand x we have 

l. -nLca>( ) (1 - x)n Im a n ax = ! . 
a-+00 n . 

(Use (5.1.6).) 
31. Let jo = 0 < j1 < j2 < · · · be the positive zeros of Ja(x). Then Uv} 

is a convex sequence if -! < a < +!,that is, jv+l - jv is increasing. Further
more v-1jv is increasing. (Apply Theorem 1.82.2 to (1.8.9).) 

32. With the same notation and assumptions as in Problem 31, we have 

jv > (v + a/2 - 1/4)11', 

(Put n = 2v - 1 in (6.3.13).) 
33. \Ve have for the factor Cvn, defined by (6.31.13), 

(ji/4)
2 < Cm < 4. 

l' = 1, 2, 3, .... 

Here j 1 is the least positive root of Jo(x). These bounds are the best possible. 
(Use the increasing property of v-

1jv ; see Problem 31.) 
34. Assume a > - 1; denote by X1 < X2 < · · · < Xn the zeros of L~ a) (x). If 

2 1 h ! 
1 2 3 . . . 'f 2 1 th' . a ~ 4 , t e sequence x; - x;_l, v = , , · · · , n, IS mcreasmg; I a > ,, IS Is 

true for Xv-l > (a2 
- !)1. (Apply Theorem 1.82.2 to the fourth equation in 

(5.1.2).) 
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35. With the notation of the previous problem, 

·c• .) --~ nnn x. - XP-1 ""' n , ( i t ) t i 2-j 3-i ( · · ) -A max Xp - XP-1 = Xn - Xn-1 "-' '1,2 - h n ' 

where i1 and i2 are the least positive zeros of Airy's function A(x). (Use(8.1.8), 
(8.22.1), and (8.9.15).) 

36. Let X1 > X2 > · · · > X[Cn+ll/21 be the non-negative zeros of the Hermite 
polynomial Hn(x). Write 

Then for fixed v and increasing n, the numbers tm are decreasing. Further, 
show that for 1 ~ v ~ (n + 1)/2, 

where P < PPn < Q; here P and Q are two absolute positive constants. (On 
writing ~ = (6hn)-1t in (6.32.10), we have 

d2z 
dt2 + {t/3 - (6hn)-! t2 }Z = 0. 

The monotonic character of tpn follows by means of Theorem 1.82.1. Further
more, see (6.32.3), 

Now apply Problem 1.) 
37. Consider n unit "masses", n ~ 2, at the variable points X1, X2, • • • , Xn 

in the interval [ -1, + 1]. For what position of these points does the expreSBion 

II I Xp- x,. I 
"·l'-1,2,•••,n 

P<l' 

become a maximum? (Stieltjes 4, p. 441; the maximum position is the same 
as in Theorem 6.7.1, obtained by replacing n by n - 2 and writing p = q = 1. 
We have (1 - x2)P~:!d (x) = const. { P n(x) - P n-2(x)} = const. (1 - x2)P~-1(x); 
see (4.7.27).) 

38. Consider n unit "masses", n ~ 2, at the variable points X1 , X2 , • • • , Xn 

in the interval [0, + oo ], such that 

n -
1
(x1 + X2 + · · · + Xn) ~ K 

where K is a fixed positive number. For what position of these points does the 
expressiOn 

II I Xp- x,. I 
"·~£-1,2,•••,n 

P<l' 

become a maximum? (Cf. Problem 37 and Theorem 6.7.2. We have xL~121 (x) 
= const. {Ln(x) - Ln-1(x)} = const. xL~(x); see (5.1.14).) 

----------------------------------------·---··-··-······· 



PROBLEMS AND EXERCISES 383 

39. Assume a > -1, f3 > -1. With the notation of (7.32.2) we have, for 
n ~ oo, 

{ 

{r(q + 1)}-1nq if q ~ -!, 
max I p~a,fJ>(x) I rv 11"-;n-; I a+! ~-a/2-i I f3 +! ~-{j/2-i Ia + f3 + 1l(a+fJ+ll/2 

-l;;!z;;!+\ 

if -1 < q ~ -!. 
(Cf. (7.32.2).) 

40. From (7.33.10) derive 

Pn(cos 8) - Pn+l(cos 8) = 8'0(n4 ), 0 < 8 ~ 11"/2. 

(Use 

(1- x){P:(x) + P:+l(x)} = (n + 1)1Pn(x)- Pn+l(x)} 

(see Problem 17) and (7.33.9).) 
41. We have for 0 < 8 < 1r 

(sin 8)' I Qn (cos 8) I< (7r/(2n)}'. 

The constant (11"/2)' cannot be replaced by a smaller one. (See Hobson 1, 
p. 309, where the bound (1rjn)' is obtained; compare Theorem 7.3.3, and Prob
lem 18.) 

42. Let f(x) be an arbitrary 11"n, non-negative for all real values of x, and let 

i:co e _., 2 f(x) dx = 1. 

Then 

f(o) ---1 3 · 5 · · · (2m + 1) -1 ; max = 1r 
2 4 2 

rv 1r n , .... m m = [n/4), n ~ oo. 

(Use Theorem 1.21.2, (7.71.2), (5.5.9), and (5.5.5).) 
43. A mean-value theorem for polynomials. Let f(x) be a 11"2n . Then 

f(b) - f(a) = (b - a)f'(~), 

where ~ is a proper point in the interval 

!(a + b) - !(b - a)x1 ~ ~ ~ !(a + b) + !(b - a)x1. 

Here X1 denotes the greatest zero of the Legendre polynomial P n(x). (Tchaka
loff 1; use (3.4.1).) 

44. Derive the formula of Lipschitz 

leo e-at Jo(bt) dt = (a2 + b~4, a> 0, b > 0, 

from the generating function o'f the Legendre polynomials, that is, from (4.7.23) 
for X = !. (Write w = e-atN, x = cos (b/N), a and b fixed, N ~ oo, separate 

--------------·----------------·-----------------------------
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.L::-o P m(x)wm into m ~ wN and m > wN (w a fixed positive number),. and 
use (8.1.1) and (7.3.8).) 

45. Derive (5.4.2) from (5.1.9) by writing x = a/N, w = e-btN, a and b fixed, 
b > 0, N .- + oo. (See Problem 44; use (8.1.8) and (7.6.8).) 

46. New proof of the asymptotic formula (8.22.4) of Hilb's type for Laguerre 
polynomials. From the generating function (5.1.9) we obtain 

-:z:/2LCa> ( ) 1 1(1-J { X 1 + w} (1 )-a-1 -n-1 d e n X = -. exp -- -- - W W W 
· 21rt +ao · 21r-w 

1 l(O+l { X 1 + e-z} ( 1 -z)-a-1 nzd = -. exp -- - e e z 
27rt -ao 2 1 - e-z 

_ _ nz-z-lz -a-1;,:.( ) d 1 1(0+) 
- 2 . e z '¥ x, z z, 

1rt -ao 

where cf>(x, z) is regular in I z I < 21r. If we develop cf>(x, z) in a power series 
in z, the resulting integrals can be reduced to Bessel functions (Watson 3, p. 176, 
(1)). (This argument furnishes not only (8.22.4) for an arbitrary real a, but 
also an asymptotic expansion of Hilb's type whose terms are Bessel functions; 
see Wright 1. This is the analogue of Szego's argument used in 16 for Legendre 
polynomials.) 

47. Let a be real, but different from zero. The infinite series 

CIO 

"" -A ianl/2 
L...t n e 
n-1 

is convergent if X > !, and divergent if X ~ !. (For X > 0 the convergence of 
the series is equivalent to that of the integral J~ x-heia"' 112 dx.) 

