Recent Progress on Turan's Brickyard Problem: Improved Lower Bounds for the Crossing Numbers of $K_{m, n}$ and K_{n}

Gelasio Salazar
Instituto de Investigacion en Comunicacion Optica Universidad Autonoma de San Luis Potosi, Mexico
gsalazar@cactus.iico.uaslp.mx

Abstract

In the earliest instance of a crossing number problem, Turán conjectured in 1945 that the crossing number $\operatorname{cr}\left(K_{m, n}\right)$ of $K_{m, n}$ is $\lfloor(m-1) / 2\rfloor\lfloor m / 2\rfloor\lfloor(n-1) / 2\rfloor\lfloor n / 2\rfloor$.

By using some elementary topological arguments, we set up a quadratic optimization problem whose minimum yields a lower bound for $\operatorname{cr}\left(K_{m, n}\right)$. Although the quadratic problem is intractable because of its size, by using some very recent relaxation techniques for quadratic programming we were able to show that $\operatorname{cr}\left(K_{m, n}\right)$ is at least 0.83 of its conjectured value, for each fixed m and sufficiently large n. This also implies that the crossing number of the complete graph K_{n} is asymptotically at least 0.83 of its long-conjectured value. This is joint work with Etienne DeKlerk, John Maharry, Dima Pasechnik, and Bruce Richter.