48. The polynomial sn(a, z) (see (11.3.3)) admits the following representation, 
in which the notation of §11.1 is used:-

Co C-1 C-n+1 C-n 1 

C1 Co C-n+2 C-n+1 a 
Sn(a, z) - -D-1 ........................... n 

Cn Cn-1 C1 Co a" 
1 z z n-1 z" 0 

( Cf. Problem 4.) 
49. Second proof of Theorem 11.4.1 on the zeros of sn(a, z). Use the argument 

of Problem 5. (If zo is the zero in question, and (z - z0)/(z - a) = z', the image 
of I z I = 1 contains z' = 0.) 

50. Theorem 11.3.3 on the convergence of L~=o l4>n(z) 1
2

, I z I < 1, is not true 
if the weight function /(8) is such that log /(8) is not integrable in Lebesgue's 
sense. (Let/(8) = 0 for - e < 8 < +e, andf(8) = 1 fore ~ 8 ~ 21r - e, and 
apply (16.4.2). In this case l4>n(O) 1

11
" .- R; R > 1.) 
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51. Letj(O) be a weight function on the unit circle, -1r ~ 0 ~ +1r, for which 
f~; logf(O) dO exists. Assume p > 0, and let P.n = P.n(/; p) be the minimum of 

2~ 1:" f(O) I p(z) IP dO, 

where p(z) = zn + · · · is an arbitrary 7r'n with the highest term zn. 

{ 1 1+"" } ' !i~ P.n(/; p) = exp 27r _,. log f(O) dO = ®(f). 

(This is a generalization of (12.3.3); see the argument used there.) 

i8 z = e , 

Then 

52. Let kno be the highest coefficient of the orthonormal polynomial Pn(x) 
associated with the distribution da(x) on the finite interval [a, b]. Then 

kno > 22
n-

1(b - a) -n {lb da(x)} -!. 

(Cf. Theorem 12.7.1; Shohat 2, p. 575, (24). Use the extremum property of 
Theorem 3.1.2, choosing p(x) = 21- 2n(b - a)nTnl2(x- a)/(b - a) - 1).) 

53. Use the notation of Problem 52. Let [a', b'] be a subinterval of [a, b] 
such that a(x) is constant in [a', b']. Then two positive constants A, B exist, 
B > 4/(b- a), such that kno > ABn. (Cf. Shohat 2, p. 577. Use the extremum 
property of Theorem 3.1.2, and choose for p(x) the "Tchebichef polynomial" 
corresponding to two disjoint segments in the sense of §16.2 (5).) 

54. By use of the notation of §12.7 (1) we have, under the assumption of 
Theorem 12.7.1, 

(2 )-! ( -1Y
12 

2n-p P/2d-1 
7r (v/2)! n o' v even 

( 1) (P+l)/2 
(2 )-! - 2n-P (P-1)/2d-2d 

7r [(v- 1)/2]! n o 1, v odd. 

Here v is fixed, n .- oo. If d1 = 0, the second formula is to be read as follows: 
limn-+ao 2-nn(l-p)f2knP = 0. (See the special cases in Shohat 2, p. 577. Use 
Theorem 12.1.2 and observe that on putting 

2-n (1 + (1 - X-2)1} n = 1 + 'Yn1X-2 + 'Yn2X-4 + · • · , 
we have 'Ynv "" (22pv!)-1(- nY, v fixed, n .- oo .) 

55. In case of the Jacobi polynomials 

we have, v fixed, n .- oo, 

l "-' -! ( -1)"
12 

2n-p+a+!l (v-1)/2 
nv = 7r' (v/2)! n ' 

( 1) (P-1)/2 
( _ {3) -! - 2n-v+a+!i P/2-1 
a 7r [(v- 1)/2]! n ' 

according as v is even or odd. In the second case we assume a -:;6. {3. (See 

---·----·-----·---------------·-----------·-----------
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Geronimus 1, p. 380; usc the result of Problem 54; in this case we h:we do = 
2-(a+!i+l)/2, dl = ({3 - a) 2-(a+!i+l)/2.) 

56. With the notation and assumption of Problem 54 we have 

kn2 / 4 -k = - n + C + En 1 
nO 

lim En = 0, 

where c is a constant. (Cf. Shohat 2, p. 577. Use the same argument as in 
Problem 54.) 

57. Let Z.(x), v = 1, 2, · · · , n, be the fundamental polynomials of the La
grange interpolation with the zeros of T n(x) as abscissas. Then if k is even, 

Here v1 , v2 , • • • , vk are distinct integers between 1 and n. (E. Feldheim 1; 
l T n(x) I k-\ x = cos fJ, is a cosine polynomial not containing terms with cos vfJ, 
v < n.) 

58. In the ultraspherical case a = {3, -1 < a = {3 < 0, we have for -1 ~ x 
~ +1 (notation as in Problem 57) 

!l1(x) }
2 

+ l~(x) }2 
+ · · · + !ln(x) }2 ~ J a l-1. 

(For a = -! see Fejer 13, p. 5. Use Problem 59 and the first identity in 
(14.1.11).) 

59. In the ultraspherical case a = {3 > -1 we have (cf. (14.5.2)) 

v.(x) = 1- 2(a + 1)xx. ~ (2a + 1)x~ ~ -a, _ 1 ~ x ~ +1. 
1- x. 

60. In the Legendre case we have 

( ) > t 2 31!' 
v. x = an 4(2n + 1) ' -1~x~+l. 

(Cf. Fejer 13, p. 23. Use (6.6.5).) 

·----------------------------------·-·-........... .. 
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61. Prove the following identities: 

P~n (x) = (2n + l)xP~1j~ (2x2 - 1), 

xP~(x) = nPn(x) + (2n- 3)Pn-2(x) + (2n- 7)Pn-4(x) + · · ·, 
(1- x2)P~'(x) = -n(n- 1)Pn(x) + 2(2n- 3)Pn-2(x) 

62. Prove: 
+ 2(2n - 7)Pn-4(x) + · · · . 

if n = 1, 

if n ::: 2. 

63. Prove the formula: 

!+1 p (x)xn+2•dx = _!_ (n + 2v)! r(v + i) ll = 0, 1, 2, .... 
-1 n 2n (2v)! r (n + ll + j) ' 

64. Prove the identity 

!+1 Pn(x)e-i>-zdx = i-n(211'/X)lJn+!(X). 
-1 

(Use Problem 63 and (1.71.1).) 
65. Prove that 

f + 00 J (211' )linP (x) 
X -!J n+l (X )ei>-z dX = l n 

-oo 0 

if -1 <X< 1, 

if x > 1 or x < - 1. 

(Use Problem 64 applying Fourier's inversion formula.) 
66. Prove the identity 

~ (n) p~>->(x) n-v = (1 + 2 + 2)n!2 p~>->( (1 + 2xy + y2)-l(x + y)l 
f;:o v p~>-> (l) y xy y p~>-> (1) ' 

in particular the identity 

}_: (n) P .(x )yn-· = (1 + 2xy + y2)n'2P n 1 (1 + 2xy + y2)-l(x + y) l. 
v =:0 v 

(Use (4.7.23).) 
67. Prove the identity 

n (n) £~a) (x) n-• - n L~a) ( (y + 1)-lx l 2: va>(O) Y - (y + 1) £<a>(O) · v =:0 ll v n 

387 
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(Use (5.1.9 ). ) 
68. Prove the identity 

.to (~)H.(x)(2y)n-• = Hn(X + y). 

(Use (5.5.7).) 
69. Let x be a parameter, - 1 < x < + 1. The zeros of the polynomial in z: 

Po(x) + (~) P1(x)z + (~) P2(x)z 2 + · · · + Pn(x)zn 

are all real. 
(Use Problem 66.) 
70. Prove Turan's inequality 

(Pn(x)j2- Pn-l(x)Pn+l(x) ~ 0, -1~x~+l. 

(Turim 1, see also Szego 22, Karlin-Szego 1 and Csordas-Williamson 1.) If 
a 1 and a 2 denote the first and second elementary-symmetric function of n 
real numbers, we have: 

(Use Problem 69:) 
~1. Derive from Problem 66 the generating series (4.10.6) and, in particular, 

(4.10.7). (Put y = n/z, n-? oo; use (8.1.1).) 
72. Derive from Problem 67 the generating series (5.1.16). (Put y = n/z, 

n-? oo; use (8.1.8).) 
73. Prove the following formula of the "Rodrigues type": 

e-zxa£<a> (x) = ( -1 )n tn+l (d )n (e-lltt-a-1) 
n n! dt ' 

xt = 1. 

(Use Taylor's formula and (5.1.9).-In the special case a = 0 this is due to 
G. P6lya, 1941.) 

74. Let (unl and (vnl betwosequences;n = 0, 1, 2, · · ·. Oneoftherelations 

~(n+a) ~(n+a) Un = .i...J ( -l)•v.; Vn = .i...J ( -1 )•u. 
• =O n - v • =O n - v 

implies the other. 
75. Using Problem 74 and (5.1.6) prove 

X~ = t (n +a) ( -l)·L~a> (x ). 
n. v=O n - ll 

76. Let Un and Vn be two sequences; n = 0, 1, 2, · · · . One of the relations 

[n/21 ( -1)• 
Un = L --,- Vn-2•; 

v =0 ll. 

implies the other. 

[n/21 1 
Vn = L f Un-2• 

v =0 ll. 

--------·-----·---------------·----------·---··----· 
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77. Prove the identity: 

(2x)n = [~] _!_ Hn-2.(x) 
' .i...J '( 2)1' n. • =O v. n - v . 

(Use Problem 76 and (5.5.4).) 

78. Prove the following identities: 

y" + 2xy' + 2(n + l)y = 0, 

79. Prove that 

(Use (5.5.4). Cf. P. Turan, Matematikai Lapok, vol. 5 (1954), pp. 134-137.) 
80. Prove that 

lim a-ni 2L~':> (a):t + a) = ( -1)"2-nl 2 (n !)- 1}[ n (2-l:r). 
a-> oo 

81. Let IPm(x) l be the orthonormal polynomials associated with the distribu
tion da(x) in 0 ~ x < + oc. Denoting by h ~2, · · • , ~k any zeros of Pm (:r) \\'<' 

have 

t > 0. 

(See Karlin-McGregor 1, pp. 507-509. Sinee .f(O) = 0, we have 

d 1 .. e-ht dteh:f(t) = 
0 

e-"' 1 1(~1- x) · · · (~k-1- x)l- 11Pm(x)j2da(x) = cp(t), 

Induction.) 

82. Notation: and assumption as in Problem 81, Pm (0) > 0 for all m. Provp 
that 

t > 0. 

(See Karlin-McGregor 1, loc. cit. Let rn > n. We represent Pn(x) by Lagrange':-; 
interpolation formula corresponding to the abscissas ~~'~' · · · , ~~',+! ehosen as 
in 3.3 (6); use Problem 81.) 

83. Let I Pn (x) l be the Poisson-Charlier polynomial:-: (2.81, sgn Pn (0) = 

(-l)n). We have, i\ > 0, rn ~ n, j(x) as in (2.81.1), 

---------------------------------------------·-··-··--.. 
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.. 
L e-'1\zj (x )pn (x )pm (x) 

.r=O 

n (n) (ae'J\ )-• = exp [a(e-'1\- l)]aHn+m>(m!/n!)! ·~=O , (e-'1\- l)n+m-2• 
. " (m - v)! · 

84. Let 'A> -~,'A -:;6. 0. Using the notation (4.9.21) we have 

provided that l + m + n = 2s is even and a triangle with sides l, m, n exists. 
The integral on the left is zero in every other case. (Cf. (4.7.15); cf. Hsii 1.) 

85. Let ln(x) have the same meaning as in (2.8.1); we have then 

ln(x) = (- l)"ln(N- 1- x). 

Here n and x run over the range 0, 1, · · ·, N- 1. Prove also that 

(N -1) ln(N- 1) = n! n 

86. Let Pn(x) have the same meaning as in (2.81.2); we have then 

Pn(O) = ( _ l)"(a"jn!)l/2 = ( _ l)"eaf2(j(n))1f2. 

Prove also that, writing p,.(x)/pn(O) = cn(x,a), we have 

Cn(x;a) = Cz(n;a). 

87. Writing Hn(x) = Hn we have 

-z2 H H H d - t;2 a. /J • 'Y • f ro 28 !R! ! 
e a s 1' X-1r 

-ro ' (s-a)!(s-(J)!(s-')')! 

provided that. a+ (3 + 'Y = 2s is an even integer and s ~a, s;?; (3, s ~ 'Y· 
In all other cases the integral is zero. 

88. Prove that 

limn! (- Y
2
)" L~a) (n

2

) = e-Y. 
n~ro n y 

89. Prove the following identities: 

L~a>(x) = y, (e-xxa+ 1y')' + ne-xxay = 0; 

( 
2- X) e-xf2Ln(X) = h, xh" + h' + n + -

4
- h = 0. 

------------------------------------------------------------------------------ ·-------------·-··--· 
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90. Prove the identity 
n 

L~a+P+ll(x +y) = L L~a~k(x)LkPl(y). 
k=O 

91. Obtain the estimates 

2J.L < ap - 2 + p /2, 

2J.L =ap -2 +p/2, 

2J.L > ap -2 +p/2, 

where a,{3,J.L > -1 and p > 0 are fixed. (See (7.34.1).) 
92. Prove that 

1 sin(n + 1)8 · V6 1r 1r 
--< <- __ s:;,o_s;1r--, 

3 = (n + 1) sinO = 9 ' n n 

1 sin(n + 1)8 1 1r 1r 
--< <- -<o<-

3 =(n+l)sinO =s• n = =2' 

391 

and show that all the bounds are obtained for some 8 and n. (Use (7 .8.1) for 
p~l/2,1/2) ( x) I p~1!2,1/2l( 1) .) 

93. Prove that 
d2n 
dx2n (1 -x)--ao +x)-P > 0, -1 < x < 1, a,{3 ~ 0, 

and 

X> 0, a~ 0. 

(Use Theorems 6.72 and 6.73. These results were conjectured by I. Jo6.) 
94. Prove that 

(Use (5.1.9).) 
95. Prove that 

n+m 
Pn(x)pm(X) = L a(k, m, n)pk(x) 

k= ln-ml 

with a(k, m, n) ~ 0 if Pn(x) satisfies 

Pl(x)pn(X) = Pn+l(x) +anPn(X) + f3nPn-1(x), n =1,2, · ··, 

where an ;;s:; 0, f3n > 0, an+l ~ an, f3n+1 ~ f3n, n = 1, 2, · · · ,po(X) = 1, P1(x) = 
x +a. (Askey 4. Use induction. This contains Problem 94.) 
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96. Prove that 

0 ~X~ 1, 

when n(n + 1) = k(k + 1) +m(m + 1). Also show that 

Jo(x) +Jo(Y) ~ 1 +J0(z) 

when x 2 +y2 =z2
• Gri.inbaum 1, 2, Askey 7. 

97. If L;=oa; is finite, a> -1, and if 

0 ~X, y < oo, 

prove that 

98. If ak,m,n are defined by 

1 00 --..,..---.,....--:---:-:----:-------,----- L: a rksmtn 
(1-r)(l-s) +(1-r)(l-t) +(1-s)(l-t) k,m,n=O k,m,n 

show that 

Then use Problem 84 for A. = ! and ( 4.5.4) to show that ak,m,n ~ 0. Generalize 
to .fooo Lia>(x)L~>(x)L~a>(x)xae-3xdx, a~-!. (Szego 26, Askey-Gasper 3.) 

99. Prove that 

k =1,2, .. ·, 

for all choices of plus and minus signs and any choice of integers ni. (Use 
(5.5.11) and Problem 87. See Ginibre 1.) 

100. Show that 

2nn! to ( -1)kLk(2x2 +2y2) =to(~) [Hk(x) JZ[Hn-k(y) )2 

and in particular that 

n (n/2) (2j)l 
2nL(-1)kLk(2x2) =L .

1 
•
1

( "
2

.)! [Hn-2j(x))2. 
k=O j=O}·}· n-} · 

Extensions of this sum to p~a,o>(x) are given in Askey-Gasper 4. 
101. Show that 

[L(a)( ))2=r(n+a+1) ~ (2k)!(2n-2k)! £<2al( 2 ) 
n X 22nn! 6k![(n-k)!]2r(k+a+1) Zk X. 

This formula of Howell is given in Bailey 2. 

----------------------------------·--------------.. -····-·· ., 



APPENDIX 

ON A SINGULAR CASE OF ORTHOGONAL POLYNOMIALS 

In recent publications F. Pollaczek (1-4) has introduced certain remarkable 
generalizations of the Legendre and other classical polynomials which should be 
treated in this Appendix in a brief way. The polynomials of F. Pollaczek show 
in many respects a singular behavior. For a short treatment of this topic we 
refer to Bateman Manuscript Project 1, vol. 2, pp. 218-221. Cf. also Szego 24. 

1. Definitions and formal properties 

Let a and b be real parameters, a > lbl. We write 

) h (()) = a cos .() + b 
(1. 1 2 sm () 

and define the polynomials p n (x; a, b) = knxn + ... by the generating function 
., 

(1.2) 
f(x, w) = f(cos 8, w) = L Pn(x; a, b)wn 

n=O 

or, in another form: 

(1.3) { 
"' wm } f(x, w) = (1 - 2xw + w2)-J exp (ax+ b) ml;;

1 
m Um-l(x) 

where Um-l has the same meaning as in (1.12.3). The polynomials Pn(x; a, b) 
reduce to the Legendre polynomials in the limiting case a = b = 0. 

The following identities are easy to establish: 

(1.4) Pn(x;a, b)= (-1)nPn(-x;a, -b), 

(1.5) Pn(1;a,b) = Ln(-·a-b), Pn(-1;a,b) = (-l)nLn(-a+b) 

where Ln(x) = L;?l(x) is Laguerre's polynomial (Chapter V). The highest 
coefficient kn of Pn(x; a, b) can be obtained by replacing w by wjx in (1.3) and 
taking x --+ oo . We find 

(1.6) k = 2n 2 ""'2" as n--+ oo (
n + l(a - 1)) nl<a-o 

n n - r(t(a+1)) . 

The following recurrence formub holds (cf. Bateman 
loc. cit.): 

nPn(x; a, b) = [(2n- 1 + 2a)x + 2blPn-l(x; a, b) 
(1.7) 

- (n- l)Pn-2f.r; a, b), 
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Manuscript Project, 

n = 2, 3, 4, · · · . 

·---------·-·-···· ··--·· 
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Here P 0 = 1, P1 = (2a + l)x + 2b. 
We have the important relation of orthogonality (cf. Szego 24): 

(1.8) ~-~
1 

Pn(x; a, b)Pm(x; a, b)w(x; a, b) dx = (n + Ha + 1))-1 Onm, 

n, m = 0, 1, 2, · · · , 

where the weight function is defined by 

(1.9) w(cos 8; a, b) = e< 2B-.-Jh<OJ [cosh (1rh(8))]- 1• 

We note that 

(1.10) w(cos 8; a, b)= 2 exp l (a+ b)(1- 1r/8)) as 8-t +O. 

The behavior of w is similar as 8 -t 1r - 0. 
The following representation in terms of the hypergeometric function holds 

(Bateman Manuscript Project, loc. cit.): 

(1.11) Pn(cos 8; a, b) = einBF( -n,! + ih(8); 1; 1 - e-2i8
). 

2. Generalization 

Let X be real, X > -!. We define the polynomials p~l (x; a, b) by the gener
ating function 

.. { .. wm } (2.1) L p;;l(x; a, b)wn = (1- 2xw + w2 )->- exp (ax+ b) L- Um-l(x) . 
n=O m=l m 

For a = b = 0 we obtain the ultraspherical polynomials p;;l (x ). The case 
dealt with in 1. corresponds to X = t. The polynomials P;;l (x; a, b) are orthog
onal in -1 ~ x· ~ 1, x =·cos 8, with the weight function 

(2.2) w<>-l(x; a, b) = ?r- 122>--te< 28-rlh<BJ (sin 8) 2>--tJr(X + ih(8))J 2• 

Concerning a recurrence formula and a representation in terms of the hyper
geometric function, see Bateman Manuscript Project, loc. cit. 

3. Integral representations 

The following generalizations of the Laplace integral (4.8.11) and of the Mehler 
integrals (4.8.6) and (4.8.7) hold (Novikoff 1): 

(3.1) 
Pn(cos 8; a, b) = ?r- 1e- 28 h<OJ cosh (1rh(8)) 1r exp { 2ih(8) log ctg ~} 

· (cos 8 + i cost sin 8)-n-l dt 

= e-oh<oJ cosh (1rh(8)) 

(3.2) 
{ 

. 8 + t} 
2 

o sm-
2

-. ; 1 cos (n + t )t - h(8) log . 8 _ t 
o sm--

2 
. (2 cost - 2 cos 8)-t dt 

____________ , __ ·--····-· 
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= e<r-Olh<Ol cosh (1rh(O)) 

(3.3) 
{ 

. t + ()} 2 .. sm-2-
. :;;: [ sin (n + t )t - h(O) log . t _ () 

sm--
2 

. (2 cos () - cos t)-l dt. 
In these formulas 0 < () < 1r. 

4. Infinite interval 

Pollaczek (3) defines another remarkable class of polynomials P':l (x; a) by the 
following generating function: 

.. 
(4.1) L P':l(x; a)wn = (1 - weia)->-+ix(l - we-ia)->.-ix. 

n =0 

Here 0 < a < 1r and A. > 0. These polynomials are orthogonal in the interval 
- oo < x < oo with the weight function 

(4.2) 

Laguerre polynomials appear as a limiting case. Indeed, replacing x by x/ a 
and assuming a--+ 0 we obtain 

lim (1 - weia)->-(1 - we-ia)->- exp -log _. \ {
ix 1 - weia I 

a-->0 a 1 - We Ia J 

= (1 - w)-2>- exp (2x w ) 
1-w 

so that, cf. (5.1.9), 

(4.3) limP~"l(x/a;a) = £<fl(-2x), {3 = 2>.- I. 
a -->0 

It is also clear that the polynomials in 2. arise from P~"l(x; a) as follow::;: 

(-!.4) p~hl(h(O); 8) = P':l(cos 8; a, b). 

5. Asymptotic properties 

(a) By means of the generating function (1.1) it is not difficult to obtain an 
asymptotic expression for Pn(x; a, b) when n--+ oo. We may use Darboux'::; 
method (§8.4). 

First let x be outside of the closed interval [ -1, + 1]. Writing x = ! (z + z- 1 ), 

z == ei8, 30 > 0, we find 

Pn(x; a, b) = I r(! + ih(O))l-1(1 - e2i8)-l+ih(8) 

(5.1) . e-i"8n-l+ih(8) ( 1 + o(~)). 

It is not difficult to extend this to an asymptotic expansion. NO\v let 
-1 < x <+I; forming the real part of the right-hand expression in (5.1), 

--------------------------------------·-·"''' '". " 
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the asymptotic formula for !Pn(x; a, b) arises. Finally, in view of (1.5) we 
find from (8.22.3) 

(5.2) Pn(1; a, b)""' !-n·-le-l<a+bl(a + b)-in-1 · exp l2(a + b)lnlj. 

(b) Novikoff (1) investigated the asymptotic behavior of Pn(cos (tn-l);a, b) 
where t > 0 is fixed. His principal results are as follows: 

Pn(cos (tn-l); a, b) = !1r-l(a + b- t2 )-1 exp (-!(a+ b)) 

(5.3) 

. n-i exp {nl (~at b + A(t))} (1 + o(~)), 

O<t< (a+b)l; 

Pn(cos (tn-l); a, b) = ?r-l(t2 - a- b)-1 exp (-!(a+ b)) 

(5.4) 

· n-1 exp { nl ( ~ a t b)} . {cos ( ~ - nl ~ ( t)) + 0 ( ~)} , 

t>(a+b)l. 

From (5.3) and (5.4) interesting conclusions can be drawn about the "extreme" 
zeros of P n ( x; a, b). Let us denote the zeros of these polynomials, as in Chap
ter VI, by cos e. where 0 < 81 < 82 < · · · < On < 1r; e. = Ovn. Then, for any 
fixed value of v, 

(5.5) lim nl()vn = (a + b )l. 
n-->ao 

6. Associated orthogonal polynomials 

(a) We consider the system l cl>n (z) I of polynomials which are orthogonal 
on the unit circle lz! = 1 relative to the weight function 

(6.1) f(O) = w(cos O)isin Ol; 

here w (x) has the same meaning as in ( 1. 9). These polynomials show also in 
many respects a singular behavior. 

The relation to the Pollaczek polynomials can be established by means of 
the formulas (11.5.2): 

(6.2) 
z-•ql,, (z) f -(~)' {I ± ql~,;o T p,(x) 

z-n+lcJ>2n-1(z)) +Hz- ~-l) (~Y{ 1 4= c/>
2;LO)r Qn-t(X). 
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We haVB Pn(x) = !n +!(a+ 1)llPn(x; a, b) [cf. (1.8)]; the system lqn(x)l i:s 
orthonormal with the weight function (I - x2)w(x ). Moreover, K2n denotes 
the (positive) highest coefficient of cP2n(z). Between x and z the relation 
x = ~(z + z- 1) holds. 

(b) Let lzl < 1. We investigate the asymptotic behavior of the polynomials 
cf>n(z) as n--+ oo. Let z r= 0, z = ei8, 38 > 0. We rewrite (5.1) in the form 

(6.3) 
Pn(x) = A(x)nih(Olz-"(1 +0(~)), 

A(x) == lr(~ + ih(O))I-1(1- z2)-l+ih<Bl. 

Now the polynomials l q" (x) I can be represented in terms of l Pn (x) I by using 
Christoffel's formula 2.5, taking (1.5) into account. Thus 

Pn-1(x; a, b) Pn(x; a, b) Pn+1(x; a, b) 

L~-1 -L~ 

L" = Ln( -a -b), L~ = Ln( -a +b). 

Denoting the latter determinant by ~" (x) we find by an easy calculation: 

(1 - x2)qn-1(x) = (Ln-1L~ + LnL~_ 1 )-l(LnL~+ 1 + Ln+1L~)-l 

Using (1.5), (8.22.3), and (1.6) we obtain 

(1 - x2)qn-1(x) = ~A(x)nih(Olz-n- 1 

·(~:::YIn- 1 +!(a+ l)ll~n(x). 

(6.4) · { ( 1 + ~: ~ E') z2 + ( E - E' )z - ( 1 - E ~ E')} ( 1 + 0 ( ~)) , 
E= (a-t-b)ln-l, E1 = (a - b )in-~. 

(c) From (6.3) and (6.4) we conclude, since 1 - x 2 = - (1 - z2 ) 2 (2z)- 2, 

!(z- z-1)qn-1(x) _ 

(6.5) 
Pn(X) -

Denoting by k~ :;:= In+ !(a+ 1) Ilk" the coefficient of X" in Pn(x) and by 
[ 11 _ 1 the coefficient of x"-1 in qn-1(x), we find from (6.5) for z--+0: 

------- ·-----·---------------------------·--·······--···. 
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Now the first formula in (6.2) yields: 

(6.7) 
_ (211· )l a/ 2 (E + E

1 

( 1)) 
-r(!(a+1))n -2-+0 n . 

In particular, 

(6.8) 

(d) We obtain from (6.2), lzl < 1, in view of (6.3), (6.5), (6.8), 

cf> 2n(z) = (~Y A (x)nih(O) { 1 + E ~ E' + ( 1 - E ~ E') 

(6_9) . (1 + !(E + E
1

))z
2 

+ iE = ;~)z- (1- !(E + E1

))}(1 + o(~)) 

= (~Y (lrC{j(:
2

i)a(z) n-r(z) I (a+ b)l(1 + z) +(a- b)i(l- z)l (1 + o(~))' 

cf> 2n_1 (z) = (~Y A(x)nih(Olz- 1 { 1 - E ~ E' + ( 1 + E ~ E') 

(6.1Q) . (1 + !(E + E
1

))z
2 

+ iE = ;:)z- (I- !(E + E1

))}(1 + o(~)) 

= (~2) (1 - z
2

)a(z) n-r(z) l (a+ b)l(1 + z)- (a- b)l(1- z)l (1 + o(~)) 
r({j(z)) n 

where we set for abbreviation: 

( ) _ H a ~ 3) + bz + H a + 3 )z2 

az- 1 2 ' -z 

(6.11) 
R( ) = !(a + 1) + bz + t(a - l)z2 
fJZ 1 2 ' -z 

( ) 
_ t(a - 1) + bz + !(a + l)z 2 

-yz- 1 2 -z 

_______________________________ , _____ . _____ , __ , ______ ,_ 
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The argument of the r--function can be written as follows: 

(6.12) a 1 + z2 z 1 
[j(z) = 2 1 - z2 + b 1 - z2 + 2 

and the real part of this expression is >! for \z\ < 1. Hence the function 1/ r 
is never zero in \z\ < 1. The only point of accumulation of the zeros of the poly
nomials I<Pm(z) I in \zl < 1 is the point 

(a + b )l - (a - b )l (a2 - b2 )l - a 
~~~7---~ = ~--~~--

(a+b)l+(a-b)l b 

appearing only for m = 2n - 1. 
The exponent 'Y(z) of n has a real part > -!. HeRce the series l:l<t>m(z)l2 

is divergent for all lz\ < 1. In particular, 

</>2n(O)l 

(6.13) 
<P2n-t(O)J 

~ (~Y 1 r(!(a + 1)) ,-lnl<a-li((a + b)l ±(a_ b)l) ( 1 +a(~)). 

Taking (11.3.6) into account, this yields again the main term of (6.6). 
(e) Recapitulating, we may point out certain properties of the Pollaczek 

polynomials whieh indicate a rather singular be~avior compared with the clas
sical polynomials. 

The weight functions w(x) or f(8) in Theorems 12.1.1 and 12.1.2, respeCtively, 
are such that log w(cos 8) and logf(8) are integrable. The weight function w(x) 
of the Pollaczek polynomials vanishes at the endpoints x = ± 1 so strongly 
that log w(cos 8) is not integrable [cf. (1.10)]. 

The normalized .Jacobi polynomials are at x = ± 1 of the order na+! and 
ntl+l, respectively. The orthonormal Pollarzek polynomials at x = ± 1 are of 
order n! exp l2(a + b)!n!j [cf. (5.2)]. 

The Toeplitz minima .Un (f) (12.3) associated with the weight functionf(8) tend 
to a positive limit under the assumption of Theorem 12.1.1. In case of the poly
nomials discussed in 6. this limit is zero; the weight function defines a "determin
istic" process. We have in this ease: ~n(f) = K;;

2 ""'n-a. Let f(8) = 0 in a 
certain interval, say -E < 8 < +E, 0 < E < 1r and f(8) = 1 otherwise. We 
have then again .un(f)----> 0, and, more preeisely, !lnU) ""'rn, r < 1; cf. (16.4.3) 
and Problem 50. 

The orthonormal polynomials defined in Theorem 12.1.2 are asymptotically 
of the order (x + (x2 - 1 )l )n if x is not on the cut [ -1, + 1] ). The Pollaczek 
polynomials are under the same condition of the order nK(x + (x2 - 1 )l)n 
where K is a function of x. A similar discrepancy arises if x _is on the segment 
[-1, +I]. 

For the "largest" zeros eos 8., 0 < 8, < 1r, 8, = 8,(n ), v fixed, n----> oo, of the 
.Jaeobi polynomials we have 8,(n) ""n- 1J, "·here j. is the corresponding zero of 

---------------------------------·-----------··"-"'•·-·· 
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an appropriate Bessel function; see (6.3.15 ). The similar zeros of the Pollaczek 
polynomials satisfy the relation O.(n) ""'n-! (a + b )l, see (5.5); the order of 
magnitude is different nnd the constant does not depend on v. 
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300. 
-, Schwarz's, 2, 9, 110, 1.36, 162, 268, 276, 

317,376. 
-, Tur{m's, 190,388. 

See Bessel's inequality. 
Integral, Lebesgue, vii, 9, 26, 159, 246 ff., 

274, 275, 287, 291, 364, 384. 
- , Riemann, 9, 10, 280, 281, 282, 298, 310, 

333, 335, 351, 361. 
-, Riemann-Stieltjes, 8, 9, 11, 50, 333, 350, 

351. 
-, Stieltjes-Lebesgue, v, 1, 8, 10, 38, 187. 
-equations, v, 218, 251. 
- representation of Legendre functions of 

second kind, 88 ff. 
-polynomials, 85 ~r. 
- -, Dirichlet-Mehler, 85 ff., 96. 
- - , Laplace (first), 86, 176. 
- - , Laplace (second), 86 ff. 
- - , Stieltjes, 87 fl'. 

- - - ultraspherical polynomials, Dirichlet-
Mehler, 89. 

- - - - - , Stieltjes, 89 fl'. 
Interpolation, v, ix, 12, 14, 58, 329 ff., 347. 
-, Lagrange, 12, 47, 180, 329 ff., 348, 349, 

389. 

-on Hermite abscissas, 340. 
- -Jacobi abscissas, 335 ff. 
- -Laguerre abscissas, 340, 344 ff. 
- - Legendre abscissas, 386. 
- - Tchebichef abscissas, 330, 334, 335, 386. 

- ultraspherical abscissas, 386. 
See Conjugate points, Fundamental 

polynomials, Hermite interpolation, 
Lagrange polynomials. 

Jackson, vii, 6, 7, 42, 331, 406. 
Jacob,251,406. 
Jacobi, iii, 49, 58, 69, 86, 406, 407. 

See Functions of second kind, Me
chanical quadrature, Polynomials, 
Series. 

Jensen's theorem, 301. 
Joo, 391. 
Jordan, C., 58, 407. 
- arc, 8, 364. 
-curve, 8, 21, 364, 365. 
- , Ch., 34, 407. 
Jordan-Pochhammer integral, 75. 
Julia, 369, 407. 

Kaczmarz-Steinhaus, 1, 10, 407. 
Kanter, vii. 
Karlin-McGregor, 37, 273, 389, 420. 
Karlin-Studden, 5, 420. 
Karlin-Szego, 190, 388, 420. 
Keldysch-Lawrentieff, 368, 407. 
Kernel polynomials, 39, 40, 44, 71, 101, 180, 

183, 249, 290, 322, 323, 333, 351, 368, 377. 
See Asymptotic formula, Zeros. 

Klein, 145,407. 
Kogbetliantz, 102, 168, 172, 203, 240, 248, 

249,251,256,273,380,407. 
Koornwinder, 98, 99, 420. 
Korous, 131, 13~, 162, 167, 212, 251, 303, 408. 
Koschmieder, 60, 408. 
Kowalewski, 24, 408. 
Kowallik, 251, 408. 
Krall, 107, 408. 
Krawtchouk, 113, 408. 

See Polynomials. 
Kronecker, 408. 

Lagrange, 100, 408. 
-polynomials, 329 ff., 347. 
-series, 70. 

See Interpolation. 
Laguerre, v. 100, 117, 131, 408, 409. 

See Polynomials. 
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Lame function, 151. 
Langer, 204, 210, 409. 
Laplace, iv, 86. 
Laplace's formula for Legendre polynomials, 

194, 198, 201, 202, 204 ff., 211 fi., 224. 
- - - - -, Darboux's generalization, 195, 

201, 206 ff., 211. 
- - - - -, Stieltjes' generalization, 195, 

202, 209 ff. 
Laplace-Heine formula, 194, 204 ff., 208, 243. 
- - , generalization, 194. 
Laplace series, 96, 249. 
-transform, 379. 

See Integral representation. 
Laurent expansion, 252. 
Lawton, 151, 409. 
Lebesgue, 14, 15,409. 

See Integral. 
-constant, 13, 258, 330, 336, 388, 339, 350. 
Legendre,v, 70,409. 

See Associated function, J?olynomials. 
Lengyel, 113. 

See Erdos-Lengyel. 
LeRoy, 103, 409. 
Level curve, 8. 
Leibniz, rule of, 67, 68, 101. 
Limited operation, 12. 
Linear operation, see Operation. 
Liouville-Stekloff, method of, 202 ff., 210 ff., 

299. 
Lipschitz, 383. 
- condition, 6, 162, 163, 186. 
Lipschitz-Dini condition, 279, 29'7, 324. 
Littlewood, see Hardy-Littlewood-P6lya. 
Locher, 363, 420. 
Lorch, xi, 190, 249, 420. 
Lorch-Muldoon-P. Szego, 158,420. 
Lorch-P.Szego,158,420. 
Lukacs, 4, 178 ff., 249, 409. 

Magnus-Oberhettinger, 420. 
Makai, 20, 148, 157, 190, 420, 421. 
Makai-Turan, 158,421. 
Marcinkiewicz, 273, 330, 347, 409. 
Markoff, A., v, 33, 37, 50, 57, 115, 116, 121, 

122,139,259,378,409. 
McGregor, see Karlin-McGregor. 
Mean approximation, 10, 11. 
Mean-Value theorem, 383. 
- - - ofdauss, 275,310,311. 
- - -,second, 2, 202,357,363. 
Mechanical quadrature, v, ix, 12, 14, 58, 187, 

329,348 ff. 

- -for classical abscissas, 352 ff. 
- - -Jacobi abscissas, 355 ff., 378, 379. 
- -,Gauss-Jacobi, 47 ff., 111, 348 ff. 
Mehler, iii, 47, 49, 85, 192, 380, 394, 409, 410. 
Mehler-Beine, see Asymptotic formula. 
Meixner, 34, 35, 410. 
Method of Liouville-Stekloff, see Liouville

Stekloff. 
- - steepest descent, 202, 203, 221 ff. 
Modulus of continuity, 6, 7, 335, 336, 340, 

346. 
Moecklin, 194, 203, 410. 
Moment problem ofStieltjes, iii, iv, v, 40. 
Muckenhoupt, 190,243,273,421. 
Muckenhoupt-Stein, 273, 421. 
Muldoon, see Lorch-Muldoon-P. Szego. 
MUntz, 251, 410. 
Myller-Lebedeff, 251;410. 

N eumarin, E. R., 130, 251, 380, 410. 
Neumann, F., 248. 
Neumann, J. von, 108. 
Newman-Rudin, 273, 421. 
Newton's formula, 259. 
Normalization, 28, 58, 160. 
Norm function, see Weight function. 
Norm of operation, 12. 
N ovikoff, 394, 396, 421. 

Obrechkoff, 198, 248, 249, 410. 
Olver, 243, 421. 
Operation, linear functional, 11 ff. 
Orthogonal polynomials and continued 

fractions, 54 ff. 
- -,asymptotic formula of, v, ix, 4, 296 ff. 
- -, Christoffel-Darboux formula for, 42 ff. 
- -,classical, 29, 49. 
- - , closure, 40, 108 ff. 
- - , definition, ix, 23 ff. 
- -,expansion in series of, v, ix, 28, 38, 39, 

41, 311, 312, 313 ff. 
- , extremum properties of, 28, 38 ff. 
- , general properties of, 38 ff. 
- , highest coefficient of, 28. 
-, recurrence formula for, 42 ff., 55, 391. 
- , representation of, 27. 
-, zeros of, v, ix, 44 ff., 121 ff., 188, 189. 

Orthogonality, Orthogonalization, v, vi, 8, 
23 ff., 44. 

Orthonormal set, 23, 25, 68. 
Osgood-Caratheodory's theorem, 364. 

Parabola of convergence, 253. 
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Parseval's formula, 40, 289, 368. 
Peano, 1. 
Peetre, 110, 421. 
Pencil, 49. 
Perron,45,54, 144,202,410. 
- 's formula for Laguerre polynomials, 198, 

199, 202, 203, 220, 221, :~25 ff. 
P-function, contiguous Riemann, 71. 
Plancherel, 250. 
Plancherel-Rotach, 132, 201, 203, 410. 
Pochhammer-Bames, notation of, 103. 
Poincare, 310. 
Poisson's integral, 276, 29~!. 

See Polynomials. 
Pollaczek, ix, 37, 393, 421. 
Pollard, 273, 421. 

. See Askey-Pollard. 
Polya, vii, 42, 53, 117, 134, 154, 166, 350, 

388, 410,411. 
See Hardy-Littlewood-Polya. 

Polya-Szego, vii, 5, 11, 21, 24, 34, 40, 70, 87, 
105, 117, 134, 135, 175, 178, 179, 184, 212, 
310,311,411. 

Polynomials associated with a curve 
(Tchebichef polynomials), 368, 385. 

-,classical, v, 29, 159. 
See Asymptotic formula, Expansion, 

Mechanical quadrature. 
-,Faber, 372,374. 
-, Fejer's generalization of Legendre, see 

Fejer. 
-, Gegenbauer, see Polynomials, ultra

spherical. 
-, Hermite, vi. ix, 29, 3{i, 37, 105 ff., 110, 

111, 176 ff., 190, 331, 388 ff., 392. 
See Asymptotic formula, Differential 

equation, Expansion, Generating 
function, Interpolation, Recurrence 
formula, Rodriqwes' formula, Zeros. 

-,Jacobi, vi, ix, 3, 29, 58 III., 94 ff., 103, 105, 
107, 161, 167 ff., 172 ff., 179 ff., 243, 249, 
295,348,383,385,399. 

See Asymptotic formula, Differential 
equation, Expansion, Generating 
function, Interpollation, Mechanical 
quadrature, Recurrence formula, 
Rodrigues' formula, Zeros. 

-, Laguerre, vi, ix, 29, 35, 100 ff., 110, 111, 
164, 176 ff., 184, 185, 190, 243, 379, 380, 
382,387 ff., 391,393,395. 

See Asymptotic formula, Differential 
equation, Expansion, Generating 
function, Interpollation, Recurrence 
formula, Rodrigues' formula. 

-,Legendre, vi, 29, 30, 33, 34, 48, 58, 63, 70, 
85 ff., 95, 96, 136 ff., 162, 164 ff., 167' 172, 
189, 346, 348, 379, 382 ff., 392, 393. 

See Asymptotic formula, Expansion, 
Generating function, Integral repre
sentation, Interpolation, Zeros. 

- , Krawtchouk, 35 ff. 
-, ofS. Bernstein and Szego, 31 ff. 
-, Poisson-Charlier, 34, 35, 37, 377, 389, 390. 
-, Pollaczek, 37, 393 ff. 
- orthogonal on a curve, vii, 364 ff. 

See Asymptotic formula, Zeros. 
- - - -segment, see Orthogonal poly

nomials. 
Polynomials orthogonal on the unit circle, ix, 

287 ff., 384. 
-, Stieltjes-Wigert, 33. 
-, Tchebichef (of the first and second kind), 

3, 26, 29, 30, 60, 63, 112, 136 ff., 162, 347, 
348, 387, 391. 

See Expansion, Interpolation, Zeros. 
- , ultraspherical, vi, 29, 58 ff., 80 ff., 93 ff., 

107,135 ff., 167, 170 ff., 379,387,390,394. 
See Asymptotic formula, Differential 

equation, Expansion, Generating 
function, Integral representation, 
Interpolation, Recurrence formula, 
Rodrigues' formula, Zeros. 

Popoviciu, 46, 140, 142, 411. 
Principle of argument, 21, 157. 
Probability, calculus of, 35. 

Quadratic form, 24, 123, 187, 366. 
- -of Hankel (recurrent) type, 27, 309. 
Quantum mechanics, iii. 

Rabinowitz, see Davis-Rabinowitz. 
Rau, 197, 214, 249, 411. 
Recurrence formula, general, 42 ff. 
- -of Hermite polynomials, 106. 
- - -Jacobi functions of second kind, 78 ff., 

379. 
- - polynomials, 71 ff. 

- - -Laguerre polynomials, 101. 
- - -polynomials orthogonal on the unit 

circle, 293. 
- - - ultraspherical polynomials, 81, 82. 
Riemann, see Integral, P-function. 
- 's lemma, 254,267,319. 
- 's theory of trigonometric series, 248. 
Riesz, F., 12, 275, 411. 
Riesz, M., 5, 57,304, 411. 
Robin's constant. see Transfinite diameter. 
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Turan, vii, ix, 158, 190, 388, 389, 422. 
See Balazs-Turan, Egervary-Turan, 

Erdos-Turan, Grunwald-Turan, 
Makai-Turan, Suranyi-Turan, 
Szego-Turan. 

Uniqueness theorems, 248 
Uspensky, 53, 107, 203, 219, 220, 251, 415. 

VanVeen, 132, 204, 415. 
Vector, 9. 
-space, 10. 
Vietoris, 363, 422. 
Vitali-Sansone, 415, 423. 
Vitali's theorem, 57. 
Volterra equation, 211. 

Wainger, see Askey-Wainger. 
Walsh, 7, 366, 415. 

See Sholat-Hille-Walsh. 
Wangerin, 84, 415. 
Watson, 18, 20, 96, 102, 104, 107, 159, 162, 

192, 193, 202, 203, 222, 251, 253, 363, 380, 
384,415. 

See Whittaker-Watson. 
Webster, 347,423. 
Weierstrass, theorem of, fi ff., 10, 110. 
Weight function, 9, 37, 68, 159, 160, 162 ff., 

185, 188, 287, 294, 296, 297, 299, 309, 312, 
314,316,347,380,385. 

Weiss, G., see C oifman-G. Weiss. 
W eyl, 110, 251, 310, 415. 
Whittaker-Watson, 14 ff., 58, 63, 65, 66, 71, 

75,84,86,88,93,103,2:48,415. 
Widom-Wilf, 243, 423. 
Wigert, 33, 102, 251, 413. 

See Polynomials. 
Wilf, see Widom-Wilf. 

Williamson, see Csordas-Williamson. 
Wiman, 131, 416. 
Winston, 131, 351, 416. 
Wintner, see Hartman-Wintner. 
Wright, 203,384, 416. 

Young, W. H., 10,248,414. 

Zernike, 132, 416. 
Zero-function, 9, 40, 45. 
Zeros, distribution of, v, 310. 
-, electrostatical interpretation of, 140, 382. 
-of Airy's function, 18, 19,377, 382. 
- - analytic functions, 21. 
- -Bessel functions, 126 ff., 140, 192, 193, 

381. 
- -Hermite polynomials, 117 ff., 123, 

127 ff., 141 ff., 240, 353. 
- -Jacobi polynomials, vi, 116 ff., 140 ff., 

144 ff., 192, 193, 237 ff., 250 ff., 379, 381. 
- -kernel polynomials, 369, 377. 
- -Laguerre polynomials, 116 ff., 122 ff., 

127 ff., 141 ff., 150 ff., 237 ff., 353, 381, 382. 
- - Legendre functions of second kind, 

155 ff. 
- -polynomials, 111, 122, 125, 353. 
-numerators of continued fractions, 57. 
-polynomials orthogonal on a curve, 369. 
- - - - the unit circle, 292, 384. 
-solutions of differential equations, see 

Sturm's theorem. 
- - Tchebichef polynomials, 330, 351. 
- - ultraspherical polynomials, 119, 121 ff., 

138, 352, 381. 
See Orthogonal polynomials. 

Zygmund, 248, 253, 254, 274, 276, 279, 281, 
359,416,423. 
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Rodrigues' formula for Hermite polynomials, 
106. 

- - -Jacobi polynomials, 67 ff., 73, 74, 94, 
99,117. 

- - -Laguerre polynomials, 101, 117, 388. 
- - - ultraspherical polynomials, 81. 
Roever, vii. 
Rogosinski, 34 7. 
Rolle's theorem, 51, 53, 117, 378. 
Roosenrad, 110, 421. 
Ross, vii. 
Rotach, 203, 249, 250,411. 

See Plancherel-Rotach. 
Rouche's theorem, 21, 149. 
Rudin, see Newman-Rudin. 
Runge, 7. 
Runge-Walsh, theorem of, 7. 

Saddle-point, 219, 231. 
Sapiro, 98, 421. 
Sarmonov, 392,421. 

Scalar product, 8, 9, 10, 25,365,3:67,378. 
Schmeiser, 158, 422. 
Schmidt, E., 34, 35,411. 
Schoenberg, 273. 
Schoenberg-Szego, 190, 422. 
Schur, 1., vi, 140, 142, 411. 
Schwid, 204, 416. 
Seidel-Szasz, 94, 422. 
Sen-Rangachariar, 145,411. 
Series, Jacobi, vi, 273. 
- , Laguerre, 240. 
-,Legendre, vi, 42. 

See Expansion, Orthogonal poly-
nomials. 

Sherman, 57, 411. 
Shibata, 145, 412. 
Shohat, v, vii, 42, 48, 159, 163, 189, 309, 333, 

336,340,345,347,350,385,386,412. 
Shohat-Hille-Walsh, 422. 
Singular integral, 13. 
Smirnoff, 275, 27:6, 289, 368, 369, 412. 
Smith, 412. 
Sonin, 96, 100, 102, 104, 159, 16:6, 169, 176, 

189,379, 412. 
Spencer, 132, 412. 
Statistics, mathematical, v. 
Stein, see Muckenhoupt-Stein. 
Steinig, see Askey-Steinig. 
Stekloff, 9, 210, 350, 412. 

See Liouville-Stekloff. 
Stekloff-Fejer, theorem of, 350 ff., 360. 
Step function, 34, 35, 37, 164. 

-polynomial, 329, 339 ff. 
- - , generalized, 331. 
Stieltjes, v, 33, 37, 46, 50, 51, 53, 54, 58, 87, 

89, 90, 92, 93, 121 ff., 136, 139, 140, 142, 
145, 151 ff., 156, 165, 172, 174, 175, 193, 
195,211,382,412,413. 

See Heine-Stieltjes, Hermite-Stieltjes, 
Integral, Laplace, Moments, Poly
nomials. 

Stirling's formula, 227. 
- series, 212. 
Stone,10,23,251,413. 
Strip of convergence, 253. 
Studden, see Karlin-Studden. 
Sturm-Liouville type, 210. 
Sturm's theorem on differential equations, 

19 ff. 
- -(method)- zeros, vi, 45, 111, 121, 

124 ff., 139. 
Summability, see Abel, Cesaro. 
Suranyi-Turan, 347, 422. 
Szasz,5,190,413,422. 

See Seidel-Szasz. 
Szego, G., 19, 27, 31, 33, 37, 45, 59, 87, 93, 94, 

96, 110, 125, 127, 128, 135, 137, 140, 158, 
163, 164, 167 ff., 189, 190, 197, 198, 203, 
206, 214, 243, 248, 249, 251, 274 ff., 287, 
289, 294 ff., 299, 300, 309, 310, 312, 313, 
340, 346, 355, 360, 361, 366, 369, 371, 377, 
384,388,392,393,394,413,414,422. 

See Fejer-Szego, Grenander-Szego, 
Karlin-Szego, Polya-Szego, Poly
nomials, Schoenberg-Szego. 

Szego, P., xi. 
See Lorch-P. Szego, Lorch-Muldoon

P. Szego. 
Szego-Turan, 157, 158,422. 

Tamarkin, vii, ix, 42, 414. 
Tchakaloff, 189, 383, 414. 
Tchebichef, v, 33, 47, 50, 54, 70, 100, 186, 

188, 189, 414. 
See Deviation, Polynomials. 

Thorne, 243, 422. 
Titchmarsh, 37, 57,301,310,311,415. 
Toeplitz matrix, 287, 399. 
-,operator, 99. 
Total variation, 12, 34, 35. 
Transfinite diameter, 364, 369. 
Tricomi, ix, 242, 243, 415, 422. 
Trigonometric polynomials, 3, 5 ff., 11. 
- representation, 90 ff. 
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